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SUMMARY

The nuclear factor kB (NF-kB) subunits RelA, RelB,
cRel, p50, and p52 are each critical for B cell devel-
opment and function. To systematically characterize
their responses to canonical and noncanonical
NF-kB pathway activity, we performed chromatin
immunoprecipitation followed by high-throughput
DNA sequencing (ChIP-seq) analysis in lymphoblas-
toid B cell lines (LCLs). We found a complex NF-kB-
binding landscape, which did not readily reflect the
two NF-kB pathway paradigms. Instead, 10 sub-
unit-binding patterns were observed at promoters
and 11 at enhancers. Nearly one-third of NF-kB-
binding sites lacked kB motifs and were instead
enriched for alternative motifs. The oncogenic fork-
head box protein FOXM1 co-occupied nearly half
of NF-kB-binding sites and was identified in protein
complexes with NF-kB on DNA. FOXM1 knockdown
decreased NF-kB target gene expression and ulti-
mately induced apoptosis, highlighting FOXM1 as
a synthetic lethal target in B cell malignancy. These
studies provide a resource for understanding
mechanisms that underlie NF-kB nuclear activity
and highlight opportunities for selective NF-kB
blockade.
INTRODUCTION

The nuclear factor kB (NF-kB) is a family of dimeric transcription

factors (TFs) that mediate differentiation, development, prolifer-

ation, and survival (Hayden and Ghosh, 2012). NF-kB is a prin-

cipal component of the body’s defense against infection and is
Cell Re
critically important for most immune and inflammatory re-

sponses. Yet, NF-kB hyperactivation contributes to inflamma-

tory disorders and cancer, in particular B cell malignancies

(Ben-Neriah and Karin, 2011; Lim et al., 2012). Despite progress

in understanding cytosolic pathways that activate NF-kB TFs,

comparatively little is known about the mechanisms that govern

nuclear NF-kB function (Natoli, 2009; Smale, 2011; Wan and Le-

nardo, 2010).

Microbes nonetheless use NF-kB to enable their replication

and spread. Oncogenic viruses encode factors that constitu-

tively activate NF-kB, including Epstein-Barr virus (EBV), Ka-

posi’s sarcoma-associated herpesvirus, human T cell leuke-

mia virus, hepatitis B, and hepatitis C (Rahman and

McFadden, 2011). Constitutive NF-kB activation also contrib-

utes to the pathogenesis of numerous human cancers, in

particular B cell lymphomas (Ben-Neriah and Karin, 2011;

Lim et al., 2012). However, the genome-wide effects of consti-

tutive NF-kB activation on NF-kB TF binding have not been

defined.

Mammalian genomes encode five NF-kB subunits: p105/p50,

p100/p52, RelA (p65), RelB, and cRel. Each has an N-terminal

Rel homology domain that mediates sequence-specific binding

to DNA kB sites (Hayden and Ghosh, 2012). RelA, RelB, and

cRel also have C-terminal transcription activation domains.

NF-kB dimers can further induce or suppress target gene

expression through cofactor recruitment. Inhibitor of NF-kB

(IkB) proteins retain NF-kB dimers in the cytosol, with the

exception of p50 homodimers, which are constitutively nuclear

(Hayden and Ghosh, 2012).

Two NF-kB pathways trigger NF-kB activity by inducing IkB

degradation and NF-kB nuclear translocation (Bonizzi and Karin,

2004). The canonical pathway responds to proinflammatory

signals and is essential for rapid immune responses. The

canonical pathway triggers IkBa degradation, which enables

RelA and cRel-containing complexes to translocate to the nu-

cleus, including RelA:p50, cRel:p50, RelA:RelA, and cRel:cRel
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dimers. The noncanonical NF-kB pathway promotes secondary

lymphoid organogenesis, B cell development, and survival (Sun,

2011). The noncanonical pathway triggers processing of p100

to p52, which enables the p52-containing complexes RelB:p52,

p52:p52, and p50:p52 to enter the nucleus.

When both pathways are active in B cells, up to 14 distinct NF-

kB dimers form, including canonical/noncanonical hybrids such

as RelA:p52 (Shih et al., 2011). Murine genetic studies indicate

that each NF-kB subunit, and perhaps each dimer, has unique

functions in B cell development and activation (Gerondakis

et al., 2006). The generation and maintenance of mature B cells

require both canonical and noncanonical NF-kBpathway activity

(Kaileh and Sen, 2012). CD40-mediated activation of both path-

ways is required for B cell responses such as homotypic aggre-

gation, which requires both cRel and p52 (Zarnegar et al., 2004).

Yet, the extent of intrinsic NF-kB dimer-binding preference for its

target sites in vivo and the mechanisms that establish dimer-

specific binding are not understood well. Likewise, little is known

about the extent to which target genes are regulated indepen-

dently, or jointly, by the canonical and noncanonical pathways.

kB sites in mammalian genomes vary widely from the con-

sensus sequence 50-GGGRNYYYCC-30 (where R is a purine, Y

is a pyrimidine, and N is any nucleotide). Moreover, a single

base pair difference in a kB site can induce distinct NF-kB dimer

conformations and affect coactivator requirements (Leung et al.,

2004). The extent to which NF-kB family members differentially

recruit TFs to kB sites remains to be examined in vivo. Likewise,

NF-kB recruitment by other sequence-specific TFs to non-kB

DNA sites has not been extensively investigated.

To date, genome-scale analyses of NF-kB binding by chro-

matin immunoprecipitation (ChIP)-based methods have gener-

ally been limited to RelA (Heinz et al., 2013; Jin et al., 2013;

Kasowski et al., 2010; Lim et al., 2007; Martone et al., 2003).

