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The reference human genome sequence set the stage for studies of genetic variation and its
association with human disease, but a similar reference has lacked for epigenomic studies. To
address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection to-
date of human epigenomes for primary cells and tissues. Here, we describe the integrative analysis
of 111 reference human epigenomes generated as part of the program, profiled for histone
modification patterns, DNA accessibility, DNA methylation, and RNA expression. We establish
global maps of regulatory elements, define regulatory modules of coordinated activity, and their
likely activators and repressors. We show that disease and trait-associated genetic variants are
enriched in tissue-specific epigenomic marks, revealing biologically-relevant cell types for diverse
human traits, and providing a resource for interpreting the molecular basis of human disease. Our
results demonstrate the central role of epigenomic information for understanding gene regulation,
cellular differentiation, and human disease.

Introduction

While the primary sequence of the human genome is largely preserved in all human cell
types, the epigenomic landscape of each cell can vary considerably, contributing to distinct
gene expression programs and biological functionsl-4. Epigenomic information, such as
covalent histone modifications, DNA accessibility, and DNA methylation can be
interrogated in each cell and tissue type using high-throughput molecular assays2°8. The
resulting maps have been instrumental for annotating cis-regulatory elements and other non-
coding genomic features with characteristic epigenomic signatures®-10, and for dissecting
gene regulatory programs in development and disease’:911-14, Despite these technological
advances, we still lack a systematic understanding of how the epigenomic landscape
contributes to cellular circuitry, lineage specification, and the onset and progression of
human disease.

To facilitate and spearhead these efforts, the NIH Roadmap Epigenomics Program was
established, with the goal of elucidating how epigenetic processes contribute to human
biology and disease. One of the major components of this program consists of the Reference
Epigenome Mapping Centers!®, which systematically characterized the epigenomic
landscapes of representative primary human tissues and cells. We used a diversity of assays,
including chromatin immunoprecipitation (Ch1P)%-10.16-17 DNA digestion by
deoxyribonuclease | (DNase)’18, bisulfite treatment 1-219-20 methylated DNA
immunoprecipitation (MeDIP)%!, methylation-sensitive restriction enzyme digestion
(MRE)?2, and RNA profiling®, each followed by massively-parallel short-read sequencing (-
seq). The resulting datasets were assembled into publicly-accessible websites and databases,
which serve as a broadly useful resource for the scientific and biomedical community. Here,
we report the integrative analysis of 111 reference epigenomes (Fig. 1, Extended Data 1la-d),
which we analyze jointly with an additional 16 epigenomes previously reported by the
ENCyclopedia Of DNA Elements (ENCODE) project®23,

We integrate information about histone marks, DNA methylation, DNA accessibility, and
RNA expression to infer high-resolution maps of regulatory elements annotated jointly
across a total of 127 cell and tissue types. We use these annotations to recognize epigenome
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differences that arise during lineage specification and cellular differentiation, to recognize
modules of regulatory regions with coordinated activity across cell types, and to identify key
regulators of these modules based on motif enrichments and regulator expression. In
addition, we study the role of regulatory regions in human disease by relating our
epigenomic annotations to genetic variants associated with common traits and disorders.
These analyses demonstrate the importance and wide applicability of our data resource, and
lead to important insights into epigenomics, differentiation, and disease. Specifically:

»  Histone mark combinations show distinct levels of DNA methylation and
accessibility, and predict differences in RNA expression levels that are not
reflected in either accessibility or methylation.

»  Megabase-scale regions with distinct epigenomic signatures show strong
differences in activity, gene density, and nuclear lamina associations, suggesting
distinct chromosomal domains.

»  Approximately 5% of each reference epigenome shows enhancer and promoter
signatures, which are 2-fold enriched for evolutionarily-conserved non-coding
elements on average.

»  Dynamics of epigenomic marks in their relevant chromatin states allow a data-
driven approach to learn biologically-meaningful relationships between cell types,
tissues, and lineages.

»  Enhancers with coordinated activity patterns across tissues are enriched for
common gene functions and human phenotypes, suggesting they represent
coordinately-regulated modules.

» Regulatory motifs are enriched in tissue-specific enhancers, enhancer modules, and
DNA accessibility footprints, providing an important resource for gene-regulatory
studies.

»  Genetic variants associated with diverse traits show epigenomic enrichments in
trait-relevant tissues, providing an important resource for understanding the
molecular basis of human disease.

1. Reference epigenome mapping across tissues and cell types

The Reference Epigenome Mapping Centers generated a total of 2,805 genome-wide
datasets, including 1,821 histone modification datasets, 360 DNA accessibility datasets, 277
DNA methylation datasets, and 166 RNA-seq datasets, encompassing a total of 150.21
billion mapped sequencing reads corresponding to 3,174-fold coverage of the human
genome.

In this manuscript, we focus on a subset of 1,936 datasets (Fig. 2) comprising 111 reference
epigenomes (Fig. 2a-d), which we define as having a core set of five histone modification
marks (Fig. 2e). The five marks consist of: H3K4me3, associated with promoter
regions10-24: H3K4me1, associated with enhancer regions!0; H3K36me3, associated with
transcribed regions; H3K27me3, associated with Polycomb repression2®; and H3K9me3,
associated with heterochromatin regions26. Selected epigenomes also contain a subset of
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additional epigenomic marks, including: acetylation marks H3K27ac and H3K9ac,
associated with increased activation of enhancer and promoter regions2’-2% (Fig. 2f); DNase
hypersensitivity’18, denoting regions of accessible chromatin commonly associated with
regulator binding (Fig. 2g); DNA methylation, typically associated with repressed
regulatory regions or active gene transcripts*30 and profiled using whole-genome bisulfite
sequencing (WGBS)19, reduced-representation bisulfite sequencing (RRBS)2°, and mCRF-
combined3! methylation-sensitive restriction enzyme(MRE)?2 and immuno-precipitation
based?! assays (Fig. 2h); and RNA expression levels8, measured using RNA-seq and gene
expression microarrays (Fig. 2i). Our definition of 111 reference epigenomes is very similar
to that used by the International Human Epigenome Consortium (IHEC), which required
RNA-seq, WGBS, and H3K27ac that are only available in a subset of epigenomes here.
Lastly, an additional 16 histone modification marks on average were profiled across 7
deeply-covered cell types (Fig. 2j).

We jointly processed and analyzed our 111 reference epigenomes with 16 additional
epigenomes from ENCODE?®23, We generated genome-wide normalized coverage tracks,
peaks and broad enriched domains for ChIP-seq and DNase-seq’-32, normalized gene
expression values for RNA-seq33, and fractional methylation levels for each CpG
site31:34-35 We computed several quality control measures (Fig. 2, Table S1) including:
number of distinct uniquely mapped reads; the fraction of mapped reads overlapping areas
of enrichment!8:36: genome-wide strand cross-correlation3” (Fig. 2e-g); inter-replicate
correlation; multidimensional scaling of datasets from different production centers (Fig. S1);
correlation across pairs of datasets (Extended Data 1e); consistency between assays carried
out in multiple mapping centers (Table S2); and read mapping quality for bisulfite-treated
reads38-39, Outlier datasets were flagged, removed or replaced, and lower-coverage datasets
were combined when possible (See Methods).

The resulting datasets provide global views of the epigenomic landscape in a wide range of
human cell and tissue types (Fig. 3), including: the largest and most diverse collection to
date of chromatin state annotations (Fig. 3a); some of the deepest surveys of individual cell
types using diverse epigenomic assays (with 21-31 distinct epigenomic marks for seven
deeply-profiled epigenomes, Fig. 3b); and some of the broadest surveys of individual
epigenomic marks across multiple cell types (Fig. 3c). These datasets enable genome-wide
epigenomic analyses across multiple dimensions (Fig. 3d). All datasets, standards and
protocols are publicly available from web portals, linked from the main consortium
homepage (http://www.roadmapepigenomics.org), including the supplementary website for
this paper (http://compbio.mit.edu/roadmap).

2. Chromatin states display highly specific DNA methylation and accessibility

As a foundation for integrative analysis, we learned a common set of combinatorial
chromatin states*0 across all 111 epigenomes, plus 16 additional epigenomes generated by
the ENCODE project (127 epigenomes in total), using the core set of five histone
modification marks that were common to all. We learned a 15-state model (Fig. 4a,b, Table
S3a) consisting of 8 active states and 7 repressed states (Fig. 4c) that were recurrently
recovered (Extended Data 2a), and showed distinct levels of DNA methylation (Fig. 4d),
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DNA accessibility (Fig. 4e), regulator binding (Extended Data 2b, Fig. S2), and
evolutionary conservation (Fig. 4f, Fig. S3). The active states (associated with expressed
genes) consist of active TSS-proximal promoter states (TssA, TsSAFINnk), a transcribed state
at the 5” and 3’ end of genes showing both promoter and enhancer signatures (TxFInk),
actively-transcribed states (Tx, TxXWKk), enhancer states (Enh, EnhG), and a state associated
with zinc finger protein genes (ZNF/Rpts). The inactive states consist of constitutive
heterochromatin (Het), bivalent regulatory states (TssBiv, BivFInk, EnhBiv), repressed
Polycomb states (ReprPC, ReprPCWKk), and a quiescent state (Quies) which covers on
average 68% of each reference epigenome. Enhancer and promoter states cover
approximately 5% of each reference epigenome on average, and show enrichment for
evolutionarily-conserved non-coding regions*1.

