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Abstract

This paper presents a novel framework to extend the dy-
namic range of images called Unbounded High Dynamic
Range (UHDR) photography with a modulo camera. A
modulo camera could theoretically take unbounded radi-
ance levels by keeping only the least significant bits. We
show that with limited bit depth, very high radiance lev-
els can be recovered from a single modulus image with our
newly proposed unwrapping algorithm for natural images.
We can also obtain an HDR image with details equally well
preserved for all radiance levels by merging the least num-
ber of modulus images. Synthetic experiment and experi-
ment with a real modulo camera show the effectiveness of
the proposed approach.

1. Introduction

Real world scene radiance levels cover a huge dynamic
range that is impossible to completely capture given limited
quantization bits and well capacity on a traditional imag-
ing sensor. Typically, all brightness and structural infor-
mation are lost within the saturated regions. To increase
the dynamic range that could be captured, high dynamic
range (HDR) photography aims to address this problem by
increasing camera bit depth of cameras through hardware
modifications or using computational methods by merging
multiple captures with varying exposure levels. With HDR,
the dynamic range increases, but it is still bounded.

To design an imaging sensor that has infinite dynamic
range is physically infeasible, since the sensor keeps on col-
lecting photons but the storage and precision of analog-to-
digital converter (ADC) cannot increase infinitely. A smart
tradeoff in taking ultra high dynamic range data with a lim-
ited bit depth is to wrap the data in a periodical manner. This
creates a sensor that never saturates: whenever the pixel
value gets to its maximum capacity during photon collec-
tion, the saturated pixel counter is reset to zero at once,
and following photons will cause another round of pixel
value increase. This rollover in intensity is a close anal-

(a) Image from intensity camera

(c) Recovered image from modulo camera(b) Image from modulo camera

Figure 1. A modulo camera could well recover over-exposed re-
gions: (a) an image taken by an 8-bit intensity camera, which has
large areas saturated due to the bright sky; (b) an image taken by an
8-bit modulo camera, with the same exposure level as (a); (c) a re-
covered image from modulus (after tone-mapping), which retains
the information in the saturated part. Radiance map is courtesy of
Greg Ward.

ogy to phase wrapping in optics, so we borrow the words
“(un)wrap” from optics to describe the similar process in the
intensity domain. Based on this principle, a modulo camera
could be designed to record modulus images that theoreti-
cally have an Unbounded High Dynamic Range (UHDR).

In this paper, we explore the use of a modulo camera
in both single-shot and multi-shot scenarios to address the
HDR problem from a brand new point of view. To ex-
tend the dynamic range with a single shot, we propose a
graph-cuts-based unwrapping algorithm to recover informa-
tion in the wrapped region (saturated in the intensity image).
The unwrapped result from an 8-bit modulus image has
much higher dynamic range than a single image captured



by a conventional 8-bit intensity camera 1. Fig. 1(a) shows
an image taken by an intensity camera with a significant
over-exposed region due to bright sky background; in com-
parison, Fig. 1(b) is a modulus image with wrapped data;
Fig. 1(c) shows the recovered image (tone-mapped with
the method in [20]) taken by a modulo camera, which re-
veals high radiance details on the saturated sky. Apart from
higher dynamic range by unwrapping, we further demon-
strate that a modulo camera better preserves scene radi-
ance details than an intensity camera under multiple im-
age capturing scenarios with high fidelity. This results in
getting accurate radiance images with the least number of
captures. To our knowledge, there is no previous technol-
ogy that could measure high radiance values with sufficient
precision on the least significant bits as a modulo camera.

The key contributions of this paper are summarized as
follows:

• A novel framework of unbounded high dynamic range
(UHDR) photography using a modulo camera;

• A new formulation for single modulus image recovery
using graph cuts and natural images properties for the
energy minimization;

• A new view on merging multiple modulus images
to preserve highly-detailed radiance characteristics in
UHDR photography;

• The first trial of experiments with a real modulo sensor
to validate our analyses.

In addition, we make simulations, compare our techniques
with other approaches, and provide suggestions for future
work.

