Tracking the spin on a ping pong ball with the quaternion Bingham filter

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation: Glover, Jared, and Leslie Pack Kaelbling. “Tracking the Spin on a Ping Pong Ball with the Quaternion Bingham Filter.” 2014 IEEE International Conference on Robotics and Automation (ICRA) (May 2014).

As Published: http://dx.doi.org/10.1109/ICRA.2014.6907460

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/100725

Version: Author’s final manuscript: final author’s manuscript post peer review, without publisher’s formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike
Abstract—A deterministic method for sequential estimation of 3-D rotations is presented. The Bingham distribution is used to represent uncertainty directly on the unit quaternion hypersphere. Quaternions avoid the degeneracies of other 3-D orientation representations, while the Bingham distribution allows tracking of large-error (high-entropy) rotational distributions. Experimental comparison to a leading EKF-based filtering approach on both synthetic signals and a ball-tracking dataset shows that the Quaternion Bingham Filter (QBF) has lower tracking error than the EKF, particularly when the state is highly dynamic. We present two versions of the QBF—suitable for tracking the state of first- and second-order rotating dynamical systems.

I. INTRODUCTION

As any fan of this high-speed sport knows, table tennis is a game of spin. Because of the high-friction soft rubber surfaces of modern ping pong paddles, ball spin—which can reach 150 rotations per second—plays an enormous role in determining the trajectory of the ball after being hit. A topspin ball tends to fly off of your paddle up into the air, while an under-spin ball will drop down into the net. Due to air resistance, spin can also change the in-flight trajectories of balls as well, a phenomenon known as the “Magnus effect” which leads to the well-known “curveball” in the sport of baseball. Ping pong players go to great length to disguise the spins they put on the ball, and much of the training of table tennis professionals goes into the technique and strategy of handling different types of spins. Swings which impart different types of spin are given different names, like “loop”, “chop”, “push”, and “flip”.

Several robots have been programmed to play ping pong over the years [1], [16], [20], [17]. However, only the earliest of these systems (by Russell Andersson in the late 1980s) made any attempt to track the spin on the ball. Because it used only indirect measurements of the spin (via the Magnus effect), the spin estimates were extremely noisy [1]. Fortunately for Andersson, he used only low-friction wooden paddles (with no rubber surface), so the effects of spin were minimized, and the robot was able to hold its own against novice players at moderate speeds and spins.

In this paper we present an approach to track the spin on the ping pong ball from direct measurements of the ball’s orientation with a high-speed camera (Figure 2).

3-D rotational data occurs in many disciplines, from geology to robotics to physics. Yet modern statistical inference techniques are seldom applied to such data sets, due to the complex topology of 3-D rotation space, and the well-known aliasing problems caused by orientations “wrapping around” back to zero. Many probability distributions exist for modeling uncertainty on rotational data, yet difficulties often arise in the mechanics of complex inference tasks. The technical contribution of this paper is to explore one distribution—the Bingham—which is particularly well-suited for inference, and to derive some common operations on Bingham distributions as a reference for future researchers.

We present a new deterministic method—the Quaternion Bingham Filter (QBF)—for approximate recursive inference in quaternion Bingham processes. The quaternion Bingham process is a type of dynamic Bayesian network (DBN) on 3-D rotational data, where both process dynamics and measurements are perturbed by random Bingham rotations. The QBF uses the Bingham distribution to represent state uncertainty on the unit quaternion hypersphere. Quaternions avoid the degeneracies of other 3-D orientation representations, while the Bingham enables accurate tracking of high-noise signals. Performing exact inference on quaternion Bingham processes requires the composition of Bingham distributions, which results in a non-Bingham density. Therefore, we approximate the resulting composed distribution as...
a Bingham using the method of moments, in order to keep the filtered state distribution in the Bingham family. We compare the quaternion Bingham filter to a previous approach to tracking rotations based on the Extended Kalman Filter (EKF) and find that the QBF has lower tracking error than the EKF, particularly when the state is highly dynamic. We evaluate the performance of the QBF on both synthetic rotational process signals and on a real dataset containing 3-D orientation estimates of a spinning ping-pong ball tracked in high-speed video. We also derive the true probability density function (PDF) for the composition of two Bingham distributions, and report the empirical error of the moment-matching composition approximation for various distributions. We begin by introducing the Bingham distribution and presenting operations on it that will be needed by the filter. Then, we derive the first- and second-order quaternion Bingham processes and the QBF for estimating their state. We conclude with experiments on artificial and real data.