To capture the greater complexity afforded by additional marks, we learned additional
chromatin state models in subsets of cell types. In the subset of 98 reference epigenomes
that also included H3K27ac data, we also learned an 18-state model (Extended Data 2c,
Table S3b), enabling us to distinguish enhancer states containing strong H3K27ac signal
(EnhAl, EnhA2), which showed higher DNA accessibility (Extended Data 3a), lower
methylation (Extended Data 3b), and higher TF binding (Extended Data 2c) than enhancers
lacking H3K27ac. In a subset of 7 epigenomes with an average of 24 epigenomic marks, we
learned separate 50-state chromatin state models based on all the available histone marks
and DNA accessibility in each epigenome (Fig. S4), which additionally distinguished: a
DNase-state with distinct TF binding enrichments (Fig. S4f), including for mediator/cohesin
components*? (even though CTCF was not included as an input track to learn the model)
and repressor NRSF; transcribed states showing H3K79mel and H3K79me2 and associated
with the 5° ends of genes and introns; and a large number of putative regulatory and
neighboring regions showing diverse acetylation marks even in absence of the H3K4
methylation signatures characteristic of enhancer and promoter regions.

We used chromatin states to study the relationship between histone modification patterns,
RNA expression levels, DNA methylation, and DNA accessibility. Consistent with previous
studies!®23:43-44 \ve found low DNA methylation and high accessibility in promoter states,
high DNA methylation and low accessibility in transcribed states, and intermediate DNA
methylation and accessibility in enhancer states (Fig. 4d-e, Extended Data 3a,b). These
differences in methylation level were stronger for higher-expression genes than for lower-
expression genes, leading to a more pronounced DNA methylation profile (Extended Data
3c, Fig. S5, Table S4f). Genes proximal to H3K27ac-marked enhancers show significantly
higher expression levels (Extended Data 3d), and conversely, higher-expression genes were
significantly more likely to neighbor H3K27ac-containing enhancers (Extended Data 3e).

Chromatin states sometimes captured differences in RNA expression that are missed by
DNA methylation or accessibility. For example, TxFInk, Enh, TssBiv, and BivFInk states
show similar distributions of DNA accessibility but widely differing enrichments for
expressed genes (Fig. 4c,d). Enh and ReprPC states show intermediate DNA methylation,
but very different distributions of DNA accessibility and different enrichments for expressed
genes (Fig. 4c-e). Lack of DNA methylation, typically associated with de-repression, is
associated with both the active TssA promoter state and the bivalent TssBiv and BivFInk
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states. Bivalent states TssBiv and BivFInk also showed overall lower DNA methylation and
higher DNA accessibility than enhancer states Enh and EnhG and binding by both activating
and repressive regulatory factors (Extended Data 2b). These results also held for alternate
methylation measurement platforms (Extended Data 4a-c), and for the 18-state chromatin
state model (Extended Data 4d-e). Overall, these results highlight the complex relationship
between DNA methylation, DNA accessibility, and RNA transcription and the value of
interpreting DNA methylation and DNA accessibility in the context of integrated chromatin
states that better distinguish active and repressed regions.

Given the intermediate methylation levels of tissue-specific enhancer regions, we directly
annotated intermediate methylation (IM) regions, based on the complementary DNA
methylation assays of MeDIP3145 and MRE-Seq?2:39 in 19 reference epigenomes and 6
additional samples which had both assays available6. This resulted in more than 18,000 IM
regions, showing 57% CpG methylation on average, that are strongly enriched in genes,
enhancer chromatin states (EnhBiv, EnhG, Enh), and evolutionarily-conserved regions. IM
was associated with intermediate levels of active histone modification and DNasel
hypersensitivity. Near TSSs, IM correlated with intermediate gene expression, and in exons
it was associated with an intermediate level of exon inclusion*®. IM signatures were equally
strong within tissue samples, peripheral blood, and purified cell types, suggesting that IM is
not simply reflecting differential methylation between cell types, but likely reflects a stable
state of cell-to-cell variability within a population of cells of the same type.

3. Methylation and mark differences across differentiation and cell types

We next studied the relationship between DNA methylation dynamics and histone
modifications across 95 epigenomes with methylation data, extending previous studies that
focused on individual lineages®#7-49, We found that the distribution of methylation levels
for CpGs in some chromatin states varied significantly across tissue and cell types (Fig. 4g,
Extended Data 4f, Table S4a). For example: TssAFInk states are largely unmethylated in
terminally-differentiated cells and tissues, but frequently methylated for several pluripotent
and ESC-derived cells (Bonferroni-corrected F-test p<.01); Enh and EnhG states are highly
methylated in pluripotent cells, but show a broader distribution of intermediate methylation
in differentiated cells and tissues (p<.01); EnhBiv states are unmethylated in most primary
cells and tissues, but show a broader distribution of methylation levels in pluripotent cells,
possibly reflecting cell-to-cell heterogeneity (p<.01); the repressed state ReprPC shows
varying methylation levels among epigenomes; the Het state showed high levels of
methylation in almost all epigenomes.

We also studied DNA methylation changes in three different systems. First, we studied
DNA methylation changes during Embryonic Stem Cell (ESC) differentiation?3-20, We
identified regions that lost methylation (Differentially Methylated Regions, DMRs, Table
S4c) upon differentiation of ESCs (E003) to mesodermal (E013), endodermal (E011), and
ectodermal (E012) lineages (Fig. 4h). Each lineage showed a largely distinct set of
~2200-4400 DMRs, that are enriched for distinct transcription factor binding events (Fig.
4h, right column)®1, consistent with their distinct developmental regulation. Upon further
differentiation, ectodermal DMRs remained hypomethylated in three neural progenitor
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populations 52, despite the usage of distinct hESC lines, and mesodermal and endodermal
DMRs remained highly methylated (Fig. 4h), highlighting the lineage-specific nature of
changes in DNA methylation during early differentiation4:3,

Second, we studied DNA methylation changes associated with breast epithelia
differentiation®4. Ectoderm to breast epithelia differentiation was dominated by DNA
methylation loss (1.3M CpGs lost methylation vs. 0.2M gained), consistent with other
primary somatic cell types®C. Distinguishing luminal vs. myoepithelial cells by flow sorting,
and comparing a set of DMRs (Table S4d) defined specifically in epithelial lineages**, we
found differences in nearest-gene enrichments®* (mammary gland epithelium development
vs. actin filament bundle, respectively), and differences in motif density (luminal DMRs
show greater motif density for 51 TFs and lower for 0 TFs). Proximal DMRs were highly
associated with increased transcription, consistent with regulatory element de-repression
associated with DNA methylation loss.

Third, we asked whether tissue environment or developmental origin is the primary driving
factor in DNA methylation differences observed in more differentiated cell types®, using
epigenomes from skin cell types (keratinocytes E057/058, melanocytes EO59/E061, and
fibroblasts E055/056) that share a common tissue environment but possess distinct
embryonic origins (surface ectoderm, neural crest, and mesoderm, respectively). We found
that despite the shared tissue environment, these three cell types displayed lower overlap in
their DNA methylation and histone modification signatures, and instead were more similar
to other cell types with a shared developmental origin. Using a set of DMRs (Table S4e)
defined specifically in the skin cell types®®, keratinocytes shared 1392 (18%) of DMRs with
surface ectoderm-derived breast cell types (Hypergeometric P-value<1075), and 97% of
these were hypomethylated. These shared DMRs were enriched for regulatory elements and
cell-type relevant genes, suggesting a common gene regulatory network and shared
signaling pathways and structural components®®. These results suggest that common
developmental origin can be a primary determinant of global DNA methylation patterns, and
sometimes supersedes the immediate tissue environment in which they are found.

In addition, we examined coordinated changes in chromatin marks associated with cellular
differentiation®®. We found that enhancers showing coordinated differences in multiple
marks are enriched near genes showing common tissue-specific expression, and common
knockout phenotypes based on their mouse orthologs. For example, enhancers that showed
higher H3K27ac and H3K4me3 (Fig. 4i, Cluster C2) in left ventricle (E095) relative to their
ESCs (E003) and mesendodermal (E004) precursor lineages were enriched for heart
ventricle expression and cardiac and muscle phenotypes in their mouse orthologs.

4. Epigenomic dynamics reveal most variable states and distinct chromosomal domains

We next sought to characterize the overall variability of each chromatin state across the full
range of cell and tissue types. We first evaluated the observed consistency of each chromatin
state at any given genomic position across all 127 epigenomes (Fig. 5a). We found that
H3K4mel-associated states (including TxFInk, EnhG, EnhBiv, Enh) are the most tissue-
specific, with 90% of instances present in at most 5-10 epigenomes, followed by bivalent
promoters (TssBiv), and repressed states (ReprPC, Het). In contrast, active promoters

Nature. Author manuscript; available in PMC 2015 August 19.



1duosnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

etal.

