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We present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient
parallel generation of uncorrelated gauge field configurations. The algorithm combines standard
Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods.
We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and
hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to
controllable lattice spacing artifacts.
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I. INTRODUCTION

Numerical simulations of lattice quantum chromody-
namics (QCD) and other lattice gauge theories rely on
Markov chain Monte Carlo techniques to evaluate the path
integral that defines the theory and its correlation functions.
Ensembles generated in a Markov process, however, are
often highly correlated due to slow modes in the stochastic
evolution. Such correlations reduce the effective sample
size of the generated ensemble, and thus directly influence
the efficiency of such simulations. The problem of slow
modes becomes particularly acute in the vicinity of critical
points where the continuum limit is defined, resulting in
what is commonly known as critical slowing down.
Although a variety of algorithmic developments, such as
cluster algorithms [1,2] and the worm algorithm [3], have
dramatically reduced the problem of critical slowing down
for some simple statistical models, they appear to have
limited utility for gauge theories such as QCD, where

simulations at lattice spacings a < 0.05 fm remain
extremely challenging.
In gauge theories, topological quantities1 (e.g., topologi-

cal charge and susceptibility) are examples of observables
that couple strongly to slow modes of the stochastic
evolution. In the continuum and at infinite volume, topo-
logical charge is invariant under continuous local defor-
mations of a field configuration. By contrast, on a finite
lattice, changes in topology are possible through local
updates. Such changes, however, require traversals over
large action barriers in configuration space, which in the
continuum become infinite and result in the breakup of the
configuration space into distinct topological sectors. The
likelihood of such tunneling events rapidly diminishes in
the approach to the continuum as the height of such
topological barriers diverge, resulting in a problem known
as topological freezing. This phenomenon was first
observed in quenched calculations with improved gauge
actions [4] as well as in more recent dynamical simulations
[5]. Recently, open boundary conditions (BCs) in time [6]
were proposed as a method for enhancing changes in*endres@mit.edu
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1Below, we will specify to a particular definition of topology,
but the evolution properties and connection to slow modes are
insensitive to these details.
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topology by allowing charge to flow in and out through the
boundaries. Although offering an improvement in topo-
logical tunneling over periodic BCs, open BC simulations
still suffer from critical slowing down [7].
It is important to note that for gauge theories, critical

slowing down persists even in the absence of topological
freezing, because the evolution of long distance (slow)
modes can only arise through the application of many local
updates at the scale of the lattice spacing. As the lattice
spacing is reduced, the number of updates required to move
modes at a given physical scale increases. Multiscale
evolution algorithms offer the prospect of performing
Markov process updates that change modes at different
physical scales more efficiently. A number of such
approaches have been explored in the literature, primarily
for models that are simpler than QCD, and have met with
some success (see, e.g., [8–13]). We are unaware, however,
of any successful work in this direction relevant to QCD.
In this study we investigate a less ambitious direction,

namely a multiscale thermalization algorithm, which com-
bines standard heat bath (HB) or hybrid Monte Carlo
(HMC) updating methods with the real-space renormaliza-
tion group (RG) and multigrid concepts of restriction and
prolongation between pairs of matched coarse and fine
lattices and lattice actions. The algorithm proceeds in
four steps:
(1) A coarse action is determined by a RG transforma-

tion from the target (fine) lattice action2;
(2) A set of Ns independent equilibrated coarse con-

figurations are subsequently generated by a conven-
tional Monte Carlo process;

(3) Each coarse configuration is then prolongated (or
refined), thereby producing a set of Ns configura-
tions defined on the fine lattice;

(4) The prolongated (fine) ensemble is then equilibrated
(or rethermalized) and evolved in parallel using a
conventional algorithm to produce an ensemble of
Ne decorrelated configurations for each of the Ns
independent streams.

This procedure may be generalized to have several levels of
refinement proceeding from the coarsest to the finest target
ensemble. At each level, the coarse action should follow an
RG flow of the underlying gauge dynamics.
Assuming that the computational cost of the coarse

evolution and prolongation are negligible compared to the
fine evolution, the efficiency of this strategy is determined
by the rethermalization time of the prolongated ensemble
compared to the decorrelation time for fine evolution.
Under the physically reasonable assumption that the dis-
tribution of prolongated configurations only differs from
that of the target distribution for fine configurations by
cutoff artifacts, one might expect the former time scale to be

shorter than the latter. Given this is indeed the case, the
scheme will provide an efficient method for initializing
field configurations at a fine lattice spacing for subsequent
parallel evolution, ultimately yielding decorrelated ensem-
bles of size Ns × Ne.
In many cases, thermalization is considerably more

challenging than evolution, and therefore we expect the
approach to have significant advantages. Computationally,
the parallel nature of the fine evolution of multiple
independent streams means that ensembles can be gener-
ated more efficiently using fewer computational resources.
The trade-off between the parameters Ns and Ne opens
possibilities for optimizing the statistical power of sub-
sequent analysis and the use of hardware resources.
Furthermore, the strategy can be implemented on a hier-
archy of different coarse/fine pairs resulting in rapid
thermalization at multiple scales, thus enabling simulations
at very fine lattice discretizations.
To test the viability of our strategy, we study a variety of

observables that probe long distance scales in pure SUð3Þ
gauge theory. To facilitate our studies, we utilize restriction
as a device for preparing coarse ensembles corresponding
to a renormalized coarse action. An appealing feature of our
restriction and prolongation operations is that they well
preserve the topological charge distribution of the ensem-
bles to which they are applied. As a consequence, the
ensembles obtained by prolongation will possess properly
distributed topology up to lattice artifacts which are
inherited from the coarse action. The prolongator in fact
satisfies the stronger property of preserving the topological
charge for individual configurations at sufficiently small,
but presently accessible, lattice spacings. This property is
demonstrated numerically by studying the growth in
correlations in topology between ensembles before and
after restriction and prolongation as a function of the
inverse lattice spacing, as shown in Fig. 1 (left). These
features are important, since they enable us to achieve
thermalized ensembles in time frames which are far shorter
than the decorrelation time for fine evolution, providing the
latter is controlled by topology.
Finally, a key measure for establishing the success of our

approach is the requisite rethermalization time for an
ensemble prepared via prolongation to return to equilib-
rium under standard updating procedures. This time is to be
compared with the thermalization time for a typical ordered
(“cold”) or disordered (“hot”) start, as well as the decorre-
lation time for fine evolution. To address this, we monitor
the (re)thermalization times for a variety of observables,
including the topological susceptibility and rectangular
Wilson loops. In light of the fact that our prolongator
preserves topology, we emphasize the study of rethermal-
ization times for nontopological long-distance quantities
and demonstrate that they are significantly shorter than the
thermalization times and decorrelation times of topological
quantities in conventional evolution. In Fig. 1 (right), we

2In practice, an approximation to the RG transformation is
used.
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provide an illustrative comparison of the rethermalization
time for a representative prolongated ensemble of size
Ns ¼ 24, and the corresponding thermalization times for
hot and cold initial ensembles, as probed by a 0.4 fm ×
0.4 fm Wilson loop (see Sec. IV F and Appendix D for
details). For this observable and a large range of other
quantities that we investigate, we see that the rethermal-
ization time for the prolongated ensemble is dramatically
shorter than the thermalization times measured for hot and
cold starts. It should be emphasized that our choice of
prolongator is designed to preserve a large class of Wilson
loops on all scales, and it is likely this feature that enables
the rapid thermalization seen in this example.
In the remainder of this paper, we elaborate and expand

on the results highlighted above. Before doing so, we first
review some basic concepts and known results relating to
Markov processes, which provide a theoretical basis for our
strategy. Following an overview of notation and definitions,
we then introduce the specific choice of restriction and
prolongation operations used throughout this work. The
latter is carefully chosen so as to retain an imprint of
the long distance correlations and topological charge of the
coarse configurations. Then, we demonstrate the viability
of the multiscale approach through numerical studies of
pure Yang-Mills gauge theory in two parts: first, by
showing that the proposed prolongation procedure pre-
serves the topological charge on a configuration by
configuration basis for sufficiently fine lattice spacing,
and second by demonstrating that the rethermalization time
required to correct the distribution obtained by prolonga-
tion of a coarse ensemble is shorter than the decorrelation
time for fine evolution. For the second studies we consider
two commonly used algorithms, namely, HB and HMC.
The latter case is of greater interest, since it is the algorithm

used in state-of-the-art QCD simulations with dynamical
fermions. Finally, we conclude with a detailed discussion of
the potential applications and pitfalls of these approaches,
as well as an outlook on future directions. Appendixes are
devoted to technical details of the simulation and prolon-
gation algorithms as well as technical aspects of the data
analysis that are required to extract the (re)thermalization
and evolution time scales in this work.