2. Related Works
HDR photography. Increasing the dynamic range of an
intensity camera could be realized by using either compu-
tational methods or novel pixel architecture. For computa-
tional methods, usually multiple images captured with dif-
ferent effective exposure levels are needed [6, 23]. Methods
using multiple-image captures benefit from ease of imple-
mentation, but non-static scene capturing remains a chal-
lenging task. Therefore, some efforts are put in image
registration and ghosting removal for multi-exposure HDR
photography [9]. Subsequently, Hirakawa and Simon [17]
showed that dynamic range could be extended within a
single-shot based on color filtering of conventional cameras.
Apart from these, many researches optimize exposure, noise
and details recovery for HDR photography [13, 16, 14].

1We will use “intensity camera” throughout the paper to refer to a con-
ventional camera with linear response in comparison to our modulo cam-
era.

By modifying the image capturing process within the
pixel architecture, single-shot HDR becomes feasible to im-
plement. While a logarithmic intensity camera is a way to
avoid image saturation, Tumblin et al. [24] proposed a gra-
dient of logarithmic camera to cover most of the contrasts
in natural scenes. Nayar et al. [22, 21] also provided some
solutions including light modulation with spatially-varying
exposure masking and adaptive pixel attenuation. For com-
mercial products, a straightforward way is using a very high
precision ADC 2. Fujifilm has designed SuperCCD 3 that
has paired pixels with different effective pixel areas, result-
ing in different effective exposures. Sony 4, on the other
hand, proposed a per-pixel exposure camera by setting dif-
ferent exposure times for two groups of pixels. Most of
these methods achieve higher dynamic range at the cost of
spatial resolution.

Phase unwrapping. Phase unwrapping is a well-studied
problem in imaging domains like optical metrology [7],
magnetic resonance imaging (MRI) [5] and synthetic aper-
ture radar (SAR) [10]. Famous solutions to phase un-
wrapping problems include solving Poisson’s equation with
DFT/DCT, path-following method, iterative re-weighted L-
p norm method, etc. A comprehensive study of these meth-
ods can be found in [11]. More recently, time-of-flight
(ToF) cameras have also employed unwrapping techniques
for depth estimation [18, 15].

With the similarity of modulo and wrapping operators,
our problem is analogous to performing phase unwrapping
for natural images, since we are interested in recovering an
HDR image from its modulus counterpart. However, our
task is much more challenging in two aspects: 1) In inter-
ferometric SAR and ToF, a complex-valued wave represen-
tation can be obtained, therefore “magnitude” information
is available to guide a good “phase” reconstruction; 2) Nat-
ural images are more complicated and rich in content with
high spatial frequencies (edges, peaks) and dynamic range
as compared to interferometric optics, MRI and SAR.

3. Background
Wrapping and unwrapping. The proposed modulo cam-
era resets the pixel values whenever the counters reach max-
imum. This behavior is similar to phase wrapping of elec-
tromagnetic waves. In Fig. 2, we use an over-simplified sur-
face to illustrate the process of wrapping and unwrapping a
2-D intensity image. In the forward image formation, the 2-
D data we get from a modulo camera is the same as the least

2http://www.viewplus.co.jp/product_category.
html#!cat=xviii

3http://www.fujifilmusa.com/shared/bin/
4thGenSUPERCCDBrochure.pdf

4http://images3.freshpatents.com/pdf/
US20140321766A1.pdf



Wrap

Unwrap

0              256               512              1023 0             64                28               255

Figure 2. An over-simplified wrapping and unwrapping example:
a surface with contrast ratio 1023 : 1 is wrapped to an 8-bit range
of a contrast ratio 255 : 1; note the modulo fringes in the wrapped
image.

significant N bits of an intensity camera with an infinite bit
depth. However, restoration from the modulus of a single
image (unwrapping) is an ill-posed problem, where the un-
known is the number of rollovers k(x, y) at each pixel. We
have:

Im(x, y) = mod(I(x, y), 2N ), (1)

or

I(x, y) = Im(x, y) + k(x, y) · 2N , (2)

where I is the ground truth image captured by an intensity
camera with an infinite bit depth, and Im is the value taken
by a modulo camera with N bits. In the case of Fig. 2,
a 10-bit image with contrast ratio 1023 : 1 is wrapped to
an 8-bit range (contrast ratio 255 : 1). Modulo fringes ap-
pear in the wrapped image, where each fringe represents a
rollover around that region. The goal of UHDR is to recover
the original surface from either single or multiple modulus
images.