Page 8

(TssA) and transcribed states (Tx, TXWK) were highly constitutive, with 90% of regions
marked in as many as 60-75 epigenomes, and quiescent regions (Quies) were the most
constitutive, with 90% of Quies regions consistently marked as Quies in most of the 127
epigenomes. These results held in the 18-state chromatin state model (Extended Data 5a),
and in the subset of highest-quality epigenomes (Fig. S6a,b).

Adjusting for the overall coverage and variability of each state, we then studied differences
in the relative fraction of the genome annotated to each chromatin state between cell types
(Fig. 5b, Extended Data 5b, S6¢c-€). Immune cells show a consistent and previously
unrecognized depletion of active and bivalent promoters (TssA, TssBiv) and weakly
transcribed states (TxWKk), which may be related to their capacity to generate sub-lineages,
replicate, and enter quiescence (reversible GO phase). ESCs and iPSCs show enrichment of
TssBiv, consistent with previous studies®’, and a depletion of ReprPCWk (defined by weak
H3K27me3), possibly due to restriction of H3K27me3-establishing Polycomb proteins to
promoter regions. Surprisingly, IMR90 fetal lung fibroblasts, which were previously used as
a somatic reference cell typeS8 are in fact a strong outlier in multiple ways, showing higher
levels of Het, ReprPC and EnhG, and a depletion of Quies chromatin states.

We next studied the relative frequency with which different chromatin states switch to other
states across different tissues and cell types (Fig. 5c), relative to switching across samples of
the same tissue or cell type (Fig. S7a,b). This revealed a relative switching enrichment
between active states and repressed states, consistent with activation and repression of
regulatory regions. The only exception was significant switching between transcribed states
and active promoter and enhancer states, possibly due to alternative usage of promoters?2
and enhancers® embedded within transcribed elements. These chromatin state switching
properties were also found in the 18-state model incorporating H3K27ac marks (Extended
Data 5c) and in the subset of 16 ENCODE reference epigenomes using both models (Fig.
S7c¢,d). We found that enhancers and promoters maintained their identity, except for a small
subset of regions switching between enhancer signatures and promoter signatures®,
Luciferase assays showed that these regions indeed possess both enhancer and promoter
activity®0, consistent with their epigenomic marks.

While our chromatin state analysis focused at the nucleosome resolution (200-bp), we also
studied the overall co-occurrence of chromatin states across tissues at a larger 2Mb
resolution to recognize higher-order properties (Fig. 5d). This analysis revealed that 2Mb
segments rich in active enhancers are constrained to approximately 40% of the genome
(clusters c1-c6), with the remainder marked predominantly by inactive regions (c7-c11),
consistent with the identification of two large chromatin conformation compartments12:62,
However, both compartments can be further subdivided by their chromatin state
composition: inactive regions separate into predominantly quiescent (40%; c9, c11),
heterochromatic (10%, c10), or bivalent (10%, c7-c8) marked regions; and active regions
separate into regions rich in multiple marks (c3 and ¢6, showing a large diversity of active,
ReprPC, and bivalent states), weakly-transcribed regions (c5, showing primarily Enh and
TXWKk states), and regions of intermediate activity (c1, c2, c4). As these subdivisions are
based on average state density across a large diversity of cell types, we expected them to be
stable chromosomal features, and indeed, they showed strong differences in gene density,
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CpG island occupancy, lamina association2-63 and cytogenetic bands (Fig. 5d, Extended
Data 5d).

5. Relationships between marks and lineages reveal expanded epigenomic space

We next used epigenome similarity to study the relationship between tissues and cell types,
based on the similarity of diverse histone modification marks evaluated in their relevant
chromatin states. Hierarchical clustering of our 111 reference epigenomes using H3K4mel
signal in Enh (Fig. 6a) showed consistent grouping of biologically-similar cell and tissue
types, including ESCs, iPSCs, T-cells, B-cells, adult brain, fetal brain, digestive, smooth
muscle, and heart. We also found several initially surprising but biologically-meaningful
groupings: fetal brain and germinal matrix samples clustered with neural stem cells rather
than adult brain, consistent with fetal neural stem cell proliferation; many ES-derived cells
clustered with ESCs and iPS cells rather than the corresponding tissues, suggesting that
those are still closer to pluripotent states than corresponding somatic states; adult and fetal
thymus samples clustered with T-cells rather than other tissues, consistent with roles in T-
cell maturation and immunity. Several marks successfully recovered these biological
groupings when evaluated in their relevant chromatin states (Fig. S8), including H3K4mel
in TssA, H3K27me3 in ReprPC state, and H3K27ac in Enh states, suggesting that the signal
of each mark in relevant chromatin states is highly indicative of cell type and tissue identity.
These alternative clusterings also showed some differences; for example, H3K4me3 in TssA
states grouped several fetal samples together with each other, in a cluster sister to ESCs and
iPSCs, rather than in separate tissue groups.

We applied this approach to compare the Roadmap Epigenomics reference epigenomes with
the 16 ENCODE 2012 samples with broad mark coverage (Extended Data 6). We found that
H3K4mel signal in enhancer chromatin states correctly groups primary cells from similar
tissues across the two projects, emphasizing the robustness of our annotations and signal
tracks across projects (Extended Data 6a). For example, epidermal keratinocytes NHEK
group with other keratinocytes, mammary epithelial cells HMEC with other skin cells, and
skeletal muscle myoblasts HSMM and osteoblasts with bone marrow. Some cancer cell lines
also grouped with corresponding primary tissues, including hepatocellular carcinoma
HepG2 with liver tissue, primary lung fibroblasts NHLF with the IMR90 lung fibroblast cell
line, and T cell leukemia Dnd41 with Thymus, while in other cases cancerous cell lines
grouped together, e.g. HeLa-S3 cervical carcinoma with A549 lung carcinoma. Similarly,
H3K27me3 signal in Polycomb-repressed states grouped five immortalized cell lines
together (Extended Data 6c¢), despite their T-cell, Lung, Cervical, Leukemia, and
Hepatocellular origins'284. This larger trees spanning ENCODE 2012 and Roadmap
Epigenomics also highlighted the large number of lineages not previously covered by
reference epigenomes, including brain, muscle, smooth muscle, heart, mucosa, digestive
tract, and fetal tissues.

To understand the relationship among different tissue/cell samples beyond the constraints of
a tree representation, we also studied the full similarity matrix of each mark in relevant
chromatin states (Fig. S9) and also visualized the principal dimensions of epigenomic
variation using multidimensional scaling (MDS) analysis (Fig. S10). The pairwise similarity
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matrices of different marks were most effective in distinguishing different subsets of the
samples, with H3K4mel in Enh primarily capturing immune cell similarities, and
H3K27me3 in ReprPC capturing pluripotent cell similarities (Fig. S9). In the MDS analysis,
the first four dimensions of variation for most marks separated several major sample groups
(Extended Data 7a-i), with some subtle differences between marks. For example, pluripotent
cells and immune cells were two strong outliers in the first two dimensions of H3K4mel
variation in Enh (Fig. 6b), but H3K27me3 in ReprPC showed more uniform spreading of
reference epigenomes (Fig. 6¢), consistent with the coverage distributions of immune and
pluripotent cells for the corresponding chromatin states (Fig. 5b). For most marks, the first
five dimensions captured most of the variance, with additional dimensions capturing only
4-6% for each mark (Extended Data 7).

6. Epigenome dynamics reveal enhancer modules and their putative regulators

We next exploited the dynamics of epigenomic modifications at cis-regulatory elements to
gain insights into gene regulation. We focused on 2.3M regions (12.6% of the genome)
showing DNA accessibility in any reference epigenome and regulatory (promoter or
enhancer) chromatin states, considering enhancer-only, promoter-only, or enhancer-
promoter alternating states separately (Fig. S11). We clustered enhancer-only elements
(Enh, EnhBiv, EnhG) into 226 enhancer modules of coordinated activity (Fig. 7a),
promoter-only elements into 82 promoter modules (Fig. S11a) and promoter/enhancer
‘dyadic’ elements into 129 modules (Fig. S11b), enabling us to distinguish ubiquitously-
active, lineage-restricted, and tissue-specific modules for each group. Focusing on the
enhancer-only clusters, we found that the neighboring genes of enhancers in the same
module showed significant enrichment for common functions®® (Fig. 7b, Fig. S11c,d),
common genotype-phenotype associations®6 (Fig. 7c), and common expression in their
mouse orthologs (Fig. S12), each annotation type showing strong consistency with the
known biology of the corresponding tissues. For example, stem-cell enhancers are enriched
near developmental patterning genes, immune cell enhancers near immune response genes,
and brain enhancers near learning and memory genes (Fig. 7b). Sub-clustering of individual
modules continued to reveal distinct enrichment patterns of individual sub-modules (Fig.
Sl1le), suggesting increased diversity of regulatory processes beyond the 226 modules used
here.