II. PRELIMINARY CONSIDERATIONS

We begin by reviewing the basic aspects of Markov
processes and their use in Monte Carlo importance sam-
pling. A sequence of configurations

s1 → s2 → s3 → � � � → sτ; ð1Þ

labeled for simplicity by a discrete index τ, is generated in a
Markov process described by the transition matrix M. For
simplicity, we assume M acts on a discrete configuration
space Σ. The matrix elements Mðs0; sÞ give the transition
probabilities for the configuration s to go to the configu-
ration s0. Under adequate conditions (see, e.g., [14]), there
exists a stationary distribution χ0ðsÞ ¼ PðsÞ, which is a
right eigenstate of the transition matrix, i.e., satisfying
Pðs0Þ ¼ P

sMðs0; sÞPðsÞ, normalized to
P

sPðsÞ ¼ 1
with eigenvalue λ0 ¼ 1. The left eigenstate is ~χ0ðsÞ ¼ 1
as a consequence of probability conservation:P

s0Mðs0; sÞ ¼ 1. Expectation values of operators OðsÞ
averaged over the stationary distribution are given by the
inner product hOi ¼ P

sOðsÞPðsÞ. Although it is not
required for a valid algorithm, let us assume that M
satisfies detailed balance, such that

5.6 5.7 5.8 5.9 6.0 6.1 6.2
0.2

0.0

0.2

0.4

0.6

0.8

1.0
C

or
r

Q
fin

e
,Q

re
fin

ed

a 0.07 fm

a 0.1 fm

a 0.14 fm

a 0.2 fm

cold hot prolongated

0 100 200 300 400 500

0.007

0.008

0.009

0.010

0.011
5.96

FIG. 1 (color online). Left: Correlations in topology between an ensemble before (fine) and after restriction and prolongation (refined),
as a function of the coupling, β (see Sec. IV D for details). Right: Average Wilson loop (approximately 0.4 fm × 0.4 fm in dimension) as
a function of rethermalization time for an initial ensemble obtained via prolongation of a matched coarse ensemble, and corresponding
estimates as a function of the thermalization time for cold and hot starts; (re)thermalization time is measured in terms of the number of
unit length HMC trajectories, τ (see Sec. IV F and Appendix D for details). The horizontal band indicates a high precision determination
of the Wilson loop obtained from a large decorrelated ensemble.
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Mðs0; sÞPðsÞ ¼ Mðs; s0ÞPðs0Þ: ð2Þ

In this case, the spectrum ofM consists of real eigenvalues
λn, with jλnj≡ e−1=τn ordered such that jλnj ≤ jλn−1j; note
that jλnj ≤ 1 for all n. The corresponding right and left
eigenvectors are given by χnðsÞ and ~χnðsÞ ¼ χnðsÞ=PðsÞ,
respectively, and are chosen to be real and mutually
orthonormal, satisfying

P
s ~χnðsÞχn0 ðsÞ ¼ δnn0 . The spectral

decomposition of τ applications of the transition matrix is
given by

Mτðs0; sÞ ¼
X
n≥0

χnðs0Þλτn ~χnðsÞ: ð3Þ

It follows that the τth configuration in Eq. (1) is drawn from
the distribution

Pτðs0Þ ¼ Pðs0Þ þ
X
n>0

χnðs0Þλτn
�X

s

~χnðsÞP1ðsÞ
�
; ð4Þ

where P1ðsÞ is an initial probability distribution. The
expectation of an operator at this point in the Markov
process is given by

hOiτ ¼ hOi þ
X
n>0

�X
s

χnðsÞOðsÞ
��X

s

~χnðsÞP1ðsÞ
�
λτn:

ð5Þ

At late times in the Markov process, both the distribution
and the observables converge to their stationary values
exponentially, assuming the existence of a gap in the
spectrum ofM. The rate of this convergence (i.e., thermal-
ization time) is dominated by the exponential correlation
time τexp ≡ τ1. In addition to the time scale, τexp, the rate of
thermalization is influenced by the overlap between the
initial distribution P1ðsÞ and left eigenvectors ~χnðsÞ, for
n > 0; in particular, if the overlap vanishes or is exponen-
tially small for n ¼ 1, then the relevant thermalization time
scale would be governed by the shorter time scale, τ2. It is
observationally established in many examples that near a
phase transition, τexp ∼ ξz where ξ is the largest correlation
length of the system (in dimensionless units) and z is a
dynamical critical exponent. Local updating processes are
diffusive by nature, implying an exponent z ∼ 2. However,
in some cases, such as lattice gauge theories, the scaling can
be far worse (e.g., z ∼ 5 for topological quantities [5]). For
critical systems of spatial extent L, ξ ∼ L, and the scaling
becomes τexp ∼ Lz; this kind of volume scaling is a hall-
mark property of critical slowing down.
A second time scale (or set of scales) of interest is the

integrated autocorrelation time τintðOÞ, which characterizes
the correlations in measurements of an observable after
thermalization due to the sequential nature of the Markov
process. In contrast with τexp, this time scale depends not

only on the algorithmic details (e.g., the eigenvalues and
eigenvectors of M) but also on how well the observable in
question couples to the various modes of the stochastic
process. Because of the presence of such correlations, the
estimated uncertainties on a given quantity hOi are
enhanced by a factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2τintðOÞp

compared to those
obtained under the assumption that the ensemble is
decorrelated. The integrated autocorrelation time is
defined by

τintðOÞ ¼ 1

2
þ
X
Δ>0

ΓΔðOÞ
Γ0ðOÞ ; ð6Þ

where

ΓΔðOÞ ¼
X
s0s

δOðs0ÞMΔðs0; sÞδOðsÞPðsÞ ð7Þ

is the lag-Δ autocovariance function, and δOðsÞ ¼
OðsÞ − hOi. Using Eq. (3), this expression may be written
as

ΓΔðOÞ ¼
X
n>0

anðOÞλΔn ; anðOÞ ¼
�X

s
δOðsÞχnðsÞ

�
2

;

ð8Þ

and consequently the integrated correlation time may be
expressed as

τintðOÞ ¼
�X
n>0

anðOÞ
�
−1X

n>0

anðOÞηn;

ηn ¼
1

2
þ λn
1 − λn

; ð9Þ

where ηn > 0 for all n > 0. Under the assumption that O is
real (or is the real part of an observable), then anðOÞ ≥ 0
for all n > 0, and one can establish the bound
τintðOÞ ≤ τ̂int, where

τ̂int ≤
1

2
þ jλ1j
1 − jλ1j

≤ τexp þ
1

12

1

τexp
: ð10Þ

It follows that integrated autcorrelation times are at worst
on the order of τexp when the latter is large. Interestingly,
this bound does not preclude the possibility that τ̂int ≪ τexp.
In a standard Markov chain Monte Carlo simulation,

represented schematically by Fig. 2(a), there are two
relevant time scales associated with the algorithm: the
equilibration or thermalization time τtherm ∝ τexp, and the
decorrelation time for observables, which is bounded by
2τ̂int. The former will depend to some extent on the initial
configuration, drawn from the probability distribution
P1ðsÞ; if the initial configuration is drawn from the

MICHAEL G. ENDRES et al. PHYSICAL REVIEW D 92, 114516 (2015)

114516-4



stationary distribution PðsÞ, then the thermalization time
will vanish.3

Next, let us introduce operators that map probability
distributions between fine and coarse configuration
spaces. Borrowing the terminology of multigrid, we refer
to these as restriction operators, R, when mapping from
the fine to coarse configuration space and prolongation
operators, Q, when mapping from the coarse to fine
configuration space. To facilitate the discussion, we adorn
all coarse and fine quantities with the labels (c) and (f),
respectively. For example, fine and coarse configurations
are labeled as sf ∈ Σf and sc ∈ Σc, where Σf and Σc

represent the fine and coarse configuration spaces, respec-
tively. The restrictor and prolongator can be represented
by the matrices Rðsc; sfÞ and Qðsf; scÞ which act on fine
and coarse configuration spaces, respectively. The restric-
tor and prolongator should be probability preserving, and
therefore must satisfy

P
sfQðsf; scÞ ¼ P

scRðsc; sfÞ ¼ 1.
Such transformations can be one to one, in which case the
rectangular matrices R and Q have at most one nonzero
entry per row and column, or they can be probabilistic.
Both restriction and prolongation operations are nonun-
ique, need not satisfy RQ ¼ 1, and cannot satisfy QR ¼
1 since the rank of Q and R is that of dimðΣcÞ and not
dimðΣfÞ. Explicitly, the restriction operation acting on a
fine probability distribution Pf produces a coarse prob-
ability distribution, given by

PcðscÞ ¼
X
sf

Rðsc; sfÞPfðsfÞ; ð11Þ

and can be interpreted as a renormalization group trans-
formation (e.g., decimation or block spin averaging in a

simple implementation). This can be seen by noting the
equality of partition functions

P
scP

cðscÞ ¼ P
sfP

fðsfÞ.
On the other hand, the prolongation operation maps a
coarse probability distribution to a fine distribution, given
by

PfðsfÞ ¼
X
sc

Qðsf; scÞPcðscÞ; ð12Þ

and can be interpreted as a kind of inverse RG
transformation.
With the concepts of restriction and prolongation in

hand, consider a simulation represented schematically by
Fig. 2(b), corresponding to the scenario in which Ns ¼ 1
and Ne ≫ 1. Here, evolution is first performed on a coarse
lattice using an algorithm represented by the coarse
transition matrixMc (which implicitly depends on a coarse
action) until it is thermalized. Subsequently the lattice is
prolongated, and finally rethermalized using an algorithm
represented by the fine transition matrix Mf. Note that the
subsequent rethermalization is needed to correct the pro-
longated configuration at the scale of the fine cutoff. In this
example, there are now three relevant time scales associated
with the algorithm in its entirety: the coarse thermalization
time τctherm, the rethermalization time τfretherm, and the
decorrelation time of the fine evolution, bounded by
2τ̂fint. The procedure represented by Fig. 2(b) will be
computationally less costly than that shown in Fig. 2(a)
provided τctherm þ τfretherm < τftherm. Nevertheless, the
improvements that can be found here are attenuated by
the cost of the generation of a large ensemble since
τftherm=ðNe2τ̂

f
intÞ → 0 as Ne → ∞.

