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ABSTRACT

Calibrating the photometric redshifts of 109 galaxies for upcoming weak lensing cosmology experiments is a
major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for
training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining
secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-
organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a
lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey
selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical
distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this
multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic
surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a
spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey.
We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–
redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently
meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis
can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.

Key words: dark energy – dark matter – galaxies: distances and redshifts – large-scale structure of universe –

methods: statistical

1. INTRODUCTION

Upcoming large-scale surveys such as LSST, Euclid, and
WFIRST will measure the three-dimensional cosmological
weak lensing shear field from broadband imaging of billions
of galaxies. Weak lensing is widely considered to be one of the
most promising probes of the growth of dark matter structure,
as it is sensitive to gravitation alone and requires minimal
assumptions about the coupling of dark matter and baryons
(Bartelmann & Schneider 2001; Weinberg et al. 2013). More-
over, weak lensing tomography is sensitive to the dark energy
equation of state through its impact on the growth of structure
with time (Hu & Tegmark 1999). However, it is observation-
ally demanding: in addition to requiring accurately measured
shapes for the weak lensing sample, robust redshift estimates to
the galaxies are needed in order to reconstruct the three-
dimensional matter distribution. Because it is infeasible to
obtain spectroscopic redshifts (spec-zʼs) for the huge numbers

of faint galaxies these studies will detect, photometric redshift
(photo-z) estimates derived from imaging in some number of
broad filters will be required for nearly all galaxies in the weak
lensing samples.
Photo-z estimation has become an indispensable tool in

extragalactic astronomy, as the pace of galaxy detection in
imaging surveys far outstrips the rate at which follow-up
spectroscopy can be performed. While photo-z techniques have
grown in sophistication in recent years, the requirements for
cosmology present novel challenges. In particular, cosmologi-
cal parameters derived from weak lensing are sensitive to
small, systematic errors in the photo-z estimates (Huterer et al.
2006; Ma et al. 2006). Such biases are generally much smaller
than the random scatter in photo-z estimates (Dahlen
et al. 2013), and are of little consequence for galaxy evolution
studies; however, they can easily dominate all other uncertain-
ties in weak lensing experiments (Newman et al. 2015). In
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addition to weak lensing cosmology, accurate and well-
characterized photo-zʼs will be crucial to other cosmological
experiments. For example, baryon acoustic oscillation (BAO)
experiments that rely on redshifts measured from faint near-
infrared grism spectra will often have to resort to photo-zʼs in
order to determine the correct redshift assignment for galaxies
with only a single detected line. Well-characterized photo-z
estimates will be needed to correctly account for any errors thus
introduced.

There are two key requirements placed on the photo-z
estimates for weak lensing cosmology. First, redshift estimates
for individual objects must have sufficient precision to correct
for intrinsic galaxy shape alignments as well as other potential
systematics arising from physically associated galaxies that
may affect the interpretation of the shear signal. While not
trivial, meeting the requirement on the precision of individual
photo-z estimates ( z0.05 1z ( )s < + for Euclid, Laureijs
et al. 2011) should be achievable (Hildebrandt et al. 2010).
The second, more difficult, requirement is that the overall
redshift distributions N(z) of galaxies in ∼10–20 tomographic
bins used for the shear analysis must be known with high
accuracy. Specifically, the mean redshift zá ñ of the N(z)
distribution must be constrained to better than 2 × 10−3(1 +
z) in order to interpret the amplitude of the lensing signal and
achieve acceptable error levels on the cosmological parameter
estimates (Huterer et al. 2006; Amara & Réfrégier 2007;
Laureijs et al. 2011). Small biases in the photo-z estimates, or a
relatively small number of objects with catastrophically
incorrect photo-zʼs, can cause unacceptably large errors in the
estimated N(z) distribution. Photo-z estimates alone are not
sufficient to meet this requirement, and spectroscopic calibra-
tion samples will be needed to ensure low bias in the N(z)
estimates. The significant difficulties associated with this
requirement are summarized by Newman et al. (2015).

The most straightforward approach to constrain N(z) is to
measure it directly by random spectroscopic sampling of
galaxies in each tomographic redshift bin (Abdalla et al. 2008).
The total number of spectra needed to meet the requirement is
then set by the central limit theorem. For upcoming “Stage IV”
cosmology surveys (LSST, Euclid,17 and WFIRST) it is
estimated that direct measurement of N(z) for the tomographic
bins would require total spectroscopic samples of
∼30,000–100,000 galaxies, fully representative in flux, color,
and spatial distribution of the galaxies used to measure the
weak lensing shear field (e.g., Ma & Bernstein 2008, Hearin
et al. 2012). Moreover, the spectroscopic redshifts would need
to have a very high success rate (99.5%), with no
subpopulation of galaxies systematically missed in the redshift
survey. Newman et al. (2015) note that current deep redshift
surveys fail to obtain secure redshifts for ∼30%–60% of the
targeted galaxies; given the depths of the planned dark energy
surveys, this “direct” method of calibrating the redshifts seems
to be unfeasible.

Because of the difficulty of direct spectroscopic calibration,
Newman et al. (2015) argue that the most realistic method of
meeting the requirements on N(z) for the dark energy
experiments may be some form of spatial cross-correlation of
photometric samples with a reference spectroscopic sample,
with the idea that the power in the cross-correlation will be
highest when the samples match in redshift (Newman 2008;

Schmidt et al. 2013; Rahman et al. 2015). This approach shows
significant promise, but is not without uncertainties and
potential systematics. For example, it requires assumptions
regarding the growth of structure and galaxy bias with redshift,
which may be covariant with the cosmological inferences
drawn from the weak lensing analysis itself. Further work may
clarify these issues and show that the technique is indeed viable
for upcoming cosmological surveys. However, it seems safe to
say that this method cannot solely be relied on for the weak
lensing missions, particularly as at least two approaches will be
needed: one to calibrate N(z) for the tomographic bins, and
another to test and validate the calibration.
In light of these arguments, it is clear that targeted

spectroscopic training and calibration samples will have to be
obtained to achieve the accuracy in the zá ñ estimates of
tomographic bins required by the weak lensing missions.
Moreover, careful optimization of these efforts will be required
to make the problem tractable. Here we present a technique,
based on the simple but powerful self-organizing map (SOM)
(Kohonen 1982, 1990), to map the empirical distribution of
galaxies in the multidimensional color space defined by a
photometric survey. Importantly, this technique provides us
with a completely data-driven understanding of what constitu-
tes a representative photometric galaxy sample. We can thereby
evaluate whether a spectroscopic sample used for training and
calibration spans the full photometric parameter space; if it
does not, there will be regions where the photo-z results are
untested and untrained. Machine learning—based photo-z
algorithms, in particular, depend critically on representative
spectroscopic training sets, and their performance will be
degraded in regions of color space without spectroscopic
coverage18 (Collister & Lahav 2004; Hoyle et al. 2015).
We show that the empirical color mapping described here

can be used to optimize the training and calibration effort by
focusing spectroscopic effort on regions of galaxy parameter
space that are currently poorly explored, as well as regions with
a less certain mapping to redshift. Alternatively, we can use the
technique to identify and discard specific regions of color space
for which spectroscopy will prove to be too expensive, or for
which the redshift uncertainty is too large. In effect, the method
lets us systematize our understanding of the mapping from
color to redshift. By doing so, the number of spectroscopic
redshifts needed to calibrate N(z) for the weak lensing
tomographic bins can be minimized. This approach will also
naturally produce a “gold standard” training sample for
machine learning algorithms.
The technique we adopt also provides insight into the nature

of catastrophic photo-z failures by illustrating regions of color
space in which the mapping between color and redshift
becomes degenerate. This is possible because the self-
organized map is topological, with nearby regions representing
similar objects, and widely separated regions representing
dissimilar ones. In addition, template-fitting photo-z codes can
potentially be refined with the map, particularly through the
development of data-based priors and by using the empirical
color mapping to test and refine the galaxy template sets used
for fitting.