Modulo sensor. In conventional image acquisition
pipeline, after the analog signal is obtained, the analog-to-
digital converter (ADC) in an intensity camera quantizes
the recorded signal to N bits. N is usually 8 for compact
digital cameras and 12 or 14 for high-end DSLR cameras.
Whenever the analog signal level is high enough to fill
the well capacity, it maximizes digital output and leads
to saturation. Recent designs of the Digital-pixel Focal
Plane Array (DFPA) [25] feature the ability to do on-the-fly
digital signal processing, as shown by the block diagram
in Fig. 3. This novel pixel architecture can be recast
as a modulo sensor. With the detector array mated to a
silicon CMOS readout integrated circuit (ROIC), the sensor
digitizes the signal using a small capacitor (minimum
quantization level) that integrates photocurrent to a pre-
defined threshold charge level. Once the threshold charge
level is reached, the capacitor is automatically discharged
and starts to accumulate charge again. A pulse generator
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Figure 3. Pixel architecture of a modulo sensor: pulse frequency
modulator determines the quantization level of the sensor. When-
ever voltage passes the threshold, the counter will receive a pulse
to count up. Digital signal processing control logic resets the
counter to zero whenever the counter is full.

that is triggered on every discharge drives a digital counter
contained within each pixel. The counter counts up by one
in response to each pulse. When the N -bit counter reaches
a maximum value, the digital control logic resets it to zero,
thus forming an N -bit modulo sensor.

The real modulo camera sensor does not include a non-
linear radiometric response function, therefore radiometric
calibration is not included in our image formation model
and all analysis in this paper.

4. Single-shot UHDR
In this section, we show how to recover from a single

modulus image to get an UHDR image through natural im-
age unwrapping by formulating it as a graph-cut problem
with specially designed cost functions.

4.1. Formulation of natural image unwrapping

An intensity-wrapped natural image contains many mod-
ulo fringes in the “saturated” 5 region. For single-image
UHDR problem, extra dynamic range is obtained from these
fringes. Our key observation is that these modulo fringes
are highly local: they form steps between two neighboring
pixels. This can be easily observed from the simple sur-
face example in Fig. 2. To provide a more intuitive example
using a natural image, we render a synthesized scene with
ground truth maximum contrast around 7800 : 1 (13 stops),
from which its 8-bit modulus image is calculated and shown
in Fig. 4(a). In this scene, the light source on the ceiling
is so bright that the intensities of a large amount of pixels
have been wrapped for many times. Based on this property,
we formulate the restoration of I through minimizing the
energy of the first-order Markov random field (MRF) with
pairwise interactions as

C(k|Im) =
∑

(i,j)∈G
V (|Îi − Îj |), (3)

5“Saturated” here means the saturated pixels if an intensity sensor with
limited bits were used.



s 

t 

Unit clique 

v v' 

(a) (b)

Figure 4. (a) Synthetic image of a scene taken by a modulo cam-
era. Modulo fringes are brought by the bright light source on the
ceiling. (b) Graph representation: each pixel forms cliques with
its surrounding 8 pixels. Source s, sink t and an unit clique (v, v′)
form an elementary graph.

where Î = Im+k ·2N is the restored image ((x, y) omitted
for simplicity), V (·) is the clique potential, G represents the
set of all pairwise cliques in the MRF and (i, j) are the two
pixels in each clique. The energy function is designed to
minimize neighboring pixel differences for two reasons: 1)
to penalize steps around fringes brought by modulo opera-
tion, and 2) the well-studied gradient domain image statis-
tics could be applied to solve our problem. Note that our
problem is different from most MRF formulations in com-
puter vision due to the lack of a data term in the energy
function, which makes the problem difficult to solve. Our
goal is to find the optimal two-dimensional map k that min-
imizes the energy cost function C(k|Im).