The genome sequence of enhancers in the same module showed substantial enrichment for
sequence motifs®7 associated with diverse transcription factors (Fig. S13a). We found 84
significantly enriched motifs in 101 modules (Extended Data 8), indicating that enhancer
modules likely represent co-regulated sets, and proposing candidate upstream regulators for
nearly half of all modules. Direct application of the same approach and thresholds to the
putative regulatory regions annotated in each of the 111 reference epigenomes led to
significant enrichment for only 10 enriched motifs in 15 reference epigenomes (Fig. S13b,c)
of which 8 are blood samples, and focusing on the regions unique to each of the 17 tissue
groups (Fig. 2b) only led to 19 enriched motifs in 10 tissue groups (Fig. S13d,e),
emphasizing the importance of studying regulatory motif enrichments at the level of
enhancer modules.
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We next sought to distinguish likely activator and repressor motifs, by identifying regulators
whose expression pattern across cell/tissue types shows a strong (positive or negative)
correlation with the activity of enhancers in the enriched module®. We focused on the 40
most strongly expression-correlated regulators (Extended Data 9a), and used the module-
level motif enrichments to link each regulator to the cell/tissue types that define each
module (Fig. 8). We found that many of the inferred links correspond to known regulatory
relationships, including: OCT4 (also known as POU5F1) in pluripotent cells, HNF1B and
HNF4AL in liver and other digestive tissues, RFX4 in neurosphere and neuronal cells, and
MEF2D in muscle. The most enriched regulators showed primarily positive correlations,
suggesting they function as transcriptional activators, while a subset of factors showed a
negative correlation, with the factor expressed in the lineages where its motif showed
enhancer depletion, suggesting a repressive role. For example, REST (also known as
NRSF), a known repressor of neuronal lineages was least expressed in neuronal tissues,
where its motif was most enriched in enhancers, and a similar signature was found for
ZBTB1B, a known repressor of myogenesis and brain development.

Regulatory motifs predicted to be drivers of enhancer activity patterns showed significant
enrichment in tissue-specific high-resolution (6bp-40bp) DNase digital genomic footprints
(DGF)® in matching cell types (Extended Data 9b, Table S5b), providing DNA accessibility
evidence that the motifs are indeed bound in these cell types. In addition, they showed
positional bias relative to both the center of DGF locations, and relative to their boundaries
(Extended Data 10), a property not found for shuffled motifs89. These positional biases were
highly tissue- and cell type-specific for most activating factors (Extended Data 9c),
including POUSF in iPSCs, MEF2D in heart, HNF1B in Gl tissues, BHLH in brain, SPI1 in
immune cells, and MEF2 in heart and muscle, in each case matching the tissues that showed
the highest enrichment. In contrast, for repressive factors and CTCF, positional biases were
found in large numbers of tissues, even when the motifs were not enriched in active
enhancers. For example, REST (NRSF) was positionally biased in DGF sites in nearly all
tissues except brain (Extended Data 9c), even though it was only enriched in active
enhancers in brain (Extended Data 9a), consistent with widespread repressive binding in
non-brain tissues.

Overall, these enhancer modules, motif enrichments, and regulatory predictions provide an
unbiased map that can help guide studies of candidate master regulators for fetal and adult
lineage establishment and cell type identity.

7. Impact of DNA sequence and genetic variation on epigenomic state

We next studied the impact of primary DNA sequence on the epigenomic landscape, across
genomic regions and between the two alleles of a given individual. First, we evaluated
whether histone modifications and DNA methylation can be predicted by the underlying
DNA sequence using DNA motifs for TFs expressed in ESCs and four ES-derived cell
types. Using the area under the receiver operating curve (AUROC), we found between 71%
predictive power for H3K4mel peaks and 98% for H3K4me3 peaks (average of 85% across
six marks and methylation-depleted regions)’?. The most predictive motifs were those of
factors associated with specific histone modifications or specific cell-types, and were found
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within peak regions enriched for chromatin marks and at their boundaries. As an example of
a boundary enrichment, H3K4me3 peaks were flanked by motifs consisting of a continuous
stretch of A and T followed by a G and C cap, which may play a role in nucleosome
positioning or recruiting promoter-associated TFs, such as nuclear receptors. Enhancer and
promoter-predictive motifs were enriched in high-resolution DNase hypersensitive sites
(Table S5a), suggesting they correspond to TF-bound sequences.

Second, we studied how sequence variants between the two alleles of the same individual
can lead to allelic biases in histone modifications, DNA methylation, and transcript levels.
We reconstructed chromosome-spanning haplotypes for ESCs, four ESC-derived cell lines’?
and 20 tissue samples®0, and we resolved allele-specific activity and structure for each. We
found widespread allelic bias in both transcript levels and epigenomic marks for each
epigenome. For example, 24% of all testable genes that contain exonic variants demonstrate
allelic transcription in one or more ESC or ESC-derived cell lineages, and the majority of
these genes also exhibit allelic epigenomic modifications in promoters (71%) and Hi-C-
linked enhancers (69%)’1. Similarly, as many as 11% of the testable enhancers display
allelic bias in histone modification H3K27ac in the 20 tissue samples with allele-resolved
transcription and chromatin states®0. Allelic histone acetylation at enhancers is highly
specific to individual genotypes, and often occurs near sequence variants that alter
transcription factor binding, suggesting cis-acting sequence drivers60.71,

8. Complex trait variants are enriched in diverse epigenomic marks

We next used our tissue-specific epigenomic datasets to study the regulatory annotation
enrichments of phenotype-associated variants from genome-wide association studies
(GWAS) of diverse traits and disorders. Previous studies showed that disease-associated
variants are enriched in specific regulatory chromatin states®, evolutionarily-conserved
elements’2, histone marks’3, and accessible regionsl4. We expanded these analyses using
the diversity of primary tissues surveyed by our epigenomic maps, applied to a compendium
of disease-associated variants from the NHGRI GWAS catalog’4. We intersected the set of
variants identified in each curated study with peaks of H3K4mel, H3K4me3, H3K36me3,
H3K27me3, and H3K9me3 across each of the 127 epigenomes, and H3K27ac, H3K9ac, and
DNase when available (Extended Data 11-12, Table S6), and we searched for significant
enrichment in their overlap relative to what would be expected given the NHGRI GWAS
catalog as background (see Methods).

For enhancer-associated H3K4me1 peaks, we found 58 studies (Fig. 9a, Extended Data 11a)
with significant enrichments in at least one tissue at 2% FDR (Hypergeometric P<1073-9).
Upon manual curation, the enriched cell types were consistent with our current
understanding of disease-relevant tissues for the vast majority of cases. For example, diverse
immune traits were enriched in immune cell enhancers, including rheumatoid arthritis, celiac
disease, type 1 diabetes, systemic lupus erythematosus, chronic lymphocytic leukemia,
allergy, multiple sclerosis, and Graves’ disease’®-81. A large number of metabolic trait
variants are enriched in liver enhancer marks, including LDL, HDL, total cholesterol, lipid
metabolism phenotypes, and metabolite levels82-83, Fasting glucose was most enriched for
pancreatic islet enhancer marks, and insulin-like growth factors in placenta, consistent with
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their endocrine regulatory roles®4-85, Several cardiac traits were enriched in heart tissue
enhancers, including the PR heart repolarization interval, blood pressure, and aortic root
size. Interestingly, inflammatory bowel disease and ulcerative colitis variants show
enrichment in both immune and gastrointestinal enhancer marks, suggesting dysregulation
of both organs may underlie disease predisposition. Both attention deficit hyperactivity
disorder and adiponectin levels were enriched in brain regions, consistent with causal roles
in brain dysregulation86-87_ In contrast, late-onset Alzheimer's disease variants were
enriched in immune cell enhancers, rather than brain, consistent with recent evidence of a
possible immune and inflammatory basis88-90,

For active enhancer-associated H3K27ac peaks (available in 98 cell types), we found a
similar number of enriched studies (47 at 2% FDR, Extended Data 12b), but for promoter-
associated H3K4me3 and H3K9ac peaks, we found only 25 and 18 enriched studies,
respectively (Extended Data 12a,b), suggesting that enhancer-associated marks are more
informative for tissue-specific disease enrichments than promoter-associated marks. For
DNase peaks, we only found 9 enriched studies (Extended Data 12c), partly because they
were only available in 53 reference epigenomes (restricting H3K4mel to the same 53
resulted in 25 enriched studies, Table S6), and possibly due to lack of distinction between
enhancer and promoter regions. For transcription-associated H3K36me3, we found 15
enriched studies (Extended Data 12d), indicating that these help capture additional
biologically-meaningful variants outside annotated promoter and enhancer regions. In
contrast, we found no enriched study for either Polycomb-associated H3K27me3 peaks or
heterochromatin-associated H3K9me3 peaks (Extended Data 12e,f). These results indicate
that enhancer-associated marks have the greatest ability to distinguish tissue-specific
enrichments for regulatory regions, but promoter-, open-chromatin-, and transcription-
association marks are also significantly enriched, indicating that disease variants affect a
wide range of processes.

These results illustrate that the epigenomic annotations provided here across a broad range
of primary tissues and cells, will be of great utility for interpreting genetic changes
associated with complex traits. We make all these epigenomic annotations of GWAS regions
publicly searchable and browsable through the Roadmap Epigenome Browser®! and an
updated version of the HaploReg database2.