17 http://www.euclid-ec.org

18 This dependence on training sample representativeness tends to be obscured
by the photo-z versus spec-z plots most often used to illustrate the quality of
photo-z algorithms, which (of necessity) only show results for the subset of
galaxies with known spectroscopic redshifts. Of course, those are also the
galaxies for which similar training objects exist.
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Here our focus is on the Euclid survey, one of the three Stage
IV dark energy surveys planned for the next decade, the other
two being LSST and WFIRST. Euclid will consist of a 1.2
meter space telescope operating at L2, which will be used to
measure accurate shapes of galaxies out to z ∼ 2 over ∼15,000
deg2 with a single, broad (riz) filter. These observations will
reach an AB magnitude of ;24.5 (10σ). In addition to these
observations, a near-infrared camera on Euclid will obtain Y, J,
and H band photometry to an AB magnitude ;24 (5σ), which,
together with complementary ground-based optical data, will
be used for photo-z determination. The mission will also
constrain cosmological parameters using BAO and redshift
space distortions (RSD), using redshifts obtained with a low-
resolution grism on the near-infrared camera. A more detailed
description of the survey can be found in Laureijs et al. (2011).

For this work, we assume that Euclid will obtain ugrizYJH
photometry for photo-z estimation. We select galaxies from the
COSMOS survey (Scoville et al. 2007) that closely approx-
imate the Euclid weak lensing sample, with photometry in
similar bands and at similar depths as the planned Euclid
survey. While our focus is on Euclid, the method we present is
general and directly applicable to other weak lensing surveys
facing the same calibration problem.

This paper is organized as follows. In Section 2 we give an
overview of the methodology used to map the galaxy
multicolor space. In Section 3 we discuss the galaxy sample
from the COSMOS survey used to approximate the anticipated
Euclid weak lensing sample. In Section 4 we describe the self-
organizing map algorithm and its implementation for this
application. In Section 5 we discuss the map in detail, including
what it reveals about the current extent of spectroscopic
coverage in galaxy multicolor space. In Section 6 we address
the problem of determining the spectroscopic sample needed to
meet the weak lensing requirement, and in Section 7 we
conclude with a discussion.

2. OVERVIEW: QUANTIFYING THE EMPIRICAL
DISTRIBUTION OF GALAXIES IN COLOR SPACE

Galaxies with imaging in a set of N filters will follow some
distribution in the multidimensional space (of dimension N −
1) defined by the unique colors measured by the filters. These
colors together determine the shape of the low-resolution
spectral energy distribution (SED) measured by the filters.
Henceforth, we will call the position a galaxy occupies in color
space simply its color, or C. For example, the Euclid survey is
expected to have eight bands of photometry (ugrizYJH),19 and
therefore a galaxyʼs position in color space is uniquely
determined by seven colors: u g g r J H, , ..., .- - - Galaxy
color is the primary driver of photometric redshift estimates:
template-based methods predict C for different template/
redshift/reddening combinations and assign redshifts to
galaxies based on where the models best fit the observed
photometry, while machine learning methods assume the
existence of a mapping from C to redshift, and attempt to
discover it using spectroscopic training samples.

Our goal here is to empirically map the distribution of
galaxies in the color space defined by the anticipated Euclid
broadband filters. We refer to this distribution as C .( )r Once

we understand how galaxies are distributed in color space,
optimal methods of sampling the distribution with spectroscopy
can be developed to make an informed calibration of the color–
redshift relation.
The general problem of mapping a high-dimensional data

distribution arises in many fields. Because the volume of the
data space grows exponentially with the number of dimensions,
data rapidly become sparse as the dimensionality increases.
This effect—the so-called “curse of dimensionality” (Bell-
man 1957)—makes normal data sorting strategies impractical.
A number of algorithms, collectively referred to as nonlinear
dimensionality reduction (NLDR), have been developed to
address this problem by projecting high-dimensional data onto
a lower-dimensional representation, thus facilitating visualiza-
tion and analysis of relationships that exist in the data.
We adopt the SOM algorithm, described in more detail in

Section 4. As emphasized by Geach (2012), self-organized
mapping is a powerful, empirical method to understand the
multidimensional distributions common in modern astronom-
ical surveys. Two primary motivations for choosing this
technique over others are the relative simplicity of the
algorithm and the highly visual nature of the resulting map,
which facilitates human understanding of the data.

3. APPROXIMATING THE EUCLID WEAK LENSING
SAMPLE WITH COSMOS DATA

We use multiwaveband data from the COSMOS survey
(Capak et al. 2007) to provide a close approximation to the
expected Euclid weak lensing data. Photo-z estimates for the
Euclid sample will rely on three near-infrared filters on the
telescope (YJH), reaching an AB depth of 24 mag (5σ) for point
sources, as well as complementary ground-based imaging in
the optical, which we assume will consist of ugriz imaging with
LSST (in the northern sky the ground-based imaging data may
be restricted to griz, affecting the analysis somewhat but not
changing the overall conclusions).
To provide a close analog to the expected Euclid data, we

use COSMOS u band imaging from CFHT, griz imaging from
Subaru Suprime Cam, and YJH imaging from the UltraVista
survey (McCracken et al. 2012), spanning a 1.44 deg2 patch of
COSMOS with highly uniform depth. We apply a flux cut to
the average flux measured across the Subaru r, i, and z bands to
match the expected depth limit of the single, broad visible filter
Euclid will use for the weak lensing shear measurement. The
resulting “Euclid analog” sample consists of 131,609 objects
from COSMOS.

4. MAPPING GALAXY COLOR SPACE WITH THE SELF-
ORGANIZING MAP

The SOM (Kohonen 1982, 1990) is a neural network model
widely used to map and identify correlations in high-
dimensional data. Its use for some astronomical applications
has been explored previously (see, e.g., Naim et al. 1997; Brett
et al. 2004; Way & Klose 2012; Fustes et al. 2013; Carrasco
Kind & Brunner 2014; Greisel et al. 2015). The algorithm uses
unsupervised, competitive learning of “neurons” to project
high-dimensional data onto a lower-dimensional grid. The
SOM algorithm can be thought of as a type of nonlinear
principal component analysis, and is also similar in some
respects to the k-means clustering algorithm (MacQueen 1967).
In contrast to these and other methods, the SOM preserves the

19 This will be the case in the region overlapping with the LSST survey. We
note that Euclid will also have a broad (riz) filter that will be used for the weak
lensing shape measurements; our assumption here is that it will not add
significant value to the photo-z estimates.
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topology of the high-dimensional data in the low-dimension
representation. Similar objects are thus grouped together on the
self-organized map, and clusters that exist in the high-
dimensional data space are reflected in the lower-dimensional
representation. This feature makes the maps visually under-
standable and thus useful for identifying correlations that exist
in high-dimensional data. More detailed descriptions of the
algorithm and its variants can be found in a number of
references (see, e.g., Vesanto 2002; Carrasco Kind &
Brunner 2014).