Where multiple subunits were studied, cells were stimulated by

Toll-like receptor agonists that preferentially activate the canon-

ical NF-kB pathway (Garber et al., 2012; Schreiber et al., 2006).

In B cells, only RelA has been studied systematically (Kasowski

et al., 2010).

To systematically investigate howNF-kB TFs recognize in vivo

targets, we performed chromatin immunoprecipitation followed

by deep-sequencing (ChIP-seq) analysis of all five NF-kB sub-

units in the EBV-transformed lymphoblastoid B cell line (LCL)

GM12878, where the EBV-encoded membrane protein LMP1

mimics CD40 to constitutively activate the canonical and nonca-

nonical NF-kB pathways (Longnecker et al., 2013). GM12878

has a relatively normal karyotype, is one of three ENCODE (Ency-

clopedia of DNA Elements) project Tier 1 cell lines, and is an orig-

inal HapMap cell line used in many genetic studies. We identified

a complex NF-kB-binding landscape, with distinct NF-kB sub-

unit-binding patterns (SBPs) at LCL promoters and enhancers,

and with frequent recruitment of NF-kB to DNA sites that lack

kB motifs. Numerous B cell TFs co-occupied LCL NF-kB sites,

including the Forkhead box protein FOXM1. FOXM1was present

at nearly half of all LCL NF-kB sites and was recruited to NF-kB

complexes on DNA. Collectively, our results provide insights

into B cell nuclear NF-kB regulation, including CD40-stimulated

germinal center B cells and lymphomas with constitutive NF-kB

activity.
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RESULTS

Genome-wide NF-kB Subunit DNA Binding in
Lymphoblastoid B Cells
ChIP-seq was used to assess NF-kB subunit DNA binding in

GM12878 cells. Validated anti-RelA, anti-RelB, anti-cRel, and

anti-p50 antibodies were used, each of which has been shown

to be specific by western blot and ChIP (Baek et al., 2002; Huang

et al., 2000; Liu and Beller, 2003; Martone et al., 2003; Nissen

and Yamamoto, 2000; Rodriguez et al., 1999; Saccani et al.,

2003; Wang et al., 1997; Yamazaki and Kurosaki, 2003) and

by a ChIP-microarray analysis of NF-kB promoter occupancy

in lipopolysaccharide (LPS)-stimulated monocytes (Schreiber

et al., 2006). Anti-p52 antibody specificity was validated by

immunoprecipitation (Figure S1).

Using highly concordant biological replicates (Figure S2; Ta-

ble S1), we identified 20,067 RelA, 16,617 RelB, 6,765 cRel,

4,298 p50, and 10,814 p52 peaks, with an irreproducible dis-

covery rate (IDR) of <0.01 (Landt et al., 2012), significantly ex-

panding the known number of B cell NF-kB-binding sites.

Data sets for each NF-kB subunit exceeded ENCODE project

quality control standards (Landt et al., 2012), and our se-

quencing depth was therefore more than sufficient to capture

biologically meaningful binding (Figure S2; Table S1; Supple-

mental Experimental Procedures). For instance, the ratio of

sequencing tag abundance inside versus outside of peaks, a

standard measure of noise in ChIP-seq experiments, was

3.1% for RelA, 4.6% for RelB, 0.9% for cRel, 2.2% for p50,

and 2.8% for p52. Thus, differences across experiments

were moderate. Furthermore, we took multiple steps to elimi-

nate differences that arose from sequence depth effects,

including normalization of ChIP signals across experiments

(Ye et al., 2011) (Supplemental Experimental Procedures).

Where an NF-kB-binding site was identified for any subunit,

we cross-compared raw signals for all five subunits at that

site, rather than restricting analysis to only the called peaks.

Robust peaks for all NF-kB subunits were evident at kB sites

at many well-characterized B cell kB target genes, including

the BCL2 locus (Figure 1A).

Using validated GM12878 chromatin state annotations based

on histone modifications (Ernst et al., 2011), we found NF-kB

predominantly (73%) at active enhancers, as characterized by

H3K4me1 and H3K27ac marks (Figure 1B). For example, the

dominant BCL2 NF-kB peaks localized to an enhancer (Fig-

ure 1A). Nonetheless, in comparison with other NF-kB subunits,

a higher proportion of cRel peaks occurred at active promoters

(�40% of all cRel peaks), as defined by H3K4me3 and H3K9ac

marks. At 24.7% of cRel peaks, cRel was the dominant NF-kB

subunit, putatively binding as a homodimer. By contrast, only

�15% of mapped RelB peaks localized to active promoters.

NF-kB-binding site motifs derived de novo from the ChIP-seq

data were similar to each other, with the cRel motif showing

increased degeneracy in its 50 half-site and p50 exhibiting a

longer motif (Figure 1C).

Patterns of NF-kB Subunit Cobinding
A rich NF-kB dimer milieu was present in LCL nuclei (Figure S1).

For instance, RelA and cRel bound to similar amounts of p50
thors
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Figure 1. NF-kB Subunit Genome-wide Dis-

tribution and Consensus Motif

(A) NF-kB subunit ChIP-seq signals at the BCL2

locus. The y axis is scaled between 0 and 20 times

the median signal value of the surrounding 100 kb.

chr18, chromosome 18.

(B) Genome-wide NF-kB subunit distribution

across chromatin states, as defined by GM12878

histone modifications, CTCF, and Pol2 occupancy.

Each horizontal bar shows the fraction of NF-kB

subunit peaks that were assigned to each chro-

matin state. The total number of NF-kB subunit

peaks is shown to the right of each bar.

(C) Consensus de novo motif for each NF-kB

subunit.
and p52, and at a lower level, to each other. By contrast, RelB

preferentially associated with p52, to a lower level with p50,

and to a substantially lower level with RelA. Both p50 and

p52 associate with all NF-kB subunits (Figure S1). kB sites in

theory could be bound by a single NF-kB dimer or could be ac-

cessed by distinct NF-kB dimer combinations in equilibrium

with one another.