II. DISTRIBUTIONS ON ROTATIONS

The problem of how to represent a probability distribution on the space of rotations in three dimensions has been a subject of considerable study. Representing the distribution directly in the space of Euler angles is difficult because of singularities in the space when two of the angles are aligned (known as gimbal lock). A more appropriate space for representing distributions on rotations is the space of unit quaternions: a rotation becomes a point on the 4-dimensional unit hypersphere, \(S^3 \). This space lacks singularities, but has the difficulty that the representation is not unique: both \(q \) and \(-q\) represent the same rotation. Putting a Gaussian distribution directly in quaternion space does not respect the underlying topology of 3-D rotations; however, this approach has been the basis of tracking methods based on approximations of the Kalman filter [13], [4], [15], [5], [10], [11]. A more appropriate method is to represent distributions in an \(\mathbb{R}^3 \) space that is tangent to the quaternion hypersphere at the mean of the distribution [6]; but such a tangent-space approach will be unable to effectively represent distributions that have large variances. In many perceptual problems, it may be possible to make observations that provide significant information about only one or two dimensions, yielding high-variance estimates. For this reason, we use the Bingham distribution.

The Bingham distribution is commonly used as a distribution on 3-D rotations as unit quaternions [2], [9], [18]. Its density function (PDF) is given by

\[
f(x; \Lambda, V) = \frac{1}{F} \exp\left(\sum_{i=1}^{d} \lambda_i (v_i^T x)^2\right)
\]

where \(x \) is a unit vector on the surface of the sphere \(S^d \subseteq \mathbb{R}^{d+1} \), \(F \) is a normalization constant, \(\Lambda \) is a vector of non-negative (\(\leq 0 \)) concentration parameters, and the columns \(v_i \) of the \((d + 1) \times d \) matrix \(V \) are orthogonal unit vectors.

The Bingham distribution is the maximum entropy distribution on the hypersphere which matches the sample inertia matrix \(E[xx^T] \) [14]. Therefore, it may be better suited to representing random process noise on the hypersphere than some other distributions, such as (projected) tangent-space Gaussians. Bingham are also quite flexible, since a concentration parameter, \(\lambda_i \), of zero indicates that the distribution is completely uniform in the direction of \(v_i \). They are therefore very useful in tracking problems where there is high, anisotropic noise. For example, to track the ping pong ball based on detections of its logo, the position of the logo can often be detected much more reliably than its orientation, so the axis (from the center of the ball to the logo) of the ball’s 3-D orientation estimate will have less uncertainty than the angle.

III. OPERATIONS ON BINHAM DISTRIBUTIONS

In order to implement the quaternion Bingham filter, we need to be able to perform several operations on Bingham distributions. To our knowledge, all of these operations, except for computing the normalization constant, are new contributions of this paper. More operations (including calculation of KL-divergence and sampling methods) are presented in the accompanying tech report [7].

The Normalization constant. The primary difficulty with using the Bingham distribution in practice lies in computing the normalization constant, \(F \). Since the distribution must integrate to one over its domain, we can write the normalization constant as

\[
F(\Lambda) = \int_{x \in S^d} \exp\left(\sum_{i=1}^{d} \lambda_i (v_i^T x)^2\right) = |S^d|^{-1} F_1(\frac{d + 1}{2}; \frac{d + 1}{2}; \Lambda)
\]

where \(F_1(\cdot) \) is a hyper-geometric function of matrix argument [2]. Evaluating \(F_1(\cdot) \) is expensive, so we precompute a lookup table of \(F(\cdot) \)-values over a discrete grid of \(\Lambda \)'s, and use tri-linear interpolation to quickly estimate normalizing constants on the fly.