The SOM consists of a fixed number of cells arranged on a
grid. The grid can be of arbitrary dimension, although two-
dimensional grids are most common as they are the easiest to
visualize. Each cell in the grid is assigned a weight vector w
having the same number of dimensions as the training data.
This vector can be thought of as pointing to a particular region
of the multidimensional parameter space occupied by the data.
The weight vectors are initialized prior to training, either
randomly or by sampling from the input data. The training of
the map is unsupervised, in the sense that the output variable of
interest (here, redshift) is not considered. Only the input
attributes (galaxy photometry) drive the training. We note that
any measured galaxy property (size, magnitude, shape,
environment, surface brightness, etc.) could be used in the
training. We consider only colors here, as these are the primary
drivers of the photo-z estimates, and the quantities most

physically tied to redshift. The other properties mentioned can
still be used after the map has been created to identify and help
break redshift degeneracies within particular regions of galaxy
color space.
Training proceeds by presenting the map with a random

galaxy from the training sample, which the cells “compete” for.
The cell whose weight vector most closely resembles the
training galaxy is considered the winner, and is called the Best
Matching Unit, or BMU. The BMU as well as cells in its
neighborhood on the map are then modified to more closely
resemble the training galaxy. This pattern is repeated for many
training iterations, over which the responsiveness of the map to
new data gradually decreases, through what is known as the
learning rate function. Additionally, the extent of the
neighborhood around the BMU affected by new training data
shrinks with iteration number as well, through what is known
as the neighborhood function. These effects cause the map to
settle to a stable solution by the end of the training iterations.
To compute the winning cell for a given training object, a

distance metric must be chosen. Most often, the Euclidean
distance between the training object x and the cell weight
vector wk is used. With data of dimension m, this distance is
given by:

x wd d x w, . 1k k k
i

m

i k i
2 2

1
,

2( ) ( ) ( )å= = -
=

Figure 1. The 7-color self-organized map (SOM) generated from ∼131k galaxies from the COSMOS survey, selected to be representative of the anticipated Euclid
weak lensing sample. In the center is the 75 × 150 map itself, which encodes the empirical ugrizYJH spectral energy distributions (SEDs) that appear in the data. The
map is colored here by converting the H, i, and u band photometry of the cells to analogous RGB values, while the brightness is scaled to reflect the average brightness
of galaxies in different regions of color space. On the sides we show examples of 8-band galaxy SEDs represented by particular cells, whose positions in the map are
indicated with arrows. The cell SEDs are shown as black squares. The actual SEDs (shifted to line up in i-band magnitude) of galaxies associated with the cells are
overlaid as green diamonds. Between 9 and 23 separate galaxy SEDs are plotted for each of the cells shown, but they are similar enough that they are hard to
differentiate in this figure. A key feature of the map is that it is topological in the sense that nearby cells represent objects with similar SEDs, as can be seen from the
two example cells shown in the upper left. Note that the axes of the SOM do not correspond to any physical quantity, but merely denote positions of cells within the
map and are shown to ease comparison between figures.
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However, dimensions with intrinsically larger error than others
will be overweighted in this distance metric. To account for
this, we instead use the reduced χ2 distance between the
training object and the cell weight vector. With xis representing
the uncertainty in the ith component of x, this becomes

x wd d
m

x w
,

1
. 2k k k

i

m
i k i

x

2 2

1

,
2

2
i

( )
( )

( )å
s

= =
-

=

The BMU is the cell minimizing the χ2 distance. Once the
BMU has been identified, the weight vectors of cells in the map
are updated with the relation

w w x wt t a t H t t t1 . 3k k b k k, [ ]( ) ( ) ( ) ( ) ( ) ( ) ( )+ = + -

Here t represents the current timestep in the training. The
learning rate function a(t) is a monotonically decreasing
function of the timestep (with a(t) � 1), such that the SOM
becomes progressively less responsive to new training data.
With Niter representing the total number of training iterations,
we adopt the following functional form for a(t):

a t 0.5 . 4t Niter( ) ( )( )=

The term Hb,k(t) is the value of the neighborhood function at
the current timestep for cell k, given that the current BMU is
cell b. This function is encoded as a normalized Gaussian

kernel centered on the BMU:

H t e . 5b k
D t

, b k,
2 2( ) ( )( )= s-

Here Db,k is the Euclidean distance on the map separating the
kth cell and the current BMU. The width of the Gaussian
neighborhood function is set by σ(t) and is given by

t 1 . 6s s
t Niter( )( ) ( )( )s s s=

The starting value, σs, is large enough that the neighborhood
function initially encompasses most of the map. In practice, we
set σs equal to the the size (in pixels) of the smaller dimension
of the rectangular map. The width of the neighborhood function
shrinks by the end of training such that only the BMU and cells
directly adjacent to it are significantly affected by new data.

4.1. Optimizing the Map for the Photo-z Problem

There is significant flexibility in choosing the parameters of
the SOM. Parameters that can be modified include the number
of cells, the topology of the map, the number of training
iterations, and the form and evolution of the learning rate and
neighborhood functions. Perhaps most influential is the number
of cells. The representative power of the map increases with
more cells; however, if too many cells are used the map will
overfit the data, modeling noise that does not reflect the true
data distribution. Moreover, there is a significant computational

Figure 2. Variation of two colors along the self-organizing map: u − g on the left and g − r on the right. In the language of machine learning, these are “features” in
the data that drive the overall structure of the map. The well-known Lyman break is evident for galaxies at 2.5  z  3 in u − g and 3  z  4 in g − r (around x = 50,
y = 90). The regions with red g − r color spreading diagonally across the lower part of the map are a combination of passive galaxies and dusty galaxies at lower
redshift.
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cost to increasing the number of cells. On the other hand, if too
few cells are used, individual cells will be forced to represent
larger volumes of color space, in which the mapping of color to
redshift is less well defined.

We explored a range of alternatives prior to settling on the
map shown throughout this work. A rectangular map was
chosen because this gives any principal component in the data a
preferred dimension along which to align. Our general
guideline in setting the number of cells was that the map
should have sufficient resolution such that the individual cells
map cleanly to redshift using standard photo-z codes. With
11,250 cells, the map bins galaxies into volumes, or “voxels,”
of color space of comparable size as the photometric error on
the data, with the result that variations within each color cell
generally do not result in significant change in photo-z
estimates. As we discuss in Section 6, the true spread in
galaxy redshifts within each color cell is an important quantity
to understand for the calibration of N(z).