To identify NF-kB SBPs, we applied k-means clustering to the

ChIP-seq data. We found 10 distinct SBPs at LCL promoters

and 11 at enhancers (Figures 2A and 2B). SBPs with binding

by multiple NF-kB subunits likely reflected NF-kB dimer ex-

change at these sites, rather than simultaneous binding by

distinct NF-kB dimers to a single site. In support of the speci-

ficity of the antibodies used and despite the RelA data set having

the highest number of peaks, clusters with predominant binding

by each of the NF-kB subunits were observed at promoters

and enhancers, except for RelA. To minimize the possibility

that SBPs arose from differences in peak number alone, we
Cell Reports 8, 1595–1606, Se
generated k-means-clustered heatmaps

using only the top-scoring 4,000 peaks

for each subunit. Even when using an

equal number of peaks for each subunit,

very similar SBPs were again observed,

suggesting that SBPs do not arise from

differences in antibody sensitivity alone

(Figure S3A).

Intriguingly, some SBPs were evident at

both promoters and enhancers, whereas

others were unique to either. For example,

cluster P10 promoters, but no enhancer

clusters, were occupied by all NF-kB

subunits except cRel. Combinations of

distinct SBPs were observed at several

key NF-kB target genes, such as at the

seven NF-kB ChIP-seq peaks near the

highly LMP1-induced target gene TRAF1

(Figure 2C).

We reasoned that ChIP-seq analysis of

the five NF-kB subunits in GM12878

might identify target genes unique to

either pathway. Indeed, we found SBPs

with predominant cRel (clusters P5 and
E10) or p52 (clusters P7 and E11) binding, indicative of canon-

ical versus noncanonical activity, respectively (Figures 2A and

2B). Strikingly, most observed SBPs were not readily explained

by subunits that are activated by just one pathway. Rather, they

were hybrids that resulted from activation of both pathways.

For example, cluster E1 and P1 genomic regions were highly

occupied by all five NF-kB subunits and were therefore tar-

geted by subunits activated by both NF-kB pathways. Similarly,

RelA, RelB, cRel, and p52 were present at clusters P3, E2, and

E6. The abundance of RelA, RelB, and cRel heterodimers with

p50 and with p52 in LCL nuclei (Figure S1), as well as NF-kB

homodimers, likely contributed to these patterns. Although

p50- and p52-containing heterodimers are prototypical canon-

ical and noncanonical pathway dimers, respectively, RelA,

RelB, and/or cRel predominated at clusters P5, P9, E4, E7,

E8, and E10. These results indicate that both NF-kB pathways

contribute to the activation of many LMP1 target genes in

LCLs.
ptember 11, 2014 ª2014 The Authors 1597
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Figure 2. NF-kB Subunit-Binding Profiles

(A and B) A total of 10 promoter (A) and 11

enhancer (B) peak clusters with distinct NF-kB

subunit-binding profiles were identified by k-

means clustering of ChIP-seq signals at regions

bound by at least 1 subunit. Red values indicate

higher ChIP-seq signal intensity. The total number

of promoter versus enhancer NF-kB-binding sites

is shown at the lower right. The heatmap to the

right of the peak clusters displays the extent of

consensus de novo NF-kB subunit motif enrich-

ment in each cluster. See also Figure S3A.

(C) NF-kB subunit ChIP-seq signals at the TRAF1

locus illustrate the co-occurrence of multiple SBPs

at an NF-kB target gene. Red boxes enclose

promoter-associated peaks, and orange boxes

enclose enhancer-associated peaks. chr9, chro-

mosome 9.

(D) Gene set enrichment analysis of NF-kB clus-

ters using GO Biological Process (BP) terms, as

determined by GREAT analysis. Each row corre-

sponds to a unique GO BP term with a false

discovery rate (FDR) of <0.01. A subset of highly

enriched terms is highlighted. IL-4, interleukin-4;

TGF-b1, transforming growth factor b1.

See also Table S2.
SBPs Are Associated with Unique Biological Processes
To investigate whether NF-kB binding at promoters versus en-

hancers might correspond to different LCL biological functions,

we evaluated each cluster for enrichment of Gene Ontology

(GO) annotation terms. We used GREAT (McLean et al., 2010)

analysis to assign ChIP-seq peaks to their putative target genes,

mainly by proximity. Most clusters were enriched for distinct

GO Biological Process terms and mouse knockout phenotypes

(Figure 2D; Table S2), consistent with the hypothesis that

different SBPs have distinct roles in NF-kB responses. Because

the formation of many SBPs requires both NF-kB pathways to

be active, this result has relevance for the observation that

CD40-mediated canonical and noncanonical pathway activation

engenders phenotypes that activation of either pathway alone

does not produce (Zarnegar et al., 2004). Strikingly, we obtained

a larger number of significantly enriched GO terms at enhancers

than at promoters and observed that promoter clusters were
1598 Cell Reports 8, 1595–1606, September 11, 2014 ª2014 The Authors
typically enriched for ‘‘housekeeping’’

functions, whereas enhancer clusters

were often enriched for B cell-specific

functions.

An11 bp kBMotif with 30 Cytosine Is
Enriched in All Clusters with p50
Occupancy
The canonical kB motif is 10 bp long,

although in vitro studies have found

that different NF-kB dimers prefer sites

that are 9–12 bp (Siggers et al., 2012).