4.2. Energy minimization via graph cuts

The energy minimization given above is an integer opti-
mization problem, therefore it can be decomposed into a se-
ries of binary minimizations that could be solved via graph
cuts [3]. We iteratively seek 2-D binary sets δ ∈ {0, 1} that
make C(k+ δ|Im) < C(k|Im), and update k = k+ δ until
energy stops decreasing.

Consider a directed graph G = (V, E) with nonnegative
edge weights, source s and sink t. An s-t cut C = S, T is
a partition of the vertices V into two disjoint sets S and T
such that s ∈ S and t ∈ T . According to the Class F2 The-
orem proved by Kolmogorov and Zabih [19], the necessary
and sufficient condition for our energy function to be graph-
representable is

V (x+ 2N ) + V (x− 2N ) > 2V (x). (4)

The structure of an elementary graph with source s, sink t,
and a clique pair is shown in Fig. 4(b). In each elementary
graph, we assign weight V (x+2N )+V (x− 2N )− 2V (x)
to the directed edge (v, v′), and |V (x + 2N ) − V (x)| to
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Figure 5. (a) The piecewise energy function to be minimized for
natural HDR images. (b) Energy drop during each iteration for the
case in Fig. 4(a).

(s, v) and (v′, t). Joining all elementary graphs together
forms a global graph that can be segmented by existing
max-flow/min-cut algorithms [2]. During each binary seg-
mentation procedure, for all the pixels labeled with s, δ is
set to 1, and for other pixels labeled with t, δ is set to 0.

The design of a good potential function V (x) is crucial
in the optimization. Quadratic functions are typically used
in energy minimizations, but it is well-known that they tend
to smooth the result while doing image restoration. Dif-
ferent from unwrapping in optics, where signals are mostly
smooth, natural images usually contain high frequency fea-
tures, such as edges. Based on the investigation of [12] on
the statistical properties of HDR images under gradient do-
main representation, we design a piecewise potential func-
tion comprised of a linear and a quadratic part to estimate
their gradient probability distribution:

V (x) =

{
a1x |x| 6 x0
a2x

2 + b |x| > x0
, (5)

where we empirically choose a1 = 0.1, a2 = 10−5, and
x0 = 2N−1 (N = 8), as plotted in Fig. 5(a). These param-
eters determine prior smoothness of the latent image, and
they are fixed for all our experiments in this paper.

From Eq. (4), we would easily find that convex functions
satisfy the graph-representable requirement, which means
an energy drop is guaranteed at each step until conver-
gence. While our designed potential function is able to pre-
serve sharp changes in natural images, it violates the graph-
representable requirement. Hence, we put additional con-
straints to ensure good cuts for each iteration and avoid be-
ing trapped in local minima. We adopt a similar approach
as proved in [1]. Whenever Eq. (4) is not reached, we set
the weight of the edge (v, v′) to zero, meaning this ele-
mentary graph does not contribute in energy increase in the
s-t cut; whenever energy is minimized, step size δ is ex-
tended to look for lower possible energy, namely we shift
to δ ∈ {0, σ} for further iterations, where we empirically
choose σ = 2.
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Figure 6. (a) Intermediate unwrapping solution at each iteration: from left to right {1, 3, 10, 30}. The images are linearly scaled in intensity,
where gray bars below tell the corresponding intensity values for each image. (b) Tone-mapped image of the final result.

We show the intermediate and converged results of the
unwrapping example in Fig. 6. The four linear images in
Fig. 6(a) illustrate the progressive recovering capability of
the graph cuts algorithm, and the disappearance of fringes
due to the removal of rollovers could be obviously observed.
The final unwrapping result is free of errors as compared
to the ground truth in this test. Fig. 6(b) shows the tone-
mapped image of the final result. The normalized energy
drop at each iteration is plotted in Fig. 5(b) which clearly
shows good convergence of the algorithm.

5. Multi-shot UHDR
Unwrapping a single modulus image can extend the dy-

namic range greatly, but this inverse problem is ill-posed.
When multiple modulus images under different exposures
are available, the problem becomes over-determined. We
analyze in this section the advantages associated with merg-
ing multiple modulo images, namely both dynamic range
recovery and details preservation.