As previously discussed, the rethermalization time of the
prolongated configuration is at worst governed by the time
scale τfexp, which is algorithm dependent, and overlap
factors, which depend in part on the initial refined

(a)

(b)

(c)

FIG. 2. Ensemble generation strategies: single fine lattice stream (a), single coarse lattice stream, followed by refinement followed by a
single fine lattice stream (b), and a single coarse lattice stream, followed by parallel refinement and rethermalization of refined lattices
(c). In all cases, ⊞ represents a fine configuration, □ represents a coarse configuration, unshaded shapes correspond to unthermalized
configurations and shaded shapes correspond to thermalized configurations. For each simulation strategy, ensemble averages are
performed over shaded (fine) configurations, either generated from a single stream (a,b) or in parallel (c).

3Strictly speaking, it does not make sense to talk about a
thermalized configuration, but rather a configuration that is drawn
from a thermalized distribution.

MULTISCALE MONTE CARLO EQUILIBRATION: PURE … PHYSICAL REVIEW D 92, 114516 (2015)

114516-5



distribution and are thereby controllable. In light of Eq. (4)
and Eq. (5), we can in principle accelerate the approach to
equilibrium of the fine ensemble, by setting to zero the
overlap of our refined ensemble with a fixed set of the
slowest modes,

X
sfsc

~χfnðsfÞQðsf; scÞPcðscÞ ¼ 0: ð13Þ

Removal of the lowest mode in this fashion, for example,
would imply that the rethermalization time is no longer
governed by τfexp, but rather by the shorter time scale, τf2 .
In practice this is difficult to achieve, but by judicious
choices, one seeks to approximate this condition for as
wide a range of slow modes as possible. Note that this
condition depends on the prolongator, on the Markov
process used for fine evolution, and implicitly on the
renormalized coarse action. All of these factors are
therefore important in maximizing the efficiency of our
algorithm.
Finally, let us consider a simulation represented sche-

matically by Fig. 2(c), corresponding to the scenario in
which Ns ≫ 1, and Ne ¼ 1. In this case, the evolution is
first performed on a coarse lattice using an algorithm
represented by the transition matrix Mc until an ensemble
of decorrelated configurations are generated. The ensemble
of decorrelated coarse configurations are subsequently
prolongated, and finally rethermalized using an algorithm
represented by the transition matrix Mf. This procedure
has three time scales associated with it: the coarse thermal-
ization time τctherm, the decorrelation time for coarse
evolution, bounded by 2τ̂cint, and the rethermalization time
τfretherm. The procedure is computationally less costly than
Fig. 2(a) provided that τctherm þ Ns2̂τ

c
int þ Nsτ

f
retherm <

τftherm þ Ns2τ̂
f
int, where Ns is the size of the target ensemble

being generated. For large Ns, the condition reduces to
2τ̂cint þ τfretherm < 2τ̂fint. Since the decorrelation time for
coarse evolution is usually negligible compared to that
for fine evolution, the approach will be less computation-
ally costly when the decorrelation time for fine evolution
exceeds the rethermalization time for the prolongated
ensemble. Note that the computationally most intensive
component of this algorithm, namely rethermalization, is
embarrassingly parallel, and so each stream can be gen-
erated with maximal efficiency on available computing
resources.
Our goal for the remainder of this paper is to explore

choices of Pc and Q, given a fine transition matrix Mf,
such that Fig. 2(c) becomes a viable simulation strategy in
pure gauge theory, and to investigate the time scales
associated with the various approaches described above.
Provided that the fine evolution is ergodic, the proposed
algorithm as a whole will also be ergodic. Given that the
prolongated ensemble inherits the long-distance properties

of the coarse ensemble, the relevant parts of the fine
configurations space Σf are in some sense evenly popu-
lated. Since the rethermalization merely corrects the miss-
ing short-distance part of the prolongated distribution, our
underlying assumption is that all of the fine configuration
space can be covered within the rethermalization
time.

III. ACTIONS, OBSERVABLES, RESTRICTION,
AND PROLONGATION

Here, we provide explicit details pertaining to the
implementation of our multiscale thermalization algorithm.
We begin by considering a D-dimensional hypercubic
lattice, with lattice spacing a and periodic boundary
conditions. Let us label the sites of the lattice with D-
vectors n, with components nμ ¼ n · eμ, where eμ is a unit
basis vector in the μ direction and μ ¼ 0;…; D − 1. Note
that a D-dimensional hypercubic lattice comprises q-
dimensional unit “q-cells,” where q ¼ 0;…; D. For exam-
ple, with D ¼ 4, the lattice comprises sites (q ¼ 0), bonds
(q ¼ 1), and plaquettes (q ¼ 2), and so on. The total
number of such cells is given by

Nq ¼ N0

�
D

q

�
; ð14Þ

where N0 is the total number of lattice sites.
The Wilson action [15] for pure lattice Yang-Mills gauge

theory is given by

S ¼ β
X
n

X
μ<ν

½1 −W1×1
μν ðnÞ�; ð15Þ

where UμðnÞ ∈ SUðNcÞ are variables associated with the
bonds of the lattice, W1×1

μν ðnÞ are 1 × 1 Wilson loops
associated with the plaquettes of the lattice, and β ¼
2Nc=g2 is the coupling. Note that if Wilson lines are
given by

Lm
μ ðnÞ ¼ P

Ym−1

n¼0

Uμðnþ neμÞ; ð16Þ

where P is the path-ordering symbol, then a rectangular
m × n Wilson loop in the μ − ν plane is given by

Wm×n
μν ðnÞ

¼ 1

Nc
ℜTrLm

μ ðnÞLn
νðnþmeμÞLm

μ ðnþ neνÞ†Ln
νðnÞ†;

ð17Þ

and the corresponding space-time averaged Wilson loop is
given by
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W̄m×n ¼ 1

N2

X
n

X
μ<ν

Wm×n
μν ðnÞ: ð18Þ

For the purpose of this study, we consider restriction and
prolongation operations that take an ensemble associated
with a “fine” lattice with spacing a to an ensemble
associated with a “coarse” lattice with spacing 2a, and
back. To facilitate the discussion, we begin by classifying
the various q-cells of the fine lattice according to their
positions with respect to the 2D hypercubes which define
the coarse lattice. We define the function

χðnÞ ¼
X
μ

ðnμ mod 2Þ; ð19Þ

which allows us to associate integers 0;…; D to the sites of
the 2D hypercubes, as shown in Fig. 3(a) for D ¼ 3 space-
time dimensions. The subset of sites associated with the
coarse lattice satisfy χðnÞ ¼ 0 and are consequently given
by n=2 ∈ ZD. Note that this convention is but one of 2D

possibilities for the alignment of the coarse lattice with
respect to the fine; since the fine lattice theory is invariant
under lattice translations, any choice is acceptable without
loss of generality. Similarly, we may define the quantities

χμðnÞ ¼ χðn − nμeμÞ;
χμνðnÞ ¼ χðn − nμeμ − nνeνÞ;
χμνσðnÞ ¼ χðn − nμeμ − nνeν − nσeσÞ;
χμνσρðnÞ ¼ χðn − nμeμ − nνeν − nσeσ − nρeρÞ; ð20Þ

which associate the integers 0;…; D − q with the remain-
ing q-cells of the lattice, where q ¼ 0;…; D. The classi-
fication of bonds is shown in Fig. 3(b) and the classification
of plaquettes is shown in Fig. 3(c) for D ¼ 3 space-time
dimensions.
For this study, we consider the simplest restriction (or

blocking) procedure, which proceeds by assigning products
of fine bond variables Uf

μ to the coarse bond variables Uc
μ,

Uc
μðn=2Þ ¼ Uf

μðnÞUf
μðnþ eμÞ; ð21Þ

for all values of n satisfying χðnÞ ¼ 0. Other schemes are
also possible; however, the specific choice plays a minor
role in the present implementation of our algorithm. In all
cases, information is lost in the restriction operation.
Prolongation proceeds in two steps: first, the transfer of

the coarse lattice variables to an appropriate subset of bonds
on the fine lattice, and second, interpolation of the trans-
ferred variables to the remaining undefined bonds of the
fine lattice. The prolongator is designed to preserve
the long-distance structure of the theory (as it is encoded
by the configurations), including correlation lengths and
topological charge. As a consequence, if the coarse con-
figurations towhich prolongation is applied are thermalized,
the resulting fine configurations will also be thermalized
except for short-distance defects at the scale of the cutoff.
Fine evolution can correct for such short-distance defects,
and it is reasonable to expect that the evolution time required
to bring the entire prolongated ensemble into thermal
equilibrium will be short. Since topology freezing is one
of the major issues in present-day simulations that we aim to
address, it is advantageous for the restriction and prolonga-
tion procedures to preserve the topological charge either
with configuration by configuration within an ensemble or
in terms of its distribution over the ensemble.4

The first step of the prolongation procedure is to
associate the coarse bond variables with the fine lattice.
Since there are more bonds on the fine lattice than the
coarse, there is no unique prescription for doing this.
However, a simple choice is to demand that

Uf
μðnÞ ¼ Uc

μðn=2Þ; Uf
μðnþ eμÞ ¼ 1; ð22Þ

for all n satisfying χðnÞ ¼ 0. Note that the gauge freedom
of the fine action allows us to set one of the two fine bond

FIG. 3 (color online). Classification of lattice cells, labeled by the integers 0 (red), 1 (blue), 2 (green), and 3 (yellow). Left: χðnÞ.
Center: χμðnÞ. Right: χμνðnÞ.