The p50 homodimer recognizes an

11 bp kB motif and makes base-specific

contacts with cytosine at position 11

(Chen and Ghosh, 1999; Müller et al.,
1995). LCL ChIP-bound p50-binding sites were highly enriched

for an 11 bp kB motif ending in cytosine, providing genome-

wide confirmation of the importance of this p50 recruitment

motif (Figure 3A). The extent of 11 bp enrichment at in vivo

p50-binding sites was unexpected because p50 homodimers

and, to a lesser extent, p50 heterodimers exhibited moderate

preference for this motif in vitro (Siggers et al., 2012). Because

the 11 bp kB motif was highly enriched in all clusters with high

p50 ChIP signal, and because LCLs contain abundant p50

heterodimers (Figure S1), our results suggest that p50 hetero-

dimers also prefer the 11 bp site (Figures 3A and S3). The 30

cytosine in p50-bound sites was evolutionarily conserved

across 33 mammalian species (Figures 3C and S3), supporting

its importance. The fifth, largely degenerate, base pair in kB

motif instances was also frequently conserved, consistent

with this position influencing cofactor requirements (Leung

et al., 2004).
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Figure 3. Effect of an 11 bp Motif with a 30

Cytosine on p50 Recruitment to NF-kB Sites

(A) ROC curves show that the p50 motif 11th bp

cytosine predicts p50 ChIP occupancy with high

specificity. In the comparisons shown, peaks from

clusters E5 and E2 (top; differential p50 binding)

and E5 and E9 (bottom; both bound by p50) are

compared. The maximum p50, but not RelA, motif

match score for each sequence predicts whether

peaks belong to E5 (defined as a positive) or to E2

(negative). Meanwhile, neither motif has predictive

power when comparing the p50-bound clusters E5

and E9. See also Figures S3B–S3D.

(B) p50 signals are significantly higher at NFKB2

locus-binding sites that contain the 11 bp motif.

Other NF-kB subunits bind more uniformly. Motif

match scores are scaled from a minimum match

threshold of 0.0 to a maximum of 1.0. chr10,

chromosome 10.

(C) The functional importance of the p50-preferred

11 bp kB site 30 cytosine is supported by its

evolutionary conservation across 33 mammalian

species. Each bar shows the mean GERP++

score (higher values indicate more evolutionary

constraint) at various positions of kB motif in-

stances. Error bars indicate 1 SEM.

See also Figure S3E.
Effect of kB Motifs on Subunit Binding
We investigated the extent to which specific kB motif se-

quences determined each SBP. We compared kB sites at

ChIP peaks in each cluster with protein-binding microarray

(PBM) data, which provide binding preferences for specific

NF-kB (Siggers et al., 2012). We calculated the area under

the (AUC) receiver operating characteristic (ROC) curve as a

measure of motif or 12-mer enrichment in each cluster. The

enrichment values obtained using ChIP-derived de novo motifs

(Figures 2A and 2B) were generally similar to those obtained

using PBM-derived 12-mer data (Figure S3F). Unexpectedly,

most NF-kB binding in GM12878 cells occurred via higher-affin-

ity, traditional kB sites. Aside from the discriminatory power af-

forded by the 30 cytosine in the 11 bp kB motif, the kB motif did

not vary greatly across clusters, suggesting that other mecha-

nisms were responsible for establishing specific NF-kB-binding

patterns.
Cell Reports 8, 1595–1606, Sep
NF-kB Recruitment to DNA Sites
that Lack a kB Motif
Nearly one-third of LCL NF-kB subunit-

bound active promoters and enhancers

lacked a kB motif. Interestingly, four

promoter (clusters P4–P7) and three

enhancer clusters (clusters E6, E10, and

E11) were not highly enriched for a kB

motif, suggesting alternative mechanisms

for NF-kB recruitment to these sites

(Figures 2A, 2B, and S3F). Although NF-

kB recruitment to DNA regions that lack

kB sites has been observed previously,

alternative motifs that directly or indirectly

recruit NF-kB to these sites had not been
identified. Using de novomotif discovery, we identified four alter-

native motifs that were associated with specific combinations of

NF-kB subunit binding in LCLs and that may participate in NF-kB

recruitment to these sites.

First, we asked how cRel might selectively be recruited to pro-

moters in the absence of kBmotifs (cluster P5), and found signif-

icant enrichment of E box motifs (AUC, 0.61; p = 1.66 3 10�18)

(Figure 4). Indeed, the basic-helix-loop-helix (bHLH) TFs USF1

and USF2, which recognize E box motifs, co-occupied 40.2%

and 39.3% of GM12878 cluster P5 regions, respectively (Figures

4 and 5). Our results support a model in which bHLH factors

recruit cRel homodimers to LCL E box sites.

p52 was selectively recruited to genomic regions belonging

to clusters P7 and E11. De novo motif analyses identified a com-

posite ETS (E-twenty six)/ISRE (interferon-stimulated-response-

element)-consensus element (EICE) in cluster E11 (AUC, 0.66;

p = 1.87 3 10�45), rather than a peak-centered kB motif. EICE
tember 11, 2014 ª2014 The Authors 1599



 

PU.1/IRF4 motif 
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Figure 4. Alternative Motifs Enriched in Clusters that Lack kB Sites

De novo motif discovery revealed enrichment for E box, CTCF, composite

PU.1/IRF4, and ZNF143 motifs at several clusters with low kB site enrichment.

The discovered motif, AUC, and p value motif enrichment values, and ChIP-

seq signals at representative loci, are shown.
motifs recruit PU.1 and IRF4 heterodimers and are essential for

lymphocyte development and activation (Ochiai et al., 2013).