4.2. Algorithm Implementation

We implemented the SOM algorithm in C for computational
efficiency. The number of computations required is sizable and
scales with both the total number of cells and the number of
training iterations. Optimizations are certainly possible, and
may be necessary if this algorithm is to be applied to much
larger photometric datasets. We initialized the values of the cell

weight vectors with random numbers drawn from a standard
normal distribution. The number of training iterations used was
2 × 106, as only minimal improvements in the map were
observed for larger numbers of iterations. At each iteration, a
random galaxy was selected (with replacement) from the
training sample to update the map.
We applied the algorithm based on seven galaxy colors:

u − g, g − r, r − i, i − z, z − Y, Y − J, and J − H, which are
analogous to the colors that will be measured by Euclid and
used for photo-z estimation. The errors in the colors are
computed as the quadrature error of the photometric errors in
the individual bands. If a training object has a color that is not
constrained due to bad photometry in one or both of the
relevant bands, we ignore that color in the training iteration.
Only the well-measured colors for that object are used both to
find the BMU and update the corresponding colors of the cell
weight vectors. If a color represents an upper/lower limit, we
penalize the χ2 distance for cells that violate the limit when
computing the BMU, with a penalty that varies depending on
the size of the discrepancy between the limit and the cell color
value.

4.3. Assessing Map Quality

Ideally, the SOM should be highly representative of the data,
in the sense that the SEDs of most galaxies in the sample are
well-approximated by some cell in the map. To assess the
representativeness of the map we calculate what is known as
the average quantization error over the entire training sample of
N objects:

x b
N

1
. 7q

i

N

i i
1

∣∣ ∣∣ ( ) å= -
=

Here bi is the best matching cell for the ith training object.
We find that the average quantization error is 0.2 for the
sample. The quantization error is the average vector distance
between an object and its best-matching cell in the map.20

Therefore, with seven colors used to generate the map, the
average offset of a particular color (e.g., g − r) of a given
galaxy from its corresponding cell in the map is
0.2 7 0.08 mag= . Note that the map provides a straightfor-
ward way of identifying unusual or anomalous sources. Such
objects will be poorly represented by the map due to their rarity
—in effect, they are unable to train their properties into the
SOM. Simply checking whether an object is well represented
by some cell in the map is therefore a way of testing whether it
is “normal,” and may be useful for flagging, for example,
blended objects, contaminated photometry, or truly rare
sources.

5. ANALYZING THE COLOR SPACE MAP

Figure 1 provides an overview of the SOM generated from
COSMOS galaxies, which encodes the 8-band SEDs that
appear in the data with non-negligible frequency. Note that the
final structure of the map is to some extent random and depends
on the initial conditions combined with the order in which
training objects are presented, but the overall topological

Figure 3. SOM colored by the number of galaxies in the overall sample
associating with each color cell. The coloration is effectively our estimate of

C ,( )r or the density of galaxies as a function of position in color space.

20 We do not use the χ2 distance for this test because of the discrete nature of
the cells. Bright objects, or those with smaller photometric errors, will have
artifically higher χ2 separation from their best-matching cell (even if the
photometry matches well), making the metric less appropriate for assessing the
representativeness of the map.
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structure will be similar from run to run; this was verified by
generating and comparing a number of maps.21 Figure 2
illustrates the variation of two colors (u − g and g − r) across
the map, demonstrating how these features help drive the
overall structure. In the following analysis we probe the map by
analyzing the characteristics of the galaxies that associate best
with each cell in color space.

5.1. The Distribution of Galaxies in Color Space, C( )r

In Figure 3 we show the self-organized map colored by the
number of galaxies associating best with each cell. This
coloration is effectively our estimate of C ,( )r the density of
galaxies as a function of position in color space. An important
caveat is that the density estimate derived from the COSMOS
survey data is likely to be affected to some degree by cosmic
variance (and perhaps, to a lesser extent, by shot noise). The
true C( )r can ultimately be constrained firmly with the wide-
area survey data from LSST, Euclid, and WFIRST. However,
the COSMOS-based C( )r should be a close approximation of
what the full surveys will find.

5.2. Photometric Redshift Estimates across the Map

Because the cells in the SOM represent galaxy SEDs that
appear in the data, we can compute photometric redshifts for
them to see how they are distributed in redshift. We used the Le
Phare template fitting code (Arnouts et al. 1999; Ilbert
et al. 2006) to compute cell photo-zʼs. We used the cell weight
vectors (converting the colors to photometric magnitudes
normalized in i-band) as inputs for Le Phare, assigning
realistic error bars to these model SEDs based on the scatter in
the photometry of galaxies associated with each cell. The result
of the photo-z fitting is shown on the left side of Figure 4.
We also estimate redshifts on the map by computing the

median photo-z of the galaxies associated with each cell, using
the 30-band photo-z estimates provided by the COSMOS
survey (Ilbert et al. 2009). These photo-z estimates take
advantage of more photometric information than is contained in
the eight Euclid-like filters used to generate the map. Never-
theless, as can be seen on the right side of Figure 4, the
resulting map is quite smooth, indicating that the eight Euclid
bands capture much of the relevant information for photo-z
estimation contained in the 30-band data.
Redshift probability density functions (PDFs) generated by

the Le Phare template fitting can be used to estimate redshift
uncertainty across the map, letting us identify cells that have
high redshift variance or multiple redshift solutions, as well as
cells with a well-defined mapping to redshift. In Figure 5 we

Figure 4. Photo-z estimates across the map, computed in two ways. Left: photo-zʼs computed directly for each cell by applying the Le Phare template fitting code to
the 8-band photometry represented by the cells. Right: photometric redshifts for the cells computed as the median of the 30-band COSMOS photo-zʼs of the objects
associated with each cell.

21 See Appendix B for examples of alternate maps made with different initial
conditions and training orders.
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show the photo-z dispersion results from the Le Phare code.
The dispersion is the modeled uncertainty in the redshift
assigned to each cell, based on the spread in the cellʼs redshift
PDF. Figure 5 shows that there are well-defined regions in
which the modeled uncertainties are much higher, and that
these regions tend to cluster around sharp boundaries between
low- and high-redshift galaxies. Note that these boundaries are
inherent to the data and indicate regions of significant redshift
degeneracy. A possible improvement in this analysis is to more
rigorously estimate the photometric uncertainty for each cell
using a metric for the volume of color space it represents; we
defer this more detailed analysis to future work.