Product of Bingham PDFs. The correction step of the filter requires multiplying PDFs. The product of two Bingham PDFs is given by adding their exponents:

\[
f(x; \Lambda_1, V_1) f(x; \Lambda_2, V_2) = \frac{1}{F_1 F_2} \exp\left\{\sum_{i=1}^{d} \lambda_i (v_i^T x)^2 + \lambda_i (v_i^T x)^2\right\} = \frac{1}{F_1 F_2} \exp\left\{x^T (C_1 + C_2) x\right\}
\]

After computing the sum \(C = C_1 + C_2 \) in the exponent of equation 3, we transform the PDF to standard form by computing the eigenvectors and eigenvalues of \(C \), and then subtracting off the lowest magnitude eigenvalue from each spectral component, so that only the eigenvectors corresponding to the largest \(d \) eigenvalues (in magnitude) are kept, and \(\lambda_1 \leq \cdots \leq \lambda_d \leq 0 \) (as in equation 1).

Rotation by a fixed quaternion. To find the effect of the control on the predictive distribution, we rotate the prior by \(u \). Given \(q \sim \text{Bingham}(\Lambda, V) \), \(u \in S^3 \), and \(s = u \circ q \), then \(s \sim \text{Bingham}(\Lambda, u \circ V) \), where \(u \circ V \triangleq [u \circ v_1, u \circ v_2, u \circ v_3] \). In other words, \(s \) is distributed according to
a Bingham whose orthogonal direction vectors have been rotated (on the left) by u. Similarly, if $s = q \circ u$ then $s \sim \text{Bingham}(\Lambda, V \circ u)$.

Proof for $s = u \circ q$: Since unit quaternion rotation is invertible and volume-preserving, we have

$$f_s(s) = f_q(u^{-1} \circ s) = \frac{1}{F} \exp\left\{ \sum_{i=1}^{d} \lambda_i(v_i^T(u^{-1} \circ s))^2 \right\}$$

$$= \frac{1}{F} \exp\left\{ \sum_{i=1}^{d} \lambda_i((u \circ v_i)^T s)^2 \right\} .$$

Quaternion inversion. Given $q \sim \text{Bingham}(\Lambda, V)$ and $s = q^{-1}$, then $s \sim \text{Bingham}(\Lambda, V)$, where J is the quaternion inversion matrix, $J = \begin{bmatrix} 1 & -1 & -1 & -1 \end{bmatrix}$. The proof follows the same logic as in the previous section.

Composition of quaternion Bingham. Implementing the QBF requires the computation of the PDF of the composition of two independent Bingham random variables. Letting $q \sim \text{Bingham}(\Lambda, V)$ and $r \sim \text{Bingham}(\Sigma, W)$, we wish to find the PDF of $s = q \circ r$.

The true distribution is the convolution, in \mathbb{S}^3, of the PDFs of the component distributions.1

$$f_{true}(s) = \int_{q \in \mathbb{S}^3} f(q) f(r)$$

$$= \frac{1}{|\mathbb{S}^3|} F(1/2, 1/2; C(s)) F(1, 1, 1/4; \Lambda) F(1/4, 1/2; \Sigma) ,$$

(4)

where $C(s) = \sum_{i=1}^{3} \left(\sigma_i(q \circ w_i^{-1})(s \circ w_i^{-1})^T + \lambda_i v_i^T \right)$.