Indeed, ENCODE GM12878 data confirmed PU.1 and IRF4 co-

occupancy at many E11 sites (Figure 4). PU.1 may also function

as a pioneer factor at these sites by creating areas of nucleo-

some-free DNA that are accessible to p52 (Ghisletti et al.,

2010; Heinz et al., 2010; Smale, 2011). However, selective p52

recruitment to EICE sites, in the absence of enrichment for a

kB motif or other identifiable motifs, is consistent with a direct
1600 Cell Reports 8, 1595–1606, September 11, 2014 ª2014 The Au
role for PU.1 and IRF4 in p52 recruitment. Notably, PU.1 motifs

were not identified as being enriched by de novo analysis in other

clusters that lacked kB motif enrichment. p52 recruitment to

EICE sitesmay thereby enable crosstalk between the noncanon-

ical NF-kB, PU.1 and IRF4 pathways, each of which is important

for B cell development and activation (Ochiai et al., 2013).

An alternative mechanism may selectively recruit p52 to P7

promoters, in the absence of kBmotifs. De novo analysis instead

identified the CTCF motif to be enriched within P7 ChIP-seq

peaks (AUC, 0.65; p = 4.27 3 10�31), whereas the EICE motif

was not significantly enriched in P7 (AUC, 0.52) (Figure 4). In

support of a possible CTCF-dependent recruitment mechanism,

ENCODE data demonstrated CTCF occupancy at many P7 sites

(Figure 5). Because CTCF coordinates long-range interactions

between DNA regulatory elements together with cohesin (Mer-

kenschlager and Odom, 2013), we examined whether other co-

hesin complex members co-occupied P7 sites. Interestingly,

13.7% of P7 sites were co-occupied by SMC3 and RAD21,

and 24.7% of P7 peaks were co-occupied by either SMC3 or

RAD21 (Figures 5). Interestingly, long-range enhancer-pro-

moter-looping interactions are used in RelA responses to tumor

necrosis factor a (TNF-a) stimulation in human fibroblasts (Jin

et al., 2013).

All NF-kB subunits except p50 were recruited to cluster P4

promoters, which were enriched for the ZNF143 motif (AUC,

0.71; p = 3.35 3 10�50). High ZNF143 ChIP signals were de-

tected near the centers of cluster P4 promoters (Figures 4 and

5). How NF-kB is selectively recruited by ZNF143 to P4 pro-

moters, but not other promoters bound by ZNF143, requires

further investigation. Collectively, our data suggest that NF-kB

recruitment to DNA in the absence of kB motifs significantly ex-

pands the range of NF-kB genomic targets and enables subunits

to perform unique functions.

NF-kB-Predominant versus Highly Co-occupied
LCL Sites
Comparison of our data sets with ENCODE ChIP-seq data, ob-

tained for 65 other TFs in GM12878 cells, identified 2 classes

of NF-kB-occupied promoters and enhancers. One class was

bound either exclusively by NF-kB (clusters E4 and E7–E9) or

by NF-kB in combination with a small number of other TFs (clus-

ters E3, E10, P3, P6, and P8–P10) (Figure 5). The second class

was bound by NF-kB together with many TFs, which occurred

in different combinations across the cluster (clusters E1–E2,

E5–E6, E11, P1–P5, and P7). Distinct TF profiles were generally

apparent at enhancers versus promoter clusters (Figure 5).

NF-kB and FOXM1 Are Present Together in DNA-Bound
Complexes at kB Sites
Incorporation of ENCODE GM12878 ChIP-seq data revealed

that multiple TFs co-occurred with NF-kB, including both well-

characterized and novel putative NF-kB cofactors. The onco-

genic forkhead box TF FOXM1 was present at nearly 59% of

enhancers occupied by NF-kB and at 50% of all NF-kB-occu-

pied LCL sites. NF-kB co-occupied sites comprised nearly half

of FOXM1 genome-wide binding in LCLs. Intriguingly, a kBmotif,

but not a forkhead recognition motif, was enriched at these sites

(Figure 6A). At strong enhancers, as defined by chromatin states
thors
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Figure 5. Co-occurrence of NF-kB Subunits and GM12878 TF ChIP-

Seq Peaks across Enhancer and Promoter Clusters

Red intensity indicates the extent of NF-kB co-occupancy with indicated TFs

in GM12878 at promoter and enhancer clusters, normalized for the number of

cluster elements and the number of total peaks for each TF. Basal TF names

are indicated in green; DNA-looping factors are in blue.

Cell Re
(Ernst et al., 2011), FOXM1 andNF-kB subunit ChIP peak summit

heights were correlated (Spearman R, 0.5 for p52). Moreover,

FOXM1 co-occupied kB sites at many well-established NF-kB

target genes, such as TNFAIP3 (which encodes A20), NFKBIA

(which encodes IkBa), BIRC3 (which encodes cIAP2), and

CXCR4 (which encodes CXCR4) (Figures 6B and S4). These re-

sults suggest that NF-kB, or another factor that interacts with

NF-kB, recruited FOXM1 to these LCL sites, particularly in clus-

ters E1, E2, E5, E6, and E11.

NF-kB and FOXM1 are hyperactivated in many of the same

malignancies (Ben-Neriah and Karin, 2011; Halasi and Gartel,

2013). Despite also having numerous overlapping biological

roles, FOXM1 and NF-kB are not known to be cofactors. We

therefore assessed whether FOXM1 and NF-kB were present

together in DNA-bound protein complexes in LCLs. First, we

used sequential GM12878 ChIP (ChIP re-ChIP), in which anti-

FOXM1 ChIP was followed by ChIP using anti-RelA antibody,

anti-FOXM1 antibody (positive control), or no antibody (negative

control). Quantitative real-time PCR data showed that PLK1 or

BCL2 target loci were significantly enriched in the RelA ChIP

versus the control (Figure 6C), suggesting that NF-kB and

FOXM1 are part of a DNA-bound protein complex. Second, elec-

trophoretic mobility shift assays (EMSAs) using GM12878 nu-

clear extract and DNA probes representing the PLK1 and

AURKA regions further validated FOXM1 recruitment to kB sites.