Discussion

The Reference Epigenome Mapping Consortium has been working to improve epigenomic
assays, generate reference epigenomic maps, and use them to understand gene regulation,
differentiation, reprogramming, and human disease (see http://
www.roadmapepigenomics.org/publications). This paper constitutes the first integrative
analysis of all the reference epigenomes generated by the consortium, and represents an
early component of the International Human Epigenome Consortium (http://ihec-
epigenomes.org/) which seeks to extend such epigenomic maps to more than a thousand
reference human epigenomes®3,
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In this paper, we use this resource to gain insights into the epigenomic landscape, its
dynamics across cell types, tissues, and development, and its regulatory circuitry. We find
that combinations of histone modification marks are highly informative of the methylation
and accessibility levels of different genomic regions, while the converse is not always true.
Genomic regions vary greatly in their association with active marks, with approximately 5%
of each epigenome marked by enhancer or promoter signatures on average, which show
increased association with expressed genes, and increased evolutionary conservation, while
two thirds of each reference epigenome on average are quiescent, and enriched in gene-poor
and nuclear lamina-associated stably-repressed regions. Even though promoter and
transcription associated marks are less dynamic than enhancer mark, each mark recovers
biologically-meaningful cell type groupings when evaluated in relevant chromatin states,
allowing a data-driven approach to learn relationships between cell types, tissues, and
lineages. The coordinated activity patterns of enhancer regions enable us to cluster them into
co-regulated modules, which are proximal to genes with common functions and phenotypes
and enriched in regulatory motifs, enabling us to predict candidate upstream regulators.

We also demonstrate the usefulness of the resulting regulatory annotations for interpreting
human genetic variation and disease. In an unbiased sampling across the GWAS catalog, we
find that genetic variants associated with complex traits are highly enriched in epigenomic
annotations of trait-relevant tissues, providing mechanistic insights on the likely relevant
cell types underlying genome-wide significant loci. The GWAS enrichments in our analysis
were strongest for enhancer-associated marks, consistent with their highly tissue-specific
nature. However, promoter-associated and transcription-associated marks were also
enriched, implicating several gene-regulatory levels as underlying genetic variants
associated with complex traits. These results suggest that our datasets will be valuable in the
study of human disease, as several companion papers explore in the context of autoimmune
disorders?4-95, Alzheimer's Disease®0:96-97 and cancer?8-99,

Overall, our epigenomic datasets, regulatory annotations, and integrative analyses have
resulted in the most comprehensive map of the human epigenomic landscape to date across
the largest collection of primary cells and tissues. We expect this map will be of broad use to
the scientific and biomedical communities, for studies of genome interpretation, gene
regulation, cellular differentiation, genome evolution, genetic variation, and human disease.

Online Methods

1. Data matrix, primary analysis and processing, quality control

All genome-wide maps of histone modifications, DNA accessibility, DNA methylation and
RNA expression are freely available online. Raw sequencing data deposited at the Short
Read Archive or dbGAP is linked from http://www.nchi.nlm.nih.gov/geo/roadmap/
epigenomics/. All primary processed data (including mapped reads) for profiling
experiments are contained within Release 9 of the Human Epigenome Atlas (http://
genboree.org/EdaccData/Release-9/). Complete metadata associated with each dataset in this
collection is archived at GEO and describes samples, assays, data processing details and
quality metrics collected for each profiling experiment.
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Release 9 of the compendium contains uniformly pre-processed and mapped data from
multiple profiling experiments (technical and biological replicates from multiple individuals
and/or datasets from multiple centers). In order to reduce redundancy, improve data quality
and achieve uniformity required for our integrative analyses, experiments were subjected to
additional processing to obtain comprehensive data for 111 consolidated epigenomes (See
methods sections below for additional details). Numeric epigenome identifiers EIDs (e.g.
E001) and mnemonics for epigenome names were assigned for each of the consolidated
epigenomes. Table S1 (QCSummary sheet) summarizes the mapping of the individual
Release 9 samples to the consolidated epigenome IDs. Key metadata such as age, sex,
anatomy, epigenome class (see below), ethnicity and solid/liquid status were summarized for
the consolidated epigenomes. Datasets corresponding to 16 cell-lines from the ENCODE
project (with epigenome IDs ranging from E114-E129) were also used in the integrative
analyses23. All datasets from the 127 consolidated epigenomes were subjected to
processing filters to ensure uniformity in terms of read length based mappability and
sequencing depth as described below.

Each of the 127 epigenomes included consolidated ChIP-seq datasets for a core set of
histone modifications - H3K4mel, H3K4me3, H3K27me3, H3K36me3, H3K9me3 as well
as a corresponding whole-cell extract sequenced control. 98 epigenomes and 62 epigenomes
had consolidated H3K27ac and H3K9ac histone ChlIP-seq datasets respectively. A smaller
subset of epigenomes had ChlP-seq datasets for additional histone marks, giving a total of
1319 consolidated datasets (Table S1, QCSummary sheet). 53 epigenomes had DNA
accessibility (DNase-seq) datasets. 56 epigenomes had mMRNA-seq gene expression data. For
the 127 consolidated epigenomes, a total of 104 DNA methylation datasets across 95
epigenomes involved either bisulfite treatment (WGBS or RRBS assays) or a combination
of MeDIP-seq and MRE-seq assays. In addition to the 1936 datasets analyzed here across
111 reference epigenomes, the NIH Roadmap Epigenomics Project has generated an
additional 869 genome-wide datasets, linked from GEO, the Human Epigenome Atlas, and
NCBI, and also publicly and freely available.

1.1 RNA-seq uniform processing and quantification for consolidated
epigenomes—We uniformly reprocessed mRNA-seq datasets from 56 reference
epigenomes that had RNA-seq data. For RNA-seq analysis, after library construction®*, we
aligned 75bp or 100bp long reads using the BWA aligner, and generated read coverage
profiles separately for positive and negative strand strand-specific libraries. We used several
QC metrics for the RNA-seq library, including intron-exon ratio, intergenic reads fraction,
strand specificity (for stranded RNA-seq protocols), 3’-5’ bias, GC bias, and RPKM
discovery rate (Table S1, RNAseqQCSummary sheet). We quantified exon and gene
expression using a modified RPKM measure8, whereby we used the total number of reads
aligned into coding exons for the normalization factor in RPKM calculations, and excluded
reads from the mitochondrial genome, reads falling into genes coding for ribosomal
proteins, and reads falling into top 0.5% expressed exons. RPKM for a gene was calculated
using the total number of reads aligned into all merged exons for a gene normalized by total
exonic length. The resulting files contain RPKM values for all annotated exons and coding
and non-coding genes (excluding ribosomal genes), as well as introns (Gencode V10
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annotations were used). We also report the coordinates of all significant intergenic RNA-seq
contigs not overlapping the annotated genes.

1.2 ChIP-seq and DNase-seq uniform reprocessing for consolidated
epigenomes

a. Read mapping: Sequenced datasets from the Release 9 of the Epigenome Atlas involved
mapping a total of 150.21 billion sequencing reads onto hg19 assembly of the human
genome using the PASH read mapper34. These read mappings were used (except for RNA-
seq data sets which were mapped as described above) for constructing the 111 consolidated
epigenomes. Only uniquely mapping reads were retained and multiply-mapping reads were
filtered out. BED files containing the mapped reads were obtained from http://genboree.org/
EdaccData/Release-9/. Alignment parameters for each assay type and experiment are
specified in the associated publicly accessible Release 9 metadata archived at GEO. For the
ENCODE datasets, BAM files containing mapped reads were downloaded from http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/. Only uniquely-mapping reads
were retained and multiply-mapping reads were discarded. Replicates were pooled.

b. Mappability filtering, pooling and subsampling: The raw Release 9 read alignment
files contain reads that are pre-extended to 200 bp. However, there were significant
differences in the original read lengths across the Release 9 raw datasets reflecting
differences between centers and changes of sequencing technology during the course of the
project (36 bp, 50 bp, 76 bp and 100 bp). To avoid artificial differences due to mappability,
for each consolidated dataset, the raw mapped reads were uniformly truncated to 36 bp and
then refiltered using a 36 bp custom mappability track to only retain reads that map to
positions (taking strand into account) at which the corresponding 36-mers starting at those
positions are unique in the genome. Filtered datasets were then merged across technical/
biological replicates, and where necessary to obtain a single consolidated sample for every
histone mark or DNase-seq in each standardized epigenome. Table S1. summarizes the
mapping of the individual Release 9 primary data sample files to the consolidated data files
corresponding to the 127 consolidated reference epigenomes.

To avoid artificial differences in signal strength due to differences in sequencing depth, all
consolidated histone mark datasets (except the additional histone marks the 7 deeply
profiled epigenomes, Fig. 2j) were uniformly subsampled to a maximum depth of 30
million reads (the median read depth over all consolidated samples). For the 7 deeply-
profiled reference epigenomes (Fig. 2j), histone mark datasets were subsampled to a
maximum of 45 million reads (median depth). The consolidated DNase-seq datasets were
subsampled to a maximum depth of 50 million reads (median depth). These uniformly
subsampled datasets were then used for all further processing steps (peak calling, signal
coverage tracks, chromatin states).

c. Peak Calling: For the histone ChiP-seq data, the MACSv2.0.10 peak caller was used to

compare ChlP-seq signal to a corresponding whole cell extract (WCE) sequenced control to
identify narrow regions of enrichment (peaks) that pass a Poisson p-value threshold 0.01,
broad domains that pass a broad-peak Poisson p-value of 0.1 and gapped peaks which are
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broad domains (p < 0.1) that include at least one narrow peak (p < 0.01) (https://github.com/
taoliu/MACS/)32. Fragment lengths for each dataset were pre-estimated using strand cross-
correlation analysis and the SPP peak caller package (https://code.google.com/p/
phantompeakqualtools/)3” and these fragment length estimates were explicitly used as
parameters in the MACS2 program (--shift-size=fragment_length/2).