To approximate the PDF of s with a Bingham density, $f_B(s) = f_B(q \circ r)$, it is sufficient to compute the second moments of $q \circ r$, since the inertia matrix, $E[ss^T]$ is the sufficient statistic for the Bingham. This moment-matching approach is equivalent to the variational approach, where f_B is found by minimizing the KL divergence from f_B to f_{true}.

Noting that $q \circ r$ can be written as

$$(q^T H_1^T r, q^T H_2^T r, q^T H_3^T r)$$

where

$$H_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$H_3 = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

and

$$H_4 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} ,$$

we find that

$$E[s_i s_j] = E[q^T H_1^T r r^T H_j q] ,$$

which has 16 terms of the form $\pm r_a r_b q_c q_d$, where $a, b, c, d \in \{1, 2, 3, 4\}$. Since q and r are independent, $E[\pm r_a r_b q_c q_d] = \pm E[r_a r_b] E[q_c q_d]$. Therefore (by linearity of expectation), every entry in the matrix $E[ss^T]$ is a quadratic function of elements of the inertia matrices of q and r, which can be easily computed given the Bingham normalization constants and their partial derivatives. The entire closed form for $E[ss^T]$ is given in the accompanying tech report [7].

Estimating the error of approximation. To estimate the error in the Bingham approximation to the composition of two quaternion Bingham distributions, $B_1 \circ B_2$, we approximate the KL divergence from f_B to f_{true} using a finite element approximation on the quaterionic hypersphere

$$D_{KL}(f_B \parallel f_{true}) = \int_{x \in \mathbb{S}^d} f_B(x) \log \frac{f_B(x)}{f_{true}(x)}$$

$$\approx \sum_{x \in F(\mathbb{S}^d)} f_B(x) \log \frac{f_B(x)}{f_{true}(x)} \cdot \Delta x$$

where $F(\mathbb{S}^d)$ and Δx are the points and volumes of the finite-element approximation to \mathbb{S}^3, based on a recursive tetrahedral-octahedral subdivision method [19].

Entropy. The entropy of a Bingham distribution with PDF f is given by:

$$h(f) = - \int_{x \in \mathbb{S}^d} f(x) \log f(x) = \log F - \Lambda \cdot \nabla F .$$

(5)

The proof is given in the accompanying tech report [7]. Since both the normalization constant, F, and its gradient with respect to $\Lambda, \nabla F$, are stored in a lookup table, the entropy is trivial to approximate via interpolation, and can be used on the fly without any numerical integration over hyperspheres.

IV. DISCRETE-TIME QUATERNION BINGHAM PROCESS

The first-order discrete-time quaternion Bingham process has, as its state, x_n, a unit quaternion representing the orientation of interest at time n. The system’s behavior is conditioned on control inputs u_n, which are also unit quaternions. The new orientation is the old orientation rotated by the control input and then by independent noise $w_n \sim \text{Bingham}(\Lambda_p, V_p)$. Note that “$\circ$” denotes quaternion multiplication, which corresponds to composition of rotations for unit quaternions. ($q \circ r$ means “rotate by r and then by q”).

The second-order quaternion Bingham process has state (x_n, v_n), where x_n represents orientation and the quaternion v_n represents discrete rotational velocity at time n. The control inputs u_n are analogous to rotational accelerations. Process noise w_n enters the system in the velocity dynamics.

In both the first-order and second-order systems, observations y_n are given by the orientation x_n corrupted by independent Bingham noise $z_n \sim \text{Bingham}(\Lambda_o, V_o)$. One
common choice for V_p and V_o is
\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
\end{bmatrix},
\]
which means that the mode is the quaternion identity, $(1,0,0,0)$. (Any V matrix whose top row contains all zeros will have this mode.) Figure 3 shows the process and graphical models for the discrete quaternion Bingham process.