Supershift assays, in which antibodies against p50 or FOXM1

were added to the binding reaction, produced a slowermigrating

band, consistent with recruitment of both NF-kB and FOXM1 to

the probe (Figure 6D). Notably, the probe contained a central kB

site, but not a forkhead recognition motif, and had minimal flank-

ing DNA, supporting FOXM1 recruitment by an NF-kB-depen-

dent mechanism. A DNA probe with mutant kB site failed to

compete for binding (Figure 6E). Finally, induced expression of

a nondegradable IkBa superrepressor in IB4 LCLs significantly

reduced both RelA and FOXM1 occupancy at the PLK1 and

AURKA loci (Figure 6F). Our results suggest that NF-kB and

FOXM1 are present together in DNA-bound complexes at NF-

kB sites and that recruitment to NF-kB sites is dependent on

NF-kB DNA binding.

To investigate the functional consequences of FOXM1 recruit-

ment to kB sites, we tested the effects of FOXM1 depletion on

NF-kB target gene expression. By 48 hr after small hairpin RNA

(shRNA) lentiviral delivery, each of three different anti-FOXM1

shRNAs strongly reduced FOXM1 expression and also markedly

impaired expression of loci co-occupied by NF-kB and FOXM1,

including TNFAIP3, BIRC3, CXCR4, NFKBIA, andMAP3K7 (Fig-

ure 7A). By contrast, FOXM1 depletion did not impair expression

of control LCL target genes, whose promoters and proximal

enhancers were not occupied by either NF-kB or FOXM1 (Fig-

ure 7B). FOXM1depletion did not affect cell viability at 48 hr post-

transduction (Figures 7C and S5A). However, all three FOXM1

shRNAs reduced the number of cells in S phase and triggered

apoptosis at 120 hr posttransduction (Figures 7D and S5B–

S5D). Although NF-kB-independent FOXM1 cell-cycle roles

may have strongly contributed to this phenotype, it nonetheless

underscores FOXM1 as a novel LCL synthetic lethal target.

FOXM1 is a master regulator of germinal center B cell prolifer-

ation (Lefebvre et al., 2010) and is expressed in diffuse large B
ports 8, 1595–1606, September 11, 2014 ª2014 The Authors 1601



A B

C D E

F

Figure 6. NF-kB and FOXM1 Are Present in

DNA-Bound Protein Complexes at kB Sites

(A) Venn diagram showing the extent to which

NF-kB and FOXM1 ChIP-seq peaks overlap in

GM12878. The number of sites occupied by

NF-kB, FOXM1, or co-occupied by both, and the

consensus de novo motif for sites co-occupied by

NF-kB and FOXM1, is shown.

(B) FOXM1 ChIP-seq signals at the TNFAIP3 locus

show a high degree of co-occupancy with NF-kB.

See also Figure S4.

(C) ChIP-re-ChIP identified FOXM1 and RelA as

present together in DNA-bound protein complexes

at the PLK1 and BCL2 loci. FOXM1 ChIP was fol-

lowed by RelA ChIP. Mean fold enrichment ± SD

for replica experiments is shown. *p < 0.05;

**p < 0.01.

(D) EMSA identified that both FOXM1 and NF-kB

from GM12878 LCL nuclear extract (NE) bind a

PLK1 promoter DNA probe that contains a kB site,

but no forkhead recognition site. Incubation with a

cold probe (CP) is indicated. The single asterisk (*)

indicates FOXM1 supershift. The double asterisks

(**) indicate p50 supershifted band. A representa-

tive EMSA of three independent experiments is

shown. Ig, immunoglobulin.

(E) A PLK1 promoter probe with a central kB motif

(wild-type [WT] kB), but not a probe with a mutant

kB (MT kB) motif, competed for binding in EMSA

(see Supplemental Experimental Procedures for

full details).

(F) Inducible expression of an IkBa superrepressor

(IkBa S.R.) in IB4 LCLs diminished RelA and

FOXM1 ChIP signals at the PLK1 and AURKA

promoters. Mean + SD for replica experiments is

shown. *p < 0.05; **p < 0.01; ***p < 0.001.
cell lymphoma (DLBCL) (Tompkins et al., 2013; Uddin et al.,

2012). Impelled by these and our results, we investigated

whether FOXM1 expression correlates with clinical outcome in

DLBCL. We retrospectively analyzed microarray data sets from

414 DLBCL tumor samples (Lenz et al., 2008) and found that

elevated FOXM1 expression levels were significantly correlated

with worse overall survival, even controlling for tumor stage

and subtype (p = 0.0037) (Figure 7E). Although FOXM1 roles in-

dependent of NF-kB may underlie this observation, our analysis

nonetheless suggests that FOXM1 levels may be a valuable

prognostic indicator in DLBCL.

DISCUSSION

In the classical model of NF-kB activation, stimuli trigger IkB

degradation, NF-kB dimer nuclear translocation, and kB site
1602 Cell Reports 8, 1595–1606, September 11, 2014 ª2014 The Authors
binding. However, this model does not

adequately consider the complexities

that further shape NF-kB nuclear function

(Oeckinghaus et al., 2011; Sen and

Smale, 2010; Wan and Lenardo, 2010).

Likewise, most genomic studies of NF-

kB binding have focused on immediate

events following canonical pathway stim-
ulation by TNF-a or LPS and have not fully addressed why both

pathways are needed to activate particular target genes. Our re-

sults provide a genomic survey of NF-kB subunit binding when

both the canonical and noncanonical NF-kB signaling pathways

are persistently active. Consequently, insights into the extent of

crosstalk between the canonical and noncanonical pathways

emerged.