5.1. Accurate scene radiance estimation

To record a scene with contrast 65, 000 : 1 (16 stops),
theoretically capturing two images with an exposure ratio
of 256 : 1 using an 8-bit intensity camera is enough. Un-
fortunately, merely combining these two images will lose
too many details since it is always challenging to capture
both high dynamic range and detailed scene radiance using
an intensity camera. Intuitively, the under-exposed image is
“black” in most areas and the over-exposed image is almost
“white” everywhere. That’s why people usually take more
than two captures (e.g., five images with exposure ratio of
4×, nine images with exposure ratio of 2×) for high quality
HDR imaging. With a modulo camera, we can achieve the
win-win in both very high dynamic range and very detailed
scene radiance preservation using as few as two images.

As we focus on sensors with a linear response, observed
intensity value is proportional to scene radiance. Here, we

borrow the expression from Grossberg and Nayar [13] to
use a quantized response function I = f(E) to represent
the the quantized image intensity value I corresponding to
the scene radiance E. The response function is a piecewise
constant function that characterizes the quantization process
of a camera. We start with a simple case of two shots by a
2-bit camera for an easy illustration. As shown in Fig. 7(a),
due to saturation, an intensity camera does not provide any
radiance discrimination for large radiance during long ex-
posure image capture; for the short exposure image, on the
other hand, large quantization steps “flatten” many radiance
details.

A modulo camera makes the story completely different.
As shown in Fig. 7(b), its response function of the long
exposure capture periodically repeats with a much smaller
quantization step. With this small uniform radiance mea-
suring intervals, the complete dynamic range of the scene is
sampled equivalently to using a 4-bit linear camera, provid-
ing much more measured scene radiance levels than an in-
tensity camera. Although there exist wrapped values when
only one long-exposure image is used, reconstruction is
quite easy with the help of a short-exposure image, as we
will introduce next.

5.2. Unwrapping multiple modulus images

Conventional linear image merging for HDR is done by
weighting and averaging. Weights are assigned to all pixels
in photos of different exposure levels. In the simplest case,
a binary mask is generated for each image to exclude over-
exposed and under-exposed pixels. An average is then taken
for each pixel across different images to get a linear HDR
map. In the masking process, about half of all pixels have
zero weights.

The modulus images avoid the annoying over-exposure
problem and retain much more useful information. Since
the images with longer exposures keep more radiance de-
tails but come with wrapped values, while shorter exposure
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Figure 7. Illustration of response function I = f(E) for short
and long exposures. All possible (continuous) radiance levels are
shown on the bar below: (a) an intensity camera; (b) a modulo
camera.

images have less details without wrapped values, so we can
simply use images with shorter exposures to help unwrap
the longer ones.

Assuming we have m modulus images as input, we first
sort them according to their exposure times in an ascending
order, and the radiance map is initialized to be E(0) = 0.
We start from the shortest exposure image that does not
have any rollovers and end up with the longest exposure.
When processing the i-th image, the number of rollovers
in the new image k(i) is calculated from the exposure time
τ (i) and the previous radiance map E(i−1), where the su-
perscript indicates the image index:

k(i) = bτ
(i) · E(i−1)

2N
c. (6)

And then a finer radiance map is updated by combining the
rollovers k(i) and the modulus I(i)m :

E(i) =
k(i) · 2N + I

(i)
m

τ (i)
. (7)

By this analogy, a final radiance map E(m) is achieved with
the finest radiance levels. To guarantee that the radiance
map can be obtained without wrapped values, the exposure
ratio between neighboring images should be τ(i+1)

τ(i) 6 2N ,
i = {1, 2, 3, · · · ,m − 1}, which is usually satisfied. If
rollovers exist in the shortest exposure image, the single im-
age unwrapping method discussed in Sec. 4 can be applied
first, but here we do not consider this case.
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Figure 8. Comparison between multi-shot HDR using an intensity
camera and UHDR using a modulus camera. Under multiple ex-
posures, reconstructions with an intensity camera suffers from se-
vere quantization effects in high radiance areas; a modulo camera
is able to reconstruct radiance with low errors in all regions.