V. DISCRETE QUATERNION BINGHAM FILTER

The state of a discrete-time quaternion Bingham process can be estimated using a discrete-time quaternion Bingham filter, which is a recursive estimator similar in structure to a Kalman filter. Unlike the Kalman filter, however, the QBF is approximate, in the sense that the tracked state distribution is projected to be in the Bingham family after every time step. The second-order QBF will also require an assumption of independence between x_n and v_n, given all the data up to time n. Both the first-order and second-order QBFs are examples of assumed density filtering—a well-supported approximate inference method in the DBN literature [3]. We will start by deriving the first-order QBF, which follows the Kalman filter derivation quite closely. Note that the following derivations rely on several properties of Bingham distributions which were detailed in section III.

First-order QBF. Given a distribution over the initial state x_0, $B_{x_0} \sim \text{Bingham}((\Lambda_0, V_0))$, and an action-observation sequence $u_1, y_1, \ldots, u_n, y_n$, the goal is to compute the posterior distribution $f(x_n | u_1, y_1, \ldots, u_n, y_n)$. We can use Bayes’ rule and the Markov property to decompose this distribution as follows:

\[
B_{x_n} = f(x_n | u_1, y_1, \ldots, u_n, y_n)
\]

\[
\propto f(y_n | x_n) f(x_n | u_1, y_1, \ldots, u_{n-1}, y_{n-1}, u_n)
\]

\[
= f(y_n | x_n) \int_{x_{n-1}} f(x_n | x_{n-1}, u_n) B_{x_{n-1}} (x_{n-1})
\]

\[
= f(y_n | x_n) (f_{w_n} \circ u_n \circ B_{x_{n-1}}) (x_n).
\]

where $f_{w_n} \circ u_n \circ B_{x_{n-1}}$ means rotate $B_{x_{n-1}}$ by u_n and then convolve with the process noise distribution, f_{w_n}. For the first term, $f(y_n | x_n)$, recall that the observation process is $y_n = z_n \circ x_n$, so $y_n | x_n \sim \text{Bingham}(y_n; \Lambda_0, V_0 \circ x_n)$, where we used the result from section III for rotation of a Bingham by a fixed quaternion. Thus the distribution for $y_n | x_n$ is

\[
f(y_n | x_n) = \frac{1}{F_0} \exp \sum_{i=1}^{3} \lambda_{oi} (y_n^T (v_{oi} \circ x_n))^2.
\]

Now we can rewrite $y_n^T (v_{oi} \circ x_n)$ as $(v_{oi}^{-1} \circ y_n)^T x_n$, so that $f(y_n | x_n)$ is a Bingham density on x_n, $\text{Bingham}(x_n; \Lambda_0, V_0^{-1} \circ y_n)$. Thus, computing B_{x_n} reduces to multiplying two Bingham PDFs on x_n, which is given in section III.

Second-order QBF. Given a factorized distribution over the initial state $f(x_0, v_0) = B_{x_0} B_{v_0}$ and an action-observation sequence $u_1, y_1, \ldots, u_n, y_n$, the goal is to compute the joint posterior distribution $f(x_n, v_n | u_1, y_1, \ldots, u_n, y_n)$. However, the joint distribution on x_n and v_n is too difficult to represent, so we instead compute the marginal posteriors over x_n and v_n separately, and approximate the joint posterior as the product of the marginals. The marginal posterior on x_n is

\[
B_{x_n} = f(x_n | u_1, y_1, \ldots, u_n, y_n)
\]

\[
\propto f(y_n | x_n) \int_{x_{n-1}} f(x_n | x_{n-1}, B_{x_{n-1}}) (x_{n-1})
\]

\[
= f(y_n | x_n) (B_{v_{n-1}} \circ B_{x_{n-1}}) (x_n)
\]

since we assume x_{n-1} and v_{n-1} are independent given all the data up to time $n - 1$.