4Note that the topological charge depends on the ultraviolet
regulator and a particular definition will be discussed below. It is
only in the limit of weak coupling where configurations satisfy an
admissibility criterion [16] that the definition becomes unique.
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variables above to unity; in Fig. 4(b) we show an example
of this assignment for a 2 × 2 × 2 cell, having transferred
bond variables from the coarse unit cell shown in Fig. 4(a).
The remaining bond variables are undefined and may be set
to arbitrary values; in this study we initially set them to
unity. Note that 2 × 2 Wilson loops originating from the
even sites of the fine lattice [i.e., where χðnÞ ¼ 0] are
exactly equal to the plaquettes of the coarse lattice.
Furthermore, all even length Wilson loops originating from
the even sites are exactly preserved by the map. This is the
key to our construction, and it implies that there is a set of
long distance loops from which the renormalization group
invariant area law can be computed (i.e., using Creutz ratios
constructed from even-sided loops).
The second step, interpolation, is designed to remove the

most damaging ultraviolet defects induced by the first step.
There are a number of ways to carry out the interpolation of
gauge fields (see, e.g., [16–18]). Following the approach of
’t Hooft [18], we use an interpolation which respects the
Lüscher bound for sufficiently smooth configurations [16],
and as a consequence, exactly preserves the topological
charge for those configurations. The gauge field interpo-
lation is carried out by sequentially minimizing the partial
actions,

Sd ¼ β
X
n

X
μ<ν

δd;χμνðnÞ½1 −W1×1
μν ðnÞ� ð23Þ

with respect to “active” bond variables which satisfy
χμðnÞ ¼ dþ 1, for d ¼ 0;…; D − 2. The interpolation
proceeds starting from low dimensional to high dimen-
sional cells. A useful property of this prescription is that at
each stage of the interpolation, the active bond variables in
one 2dþ2 cell are completely decoupled from those in
neighboring 2dþ2 cells. Thus the interpolation can be
performed locally at each stage.
At stage d ¼ 0, the minimization can be performed

analytically, following [18]; however, the analytic forms
become complicated for d > 0. In this study, we followed a
numerically simpler procedure for performing the

minimization that is valid for all stages. Specifically,
repeated applications of APE smearing [19,20] of the form

UμðnÞ → U0
μðnÞ

¼ PSUðNcÞ

�
UμðnÞ þ c

X
σ¼�

X
ν

δd;χμνðnÞT
σ
μνðnÞ

�
ð24Þ

were performed on the active bonds at a given stage, where

Tþ
μνðnÞ ¼ UνðnÞUμðnþ eνÞUνðnþ eμÞ† ð25Þ

and

T−
μνðnÞ ¼ Uνðn − eνÞ†Uμðn − eνÞUνðn − eν þ eμÞ† ð26Þ

are forward and backward oriented staple operators,
PSUðNcÞ is a projection operator onto SUðNcÞ, and c is a
small parameter to be specified later. The number of times
this smearing is applied to the gauge fields will also be
specified later.
Before moving on to numerical studies, we define

several additional quantities, which will prove useful later
on: partially space-time averaged plaquettes, associated
with the different plaquettes subsets,

W̄1×1
d ¼ 1

N1×1
d

X
n

X
μ<ν

δd;χμνðnÞW
1×1
μν ðnÞ; ð27Þ

and average displaced 2 × 2 Wilson loops, given by

W̄2×2
d ¼ 1

N2×2
d

X
n

X
μ<ν

δd;χðnÞW2×2
μν ðnÞ: ð28Þ

The normalization for these quantities are given by

N1×1
d ¼ 2ðD − dÞðD − d − 1Þ

�
D

d

�
Ns

2D
ð29Þ

FIG. 4 (color online). Schematic description of prolongation: (a) coarse bond variables; (b) transfer of coarse bond variables to a fine
lattice; (c) interpolation performed on 2 × 2 plaquettes; (d) interpolation performed on 2 × 2 × 2 cubes; the procedure is continued for
the remaining stages (not shown). Black bond variables are set to unity, as allowed by gauge freedom, and dashed bond variables are
undefined at intermediate stages of the refinement; dark blue bond variables are transferred from the coarse lattice, whereas the lighter
blue bond variables are determined via the interpolation.
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and

N2×2
d ¼

�
D

2

��
D

d

�
N0

2D
; ð30Þ

respectively. Note that

XD
d¼0

N1×1
d ¼

XD
d¼0

N2×2
d ¼

�
D

2

�
N0; ð31Þ

which is just the total number of plaquettes on the lattice.

IV. SIMULATIONS

A. Target ensembles

In the remainder of this work we consider pure SUð3Þ
gauge theory in D ¼ 4 dimensions and make use of four
decorrelated target ensembles of size N, generated in a
standard way. Physical observables on these ensembles will
serve as benchmarks that the multiscale thermalization
algorithm should reproduce. The ensembles are described
in Table I and have lattice spacings ranging from approx-
imately 0.07 to 0.2 fm, separated by multiples of

ffiffiffi
2

p
. The

lattice spacings were determined from empirical formulas
relating the Sommer scale in lattice units (r0=a) to the
coupling [21,22], taking r0 ¼ 0.5 fm. The spatial extents of
the lattices were chosen to be approximately 2.25–2.40 fm;
the temporal extents were chosen to be twice the spatial
extents in order to minimize thermal effects. Standard
boundary conditions, periodic in all directions, were used
throughout. Ensembles were generated with the Cabibbo-
Marinari HB algorithm [23] combined with overrelaxation
[24]. Each HB sweep was performed on a checkerboard
sweep schedule with Nhb ¼ 1 attempted updates to each
SUð2Þ subgroup per bond variable via the method of Creutz
[25]. Each HB sweep was followed by Nov ¼ 10 over-
relaxation sweeps following the same checkerboard sweep
schedule. For all ensembles, 1500 HB sweeps were initially
performed for thermalization starting from a weak field
configuration; subsequent configurations were saved after
every 100 sweeps for future use.

B. Wilson flow

Wilson flow [26–28] was used to define a number of the
observables studied in this work. The diffusive nature of the
flow allows us to consider a series of observables, which
probe different length scales at different flow times, t.
Wilson flow was applied to the target ensembles described
in Table I using both a fixed step size algorithm [27] and an
adaptive step size algorithm [29]. The accuracy of the
integration along the flow is controlled by the size of the
step in the former case and a tolerance level in the latter
case (see [29] for an explicit definition of this tolerance).
The adaptive approach is more efficient because the flow
has a smoothing effect on the fields. Consequently, the
forces that drive the flow become smaller with flow time,
thus enabling the use of larger step sizes at later times. We
have established the validity of our implementation of the
adaptive step Wilson flow by direct comparison with fixed
step size Wilson flow for the target ensembles in Table I.
For the autocorrelation time and (re)thermalization studies
performed later in this work, the adaptive step size
algorithm was used, due to its higher efficiency.
For the target ensembles, Wilson flow measurements

were performed using a fixed step size of 0.01; results for
the quantity t2EðtÞ (for this study, we use the clover-leaf
definition) are provided in Fig. 5 as a function of t=t0. The
Wilson flow scale, t0, is defined by t20Eðt0Þ ¼ 0.3; values of
this scale and corresponding statistical errors were obtained
by linearly interpolating the nearest estimates of t2EðtÞ to
0.3. The results from this analysis are provided in Table I;
for the 243 and 323 ensembles, we obtained estimates of t0
which are consistent with [27]. For the same ensembles, the
adaptive step size algorithm was used with a tolerance of
0.01. Measurements along the flow were made in multiples
of t⋆0=4, where t⋆0 is introduced in Table II as a nominal
value for t0 [this parameter was chosen to be sufficiently
close to t0, but also a multiple of 0.01 so that we may
directly compare estimates of EðtÞ using both methods].
For the 323 ensemble, we found a maximum deviation of
about 0.02% in the estimates of EðtÞ for t ∈ ½0; 5t⋆0 �. For
123, 163, and 243 lattices, the deviation was less than
0.001% on the same interval. The good agreement for these
ensembles not only validates our implementation, but also
indicates that our choice of tolerance level is adequate for
the studies we are pursuing. Note that for t≳ 5t0, the flow
radius

ffiffiffiffi
8t

p
exceeds the size of our lattices, and beyond that,

the Wilson flow was used primarily for its smoothing
properties in determining the topological charge. For all
ensembles, the topological charge was found to be con-
sistent between fixed and adaptive step algorithms over the
entire range of flow times on a per configuration basis.

C. Restriction and prolongation

As a first test of the prolongation algorithm described in
Sec. III, we investigate how the target fine ensembles

TABLE I. Decorrelated target ensembles of size N, generated
using HB with 10 overrelaxation sweeps. Lattice spacing is set
via the Sommer scale r0 ¼ 0.5 fm, based on the works [21]
(coarsest) and [22] (finer). The reference scale t0 is defined in
Sec. IV B.