5.3. Current Spectroscopic Coverage in COSMOS

One of the most important results of the mapping is that it
lets us directly test the representativeness of existing spectro-
scopic coverage. To do so, we used the master spectroscopic
catalog from the COSMOS collaboration (M. Salvato et al.
2016, in preparation). The catalog includes redshifts from VLT
VIMOS (zCOSMOS, Lilly et al. 2007; VUDS, Le Fèvre
et al. 2015), Keck Multi-object Spectrograph for Infrared
Exploration (MOSFIRE) (N. Scoville et al., 2015 in prepara-
tion; MOSDEF, Kriek et al. 2014), Keck Deep Extragalactic
Imaging Multi-object Spectrograph (DEIMOS) (Kartaltepe
et al. 2010, G. Hasinger et al. 2015, in preparation), Magellan
IMACS (Trump et al. 2007), Gemini-S (Balogh et al. 2014),

Subaru FMOS (Silverman et al. 2014), as well as a non-
negligible fraction of sources provided by a number of smaller
programs. It is important to note that the spectroscopic
coverage of the COSMOS field is not representative of the
typical coverage for surveys. Multiple instruments with
different wavelength coverages and resolutions were employed.
Moreover, the spectroscopic programs targeted different types
of sources: from AGN to flux-limited samples, from group and
cluster members to high-redshift candidates, etc., providing an
exceptional coverage in parameter space.
In the left panel of Figure 6, we show the map colored by the

median spectroscopic redshift of galaxies associated with each
cell, using only galaxies with the highest confidence redshift
assignments (corresponding to ∼100% certainty). The gray
regions on the map correspond to cells of color space for which
no galaxies have such high confidence spectrosopic redshifts;
64% of cells fall in this category. In the right panel of Figure 6
we show the same plot, but using all confidence 95%
redshifts in the master catalog. Significantly more of the galaxy
color space is covered with spectroscopy when the requirement
on the quality of the redshifts is relaxed, with only 51% of
color cells remaining gray. However, for calibration purposes
very high confidence redshifts will be needed, so that the right-
hand panel may be overly optimistic. As can be seen in both
panels, large and often continuous regions of galaxy color
space remain unexplored with spectroscopy.
It should be noted that Figure 6 is entirely data-driven,

demonstrating the direct association of observed SED with
observed redshift. An interesting possibility suggested by this
figure is that the color–redshift relation may be smoother than
expected from photo-z variance estimates from template fitting
(e.g., Figure 5). High intrinsic variance in the color–redshift
mapping should result in large cell-to-cell variation in median
spec-z, whereas the actual distribution appears to be rather
smooth overall.

5.4. Magnitude Variation across Color Space

Not surprisingly, the median galaxy magnitude varies
strongly with location in color space, as illustrated in Figure 7.
This variation largely determines the regions of color space that
have been explored with spectroscopy, with intrinsically fainter
galaxies less likely to have been observed. In fact, as we will
discuss further in Section 6.6, the majority of galaxies in
unexplored regions of color space are faint, star-forming
galaxies at z ∼ 0.2–1.5, which are simply too “uninteresting”
(from a galaxy evolution standpoint) to have been targeted in
current spectroscopic surveys. Such sources will, however, be
critically important for weak lensing cosmology.

6. TOWARD OPTIMAL SPECTROSCOPIC SAMPLING
STRATEGIES FOR PHOTO-z CALIBRATION

We have demonstrated that the SOM, when applied to a
large photometric dataset, efficiently characterizes the distribu-
tion of galaxies in the parameter space relevant for photo-z
estimation. We now consider the problem of determining the
spectroscopic sample needed to calibrate the zá ñ of the
tomographic redshift bins to the required level for weak
lensing cosmology. We show that allocating spectroscopic
efforts using the color space mapping can minimize the
spectroscopy needed to reach the requirement on the calibration
of N(z).

Figure 5. Dispersion in the photo-z computed with the Le Phare template
fitting code as a function of color cell. As can be seen, high dispersion regions
predominantly fall in localized areas of color space near the boundary
separating high and low redshift galaxies.
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6.1. Estimating the Spectroscopic Sample Needed for
Calibration

Obtaining spectroscopic redshifts over the full color space of
galaxies is obviously beneficial, but the question arises:
precisely how many spectra are needed in different regions of
color space in order to meet the dark energy requirement? Here
we provide a framework for understanding this question in
terms of the color space mapping.

First we note that each color cell has some subset of galaxies
that best associate with it; let the total number of galaxies
associating with the ith cell be ni. We refer to the true redshift
probability distribution of these galaxies as Pi(z). For the sake
of this argument we assume that a tomographic redshift bin for
weak lensing will be constructed by selecting all galaxies
associating with some subset of the cells in the SOM. Let the
total number of cells used in that tomographic bin be c. Then
the true N(z) distribution for galaxies in the resulting
tomographic redshift bin is

N z n P z . 8
i
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i i
1

( ) ( ) ( )å=
=

The mean of the N(z) distribution is given by
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Equation (10) is the straightforward result that the mean
redshift of the full N(z) distribution is proportional to the sum
of the mean redshifts of each color cell, weighted by the
number of galaxies per cell. The uncertainty in zá ñ depends on
the uncertainty of the mean redshift of each cell, and is
expressed as
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Equation (11) shows quantitatively what is intuitively clear,
namely that the uncertainty in zá ñ is influenced more strongly
by cells with both high uncertainty in their mean redshift and a
significant number of galaxies associating with them. This
indicates that the largest gain can be realized by sampling more
heavily in denser regions of galaxy color space, as well as those
regions with higher redshift uncertainty. Conversely, cells with

Figure 6. Left: the median spectroscopic redshift of galaxies associating with each SOM cell, using only very high confidence (∼100%) redshifts from the COSMOS
master spectroscopic catalog (M. Salvato et al. 2015, in preparation). The redshifts come from a variety of surveys that have targeted the COSMOS field; see the text
for details. Gray regions correspond to parts of galaxy color space for which no high-confidence spectroscopic redshifts currently exist. These regions will be of
interest for training and calibration campaigns. Right: the same figure, but including all redshifts above 95% confidence from the COSMOS spectroscopic catalog.
Clearly, more of the color space is filled in when the quality requirement is relaxed, but nevertheless large regions of parameter space remain unexplored.
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very high redshift dispersion could simply be excluded from
the weak lensing sample (although caution would be needed to
ensure that no systematic errors are introduced by doing so).
If we assume that the c color cells have roughly equal

numbers of galaxies and that zi
s is roughly constant across

cells, then Equation (11) becomes

z c . 12zi ( )sDá ñ =

With z0.05 1 ,zi
( )s ~ + á ñ we find ∼600 color cells with this

level of uncertainty would be needed to reach the Euclid
calibration requirement for the redshift bin. With one spectrum
per cell required to reach this level of uncertainty in ,zi

s this
estimate of the number of spectra needed is in rough agreement
with that of Bordoloi et al. (2010), and much lower than
estimates for direct calibration through random sampling. Note
that the mean redshifts ziá ñ for each color cell used in
Equation (10) should be based on spectroscopic redshifts, to
ensure that the estimates are not systematically biased. The
error in a cellʼs mean redshift estimate, ,zi

s will depend on the
dispersion in the Pi(z) distribution for the cell, and will scale
inversely with the square root of the number of spectra obtained
to estimate it.
The preceding analysis treats the photo-z calibration as a

stratified sampling problem, in which the overall statistics of a
population are inferred through targeted sampling from
relatively homogeneous subpopulations. The gain in statistical
precision from using Equation (10) to estimate zá ñ can be
attributed to the systematic way in which the full color space is
sampled, relative to blind direct sampling. However, stratified
sampling will only outperform random sampling in the case
that the subpopulations being sampled do in fact have lower
dispersion than the overall distribution—i.e., in the case that
the Pi(z) distributions for the color cells have lower redshift
dispersion than the N(z) distribution of all the galaxies in a
tomographic bin.