The NF-kB-binding landscape in LCLs was complex, but

largely describable in terms of a small number of SBPs, sug-

gestive of both common and unique NF-kB subunit roles.

Frequently, subunits activated by both the canonical and nonca-

nonical pathways each contributed to SBPs. These results pro-

vide insights into how NF-kB may function during physiologic B

cell activation, where CD40-mediated persistent activation of

both the canonical and noncanonical pathways is central to

the generation of germinal centers and humoral immunity (Kaileh
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Figure 7. FOXM1 Cooperates with NF-kB to

Regulate GM12878 Target Gene Expression

(A) Three independent shRNAs against FOXM1

reduced expression of key NF-kB target gene

mRNAs by 48 hr after delivery. Mean ± SEM effects

from three independent experiments are shown.

p < 0.05 for TNFAIP3; p < 0.01 for all other com-

parisons between control and FOXM1 shRNAs.

***p < 0.001.

(B) FOXM1 shRNAs did not reduce expression

control genes (which were not identified as NF-kB

or FOXM1 targets in GM12878) at 48 hr post-

shRNA delivery.

(C) FOXM1 depletion inhibited LCL proliferation

and caused accumulation of subdiploid cells (<2n

DNA content) by propidium iodide (PI) analysis. See

also Figure S5.

(D) At 120 hr after shRNA delivery, FOXM1 deple-

tion triggered cleavage of caspases 3 and 7 and

their substrate, poly (ADP-ribose) polymerase

(PARP). Tubulin load control is shown. Represen-

tative western blot of three independent experi-

ments is shown.

(E) FOXM1 expression in DLBCL tumor samples

correlated with worse clinical outcome. Retro-

spective analysis is shown of FOXM1 expression in

microarray data sets obtained from 414 DLBCL

tumor samples, and its relationship with patient

survival. Wald test, p = 0.0037.
and Sen, 2012; Zarnegar et al., 2004). Our data sets provide a

resource for studies of EBV oncoprotein-mediated NF-kB acti-

vation, constitutive NF-kB activity in tumors, and comparative

genomics because many TF families similarly evolved by gene

duplication and diversification.

Numerous NF-kB cofactors, for which GM12878 data are not

yet available, might contribute to SBP formation. For instance,

ENCODE ChIP-seq data are not yet available for RPS3, which

binds to RelA and promotes RelA:p50 and RelA:RelA dimer bind-

ing to select kB sites (Wan and Lenardo, 2010). An important

future area of investigation will be the identification of B cell co-

factors that may similarly affect dimer-binding properties and

thereby contribute to shaping the observed SBPs.

The extent to which NF-kB binding activates transcription re-

mains an open question. Studies in TNF-a-stimulated LCLs and
Cell Reports 8, 1595–1606, Se
LPS-stimulated THP-1 monocytes sug-

gested that only aminority of RelA-binding

events induce transcription (Lim et al.,

2007; Martone et al., 2003). However,

limitations in the assignment of enhancers

to their target genes may have resulted in

underestimates of regulatory binding

events. In contrast, we found that nearly

all NF-kB binding in LCLs, including by

p50 and p52, occurred at highly active

enhancers or promoters. Indeed, NF-kB

promoter occupancy highly correlates

with induction of transcription in LPS-

stimulated monocytes (Schreiber et al.,

2006), and the vast majority of NF-kB-
binding events occur at active promoters and enhancers in

LPS-stimulated murine dendritic cells (Garber et al., 2012).

Nearly one-third of LCL NF-kB-binding events occurred at

DNA sites lacking kB motifs. cRel and p52 may more frequently

be recruited to these sites (clusters P5, P7, E10, and E11).

Consistent with our findings, a prior ChIP-ChIP study of RelA

chromosome 22-binding events in TNF-a-stimulated HeLa cells

reported that 44% of identified RelA sites did not have a kBmotif

(Martone et al., 2003). Similarly, ChIP-paired-end tag analysis of

LPS-stimulated THP-1 cells found the RelA motif to be absent at

57%of RelA-binding sites (Lim et al., 2007). However, alternative

NF-kB recruitment motifs were not identified. We report four mo-

tifs that are highly enriched at LCL NF-kB-binding sites that lack

kB motifs: E boxes at cRel-occupied promoters, ZNF143 motifs

at promoters occupied by all NF-kB subunits except p50, CTCF
ptember 11, 2014 ª2014 The Authors 1603



sites at p52-occupied promoters, and ETS/ISRE elements at

p52-occupied enhancers. Indirect recruitment to sites lacking

kB motifs may provide an important mechanism through which

NF-kB subunits perform specific functions and crosstalk with

other pathways. Our analysis offers insights into why each

NF-kB subunit has nonredundant roles in B cells (Gerondakis

et al., 2006).

NF-kB requires additional transcription cofactors to fully acti-

vate target gene expression (Natoli et al., 2005; Oeckinghaus

et al., 2011; Wan and Lenardo, 2010). Certain promoter and

enhancer clusters were co-occupied by at least ten additional

TFs, though it is likely that fewer bind to an individual site at

the same time. Binding at these loci is unlikely to be an artifact

of the ChIP experimental procedures because SBPs with the

highest co-occupancy (e.g., P1, E1, and E2) were enriched for

kB-binding site sequences. NF-kB was also found to bind

frequently at highly co-occupied sites in LPS-stimulated murine

dendritic cells (Garber et al., 2012). High TF co-occupancy may

be due to a more accessible chromatin state at these genomic

regions (Figure S7).