Lattice β a [fm] N t0=a2

123 × 24 5.626 0.1995(20) 385 0.72966(69)
163 × 36 5.78 0.1423(5) 385 1.3858(15)
243 × 48 5.96 0.0999(4) 185 2.7891(45)
323 × 72 6.17 0.0710(3) 185 5.5007(83)
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described in Table I are modified by the application of
restriction using Eq. (21), followed immediately by pro-
longation using Eq. (22) and Eq. (23). The gauge field
interpolation was performed by sequentially minimizing
the partial actions Sd until at each stage, d, the relative
change in the partial action reached 0.001%. For the
ensembles considered, the action minimization required
by our interpolation procedure was performed using
repeated applications of APE smearing, using Eq. (24)
with c ¼ 0.05. The variation of the average plaquette,
hW̄1×1i, and partially averaged plaquette hW̄1×1

d i are shown
in Fig. 6 for each ensemble as a function of the number of
smearing applications, beginning with undefined bonds set
to unity. Notice from the results that the average plaquette
hW̄1×1i, which is proportional to the action, S, up to an
overall additive constant, is not a monotonically increasing
function of the number of cooling sweeps. This is due to the
fact that it is not the total action that is being minimized at
each stage of the interpolation, but rather the partial
action Sd.
The average partial plaquettes hW̄1×1

d i and displaced
2 × 2 Wilson loops hW̄2×2

d i are shown in Fig. 7 as a
function of the target ensemble coupling for each ensemble

after restriction and prolongation. The former demonstrates
that although the prolongated configurations retain an
imprint of the coarse lattice, the configurations are none-
theless smooth by comparison to configurations from the
associated target ensemble. The latter observable provides a
measure of the reduced translational symmetry of the
restriction/prolongation operators. Note that hW̄2×2

0 i is just
the average plaquette measured on the coarse lattice,
whereas hW̄2×2

4 i corresponds to fully displaced plaquettes.
Clear signals of the reduced translational symmetry is
evident with approximately a factor of 4 difference between
the two. Later, we explore the rate at which displaced 2 × 2
Wilson loops converge to the same value as a function of
Monte Carlo evolution time, since this provides a measure
of how quickly the full translational symmetry of the fine
theory is restored.

D. Topological charge

The topological charge, QðtÞ, and susceptibility, χðtÞ
[defined as the square of QðtÞ divided by the spacetime
volume], is determined as a function of the Wilson flow
time using the three-loop improved gluonic definition of
the topological charge operator [30]. As a function of flow
time, the topological charge is expected to approach integer
values. A measure of the deviation of the topological
charge from integer values over the ensemble is given by

ϵðQÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðQi − ½Qi�Þ2
vuut ; ð32Þ

where ½Qi� is defined as the nearest integer to Qi for each
decorrelated configuration, labeled by i. Note that a locally
uniform distribution forQi about integer values (e.g., when
the distribution for Q is broad and smooth on scales much
larger than unity) yields ϵðQÞ ¼ 1=

ffiffiffiffiffi
12

p
. This measure is

FIG. 5 (color online). Left: t2EðtÞ as a function of t=t0; determined values of t0 are provided in Table I. Right: Deviation between t0
obtained using Wilson flow with a fixed step size (this work) and the nominal values t⋆0 introduced in Table II. Corresponding results
obtained in [27] (Lüscher) are shown for comparison.

TABLE II. Wilson flow parameters used for comparative study
of Q on the fine and refined lattices, autocorrelation time studies,
and (re)thermalization time studies; all flows were performed
using an adaptive step size [29] with a maximum allowed step of
0.2.

Lattice t⋆0=a2
Flow time

extent [t⋆0=a2]
Measurement frequency

[t⋆0=a2] Tolerance

123 × 24 0.73 40 1=4 0.01
163 × 36 1.39 25 1=4 0.01
243 × 48 2.79 14 1=4 0.01
323 × 72 5.49 8 1=4 0.01
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expected to approach zero for the gluonic definition of the
topological charge at late flow times. Plots of this quantity
are provided in Fig. 8 for the target (fine) ensembles and
ensembles obtained from restriction and prolongation
(refined), as described in the previous section. In units
of the nominal scale t⋆0 , we find that the topological charge
approaches integer values faster as the lattice spacing is
decreased. This can be understood in terms of smoothness

of the gauge field configurations. Following [27], we may
consider the quantity

sp ¼ Nc½1 −W1×1
μν ðnÞ�; ð33Þ

measured on field configurations at flow time t0, where p is
a plaquette associated with site n and basis vectors eμ and
eν. Given the measure of the configurations’ smoothness,

FIG. 6 (color online). Average plaquette as a function of the number of cooling sweeps at each level of interpolation.

FIG. 7 (color online). Partially averaged plaquette (left) and average displaced 2 × 2Wilson loop (right) as a function of β, measured on
the four target ensembles after restriction and prolongation.

MULTISCALE MONTE CARLO EQUILIBRATION: PURE … PHYSICAL REVIEW D 92, 114516 (2015)

114516-11



h ¼ maxpðspÞ, gauge configurations satisfying the admis-
sibility criterion h < 0.067will fall into distinct topological
sectors [27]. Configurations that violate the bound due to
lattice artifacts, on the other hand, will not. In this study, we
find that 0% of the configurations satisfy the criterion for
a≳ 0.1 fm, whereas only 9% of the configurations satisfy
the criterion at a ∼ 0.07 fm; these results appear consistent
with [27]. Note that according to that study, at a ∼ 0.05 fm,
this percentage increases to about 70%. For equal flow
times in lattice units, we find that the fine ensemble is more
likely to have configurations that satisfy the admissibility
condition than its refined counterpart; this result is counter-
intuitive, is due to the fact that the refined ensemble is
smoother at the scale of the lattice spacing, and thus
undergoes diffusion under Wilson flow at a rate slower
than the fine ensemble. As a by-product of this, we see in
Fig. 8(b) that the topological charge attains integer values at
a somewhat slower rate than that in Fig. 8(a).
In Fig. 9, we show scatterplots of the topological charge

measured at the longest flow time for each of the target
ensembles, and the corresponding topological charge
measured after restriction and prolongation. As was evident
in Fig. 8, we see that for both fine and refined ensembles,
the topological charge takes on integer values at large flow
times. Furthermore, for large βwe find that the distributions
become increasingly skewed, indicating increasing corre-
lation between the topological charge of the original and
refined configurations. In Fig. 10 (left) we provide plots of
this correlation as a function of flow time for each value of
β. We note that the correlations in the topological charge
are largely independent of flow time for t≳ t0; this
observation holds even at early times, where the topological
charge need not take integer values. In Fig. 1 (left), the
correlations in the topological charge measured at the latest
flow time are plotted for each value of β. Despite the large
violations of the admissibility condition at the lattice
spacings considered in this work, we nonetheless see a
clear increasing trend in the topological charge correlations

between fine and refined lattices. Our expectation is that
these correlations will rapidly approach unity as the lattice
spacing is further reduced by a factor of

ffiffiffi
2

p
− 2. Finally, in

Fig. 10 (right) we show the p-values obtained from a two-
sample Kolmogorov-Smirnov test that the topological
charge distributions on fine and refined ensembles come
from the same underlying distribution. The p-values were
obtained as a function ofWilson flow time, and in each case
are consistent or exceed 0.05 after flow times of a few t⋆0.
Already at β ¼ 6.17 (a ¼ 0.07 fm), it is difficult to dis-
tinguish between the distributions, and at even finer lattice
spacings, the distributions will be exactly preserved. This is
important as it indicates that when we apply prolongation to
a coarse ensemble with a well-sampled topological charge
distribution, the resulting fine ensemble will continue to
have a well sampled topological charge distribution, albeit
with lattice artifacts inherited from the coarse level of
discretization. These differences can be corrected by the
fine evolution, or by improvement of the coarse action.

E. Algorithms and autocorrelations

To establish the viability of our multiscale approach, we
must first determine the decorrelation time scales associ-
ated with conventional gauge evolution methods and their
associated scaling behavior with the lattice spacing. In this
work, we focus on two particular algorithms, namely, HB
and HMC. The former algorithm is described in Sec. IVA;
however, for this application we consider the parameter
choices Nhb ¼ 100 and Nov ¼ 0. The total number of
updates is given by τ. For the later case, we use a
potential-kinetic-potential (PQP)-type leapfrog algorithm,
with τ trajectories of unit length and the number of leapfrog
steps per trajectory tuned to yield an approximate accep-
tance rate of 70% for each coupling. Full details regarding
the tuning of this algorithm are provided in Appendix A.
Note that the strategy we take here of keeping the trajectory
length fixed, rather than scaling it inversely with the lattice
spacing, differs from that of [6,7]. The algorithmic