A more intuitive comparison between HDR with inten-
sity images and UHDR with modulus images is shown in
Fig. 8. A continuous band (1-D image) whose values lin-
early range from 0 to 255 is used to represent the complete
dynamic range of a scene. We compare the radiance re-
construction by three methods with 4-bit cameras: an in-
tensity camera with 2 captures, an intensity camera with 5
captures and a modulo camera with 2 captures. In the case
of 2 captures, exposure difference of 16 times is used; and
for the case of 5 captures, their exposures differ by twice for
each capture. Left column of Fig. 8 shows the reconstructed
bands with different methods, and right column is their dif-
ference maps with respect to ground truth. We can observe
obvious quantization effects in both 2 captures and 5 cap-
tures cases for an intensity camera. Capturing more images
is an effective strategy in reducing errors in low radiance re-
gions, but it does not help for large radiance values, which is
an inherent limitation. In contrast, multi-shot UHDR gives
an almost perfect reconstruction that equally preserves de-
tails from low to high radiance levels. The analysis here
applies to higher contrast images as well, but due to the dif-
ficulty in showing images higher than 8-bit in both printed
papers and ordinary computer monitors we omit such an il-
lustration here.

Sampling a large range of radiance values uniformly
with a sufficiently small step (equivalent to using a higher
bit depth linear camera) is meaningful to many computer vi-
sion applications like inverse rendering, photometric shape
recovery, etc. However, to reach this goal with a linear
intensity camera is not easy [13]. Highly irregular expo-
sure ratios (like {1 : 1.003 : 2.985} for three captures),
which are extremely difficult to set in ordinary cameras,
are required. What is worse, according to [13], taking



{2, 3, 4, 5, 6} captures can only reach the dynamic range of
{256 : 1, 761 : 1, 936 : 1, 1269 : 1, 1437 : 1} under the
constraint of uniform sampling. In contrast, to achieve the
same result, a modulo camera only requires exposure ratios
of 2M (M ∈ Z), which are more commonly used setups in
cameras. To maximize the dynamic range, a simple strategy
is to set exposure ratio to maximum, which is 2N . Visible
radiance contrast in real life photography normally does not
exceed 10,000,000:1 (within 24 stops), meaning three cap-
tures with a modulo camera is sufficient for capturing high
quality UHDR images. Comparably, three captures with
an intensity camera only gives an HDR with limited range,
which is a known fact [13].

6. Experiments
6.1. Synthetic test

We simulate experiments for both single- and multi-shot
UHDR. Ground truth images are either obtained from on-
line datasets or taken with a 12-bit Sony NEX camera.

6.1.1 Single-shot UHDR

To validate our unwrapping framework, ground truth im-
ages are chosen to have maximum contrast ranging from
1024 : 1 (10 stops) to 4096 : 1 (12 stops), while actual con-
trasts differ as per example. The 8-bit intensity images are
synthesized by truncating the brightness values over 255 to
255, and the 8-bit modulus images are easily simulated by
dropping the higher bits (>8) of the ground truth. A tone
mapping scheme by adaptive histogram equalization [20] is
applied on our results for visualization.

In Fig. 9, ground truth, images taken by an intensity cam-
era, images taken by a modulo camera and unwrapped re-
sults are shown from left to right. Wrapped regions in the
modulus images correspond to saturated regions in the in-
tensity images. Our unwrapping algorithm recovers these
wrapped values back to their true values. As shown, images
are restored successfully even with large areas of “satura-
tion”.

6.1.2 Multi-shot UHDR

Now, we compare the multi-shot HDR recovery of an
intensity camera and a modulo camera. 8-bit ground truth
images are chosen to make visualizable evaluation, and 4-
bit images are synthesized as outputs of both cameras.

Fig. 10 shows several results from our experiment com-
paring: ground truth, reconstruction by an intensity cam-
era and a modulo camera with different number of captures.
Exposure ratio is {1 : 16} for the case of 2 captures, and
{1 : 2 : 4 : 8 : 16} for 5 captures. Close-up views high-
light the visible details in the dashed squares. Quantization

noise is visible in images from an intensity camera, but not
in those from a modulo camera.

6.2. Real experiments

Finally our work leverages an existing modulo camera
(DFPA) to show the effectiveness of UHDR. Details asso-
ciated with DFPA sensor design and camera prototype are
introduced in [25, 4, 8]. We acquired 8-bit modulus images
at a resolution of 256× 256.