6.2. Simulating Different Sampling Strategies

Now we attempt to more realistically estimate the spectro-
scopic coverage needed to achieve the requirement in our
knowledge of z .á ñ To begin, we assume that the cell redshift
PDFs from Le Phare are reasonably accurate, and can be taken
to represent the true Pi(z) distributions for galaxies in each
color cell. (This assumption is, of course, far from certain, and
simply serves as a first approximation.) With the known
occupation density of cells of the map (Figure 3), we can then
use Equation (8) to generate realistic N(z) distributions for
different tomographic bins. For this illustration, we break the
map up into photo-z-derived tomographic bins of width Δ
z = 0.2 over 0 < z < 2 (although Euclid will most likely use
somewhat different bins in practice). An example of one of the
N(z) distributions modeled in this way is shown in Figure 8.
The uncertainty in the estimated zá ñ of these N(z) distribu-

tions can then be tested for different spectroscopic sampling
strategies through Monte Carlo simulations, in which spectro-
scopy is simulated by randomly drawing from the Pi(z)
distributions. (Alternatively, given our knowledge of the
individual zi

s uncertainties, Equation (11) can be used
directly. In fact, the results were checked in both ways and
found to be in agreement).
The results of three possible sampling strategies are given in

Table 1. The simplest strategy tested (“Strategy 1”) is to obtain

Figure 7. Map colored by the median i-band magnitude (AB) of galaxies
associating with each cell. The strong variation of magnitude with color is not
unexpected, and largely explains the absence of spectra in particular regions of
galaxy color space.

Figure 8. Modeled N(z) distribution for the 0.2–0.4 redshift bin. The N(z)
distribution is constructed using Equation (8), treating the Pi(z) functions
estimated for each cell from Le Phare as truth, and with ni values from
Figure 3. In addition, two random cell PDFs that contributed to the overall N(z)
of the tomographic bin are shown, one (cell #4863) with a relatively narrowly-
peaked distribution and the other (cell #8822) with more redshift uncertainty.
We ran Monte Carlo simulations of spectroscopically sampling the N(z)
distributions in various ways to estimate the uncertainty in z ;á ñ see Table 1. The
inset plot shows the distribution of errors in the estimated zá ñ over 1000 Monte
Carlo trials for the simple strategy of obtaining one spectrum per color cell and
using Equation (10) to estimate z .á ñ The uncertainty in the mean is the standard
deviation of this distribution, yielding z1z ( )s + á ñ = 0.0028.
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Table 1
Simulated Uncertainty in zá ñ for Representative Redshift Bins for Different Sampling Strategies

Strategy 1a Strategy 2b Strategy 3c

Redshift Bin #Spectra z1z ( )s + á ñ #Spectra % Sample Lostd z1z ( )s + á ñ #Spectra z1z ( )s + á ñ

0.0–0.2 659 0.0034 627 4.2 0.0024 723 0.0028
0.2–0.4 1383 0.0028 1314 4.6 0.0015 1521 0.0020
0.4–0.6 2226 0.0014 2115 3.9 0.0007 2448 0.0010
0.6–0.8 2027 0.0018 1926 4.3 0.0005 2229 0.0012
0.8–1.0 1357 0.0021 1290 4.4 0.0009 1491 0.0013
1.0–1.2 1705 0.0011 1620 4.6 0.0005 1875 0.0008
1.2–1.4 559 0.0029 532 4.4 0.0015 613 0.0021
1.4–1.6 391 0.0044 372 3.3 0.0021 429 0.0031
1.6–1.8 268 0.0064 255 2.7 0.0050 294 0.0055
1.8–2.0 164 0.0093 156 2.1 0.0085 180 0.0088

Total #spectra: 10739 10207 11793

Notes.
a Obtaining one spectrum per color cell to estimate z ,iá ñ with zá ñ computed using Equation (10).
b Again obtaining one spectrum per color cell to estimate z ,iá ñ but rejecting the 5% of cells with the highest redshift uncertainty.
c Obtaining three spectra per color cell for the 5% of cells with the highest redshift uncertainty, one spectrum per cell for the other 95%.
d The fraction of galaxies lost from the weak lensing sample for that tomographic bin due to excluding 5% of the most uncertain color cells.

Figure 9. Left: the inverse of the right panel of Figure 6, illustrating the distribution and photometric redshifts of color cells currently containing no galaxies with
confidence >95% redshifts. Right, top: magnitude distribution of cells unsampled by spectroscopy, where the cell magnitude is defined as the median i-band
magnitude (AB) of galaxies associating with the cell. Right, bottom: photo-z distribution of unsampled cells, computed with Le Phare on the 8-band data
representative of the Euclid photometry. The majority of the color space regions currently unsampled by spectroscopy correspond to faint galaxies (i band 23 24.5‐ –~
AB) at z 0.2 1.5.–~
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one spectrum per color cell in order to estimate the cell mean
redshifts. Equation (10) is then used to compute the overall
mean of the tomographic bin. We expect to meet the Euclid
requirement, z z0.002 1 ,( )Dá ñ + á ñ for 3/10 bins (and come
close in the others) with this approach, which would require
∼11k spectra in total.

The second strategy tested is similar to the first, in that one
spectrum per cell is obtained. However, galaxies associated
with the 5% of the cells in each bin with the highest redshift
uncertainty are rejected from the weak lensing sample, and
these cells are ignored in the sampling. This significantly
reduces the uncertainty in the zá ñ estimates, with 6/10 bins
meeting the requirement; moreover, it reduces the total number
of spectra needed by 5%. However, it comes at the cost of
reducing the number of galaxies in the weak lensing sample.

The third strategy is to sample the 5% of the cells with the
highest redshift uncertainty with three spectra each in order to
estimate their mean redshifts with greater accuracy, again
obtaining one spectrum for the other 95% of the cells. This
strategy again lowers the uncertainty in the zá ñ estimates
substantially, but at the cost of increased spectroscopic effort,
requiring ∼12k spectra in total. The additional spectra needed
may also prove to be the more difficult ones to obtain, so the
effort needed cannot be assumed to scale linearly with the
number of spectra.

These examples are simply meant to be illustrative of the
possible strategies that can be adopted for the spectroscopic
calibration. More refined strategies are possible—for example,
an optimal allocation of spectroscopic effort could be devised
that scales the number of spectra in a given region of color
space proportionately to the redshift uncertainty in that region,
while rejecting limited regions of color space that are both
highly uncertain and difficult for spectroscopy. Additional
spectroscopy may need to be allocated to the higher redshift
bins, for which there tend to be fewer cells overall as well as
higher dispersion within cells. Tomographic bins could also be
intentionally generated to minimize the uncertainty in z .á ñ The
simpler examples shown here do illustrate that, if we believe
the cell Pi(z) estimates from template fitting, the Euclid
calibration requirement z z0.002 1( )Dá ñ + á ñ is achievable
with ∼10–15k spectra in total (roughly half of which already
exist).