Similarly, the marginal posterior on v_n is

\[
B_{v_n} = f(v_n | u_1, y_1, \ldots, u_n, y_n)
\]

\[
\propto \int_{v_{n-1}} f(v_n | v_{n-1}, u_n) B_{v_{n-1}} (v_{n-1})
\]

\[
\cdot \int_{x_n} f(y_n | x_n) f(x_n | v_{n-1}, u_1, y_1, \ldots, u_n, y_n - 1).
\]

Once again, $f(y_n | x_n)$ can be written as a Bingham density on x_n, $\text{Bingham}(x_n; \Lambda_0, V_0^{-1} \circ y_n)$. Next, note that $x_n = v_{n-1} \circ x_{n-1}$ so that $f(x_n | v_{n-1}, u_1, y_1, \ldots, u_n, y_n - 1) = B_{x_{n-1}} (v_{n-1} \circ x_{n-1})$, which can also be rewritten as a Bingham on x_n. Now letting $x_{n-1} \sim \text{Bingham}(\Sigma, W)$, and since the product of two Bingham PDFs is Bingham, the integral over x_n becomes proportional to a Bingham normalization constant, $\text{I}^{(\frac{1}{2} : \frac{3}{2} : C(v_{n-1}))}$, where

\[
C(v_{n-1}) = \sum_{i=1}^{3} (\sigma_i (v_{n-1} \circ w_i)(v_{n-1} \circ w_i)^T)
\]

Comparing $C(v_{n-1})$ with equation 4 in section III we find that $\text{I}^{(\frac{1}{2} : \frac{3}{2} : C(v_{n-1}))} \propto (f_{w_n} \circ u_n \circ B_{x_{n-1}}) (v_{n-1})$. Thus,

\[
B_{v_n} \propto \int_{v_{n-1}} \int_{x_n} f(v_n | v_{n-1}, u_n) B_{v_{n-1}} (v_{n-1})
\]

\[
\cdot (f_{w_n} \circ u_n \circ B_{v_{n-1}}) (v_{n-1})
\]

In other words, to update the belief on v_n, we first convolve the inverse belief on x_{n-1} with the measurement distribution, then multiply by the belief on v_{n-1}, rotate by the control input u_n, and convolve by the noise distribution, f_{w_n}. In the next section, each of these operations on Bingham distributions will be explained in detail.

A. Extensions

For some applications (such as tracking a ping pong ball through a bounce), the process and observation models of the QBFs described above may be somewhat restrictive. Several extensions are possible, as we outline here.

Sampling-based methods / Tracking the ball through a bounce. The QBF can handle arbitrary process and control models by sampling from the current state distribution, applying the process/control function to each sample, and then fitting new Bingham distributions to the resulting post-process/control samples. This is precisely the method we use
in our experiments to track the ping pong ball through a bounce on the table. The process model is taken from Anderson's ball physics derivation [1], and is a complex function of the ball’s tracked angular and translational velocities,

\[w_f = w_i + \frac{3\mu}{2r}(\hat{v}_{ry}, -\hat{v}_{rz}, 0)v_{iz}(1 + \epsilon), \]

where \(w_i \) and \(w_f \) are the initial and final (pre- and post-bounce) angular velocity vectors, \(\mu \) and \(\epsilon \) are the coefficients of friction and restitution, \(r \) is the ball’s radius, \(v_{iz} \) is the ball’s initial translational \(z \)-velocity, and \(\hat{v}_r = v_r/\|v_r\| \), where \(v_r = (v_{iy} + w_{iz}r, v_{iz} - w_{iy}r, 0) \) is the relative velocity of the surface of the ball with respect to the table.

Quaternion exponentiation / Continuous-time filters. Quaternion exponentiation for unit quaternions is akin to scaling in Euclidean space. If \(q \) represents a 3-D rotation of angle \(\theta \) about the axis \(v \), then \(q^\theta \) is a rotation of \(\theta \) about \(v \). This operation would be needed to handle a continuous-time update in the second-order Bingham filter, since the orientation needs to be rotated by some fraction of the spin quaternion at each (time-varying) time step.