The single-shot modulus image shown in Fig. 11 is cap-
tured with an exposure time spanning 2000 ms. Our pro-
posed unwrapping algorithm is applied to the modulus im-
age for recovery.

Multi-shot merging experiment is shown in Fig. 12.
The exposure time for short and long exposure images are
100ms and 4000ms, respectively. The short exposure im-
age suffers from a strong quantization effects. After fusing
with a long exposure image, we can visualize the reduction
in quantization noise, best seen in the close-ups.

7. Discussion
In summary, our experiments demonstrate that our pro-

posed unwrapping algorithms significantly extend the dy-
namic range of the modulo camera. Theoretically, the dy-
namic range of recovery is not bounded in a modulus im-
age. However, single-image unwrapping is ill-posed as re-
coveries are done solely based on local properties of pixel
values, making the formulation only come with a smooth-
ness constraint. Therefore, the success of unwrapping is
partially dependent on the input data as well. In general,
extremely large local contrast in original intensities makes
the unwrapping solution more prone to errors, i.e., the un-
wrapping operation is ideal for continuous, smooth HDR
reconstruction, but it will fail in cases like impulse func-
tions. Natural images are cases just sitting between them.
Under the representation of modulus images, when fringes
are dense enough to cause spatial aliasing, they are hard to
be solved correctly. Fig. 13 is an example where unwrap-
ping fails in the region of a super bright sun, as marked by
the blue dashed lines. In this case, two captures are required
to help recover the radiance map. The quantitative limit of
unwrapping algorithm is an interesting open problem.

In multi-shot UHDR, if we only care about capturing the
finest radiance levels, but not uniform sampling like a linear
camera, choosing integer exposure ratios is not optimal due
to overlaps of quantization levels. Therefore, non-integer
exposure ratios are necessary to achieve even finer radiance
recovery, but seeking the best non-integer exposure values
is left as future work.

In the real experiment, as our camera prototype is still
at its initial stage, it suffers from limitations like low sen-
sor filling factor and low quantum efficiency, which result



Ground truth (tone mapped) Intensity camera Modulo camera Recovered (tone mapped)

Figure 9. Single-shot UHDR. Regions in the modulus images with wrapped values correspond to saturated regions in the intensity images.
Radiance data of the first row is courtesy of Raanan Fattal.

Ground truth Intensity camera: 2 captures Intensity camera: 5 captures Modulo camera: 2 captures

Figure 10. Multi-shot UHDR. Close-up views highlight the visible details in dashed squares. Quantization artifacts are visible in images
from an intensity camera, but not in those from a modulo camera. Best viewed electronically.



Modulus image Recovered

Figure 11. Real experiment: single shot. The modulus image is
unwrapped to become an HDR image.

in relatively long exposure time and strong noise. As noise
is more obvious in the least significant bits, it will degrade
the recovery performance. To visualize the possible failures
caused by noise, a longer exposure of 8000ms modulo im-
age is intentionally captured, as shown in Fig. 14. The num-
ber of wraps and noise level are both much higher than the
same scene in Fig. 11. Artifacts in the unwrapped result are
caused by both factors.

8. Conclusion

In conclusion, the framework of UHDR photography us-
ing a modulo camera is proposed in this paper. Saturation
could be avoided with a modulo sensor so that the cam-
era is not bounded by its bit depth. Compared with con-
ventional single-shot photography, our framework recovers
much larger dynamic range images. While taking multiple
captures, apart from higher dynamic range, the proposed
scheme provides finer scene radiance values that greatly
improve the recovered image quality. The study presented
here opens a door to addressing HDR photography prob-
lems from a novel view.
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Short exposure Long exposure

Merged Close-up comparison

Figure 12. Real experiment: multiple shots. Brightness is linearly
adjusted for visualization. After merging the short and long expo-
sure, the details of radiance values are better preserved.

Ground truth Recovered: 1 capture 2 captures

Figure 13. Failure case – synthetic data: when the local dynamic
range of ground truth is extremely huge (the region in the sun),
our single modulo image unwrapping method may fail, multi-shot
recovery is required. Radiance map is courtesy of Jack Tumblin.
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