6.2.1. Is Filling the Map with Spectroscopy Necessary?

The number of spectra needed derived above assumes that at
least one spectrum per SOM color cell is necessary to estimate
the ziá ñ for that cell. However, if a particular region of color
space is very well understood and maps smoothly to redshift,
sparser spectroscopic sampling in that region together with
interpolation across cells might be sufficient. Equivalently,
groups of neighboring cells with low redshift uncertainty that
map to roughly the same redshift could potentially be merged
using a secondary clustering procedure, thus lowering the
overall number of cells and the number of spectra required.
These considerations suggest that, while the exact number of
spectra required to meet the calibration requirement is
uncertain, the results presented above are likely to represent
upper limits.

6.3. Estimating the True Uncertainty in the Color–Redshift
Mapping

The analysis above highlights the important role played by
the true uncertainty in the mapping from color to redshift for
some number of broadband filters. A single spectroscopic
redshift gives us an estimate of a cellʼs mean redshift with an
uncertainty that depends on the true dispersion in Pi(z) for the
cell. Unfortunately, we cannot know this distribution precisely
without heavily sampling the cell with spectroscopy, which is
impractical (we can, however, model it with different photo-z
codes).
Given the importance of the uncertainty in the mapping of

color to redshift in different parts of color space, strategies to
constrain this uncertainty efficiently should be considered. One
possibility is that a limited amount of ancillary photometry can
effectively identify the redshift variation within cells. The
reason this could work is that objects with very different
redshifts but similar Euclid colors are likely to be distinguish-
able in other bands (e.g., IR or FUV). Moreover, well-defined
and distinct magnitude distributions for objects in the same
region of color space could indicate and help break a color–
redshift degeneracy.
Another interesting possibility is that the uncertainty in Pi(z)

in different parts of color space can be constrained from the
map itself, as it is filled in with spectroscopy. This is because
the cell-to-cell redshifts would be expected to show high
variation in parts of color space where the relation has high
intrinsic variation, and vary more smoothly in regions where
the relation is well-defined. We defer a detailed analysis of this
possibility to future work.

6.4. Effect of Photometric Error on Localization in Color
Space

Photo-z uncertainty is due both to the inherent uncertainty in
the mapping from some number of broadband colors to
redshift, as well as to the uncertainty in the colors themselves
due to photometric error. It is well-known that photometric
redshift performance degrades rapidly at low signal-to-noise for
the latter reason.
Euclid and other dark energy surveys will also observe deep

calibration fields, in which the survey depth is ∼2 mag deeper
than the main survey. These will preferentially be the fields
with spectroscopic redshifts used for training and calibration.
Because of the photometric depth, the photometric error will be
negligible in these fields, and the uncertainty in mapping color
to redshift will be due to inherent uncertainty in the relation.
Even if the relation between color and redshift is mapped as

fully as possible in the deep fields, photometric error in the
shallower full survey will introduce uncertainties by allowing
galaxies to scatter from one part of color space to another. The
errors thus introduced to the tomographic redshift bins can be
well characterized using the multiple observations of the deep
fields, and folded into the estimates of .zi

s The ultimate effect
on the N(z) estimates will depend on the S/N cut used for the
weak lensing sample.

6.5. Cosmic Variance

One of the primary difficulties with direct measurement of
the N(z) distribution for tomographic redshift bins is the need
for multiple independent sightlines in order to avoid cosmic
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variance-induced bias in the N(z) estimates. Systematically
measuring the color–redshift relation as described here,
however, largely sidesteps the problem posed by cosmic
variance. This is because the true C( )r distribution can be
inferred from the full survey (which will be unaffected by
cosmic variance or shot noise), while the calibration of CP z( ∣ )
can be performed on data from a small number of fields, as
long as galaxies in those fields span the overall galaxy color
space sufficiently.

6.6. Galaxies in Under-sampled Regions of Color Space

From the preceding analysis, a reasonable step toward
calibration of the photo-zʼs for cosmology is to target the
regions of multicolor space currently lacking spectroscopy (the
gray regions in Figure 6). It is therefore important to
understand the nature of the galaxies in these regions, in order
to predict the spectroscopic effort needed.

Of the 11,250 cells in the SOM presented here, roughly half
currently have no objects with high-confidence spectroscopic
redshifts. The distribution of these cells on the map, as well as
their photometric redshift estimates, are displayed on the left
side of Figure 9. The right side of Figure 9 shows the overall
magnitude and photometric redshift distribution of the
unsampled cells of color space. Most unsampled cells represent
galaxies fainter than i = 23 (AB) at redshifts z ∼ 0.2–1.5, and
∼83% of these are classified as star-forming by template fitting.
These magnitude, redshift, and galaxy type estimates directly
inform our prediction of the spectroscopic effort that will be
required to calibrate the unsampled regions of galaxy color
space.

Generally speaking, these galaxies have not been targeted in
existing spectroscopic surveys because they are faint and not
considered critical for galaxy evolution studies. However, they
are abundant and thus important for weak lensing cosmology.
In Appendix A we give a detailed estimate of the observing
time that would be needed to fill in the empty parts of color
space with a fiducial survey with Keck, making use of the Low
Resolution Imaging Spectrograph (LRIS), DEIMOS, and
MOSFIRE. We find that ∼40 nights would be required if we
reject the 1% most difficult cells—a large time allocation, but
not unprecedented in comparison with other large spectro-
scopic surveys. This is significantly less than the ∼100 nights
needed to obtain a truly representative sample without prior
knowledge of the color distribution (Newman et al. 2015). For
both LSST and WFIRST the calibration sample required is
likely to be significantly larger, due to the greater photometric
depths of these surveys in comparison with Euclid. Therefore,
methods to improve the sampling as proposed here will be even
more important to make the problem tractable for those
surveys.

7. DISCUSSION

Statistically well-understood photometric redshift estimates
for billions of galaxies will be critical to the success of
upcoming Stage IV dark energy surveys. We have demon-
strated that self-organized mapping of the multidimensional
color distribution of galaxies in a broadband survey such as
Euclid has significant benefits for redshift calibration. Impor-
tantly, this technique lets us identify regions of the photometric

parameter space in which the density of galaxies C( )r is non-
negligible, but spectroscopic redshifts do not currently exist.
These unexplored regions will be of primary interest for
spectroscopic training and calibration efforts.
Applying our SOM-based analysis to the COSMOS field, we

show that the regions of galaxy parameter space currently
lacking spectroscopic coverage generally correspond to faint (i-
band magnitude (AB)  23), star-forming galaxies at z < 2.
We estimated the spectroscopy required to fill the color space
map with one spectrum per cell (which would come close to or
achieve the required precision for calibration) and found that a
targeted, ∼40 night campaign with Keck (making use of LRIS,
DEIMOS and MOSFIRE) would be sufficient (Appendix A). It
should be noted that this analysis is specific to the Euclid
survey. The calibration needs of both LSST and WFIRST are
likely to be greater, due to the deeper photometry that will be
obtained by those surveys.
We demonstrated that systematically sampling the color