It is possible to incorporate quaternion exponentiation in all parts of the model via a moment-matching method for Bingham exponentiation (akin to the moment-matching method for Bingham composition). However, an additional Taylor-approximation is needed to approximate the second moments of the exponentiated Bingham as a function of the second and higher even moments of the original distribution. (The odd moments of a Bingham are always zero due to symmetry.)

VI. EXPERIMENTAL RESULTS

We compare the quaternion Bingham filter against an extended Kalman filter (EKF) approach in quaternion space [13], where process and observation noise are generated by Gaussians in \(\mathbb{R}^4 \), the measurement function normalizes the quaternion state (to project it onto the unit hypersphere), and the state estimate is renormalized after every update. We chose the EKF both due to its popularity and because LaViola reports in [13] that it has similar (slightly better) accuracy to the unscented Kalman filter (UKF) in several real tracking experiments. We adapted two versions of the EKF (for first-order and second-order systems) from LaViola’s EKF implementation by changing from a continuous to a discrete time prediction update. We also mapped QBF (Bingham) noise parameters to EKF (Gaussian) noise parameters by empirically matching second moments from the Bingham to the projected Gaussian—one, the Gaussian after it has been projected onto the unit hypersphere.

Synthetic Data. To test the first-order quaternion Bingham filter, we generated several synthetic signals by simulating a quaternion Bingham process, where the (velocity) controls were generated so that the nominal process state (before noise) would follow a sine wave pattern on each angle in Euler angle space. We chose this control pattern in order to cover a large area of 3-D rotation space with varying rotational velocities. Two examples of synthetic signals along with quaternion Bingham filter output are shown in figure 4. Their observation parameters were \(\Lambda_o = (-50, -50, -50) \), which gives moderate, isotropic observation noise, and \(\Lambda_o = (-10, -10, -1) \), which yields moderately high noise in the first two directions, and near-uniform noise in the third direction. We estimated the composition approximation error (KL-divergence) for 9 of these signals, with both isotropic and nonisotropic noise models, from all combinations of \((\Lambda_p, \Lambda_o) \) in \{(-50, -50, -50), (-200, -200, -200), (-10, -10, -1)\}. The mean composition error was .0012, while the max was .0197, which occurred when \(\Lambda_p \) and \(\Lambda_o \) were both \((-10, -10, -1)\).

For the EKF comparison, we wanted to give the EKF the best chance to succeed, so we generated the data from a projected Gaussian process, with process and observation noise generated according to a projected Gaussian (in order to match the EKF dynamics model) rather than from Bingham distributions. We ran the first-order QBF and EKF on 270 synthetic projected Gaussian process signals (each with 1000 time steps) with different amounts of process and observation noise, and found the QBF to be more accurate than the EKF on 268/270 trials. The mean angular change in 3-D orientation between time steps were 7, 9, and 18 degrees for process noise parameters -400, -200, and -50, respectively (where -400 means \(\Lambda_p = (-400, -400, -400) \), etc.). The most extreme cases involved anisotropic observation noise, with an average improvement over the EKF mean error rate of 40-50%. The combination of high process noise and low observation noise also causes trouble for the EKF. Table I summarizes the results.

Spinning ping-pong ball dataset To test the second-order QBF, we collected a dataset of high-speed videos of 73 spinning ping-pong balls in flight (Figure 5). On each ball we drew a solid black ellipse over the ball’s logo to allow the high-speed (200fps) vision system to estimate the ball’s orientation by finding the position and orientation of the logo. However, an ellipse was only drawn on one side of each ball, so the ball’s orientation could only be estimated when the logo was visible in the image. Also, since ellipses are symmetric, each logo detection has two possible