For DNase-seq data, we used two methods to identify DNasel-accessible sites. First, the
Hotspot algorithm was used to identify fixed-size (150bp) DNase hypersensitive sites, and
more general-sized regions of DNA accessibility (hotspots) using an FDR of 0.01 (http://
www.uwencode.org/proj/hotspot)103, MACSv2.0.10 was also used to call narrow peaks
using the same settings specified above for the histone mark narrow peak calling.

Narrow peaks and broad domains were also generated for the unconsolidated, 36 bp
mappability filtered histone mark ChlP-seq and DNase-seq Release 9 datasets using
MACSv2.0.10 with the same settings as specified above.

d. Genome-wide signal coverage tracks: We used the signal processing engine of the
MACSVv2.0.10 peak caller to generate genome-wide signal coverage tracks. Whole cell
extract was used as a control for signal normalization for the histone ChlP-seq coverage.
Each DNase-seq dataset was normalized using simulated background datasets generated by
uniformly distributing equivalent number of reads across the mappable genome. We
generated 2 types of tracks that use different statistics based on a Poisson background model
to represent per-base signal scores. Briefly, reads are extended in the 5’ to 3’ direction by
the estimated fragment length. At each base, the observed counts of ChIP-seq/DNasel-seq
extended reads overlapping the base are compared to corresponding dynamic expected
background counts (4c4) estimated from the control dataset. Ajocq is defined as max(Agg,
A1k Asks A10k) Where Agg is the expected counts per base assuming a uniform distribution
of control reads across all mappable bases in the genome and A1k, Ask, A10k are expected
counts estimated from the 1 kb, 5 kb and 10 kb window centered at the base. Agcq iS
adjusted for the ratio of the sequencing depth of ChiP-seq/DNase-seq dataset relative to the
control dataset. The two types of signal score statistics computed per base are as follows.

(1) Fold-enrichment ratio of ChlP-seq or DNase counts relative to expected background
counts Agcal- These scores provide a direct measure of the effect size of enrichment at any
base in the genome. (2) negative log10 of the Poisson p-value of ChlP-seq or DNase counts
relative to expected background counts 4jocq- These signal confidence scores provides a
measure of statistical significance of the observed enrichment.

The -log10(p-value) scores provide a convenient way to threshold signal (e.g. 2 corresponds
to a p-value threshold of le-2), similar to what is used in identifying enriched regions (peak
calling). We recommend using the signal confidence score tracks for visualization. A
universal threshold of 2 provides good separation between signal and noise. Both types of
signal tracks were also generated for the unconsolidated datasets using the same parameter
settings described above.
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e. Quality Control: For the primary Release 9 datasets, data quality enrichment scores were
computed as the fraction of the uniquely mapped reads overlapping with areas of
enrichment. Several methods were employed to select signal enrichment regions. The SPOT
quality score was computed based on regions identified with the HotSpot peak callerl03: the
FindPeaks quality score was inferred based on peak calls made using the FindPeaks3®
software; finally, a Poisson metric was derived by modeling the read distribution in
genome-tiling 1000 basepair windows with a Poisson process and selecting as enriched
regions windows with p < 0.05. All the quality scores in Release 9 are in agreement, with
strong pairwise correlation (Pearson correlation > 0.9). Concordance between centers was
confirmed and data analysis pipeline was validated at the outset of the project using datasets
for the H1 cell line. The same pipeline was subsequently used to produce Release 9 data.
ChlIP-seq data for 6 histone modifications (H3K4me3, H3K27me3, H3K9%ac, H3K9me3,
H3K36me3, and H3K4mel) were independently generated for the H1 cell line by three
REMC:s (Broad, UCSD, UCSF-UBC). To quantify concordance, the reads from each
experiment were mapped (Level 1 data), read density tracks (Level 2 data) were generated
using the EDACC's primary data processing pipeline, and finally Pearson correlation
coefficients were computed between each pair of experiments, as well as between
experiments and H1 input acting as a control for background correlation between signals
(Table S2). The methylome processing pipeline was characterized experimentally on four
independent samples38-39, The same pipeline was used to process bisulfite-treated reads in
Release 9 and the same read mappings were used for consolidated epigenomes.

For the uniformly reprocessed and consolidated ChlP-seq and DNase-seq datasets, strand
cross-correlation measures were used to estimate signal-to-noise ratios (https://
code.google.com/p/phantompeakqualtools/)3’. Datasets for each mark were rank ordered
based on the normalized strand cross-correlation coefficient (NSC) and flagged if the scores
were significantly below the median value or in the range of NSC values for WCE extract
controls. Consolidated datasets with extremely low sequencing depth (< 10M reads) were
also flagged. Each standardized epigenome was then manually assigned a subjective quality
flag of 1 (high), 0 (medium) or -1 (low), based on the number of flagged datasets it
contained. The SPOT, FindPeaks and Poisson quality scores were also recomputed for the
consolidated datasets. We observed high correlations of the NSC scores with the SPOT
(Pearson correlation of 0.7) and FindPeaks scores (Pearson correlation of 0.65). All QC
measures are provided in Table S1 (Sheets QCSummary and AdditionalQCScores).

To identify potential antibody cross-reactivity or mislabeling issues, a pairwise correlation
heatmap (Extended Data 1e) was computed across all consolidated datasets for H3K4me1,
H3K4me3, H3K36me3, H3K27me3, H3K9me3, H3K27ac, H3K9ac, and DNase. We
computed the Pearson correlation between all pairs of the signal tracks based on signal in
chr 1-22 and chrX. We used the signal confidence score tracks (-log10(Poisson p-value))
where we first computed the average signal scores within each consecutive 25-bp interval.
To order the experiments in the heatmap we defined the distance between two pairs of
experiments as 1-correlation value and used a traveling salesman problem formulation1%4,

Nature. Author manuscript; available in PMC 2015 August 19.


http://https://code.google.com/p/phantompeakqualtools/
http://https://code.google.com/p/phantompeakqualtools/

1duosnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

etal.

Page 19

1.3 Methylation data cross-assay equalization and uniform processing for
consolidated epigenomes—We used PASH38 alignments for the WGBS and RRBS
read alignments. From the number of converted and unconverted reads at each individual
CpGs the total coverage and fractional methylation were reported. The data were uniformly
post-processed and formatted into two matrices for each chromosome. One matrix contained
read coverage information for each base (C and G) in every CpG (row) and for each
reference epigenome (column). Another matrix similarly contained fractional methylation
ranging from 0 to 1. For the locations where coverage was <=3 we considered data as
missing. For MeDIP/MRE methylation data we used the output of the mCRF tool3! that
reports fractional methylation in the range from 0 to 1 and uses an internal BWA mapping.
The mCRF results were combined in a single matrix per chromosome for all reference
epigenomes where available.

2. Chromatin state learning

In order to capture the significant combinatorial interactions between different chromatin
marks in their spatial context (chromatin states) across 127 epigenomes, we used
ChromHMM105 which is based on a multivariate Hidden Markov Model.

2.1 ‘Core’ 15-state model—A ChromHMM model applicable to all 127 epigenomes was
learned by virtually concatenating consolidated data corresponding to the core set of 5
chromatin marks assayed in all epigenomes (H3K4me3, H3K4mel, H3K36me3,
H3K27me3, H3K9me3). The model was trained on 60 epigenomes with highest-quality data
(Fig. 2k), which provided sufficient coverage of the different lineages and tissue types
(Table S1 - Sheet QCSummary). The ChromHMM parameters used were as follows: Reads
were shifted in the 5’ to 3’ direction by 100 bp. For each consolidated ChlP-seq dataset, read
counts were computed in non-overlapping 200 bp bins across the entire genome. Each bin
was discretized into two levels, 1 indicating enrichment and 0 indicating no enrichment. The
binarization was performed by comparing ChlP-seq read counts to corresponding whole-cell
extract control read counts within each bin and using a Poisson p-value threshold of 1e-4
(the default discretization threshold in ChromHMM). We trained several models with the
number of states ranging from 10 states to 25 states. We decided to use a 15-state model
(Fig. 4a-f, Extended Data 2b) for all further analyses since it captured all the key
interactions between the chromatin marks, and because larger numbers of states did not
capture sufficiently distinct interactions. The trained model was then used to compute the
posterior probability of each state for each genomic bin in each reference epigenome. The
regions were labeled using the state with the maximum posterior probability.

2.2 ‘Expanded’ 18-state model—A second “expanded” model applicable to 98
epigenomes that also have an H3K27ac ChIP-seq dataset, was learned by virtually
concatenating consolidated data corresponding to the core set of 5 chromatin marks and
H3K27ac. The model was trained on 40 high quality epigenomes using the same parameters
as those used for the primary model (Table S1 - Sheet QCSummary). We trained several
models with the number of states ranging from 15 states to 25 states. An 18 state model was
used for further analyses (Extended Data 2c) based on similar considerations.
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2.3 State labels, interpretation and mnemonics—In order to assign biologically
meaningful mnemonics to the states, we used the ChromHMM package to compute the
overlap and neighborhood enrichments of each state relative to various types of functional
annotations (Fig. 4b-c,f, Extended Data 2b,c, Fig. S2).