Our data highlight FOXM1 as an important coactivator of NF-

kB target gene transcription in LCLs, present at 50%of all NF-kB

peaks. Because a FOXM1 DNA motif was not enriched at these

sites, our data are consistent with a model in which NF-kB

recruits FOXM1 to kB sites, either directly or indirectly, through

additional cofactors. In support of the former possibility, the

MMB activator complex directly recruits FOXM1 to coactivate

transcription (Chen et al., 2013). MuvB and B-Myb also interact

with FOXM1 to regulate gene expression during the G2 phase

of cell cycle (Sadasivam et al., 2012). Curiously, we did not find

evidence for NF-kB recruitment to FOXM1-bound forkhead

box recognition sites; DNA allostery may induce conformation

changes in the bound TF, leading to differences in protein-pro-

tein interactions (Leung et al., 2004). FOXM1 depletion impaired

transcription of key NF-kB target genes and ultimately induced

LCL apoptosis, reminiscent of the phenotype of NF-kB inhibition

on these cells (Cahir-McFarland et al., 2000).

To our knowledge, FOXM1 has not previously been reported

to function jointly with NF-kB in target gene regulation. However,

crosstalk between NF-kB and FOXM1 may underlie published

studies. Both FOXM1 and NF-kB are implicated in the pathogen-

esis of K-Ras-induced non-small-cell lung cancer (Wang et al.,

2013). Moreover, conditional FOXM1 deletion impairs K-Ras-

mediated expression of multiple NF-kB pathway components,

including IKK-b, RelA, p105/p50, and p100/p52. Intriguingly,

NF-kB and FOXM1 have each been implicated as drivers of B

cell lymphomagenesis (Green et al., 2011; Lim et al., 2012;

Tompkins et al., 2013; Uddin et al., 2012), although a joint role

of FOXM1 and NF-kB in driving B cell malignancy has not yet

been proposed.

Despite the promise of therapies that block pathogenic NF-kB

hyperactivity in cancer and autoimmune diseases, side effects

have largely precluded the use of broadly acting NF-kB inhibi-

tors, such as IKK-b kinase antagonists. Uncovering subunit-spe-

cific transcriptional mechanisms may facilitate approaches to

selectively alter NF-kB target gene expression. Targets that

require both canonical and noncanonical NF-kB pathway activa-

tion may be particularly sensitive to disruption. Because FOXM1
1604 Cell Reports 8, 1595–1606, September 11, 2014 ª2014 The Au
is not expressed in most adult tissues, our data highlight the

FOXM1 pathway as a potential therapeutic target in B cell malig-

nancy. An increasingly sophisticated understanding of NF-kB

nuclear function promises to highlight novel therapeutic strate-

gies for selective NF-kB inhibition.

EXPERIMENTAL PROCEDURES

Cell Lines and Antibodies

GM12878 and IB4 cells expressing tetracycline-regulated IkBa superrepres-

sor (Cahir-McFarland et al., 2000) were used. Antibodies used are in the

Supplemental Experimental Procedures.

ChIP-Seq and Peak Calling

GM12878 ChIP-seq was done as described (Zhao et al., 2011). See Supple-

mental Experimental Procedures for full details.

We used SPP v.1.10 (Kharchenko et al., 2008) to identify regions with high

enrichment of ChIP-seq tags (‘‘peaks’’). We used the IDR framework to deter-

mine statistically significant peaks. For each subunit, we directly compared the

peaks obtained in replicate experiments and set the peak calling threshold to

yield an IDR of 1%.

Chromatin State Distribution

GM12878 ChromHMM chromatin state annotations (Ernst et al., 2011) were

used.

Comparison with ENCODE ChIP-Seq Data

We computed the fraction of NF-kB peak regions that overlapped with

ENCODE ChIP-seq peaks for all available experiments. Co-occurrence scores

were normalized for peak width and height, the number of total peaks in each

experiment, and the number of peaks included in each cluster.

De Novo Motif Discovery

We employed ChIPMunk (Kulakovskiy et al., 2010) and the MEME-ChIP suite

(Bailey et al., 2009) to discover potential regulatory motifs in the NF-kB and

ENCODE ChIP-seq data. The discovered de novo motifs were compared

with existing motifs using the dictionary of vertebrate motifs in HOMER v.3.0

(Heinz et al., 2010).

Motif Enrichment Determination

We used the AUC statistic to quantify motif enrichment. See also Supple-

mental Experimental Procedures.

Gene Set Enrichment and Evolutionary Conservation Analysis

We used GREAT to predict potential biological functions of different clus-

ters of NF-kB ChIP-seq-bound regions and the Genomic Evolutionary Rate

Profiling++ (GERP++) score, calculated over an evolutionary tree of 33 mam-

mals, as a measure of evolutionary constraint in the human genome. Full

details are in Supplemental Experimental Procedures.

Analysis of DLBCL Data Sets

We used a Cox proportional hazards model to determine whether FOXM1

expression was predictive of survival in patients with DLBCL. The p value

was calculated by performing a Wald test on the FOXM1 expression coeffi-

cient after fitting the model to the data, controlling for tumor stage and the

microarray-derived diagnosis as part of the model.

ChIP, ChIP-Re-ChIP, and Quantitative PCR

ChIP assays were performed with the indicated antibodies. Quantitative PCR

was used to quantify NF-kB binding to indicated sites. Re-ChIP-IT kit (Active

Motif) was used for ChIP-re-ChIP experiments following the manufacturer’s

protocol.

Cell Cycle and Apoptosis Assays

Lentivirus-transduced GM12878 cells were selected with puromycin,

fixed with 70% ethanol, stained with propidium iodide, and analyzed by
thors



fluorescence-activated cell sorting. Caspase activity was determined using

Caspase-Glo assay or by western blot.

ACCESSION NUMBERS

The GEO accession number for the NF-kB ChIP-seq data reported in this pa-

per is GSE55105.
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Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and two tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2014.07.037.
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