FIG. 8 (color online). Plots of ϵðQÞ as a function of t=t⋆0 for fine (left) and refined (right) ensembles; dashed line corresponds to
1=

ffiffiffiffiffi
12

p
.
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implementations we consider are chosen to provide a
relatively simple benchmark for comparison with the
multiscale approach. More sophisticated and efficient
implementations exist and could be used in both the
traditional and the multiscale approaches, but require
significant tuning and optimization. We do not pursue
these directions in this initial quenched investigation.
Integrated autocorrelation times were determined for

various observables using the methods described in
Appendix B. Errors on the autocorrelation times were
estimated using a highly efficient implementation of the

jackknife method, with jackknife blocks of size NJ.
Obtained errors were consistent with those obtained with
analytic approximations described in [31] and based on
[32,33]. In Table III, we provide details of the ensembles
generated for these estimates, including the ensemble size
N, jackknife block size NJ, and measurement frequency of
observables Δτ. Note that the total number of trajectories
per ensemble is given by NΔτ. In the same table, we report
the autocorrelation times for the topological charge, topo-
logical susceptibility, and the quantity t2EðtÞ at flow time
t⋆0 , all of which are long distance observables. Note that the

FIG. 9 (color online). Plot ofQfine versusQrefined determined at the maximum flow time extent for each ensemble pair. Dashed ellipses
indicates 95% confidence interval centered about the mean. The skewed nature of the ellipses with respect to the diagonal suggests that
the refined topological charge distribution is broader than the fine distribution.
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choice of NJΔτ exceeds 2τint estimated for each observ-
able, suggesting a self-consistency in our error estimates.
For the finer lattice spacings, we find that the integrated
autocorrelation time for Wilson loops of all sizes were
significantly less than that of the Wilson flow quantities
provided in Table III. For 243 and 323 ensembles, our
sampling resolution was insufficient to obtain reliable
estimates of the integrated autocorrelation times for
Wilson loops, and therefore such estimates for all β are

omitted. The integrated autocorrelation times for each
observable were fit to the functional form

τint ¼ const ×

�
r0
a

�
zint
; ð34Þ

and the fit results are provided in Table IV. Note that at a
fixed physical volume, the computational cost to obtain
decorrelated measurements of an observable is proportional

FIG. 10 (color online). Left: Correlation between the topological charge on fine and refined ensembles as a function of flow time for
the four values of β considered in this work. Right: P-values obtained from a two-sample Kolmogorov-Smirnov test that the topological
charge distributions on fine and refined lattices come from the same underlying distribution, as a function of the Wilson flow time.
Dashed line corresponds to 0.05.

FIG. 11 (color online). Integrated autocorrelation times for Wilson flow observables as a function of r0=a using HB (left) and HMC
(right) algorithms.
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to τint × ðr0=aÞD for HB, and τint × ðr0=aÞDþ1 for HMC,
where D ¼ 4 powers of r0=a arise from trivial scaling of
the number of lattice sites. The latter has an additional
power of r0=a due to the fact that the number of steps per
trajectory needed to attain constant acceptance probability
is roughly inversely proportional to the lattice spacing (see
Appendix A for details). Fig. 11 shows the autocorrelation
times as a function of the inverse lattice spacing, exhibiting
the expected critical slowing down as the continuum limit is
approached at large β. Results are shown for both HB and
HMC evolution.

F. Thermalization and rethermalization

With autocorrelation times for conventional gauge evo-
lution at hand, we are finally in a position to assess the
utility of the multiscale strategy proposed in Sec. I. To
make the analysis quantitative, we proceed by studying the
equilibration properties of both conventionally prepared
initial configurations (thermalization) and initial configu-
rations prepared by prolongation (rethermalization). For
these studies, we consider ensembles of sizeNs ¼ 24 under
Markov evolution using the same action and algorithms as
in the previous section, and the two gauge couplings, β ¼
5.96 and β ¼ 6.17, corresponding to a ∼ 0.1 fm and
a ∼ 0.07 fm, respectively. Thermalization studies were
performed using initial configurations drawn from an
ordered delta-function distribution (i.e., a cold start)
and from a random distribution (i.e., hot start).
Rethermalization studies were performed using initial
configurations which had been prepared in two ways, in
each case utilizing a subset of the decorrelated target
ensembles described in Table I. In the first case (r-I),
configurations were prepared by restriction and prolonga-
tion of β ¼ 5.96 and β ¼ 6.17 configurations, similar to the
analysis of topological charge correlations in Sec. IV D. In

the second case (r-II), initial configurations were prepared
via prolongation of RG-matched coarse ensembles gen-
erated using the Wilson action. The matching was per-
formed via the Sommer scale, with coarse couplings
corresponding to β ¼ 5.626 (a ∼ 0.2 fm) and β ¼
5.78 (a ∼ 0.14 fm).
Each (re)thermalization study was performed using both

HB and HMC algorithms. In the latter case, acceptance
probabilitieswere found to be exponentially small at the start
of (re)thermalization. For both lattice spacings, we therefore
initially evolved the ensembles for 24 trajectories without an
accept/reject step in order to achieve reasonable acceptance
probabilities; beyond that, evolution was performed with an
accept/reject step. In all cases, thewarm-up period necessary
to achieve reasonable acceptance probabilities was signifi-
cantly shorter than the (re)thermalization time.
We begin by considering the (re)thermalization proper-

ties of the average displaced 2 × 2Wilson loops, defined in
Eq. (28). Recall from Fig. 7 (right) that initially the
displaced Wilson loops vary widely with the degree of
displacement, d. For example, at β ¼ 6.17, the average
value ranges from approximately 0.2 at d ¼ 0 to 0.8 at
d ¼ 4. As illustrated in Fig. 12 (top, center) for HB and
Fig. 13 (top, center) for HMC, despite this wide initial
variation, the displaced plaquettes converge to a single
value for all d after several Monte Carlo updates. This holds
true for both r-I (top) and r-II (center) ensembles, and
indicates that the translational symmetry of the fine
ensemble is restored rapidly as a function of the retherm-
alization time. In the same figures, we show the total
Wilson loop (bottom) obtained by an appropriately
weighted average over the five displaced loops. Here we
see that the r-I ensemble “overshoots” the thermalized
average, whereas the r-II ensemble converges more rapidly,
and without overshooting. Although further investigation is
needed to better understand these differences, it is encour-
aging to see that the case r-II converges so well, given that
is the case where coarse ensembles had been generated (as
they would be in practical applications) rather than pro-
duced artificially by restriction.
In Fig. 14 and Fig. 15, we show (re)thermalization curves

for the topological susceptibility, ðt⋆0Þ2χðt⋆0Þ, and Wilson
flow quantity t2EðtÞ, for the flow times t ¼ t⋆0=4; t⋆0 and

TABLE III. Integrated autocorrelation times for various observables obtained from N measurements performed on every Δτth update.

Algorithm Lattice N Δτ NJ τintðEðt⋆0ÞÞ τintðQðt⋆0ÞÞ τintðχðt⋆0ÞÞ
HB 123 × 24 5000 1 50 16.0(2.1) 3.8(0.3) 1.9(0.2)

163 × 36 12000 1 100 33.2(4.4) 19.7(3.2) 6.5(0.7)
243 × 48 8000 4 100 65.2(8.1) 79.4(11.1) 40.3(6.0)
323 × 72 9000 8 300 166.2(22.7) 504.4(103.9) 212.6(32.2)

HMC 123 × 24 9000 1 50 28.2(3.0) 7.1(0.6) 3.9(0.4)
163 × 36 24000 1 100 44.2(4.7) 26.0(2.9) 12.7(2.0)
243 × 48 12000 4 100 88.8(12.7) 130.0(16.7) 50.5(7.8)
323 × 72 9000 8 300 227.3(28.5) 1307.5(322.8) 378.4(139.4)

TABLE IV. Integrated autocorrelation time fit results for zint for
various observables.

Algorithm zintðEðt⋆0ÞÞ zintðQðt⋆0ÞÞ zintðχðt⋆0ÞÞ
HB 2.3(2) 4.7(2) 4.7(2)
HMC 2.1(2) 5.2(2) 4.5(4)
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4t⋆0 . Recall from the previous section that the topo-
logical charge distributions for these ensembles are well
preserved upon prolongation. Consequently, observables
derived from topology, such as the susceptibility, are by
construction thermalized up to lattice artifacts. From
studies of the topological susceptibility, this indeed
appears to be the case. Furthermore, for nontopological
quantities measured on ensembles obtained by prolonga-
tion, we find that rethermalization times appear signifi-
cantly shorter than the thermalization times of either hot
and cold starts.
A quantitative comparison of the (re)thermalization

times for each observable requires determination of both

the exponents and the overlap factors for each (re)
thermalization curve. For each observable, we therefore
perform a combined multiexponential fit to all four (hot,
cold, r-I, and r-II) (re)thermalization curves, as a function
of (re)thermalization time. We include in these fits
estimates of the observable obtained from the much
larger thermalized target ensemble (therm), effectively
corresponding to τ ¼ ∞. We considered fits of the
functional form

fαðτÞ ¼
X2
n¼0

zαne−Enτ; ð35Þ

FIG. 12 (color online). Top: HB rethermalization of average displaced 2 × 2 Wilson loops (r-I). Center: HB rethermalization of
average displaced 2 × 2 Wilson loops (r-II). Bottom: HB rethermalization of 2 × 2 Wilson loops.
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where α labels the ensemble, and impose the constraints
E0 ¼ 0, zα0 ¼ z0 for all α and zthermn ¼ 0 for 2 ≥ n > 0.
The least squares fits were performed using the variable
projection method [34]. A brief description of how the
constraints were imposed in this approach is provided in
Appendix C. Reliable correlated multiexponential fits to the
data were difficult to achieve due to the small ensemble
sizes; consequently uncorrelated fits to data were per-
formed, with errors estimated via a bootstrap analysis.
Our aim is to obtain estimates of the relevant evolution
time scales rather than precise values, so this simplified
analysis is sufficient. With larger ensembles and more

frequent measurements, coupled fits to multiple observables
could be performed, potentially constraining higher states
in the evolution. The leading exponents τn ¼ 1=En (n ¼ 1,
2) determined from each fitted observable are provided in
Table V at flow time t0. Note that generally τ1 ≠ τexp, since
the observable under study may not couple strongly enough
to the slowest mode, and furthermore, the statistics may be
insufficient to resolve the effects of that mode. Nonetheless,
we expect the bound τint ≤ τ1 to hold for each observable
that is considered. A comparison of these time scales can
be made from the data provided in Table III and Table V,
and it suggests that this is indeed the case.