For any set of genomic coordinates representing a genomic feature and a given state, the
fold enrichment of overlap is calculated as the ratio of “the joint probability of a region
belonging to the state and the feature” vs. “the product of independent marginal probability
of observing the state in the genome” times “the probability of of observing the feature”,
namely the ratio between the (#bases in state AND overlap feature)/(#bases in genome) and
the [(#bases overlap feature)/(#bases in genome) X (#bases in state)/(#bases in genome)].
The neighborhood enrichment is computed for genomic bins around a set of single base pair
anchor locations in the genome e.g. transcription start sites.

For the overlap enrichment plots in the figures, the enrichments for each genomic feature
(column) across all states is normalized by subtracting the minimum value from the column
and then dividing by the max of the column. So the values always range from 0 (white) to 1
(dark blue) i.e. its a column wise relative scale. For the neighborhood positional
enrichment plots, the normalization is done across all columns i.e. the minimum value over
the entire matrix is subtracted from each value and divided by the maximum over the entire
matrix.

The functional annotations used were as follows (All coordinates were relative to the hg19
version of the human genome): (1) CpG islands obtained from the UCSC table browser. (2)
Exons, genes, introns, transcription-start-sites (TSSs) and transcription end sites (TESS),
2Kb windows around TSSs and 2Kb windows around TESs based on the GENCODEvV10
annotation (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeGencode\V10/) restricted to long transcripts. (3) Expressed and non-expressed
genes, their TSSs and TESs. Genes were classified into the expressed or non-expressed class
based on their RNA-seq expression levels in the H1-ESC (Fig. 4c) and GM12878 (Extended
Data 2b) cell-lines. A gaussian mixture model with 2 components was fit on expression
levels of all genes to obtain thresholds for the two classes. (4) Zinc finger genes (obtained by
searching the ENSEMBL annotation for genes with gene names starting with ZNF). (5)
Transcription factor binding sites (TFBS) based on ENCODE ChlP-seq data in the H1-ESC
cell-line. The uniformly processed TF ChlP-seq peak locations were downloaded from the
ENCODE repository: http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeAwgTfbsUniform/. We also computed % TF binding site coverage for states calls
in the GM12878 and K562 cell-lines using corresponding TF ChlP-seq data data from
ENCODE which matched and supported the mnemonics and state interpretations obtained
from the H1 cell-line (Fig. S2). (6) Conserved GERP elements based on 34 way placental
mammalian alignments http://mendel.stanford.edu/SidowLab/downloads/gerp/ (Fig. S3). (7)
Conserved non-coding GERP elements obtained by subtracting parts of the above mentioned
GERP elements that overlap exons.

2.4 Comparison to chromatin states learned on individual epigenomes—We
also learned independent 15-state models individually on each of the 127 epigenomes using
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the core set of 5 marks and the same parameter settings as for the primary model. In order to
compare the individual models to the joint 15 state primary model, we stacked the emission
vectors for all states from all the models and hierarchically clustered them using Euclidean
distance and Ward linkage (Extended Data 2a). The individual epigenome models
consistently and repeatedly identified states that were also recovered by the joint model
(Extended Data 2a). Two additional clusters which included states recovered by the
independent models learned in individual cell types, but not recovered in the joint model,
were HetWKk, characterized by weak presence of H3K9me3, and Rpts, characterized by
presence of H3K9me3 along with a diversity of other marks, which was enriched in a large
number of repeat elements.

2.5 Expanded chromatin states using large numbers of histone marks—~For
each of the seven deeply-profiled reference epigenomes (Fig. 2j) we independently learned
chromatin states on observed data for all available histone marks or variants, and DNase in
the reference epigenome. The same binarization and model learning procedure was followed
as for the core set of 5 marks. We chose to consistently focus on a larger set of 50-states to
capture the additional state distinctions afforded by using additional marks (Fig. S4).
Enrichments for annotations, including some of those described above for the 15-state
model, were computed using ChromHMM. The HiC domains were obtained from 106, the
lamina associated domains are described below, conserved element sets were the hg19 lift-
over from 72, repetitive elements are from RepeatMasker.

3. Relationship between histone marks, methylation, and DNase

The distribution of DNA methylation (percent CpG methylation from WGBS data) and
DNA accessibility (DNase-seq -log10(p-value) signal confidence scores) was computed
using regions belonging to each of the 15 chromatin states based on the core set of 5 marks
across all reference epigenomes for which these datasets were available. (Fig. 4d,e).

CpGs with a minimum read coverage of 5 were used to calculate the average methylation
percentages within genomic regions labeled with each chromatin state from the 15 state
primary model. Only regions containing more than 3 CpGs with at most 200bp between
consecutive CpGs were used. Plots were generated using ggplot2 package for R (v.3.02).
The average methylation levels for the chromatin states across DNA methylation platforms
(WGBS, RRBS and mCRF) were analyzed using Standard Least Square models in JMP (v.
11.0; SAS Ins.). The model included the platforms (3 levels), chromatin states (15 levels)
and the interactions (Extended Data 4).

4. Calling of Lamina Associated Domains

Genome-wide DamID binding data for human Lamin B1 in SHEF-2 ESCs were obtained
from GEO series GSE22428%2, Lamina Associated Domains were determined using a
similar method to the one described in 63. First, hg18-based data coordinates were converted
to hg19-based coordinates using UCSC's liftOver tool. Data was smoothed using a running
median filter with a window size of 5 probes, after which domains were detected by
estimating border and domain positions and comparing these to domains defined on 100
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randomized instances of the same data set. Parameters are chosen such that the False
Discovery Rate (FDR) for detected domains is 1%.

5. Cell-type specificity and switching of chromatin states

5.1 Chromatin state variability—For each state sfor the core 15 state joint model, we
computed the number of genomic bins that were labeled with that state in at least one
epigenome (Gg). From amongst these bins we counted the number of bins (gs;) that were
labeled as being in state sin exactly i epigenomes (i=1..127). We converted these counts to
fractions (gs; / Gg) and computed the cumulative fraction that is consistently labeled with
the same chromatin state in at most N epigenomes (N=1..127). States whose cumulative
fractions rise faster than others represent those that are less constitutive (more variable). We
repeated the same procedure restricted to 43 high quality and non-redundant Roadmap
epigenomes (using only 1 representative epigenome from those corresponding to the ESC
lines, iPS lines or epigenomes for the same tissue type from different individuals and
excluding ENCODE cell-lines) (Table S1 - Sheet VariationAnalysis) (Fig. S6a). Analogous
analysis was performed on states from the 18 state expanded model (Extended Data 5a,
Fig. S6b).

The observed cumulative fractions of cell-type specificity are a function of the composition
of cell-types in the compendium and do depend to some extent on the variability of data
quality for the different marks. For example, the enhancer mark (H3K4me1l) does have a
much better signal-to-noise ratio than the transcribed mark (H3K36me3). One might expect
this to result in more spurious variation of states associated with the transcribed mark.
However, contrary to this expectation, the cumulative fractions for states involving only the
transcription mark (Tx and TXWKk) and not the enhancer mark indicate that these states are in
fact less variable and more constitutive across cell types. On the other hand, all states
composed of the enhancer mark (H3K4mel), irrespective of whether they do (TxFInk,
EnhG) or do not (EnhBiv, Enh, BivFInk, TssAFInk) include the transcription mark
(H3K36me3), are far more cell-type specific. These observation indicate that the increased
variability of states are largely due to the enhancer mark (H3K4me1) than the transcribed
mark (H3K36me3). As replicates are not available in all epigenomes, we did not correct for
inter-replicate variation in this analysis, but in the state switching analysis below, we utilize
samples from the same tissue as quasi-replicates.

5.2 Chromatin state switching—To avoid spurious switching due to differences in data
quality, we restricted this analysis to chromatin states from the 43 high quality and non-
redundant Roadmap epigenomes (see above). Using the 15 state primary model, we
computed the empirical switching frequency of any pair of states across all pairs of 43
epigenomes. For a given pair of states A and B, we counted the number of genomic bins that
were labeled as (A,B) or (B,A) in all pairs of epigenomes. The switching frequency matrix
(which is symmetric) was then row-normalized in order to convert the switching frequencies
to switching probabilities. This is done to avoid a dependence on the total number of
epigenomes. Also, the switching probabilities unlike switching frequencies are not
dominated by states that are highly prevalent (e.g. quiescent state). Fig. S7b. shows the
empirical switching probabilities for all pairs of states across the 43 epigenomes. In order to
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differentiate between chromatin state dynamics across tissues (inter-tissue) relative to
variation of states across individuals or replicates from the same tissue (intra-tissue), we also
computed analogous switching frequencies by restricting to subgroups of epigenomes from
the same tissue type (Table S1 - Sheet VariationAnalysis). The frequencies were added
across all sub-groups and then row normalized to switching probabilities. Fig. S7a. shows
the intra-tissue switching probabilities. We then computed the relative enrichment of state
switches as the 1og10 ratio of inter-tissue switching probability across the 43 epigenomes
relative to the intra-tissue switching probabilities (Fig. 5¢). We repeated this analysis on the
16 ENCODE cell-lines and obtained similar conclusions regarding relative enrichment of
state switches (Fig. S7¢). Analogous analyses were performed using the 18-state expanded
model in Roadmap Epigenomics samples (Extended Data 5¢) and ENCODE samples (Fig.
S7d).