2 Detecting the actual logo on the ball, without darkening it with a marker, would require improvements to our camera setup.
orientation interpretations. The balls were spinning at 25-50 revolutions per second (which equates to a 45-90 degree orientation change per frame), making the filtering problem extremely challenging due to aliasing effects. We used a ball gun to shoot the balls with consistent spin and speed, at 4 different spin settings (topspin, underspin, left-sidespin, and right-sidespin) and 3 different speed settings (slow, medium, fast), for a total of 12 different spin types. Although we initially collected videos of 107 ball trajectories, the logo could only be reliably found in 73 of them; the remaining 34 videos were discarded. Although not our current focus, adding more cameras, adding markings to the ball, and improving logo detections would allow the ball’s orientation and spin to be tracked on a larger percentage of such videos. To establish an estimate of ground truth, we then manually labeled each ball image with the position and orientation of the logo (when visible), from which we recovered the ball orientation (up to symmetry). We then used least-squares non-linear regression to smooth out our (noisy) manual labels by finding the constant rotation, \hat{s}, which best fit the labeled orientations for each trajectory.

To run the second-order QBF on this data, we initialized the QBF with a uniform orientation distribution B_{Λ_0} and a low concentration ($\Lambda = (-3, -3, -3)$) spin distribution B_{Θ_0}, centered on the identity rotation, $(1, 0, 0, 0)$. In other words, we provided no information about the ball’s initial orientation, and an extremely weak bias towards slower spins. We also treated the “no-logo-found” (a.k.a. “dark side”) observations as a very noisy observation of the logo in the center of the back side of the ball at an arbitrary orientation, with $\Lambda_o = (-3.6, -3.6, 0)$\(^5\). When the logo was detected, we used $\Lambda_o = (-40, -40, -10)$ for the observation noise. A process noise with $\Lambda_p = (-400, -400, -400)$ was used throughout, to account for small perturbations to spin.

Results of running the second-order QBF (QBF-2) are shown in figure 6. We compared the second-order QBF to the second-order EKF (EKF-2) and also to the first-order QBF and EKF (QBF-1 and EKF-1), which were given the difference between subsequent orientation observations as their observations of spin. The solid, thin, blue line in each plot marked “oracle prior” shows results from running QBF-2 with a best-case-scenario prior, centered on the average ground truth spin for that spin type, with $\Lambda = (-10, -10, -10)$. We show mean orientation and spin errors (to regressed ground truth), and also spin classification accuracy using the MAP estimate of spin type (out of 12)

\[^5\text{We got this } \Lambda_o \text{ by fitting a Bingham to all possible dark side orientations.}\]
Spin was classified into one of the 12 spin types by taking the average ground truth spin for each spin type and choosing the one with the highest likelihood with respect to the current spin belief.

6Spin was classified into one of the 12 spin types by taking the average ground truth spin for each spin type and choosing the one with the highest likelihood with respect to the current spin belief.
Fig. 8. An example ball trajectory (underspin + left-sidespin) and the state of the QBF as it tracks the ball’s orientation and spin through the bounce. In the top row of ball images, the big red (solid-line) axis is the mode of the QBF’s orientation distribution, and the small red axes are random samples from the orientation distribution. The big green (dashed-line) axis is the detected ball orientation in that image. In the bottom row, the big red (solid-line) axis is the mode of the QBF’s spin distribution, and the small red axes are random samples from the spin distribution. The big green (dashed-line) axis is the ground truth spin, and the black axis in the center is the identity (no-spin), for reference.

ouslly, such estimation was limited to slow-moving signals with low-noise observations, where linear approximations to 3-D rotation space were adequate. The contribution of our approach is that the quaternion Bingham filter encodes uncertainty directly on the unit quaternion hypersphere, using a distribution—the Bingham—with nice mathematical properties enabling efficient approximate inference, with no restrictions on the magnitude of process dynamics or observation noise. Because of the compact nature of 3-D rotation space and the flexibility of the Bingham distribution, we can use the QBF not only for tracking but also for identification of signals, by starting the QBF with an extremely unbiased prior, a feat which previously could only be matched by more computationally-intensive algorithms, such as discrete Bayesian filters or particle filters.

REFERENCES