FIG. 13 (color online). Top: HMC rethermalization of average displaced 2 × 2 Wilson loops (r-I). Center: HMC rethermalization of
average displaced 2 × 2 Wilson loops (r-II). Bottom: HMC rethermalization of 2 × 2 Wilson loops.
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FIG. 14 (color online). HB (re)thermalization of topological susceptibility and EðtÞ as a function of the number of sweeps, for various
values of t.
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FIG. 15 (color online). HMC (re)thermalization of topological susceptibility and EðtÞ as a function of the number of trajectories, for
various values of t.
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Finally, in Fig. 16 we plot extracted values for τn and zαn
as a function of the Wilson flow time for the observable
t2EðtÞ, for 323 × 72 ensembles (re)thermalized via HMC.
For this illustrative case, the fitted exponents are insensitive
to the flow time, with τ1=τ2 ∼ 2.5. This stability suggests
that the fits are picking out the true exponents governing the
evolution dynamics. The overlap factors, on the other hand,
need not be independent of the flow time. For flow times
t=t⋆0 > 1 we find z1=z0 ≳Oð1Þ and z2=z0 ≳Oð1Þ for hot
and cold ensembles. The ensemble r-I has significantly
reduced overlaps by comparison, with z2=z0 consistent
with zero over the full range of flow times. The ensemble r-
II exhibits the most impressive behavior, with both z1=z0
and z2=z0 consistent with zero over the full flow time range.
The result suggests a lower bound on the rethermalization
time scale, given by τ3. It would be particularly interesting

in this example to determine with higher precision the
number of low lying states that have been eliminated, thus
further constraining this bound.
From analysis of the autocorrelation times in the pre-

ceding section, and the (re)thermalization time scales
determined here, we may draw several conclusions.
First, the rethermalization times for prolongated ensembles
are significantly shorter than the thermalization times for
hot and cold starts. This result implies that the simulation
strategy advocated in Fig. 2(b) is more efficient than that of
Fig. 2(a). Second, the rethermalization times for nontopo-
logical long-distance observables are significantly shorter
than the decorrelation time scale for fine evolution, which is
bounded from below by twice the integrated autocorrela-
tion time for topological charge. An explicit comparison of
these time scales can be made from Table III and Table V.

TABLE V. Fit results for (re)thermalization curves.

Algorithm Lattice τ range τ1ðEðt⋆0ÞÞ τ2ðEðt⋆0ÞÞ τ range τ1ðχðt⋆0ÞÞ τ2ðχðt⋆0ÞÞ
HB 243 × 48 60–400 89.1(2.3) 32.5(1.2) 60–400 95.9(49.9) 24.9(8.9)

323 × 72 150–1000 219.3(7.6) 72.2(4.5) 50–1000 623.6(84.9) 140.4(149.6)
HMC 243 × 48 80–500 115.6(4.0) 53.2(5.4) 80–500 187.5(117.3) 86.9(33.0)

323 × 72 150–1500 250.3(10.8) 96.5(6.2) 120–1500 511.2(227.9) 83.8(52.1)

FIG. 16 (color online). Multiexponential fit results (decay constants and overlap factors) for HMC (re)thermalization of EðtÞ as a
function of the number of trajectories, for various values of t.
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For example, in the case r-II (HMC, a ∼ 0.07 fm), where τ3
(which was undetermined from fits) appears to be the
dominant rethermalization time scale, rethermalization to
quarter-percent levels can be achieved in the time
τretherm ∼ 6τ3 < 6τ2 ∼ 600. The decorrelation time for the
topological charge provides a lower bound 2τ̂int >
2τðQðt�0ÞÞ ∼ 2600, and therefore the efficiency of the
algorithm, as described by Fig. 2(c), is conservatively
estimated to be greater than 2τ̂int=τretherm ∼ 4.5 The result
provides compelling evidence that an ensemble generation
strategy along the lines of Fig. 2(c) is not only viable but
also a superior alternative to approaches presently avail-
able. Note that this assessment becomes particularly con-
clusive in the regime of ultrafine lattice spacings, where
proper sampling of the topological charge is presently
impractical by conventional means due to topological
freezing. As mentioned in Sec. I, the two strategies
described in Fig. 2(b) and Fig. 2(c) represent only the
extremes in a range of algorithms, defined by different
choices of Ns and Ne. In general, the optimal choice for
these parameters depends on the time scales observed for a
particular target action and the computational facilities that
are available.

V. CONCLUSION

We have proposed a multiscale equilibration strategy for
Yang-Mills gauge theories, which can be used to rapidly
initialize large numbers of Monte Carlo streams, thereby
increasing the efficiency of simulations. This algorithm
shares many features with multigrid solvers [35–38] which
have been used to dramatically decrease the computational
cost of matrix inversion, a large component of lattice QCD
calculations. The effectiveness of our multilevel strategy for
equilibration was demonstrated for the case of pure SUð3Þ
gauge theory using both heat bath and hybrid Monte Carlo
updating procedures. In both cases, the time scales gov-
erning the rethermalization of prolongated ensembles were
measured to be considerably shorter than the decorrelation
times for conventional evolution, as estimated from the
autocorrelations in the topological charge. Furthermore,
the ratio of these quantities decreases parametrically as the
continuum limit is approached. As a consequence, pro-
longation of a RG-matched coarse ensemble followed by
rethermalization provides a new way to reduce critical
slowing down in lattice gauge theory simulations. In
particular, the poor sampling of topology at fine lattice
spacing is ameliorated by evolving multiple fine-action
streams derived from a coarse-action ensemble with well-
sampled topology. Although unexplored in this study,
multiple levels of refinement would offer additional
speed-ups in thermalization.

The successful application of our strategy requires a
nonperturbative real space renormalization group pro-
cedure to match the physical scales at the coarse and fine
levels of evolution. Generally the matching need not be
precise to realize improvements since the subsequent
evolution (rethermalization) eliminates any effects of the
mistuning of the coarse action. However, the precision with
which the tuning is carried out will influence the retherm-
alization times of the prolongated ensembles. A RG
transformation of the fine lattice action induces many
operators in the coarse action, and these should, in
principle, be included in the coarse evolution. In this study,
we have ignored all but the local plaquette coupling in the
coarse action, yet still attain impressively short rethermal-
ization times. Numerical methods have been developed for
nonperturbatively determining the induced couplings along
a RG flow for simple systems (see, e.g., [39]), and their use
in tuning would likely result in a further reduction in
rethermalization times.
From a practical standpoint, the utility of our approach

can be realized in several ways. The method can be directly
applied toward generation of very large physical volume
ensembles in cases where the matching is already known
(e.g., from previous small volume studies). In this way one
can avoid the long initialization time for large lattice
streams. Our expectation is that for a given target lattice
spacing, rethermalization times for prolongated ensembles
will be insensitive to volume, and therefore the efficiency of
the algorithm will be unaffected by the volume scaling.
Alternatively the method can be used to start random
ensembles on coarse lattices to initialize a large ensemble
of fully independent streams. These streams will start with
different topological charges so that together they will
sample the topological charge distribution dictated by the
coarse lattice. In principle, the topological charge distri-
bution could be reweighted if the continuum distribution is
determined by some other means.
A potential weakness of our multilevel approach is that

its effective use requires prior knowledge of the RG
matching of actions, which in turn requires simulations
at the fine level. Nevertheless, there are several ways in
which to proceed. One can exploit the fact that the tuning
need not be exact at the coarse level and perform “sloppy
matching” studies using small volume ensembles with
poorly sampled topology; in this case matching would
proceed by considering long distance observables which
are relatively insensitive to topology. Another possibility is
to use a finite volume scheme such as the Schrödinger
functional [40] to define the gauge coupling. By requiring a
fixed coupling constant for a coarse and fine ensemble, one
can then obtain a matching of the bare gauge couplings that
result from calculations at two lattice spacings with the
desired ratio. Available results that could be used to obtain
matched coarse and fine ensembles, including dynamical
fermions, can be found in a recent review [41]. Finally, in