space occupied by galaxies with spectroscopy can efficiently
constrain the N(z) distribution of galaxies in tomographic bins.
The precise number of spectra needed to meet the bias
requirement in zá ñ for cosmology depends sensitively on the
uncertainty in the color–redshift mapping. Template-based
estimates suggest that this uncertainty is rather high in some
regions of Euclid-like color space. However, the smoothness of
the spectroscopic redshift distribution on the map suggests that
the template-based uncertainties may be overestimated, which
would reduce the total number of spectra needed for
calibration.
Assuming that the uncertainties in CP z( ∣ ) from template

fitting are accurate, we demonstrate that the Euclid requirement
on zDá ñ should be achievable with ∼10–15k total spectra,
about half of which already exist from various spectroscopic
surveys that have targeted the COSMOS field. Understanding
the true uncertainty in CP z( ∣ ) will likely prove critical to
constraining the uncertainty in zá ñ for the tomographic bins, and
we suggest that developing efficient ways of constraining this
uncertainty should be prioritized.
The topological nature of the SOM technique suggests other

possible uses. For example, a potentially very useful aspect of
the SOM is that it lets us quantify the “normality” of an object
by how well-represented it is by some cell in the map.
Rare objects, such as AGNs, blended sources, or objects
with otherwise contaminated photometry could possibly be
identified in this way. We also note that the mapping, by
empirically constraining the galaxy colors that appear in the
data, can be used both to generate consistent priors for template
fitting codes as well as test the representativeness of galaxy
template sets. These applications will be explored in
future work.
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APPENDIX A
ESTIMATING THE OBSERVING TIME REQUIRED FOR

THE EUCLID CALIBRATION

Given the <0.2% accuracy in zá ñ required for the Euclid
tomographic bins, and following the analysis presented above,
a nearly optimal approach would be to obtain one spectrum per
SOM cell, while rejecting ∼1% of the cells requiring the
longest spectroscopic observations. Taking existing spectro-
scopy into account, a total of ∼5k new spectroscopic redshifts
would be needed. We estimate that these spectra could be
obtained in ∼40 nights with Keck, as outlined below.

To quantify the required exposure time, we constructed a
fiducial survey on the Keck telescope with the LRIS (Oke
et al. 1995), the DEIMOS (Faber et al. 2003), and the
MOSFIRE (McLean et al. 2012) instruments. This telescope/
instrument combination was chosen because the full redshift
range of the calibration sample can be optimally probed with
these instruments, and their performance in obtaining redshifts
for i ∼ 24.5 galaxies has been demonstrated in numerous
publications (e.g., Steidel et al. 2004; Newman et al. 2013;
Kriek et al. 2014). For LRIS we follow Steidel et al. (2004) and
assume the 300 groove mm−1 grism blazed at 5000Å on the
blue side and the 600 groove mm−1 grating blazed at 10,000Å
on the red side with the D560 dichroic. With DEIMOS the 600
grove mm−1 grating tilted to 7000Å was assumed. MOSFIRE
was assumed to be in its default configuration. Sensitivities
were estimated using the official exposure time calculators
(ETCs) provided by Keck by scaling from a 24th magnitude
flat spectrum object. We assume 1″ seeing, a 1″ wide slit, an
airmass of 1.3, and we include appropriate slit losses. For all
instruments we scaled the SNR to a binning of R ∼ 1500, the
minimum required resolution for calibration redshifts. The
assumed SNRs in a one hour exposure at 24th magnitude (AB)
are given in Table 2.

We assume that the galaxies in the cells needing spectro-
scopy have the redshifts, galaxy spectral types, and reddenings
derived from template fitting with Le Phare. The modeled
galaxy spectral types, redshifts, and observed magnitudes were
used to determine the required SNR and the instrument such

that a >99% reliable redshift can be obtained. For star-forming
galaxies at z < 2.7 we require SNR = 2 on the continuum
because bright rest-frame optical emission lines will be used to
determine the redshift. For star-forming galaxies at z >= 2.7
we require SNR = 3 on the continuum to clearly detect the
Lyman break and the rest frame ultraviolet (UV) absorption
features with LRIS or DEIMOS (e.g., Steidel et al. 2003). For
galaxies classified as passive, we require SNR = 5 on the
continuum (e.g., Kriek et al. 2009; Onodera et al. 2012), while
objects intermediate between passive and star-forming were
allowed to linearly scale between an SNR of 5 and 2 with an
increasingly star-forming spectral template, because the
spectral feature strength increases with star formation rate.
The magnitude measured in the band closest to the most

prominent spectral feature was assumed for the SNR calcula-
tion, and the instrument with the highest sensitivity at that
feature was assumed. For passive galaxies it was assumed that
the 4000Å break must be targeted at z < 2.3 and the 1216Å
Lyman forest break at higher redshifts, with DEIMOS used at
z < 1.3, LRIS at 1.3 < z < 1.4, MOSFIRE at 1.4 < z < 2.3,
LRIS at 2.3 < z < 3.5, and DEIMOS at z > 3.5. For other
galaxies, the strongest of Hα, Hβ, O[III], and O[II] was targeted
at z < 2.7, with DEIMOS at z < 1.5 and MOSFIRE at
1.5 < z < 2.7. The 1216Å Lyman forest break was targeted at
higher redshifts, with LRIS at 2.7 < z < 3.5 and DEIMOS
at z > 3.5.
Objects were then grouped into masks by instrument and

exposure time, assuming a multiplexing of 70 for DEIMOS and
20 for LRIS and MOSFIRE, making the assumption that deep
observations could be obtained for rare faint objects by
observing them in multiple masks. Assuming nights are 10 h
long, overheads are 10%, 20% of the objects need to be
observed by more than one instrument to confirm the redshift,
and 30% are losses due to weather, we obtain the estimate of
required observing time given in Table 2.
An exploratory program in early 2015 used samples from

poorly sampled regions of color space as fillers on 2–4 hr Keck
DEIMOS slit masks, finding that >98% of sources were readily
identified from strong [O II], [O III], and/or Hα emission, while
the non-detected sources had photometric redshifts for which
no line detection was expected by DEIMOS.
We note that an additional ∼12 nights would be required to

get to 99.8% completeness in color cells, and ∼49 (for a total
of ∼100) more nights to reach 99.9% completeness. This
confirms the difficulty in obtaining truly complete samples
noted by previous work, as well as the importance of
systematically rejecting sources (Newman et al. 2015).

APPENDIX B
ALTERNATE SOM EXAMPLES

Figure 10 shows two alternate maps generated with the same
COSMOS data, but with different starting conditions and
training orders. Note that the overall topological features are
the same. The representativeness of these maps (in the sense
described in Section 4.3) is essentially identical and the map
shown throughout the paper. However, the positions and
orientations of different photometric clusters are random.

Table 2
Assumed Continuum Sensitivity per R ∼ 1500 Resolution Element for Selected
Keck Instruments on a Flat-spectrum 24th Magnitude (AB) Object in a One-

hour Exposure

Instrument Band SNR Number of Nights

LRIS I 1.5 7
DEIMOS I 2.0 19
MOSFIRE Y 0.7 4
MOSFIRE J 0.6 1
MOSFIRE H 0.5 7
MOSFIRE K 0.4 1

Note. In the last column we give the estimated number of nights required for
each instrument in a fiducial survey designed to complete the Euclid color
space calibration.
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