5This accounting does not include any additional reduction in
computational cost attributed to reduced communication over-
head from having multiple streams.
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the ultrafine limit, one can make contact with perturbative
calculations in order to carry out the matching.
Themultilevelmethods described here naturally extend to

simulations of full QCD and, more generally, gauge theories
with matter fields. The presence of fermions has no impact
on the details of the prolongation. The only additional
ingredient is that the RG matching must be performed for
more than one physical scale (e.g., ΛQCD, the pion mass and
the kaon mass for 2þ 1 flavor QCD), and therefore requires
tuning ofmultiple parameters in the gauge andDirac actions.
In cases such as this where multiple physical scales are
present, rapid thermalization with multiple levels of refine-
ment may be particularly advantageous. Perfect action
constructions [42] may be useful in this regard.
Although the multiscale algorithm presented here pro-

vides an efficient means for thermalization, it is important
to draw a distinction between it and a more ambitious
multigrid Monte Carlo dynamics. The latter implements a
fully recursive evolution, including multiple scale evolu-
tion, while maintaining exact detailed balance on the finest
level. While there has been some success in constructing
such multiscale methods for simpler field theories [8–13], it
is an open challenge to construct such an algorithm,
particularly for QCD, due to the presence of a nonlocal
fermion determinant in the measure.
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APPENDIX A: HMC TUNING

Acceptance probabilities for each HMC step size δτ and
β were estimated from 100 independent trajectories, start-
ing from thermalized configurations. Estimated acceptance
rates are displayed in Fig. 17 (left). The estimated accep-
tance rates were then fit to the expected functional form

Pacc ¼ erfc

�
1

2
Ω1=2δτ2

�
; ðA1Þ

the extracted fit values for Ω1=2 are provided in Table VI in
units of the scale t0. Fitting the extracted values ofΩ1=2 as a
function of scale parameter t0, we find Ω1=2ðt0Þ ¼
1096ð14Þt0. For each of the HMC studies in this work,
the trajectory length is fixed to unity, and the acceptance
rate is chosen to be approximately 70%. The nominal
number of steps per trajectory, δτ⋆, used in these studies, is
provided in Table VI. As a function of the lattice spacing,
the requisite number of steps per trajectory length to
achieve such an acceptance rate exhibits a power-law
behavior, as demonstrated in Fig. 17 (right). Fitting the
data, we find 1=δτ ∝ ðr0=aÞ1.012ð17Þ. In light of the fact that
the HMC algorithm is not renormalizable [44], the scaling
behavior observed in this study may be regarded as
empirical in nature.

FIG. 17 (color online). Left: HMC acceptance probabilities as a function of step size, δτ, for a fixed trajectory of unit length. Right:
Number of steps per trajectory (1=δτ) as a function of lattice spacing, for a fixed acceptance probability of 70%.
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APPENDIX B: AUTOCORRELATIONS

Consider a set of data, X, comprising arbitrarily spaced
measurements xτ, labeled by τ ∈ ½1; N�. The autocorrela-
tion function at lag-time Δ is defined by

ρΔðXÞ ¼
ΓΔðXÞ
Γ0ðXÞ

; ðB1Þ

where ΓΔðXÞ is the corresponding autocovariance function
for X. To estimate ΓΔðXÞ, first consider the set δX
comprising the elements δxτ ¼ xτ − x̄ for all τ, where

x̄ ¼ 1

N

XN
τ¼1

xτ; ðB2Þ

and the function

Γ̂ΔðδXÞ ¼
1

N

XN−Δ

τ¼1

δxτδxτþΔ; ðB3Þ

defined on this set. If X consists of uniformly sampled data,
then the autocovariance function is simply given by

ΓΔðXÞ ¼
N

N − Δ
Γ̂ΔðδXÞ: ðB4Þ

Note that the computational cost of evaluating Γ̂ΔðδXÞ is
OðN logNÞ using standard discrete Fourier transform
methods, whereas the computational cost for evaluating
ΓΔðXÞ for arbitrarily spaced samples is generally OðN2Þ.
Assuming X consists of uniformly spaced data, the errors

on ΓΔðXÞ can be computed efficiently via the following
jackknife procedure. First partition the measurements xτ
into N=NJ consecutive blocks of size NJ, where it is
assumed thatN modNJ equals zero. Labeling the partitions
by the integers j ∈ ½1; N=NJ�, define the jackknife ensem-
ble Xj comprising the N − NJ elements of X, with
elements xτ on the interval τ ∈ ððj − 1ÞNJ; jNJ� omitted.
Furthermore, define the set δXj which comprises elements

δxjτ ¼
�
0 ðj − 1ÞNJ < τ ≤ jNJ

xτ − x̄j otherwise
: ðB5Þ

Note that although Xj comprises N − NJ elements, δXj

comprises N elements, of which NJ vanish. The autocor-
relation function on the jth jackknife ensemble is given by

ΓΔðXjÞ ¼ N
gΔðXjÞ Γ̂ΔðδXjÞ; ðB6Þ

where the piecewise function gΔðXjÞ quantifies the degen-
eracy of distancesΔ for the ensembleXj. If the set of integers
mα for α ∈ ½1; 5� label the quantities fNJ;ðj−1ÞNJ;jNJ;N−
jNJ;N−ðj−1ÞNJg in ascending order, then

gΔðXjÞ¼

8>>>>>>>><
>>>>>>>>:

N−NJ−2Δ 0≤Δ<m1

N−NJ−m1−Δ m1≤Δ<m2

N−NJ−m1−m2 m2≤Δ<m3

N−NJ−m1−m2þm3−Δ m3≤Δ<m4

N−NJ−m1−m2þm3−m4 m4≤Δ<m5

N−Δ m5≤Δ<N

:

ðB7Þ

Once the jackknife estimates ρΔðXjÞ are obtained, the
standard error is determined by

δρ2ΔðXÞ ¼
N

N − NJ

XN=NJ

j¼1

½ρΔðXjÞ − ρΔðXÞ�2: ðB8Þ

The integrated correlation time is given by

τintðXÞ ¼
1

2
þ
XΔmax

Δ¼1

ρΔðXÞ; ðB9Þ

where the cutoff lag-time Δmax is defined as the minimum
time at which

ρΔðXÞ >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δρ2ΔðXÞ

q
ðB10Þ

following [31]. OnceΔmax is selected, the errors on τint may
be determined from the jackknife estimates τintðXjÞ via

δτ2intðXÞ ¼
N

N − NJ

XN=NJ

j¼1

½τintðXjÞ − τintðXÞ�2: ðB11Þ

APPENDIX C: VARIABLE PROJECTION WITH
CONSTRAINTS

Assume we have a set of measurements yαðτÞ and
covariance matrix Γαβðσ; τÞ. Given the fit function

fαðτÞ ¼
X
n

zαne−Enτ; ðC1Þ

and the constraint ϕz ¼ 0, we may construct

χ2ðz; EÞ ¼
X
αβ

X
στ

½yαðσÞ − fαðσÞ�Vαβðσ; τÞ½yαðτÞ

− fαðτÞ� þ
X
αβ

X
mn

ξαmϕ
αβ
mnz

β
n; ðC2Þ

where V ¼ Γ−1, and ξαn are Lagrange multipliers for each
constraint. Note that ϕ is generally a rectangular matrix.

TABLE VI. Fit parameters for Ω1=2 in units of t0, estimated
HMC step size δτ, and nominal HMC step size δτ⋆ required to
achieve a 70% acceptance rate, for a trajectory of unit length.

Lattice β Ω1=2=t0 1=δτ 1=δτ⋆

123 × 24 5.626 1044(39) 36.5(0.7) 37
163 × 36 5.78 1138(28) 53.3(0.5) 54
243 × 48 5.96 1084(27) 75.5(0.9) 75
323 × 72 6.17 1098(23) 105.1(1.1) 105
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Next, we may express Eq. (C2) as

χ2ðz; EÞ ¼ χ2ð0; 0Þ − 2
X
α

X
n

zαnuαnðEÞ

þ
X
αβ

X
mn

zαmW
αβ
mnðEÞzβn þ

X
αβ

X
mn

ξαmϕ
αβ
mnz

β
n;

ðC3Þ
where

uαnðEÞ ¼
X
β

X
στ

e−EnσVαβðστÞyβðτÞ; ðC4Þ

and

Wαβ
mnðEÞ ¼

X
στ

e−EmσVαβðσ; τÞe−Enτ: ðC5Þ

Minimizing this function with respect to z yields

zðEÞ ¼ W−1ðEÞuðEÞ
−W−1ðEÞϕ⊺½ϕW−1ðEÞϕ⊺�−1ϕW−1ðEÞuðEÞ; ðC6Þ

where indices α and n have been suppressed. One can then
construct a reduced χ2, which is only a function of E and
given by

χ2rðEÞ ¼ χ2ðzðEÞ; EÞ: ðC7Þ

FIG. 18 (color online). HB (re)thermalization of space-time Wilson loops W as a function of the number of sweeps.
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Numerical minimization of χ2rðEÞ proceeds with standard
methods, yielding Emin; the corresponding overlaps zðEminÞ
can be reconstructed from Eq. (C6).

APPENDIX D: THERMALIZATION AND
RETHERMALIZATION OF WILSON LOOPS

(Re)thermalization curves for Wilson loops of various
shapes are provided in Fig. 18 for HB and Fig. 19 for HMC.
As with the Wilson flow quantity t2EðtÞ, we find that the

rethermalization time for the r-II ensemble is significantly
shorter than that of r-I. Furthermore, both rethermalization
times are shorter than their hot and cold counterparts. The
(re)thermalization times for Wilson loops generally appear
to be significantly shorter than that of t2EðtÞ, even for
physically large Wilson loops of size 0.5 fm. This is likely
attributed to the fact that our prolongator preserves all
even size Wilson loops originating at sites n satisfying
χðnÞ ¼ 0.

FIG. 19 (color online). HMC (re)thermalization of space-time Wilson loops W as a function of the number of trajectories.
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