5.3 Large scale chromatin structure—To study large-scale chromatin structure we
first calculated ChromHMM (15 states model) state-frequencies identified in 200bp
genome-wide bins across 127 epigenomes. Then we averaged state frequencies over the
2Mb genomic regions, thus defining 1458 long vector for each state. The unsupervised
clustering of a 15x1458 matrix (using Pearson correlation as a similarity measure and
complete linkage) revealed 11 distinct genomic clusters enriched in different subsets of
chromatin states (Fig. 5d, top heat map). Clusters had different sizes, with the smallest one
(c1) containing only 27 bins, while the largest cluster (c9), occupied predominantly by a
‘Quiescent’ state for all epigenomes, had 377 bins. For each 2Mb bin in each cluster we
calculated average gene density, Lamin B1 signal (see section 4 above), overlap with
different cytogenetic bands (Fig. 5d, bottom, that displays also average levels across each
cluster). We also show chromosomal locations of the clusters as well as distributions of CpG
island frequency across the 2Mb bins in each cluster (Extended Data 5d).

6. Differentially Methylated Regions (DMRs) and DNA methylation variation

6.1 DMR calls across reference epigenomes—For the global epigenomic
comparisons, we defined DMRs using the Lister et al method107, combining all
differentially methylated sites within 250bp of one another into a single DMR and excluded
any DMR with less than 3 DMSs. For each DMR in each sample, we computed its average
methylation level, weighted by the number of reads overlapping it1%8. This resulted in a
methylation level matrix with rows of DMRs and columns of samples.

6.2 DMRs in hESC differentiation (Fig. 4h)—For analyzing differentiation of hESCs
in Fig. 4h, we used a second set of DMRs. We used a pairwise comparison strategy between
ESCs and three in vitro derived cell types representative of the three germ layers
(mesoderm, endoderm, ectoderm) and performed DMR calling as previously described 52,
Only DMRs losing more than 30% methylation compared to the ESC state at a significance
level of p < 0.01 were retained. Subsequently, we computed weighted methylation levels for
all three DMR sets across HUES64, mesoderm, endoderm and ectoderm as well as three
consecutive stages of in vitro derived neural progenitors (please see companion®2 paper for
details on the cell types). Finally, we plotted the corresponding distribution using the R
function vioplot in the vioplot package. In order to identify potential regulators associated
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with the loss of DNA methylation at these regions, we determined binding sites of a
compendium of transcription factors profiled in distinct cell lines and types (see Ziller, 2013
#45 for details) that overlapped with each set of hypomethylated DMRs. Next, we
determined a potential enrichment over a random genomic background by randomly
sampling 100 equally sized sets of genomic regions, respecting the chromosomal and size
distribution of the different DMR sets and determined their overlap with the same
transcription factor binding site compendium to estimate a null distribution. Only
transcription factors that showed fewer binding sites across the control regions in 99 of the
cases were considered for further analysis. Next, we computed the average enrichment over
background for each TF with respect to the 100 sets of random control regions for each
germ layer DMR and report this enrichment level in Fig. 4h right, where we capped the
relative enrichment at 12.

6.3 Additional DMR calls—For studying breast epithelia differentiation, DMRs were
called from WGBS, requiring at least 5 aligned reads to call differentially-methylated CpG,
and at least 3 differentiallymethylated CpGs within a distance of 200 bp of each other#4. For
studying tissue environment vs. developmental origin, DMRs were called from MeDIP and
MRE data using the M&M algorithm?®.

6.4 DNA methylation variation—For variation in methylation of each chromatin state
across epigenomes (Fig. 4g, Extended Data 4f), we first excluded any contiguous
chromatin state region containing less than 3 CpG sites. Then, the mean of the methylation
level for all contained CpG sites was calculated for each region, and for each epigenome,
density values were calculated for these mean methylation values between 0% and 100%,
with density values estimated over n=1000 points with a gaussian kernel, with a default
bandwidth of ‘nrd0’. Finally, for each chromatin state, we plotted the In(density+1) for each
epigenome as rows, with the color scale set with white as the minimum In(density+1) value
and red, green, or blue, for WGBS, mCRF, and RRBS, respectively, set as the maximum
In(density+1) value in the matrix. Rows were ordered by the epigenomic lineage and
grouping ordering shown in Fig. 2a; In Extended Data 4f, epigenomes were first grouped
by methylation platform, and then ordered by Fig. 2a within each platform. The chromatin
state methylation profiles in the cell lines vs primary cells/tissue cells were analyzed using a
mixed model with repeated measures. Overall effect of the group (cell lines vs primary cells/
tissue cells) was tested using epigenomes within group as the error term. Bonferroni
correction was used for adjusting the p-values.

7. ldentifying coordinated changes in chromatin marks during development

To identify patterns of coordinated changes of histone marks over enhancers during heart
muscle development, we compared ESCs, Mesendoderm cells, and Left Ventricle tissue®.
We identified relevant enhancers as those that show changes in at least one histone mark
between a specific cell type cluster (heart muscle in our case) and other cell types using
LIMMA (Linear Model for Microarray Analysis). We applied FDR corrected P-value
significance threshold of 0.05 to obtain cluster-specific enhancers. For each tissue type
(heart muscle in our case) we then clustered the enhancers into five clusters (C1-C5) based
on their multi-mark epigenomic profiles using the k-means algorithm implemented in the
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Spark tool (Fig. 4i). The tools used to generate Fig. 4i are integrated into the Epigenomic
Toolset within the Genboree Workbench and are accessible for online use at
www.genboree.org.

8. Clustering of epigenomes reveals common lineages, common properties

For each analyzed mark, we calculated Pearson correlation values between all pairwise
combinations of reference epigenomes using the mark's signal confidence scores (-
log10(Poisson p-value)) within 200bp of the genomic regions deemed relevant for that mark.
Relevance of regions is determined by whether a region was called in a particular (mark-
matched) chromatin state with posterior probability of > 0.95 in any of the reference
epigenomes. For H3K4mel, H3K27ac and H3K9ac we used state Enh, for H3K4me3 state
TssA, for H3K27me3 state ReprPC, for H3K36me3 state Tx and for H3K9me3 state Het,
unless otherwise noted (all based on the 15-state core model).

The resulting correlation matrices were used as the basis for a distance matrix for complete-
linkage hierarchical clustering, followed by optimal leaf orderingl%®. Bootstrap support
values are derived from 1,000 random samplings with replacement from all regions
considered for a particular mark and a bootstrap tree was estimated for each resampling. The
bootstrap support for a branch corresponds to the fraction of bootstrapped trees that support
the bipartition induced by the branch.

In parallel to this, all correlation matrices mentioned above were used to perform Multi-
Dimensional Scaling analyses using R.

9. Delineation of DNasel-accessible regulatory regions

For each of the 39 Roadmap reference epigenomes with DNase data, peak positions are
combined across reference epigenomes by defining peak island areas, defined by stacking all
DNase peak positions across epigenomes, and considering the Full Width at Half Maximum
(FWHM). Note that for this we are only considering peak locations, not intensities. The goal
of this is to obtain an estimate of the area of open chromatin, not to quantify the level of
‘openness’, as these data are not available for all reference epigenomes. In cases when peak
islands overlap, they are merged because it means that the original DNase peak area
populations overlap at least for half of the epigenomes with DNase peaks in that area (given
the FWHM approach). Peak island summits are defined as the median peak summit of all
peak island member DNase peaks. This results in a total of 3,516,964 DNase enriched
regions across epigenomes.

We then annotate each of the ~3.5M DNase peaks with the chromatin states they overlap
with in each of the 111 Roadmap reference epigenomes, using the core 15-state chromatin
state model, and focusing on states TssA, TssAFInk, and TssBiv for promoters, and EnhG,
Enh, and EnhBiv for enhancers, and state BivFInk (flanking bivalent Enh/Tss) for
ambiguous regions. Out of these, ~2.5M regions are called as either enhancer or promoter
across any of the 111 Roadmap reference epigenomes. Note that because DNase data is not
available for all Roadmap epigenomes, the set of regulatory regions defined may exclude
DNase regions active in cell types for which DNase was not profiled (Fig. 2g). Although
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most regions are undisputedly called exclusively promoter or enhancer, there are ~530k
regions that needed further study to decide whether they should be called promoters,
enhancers, or both (‘dyadic’). We arbitrate on these regions by first clustering them (using
the methods in the following section) with an expected cluster size of 10,000 regions, and
then for each cluster calculating (a) the mean posterior probabilities for promoter and
enhancer calls separately, and (b) the mean number of reference epigenomes in which
regions were called promoter or enhancer. Clusters of regions for which the differences in
mean posterior probabilities (a) is smaller than 0.05, or for which the absolute log2-ratio of
the number of epigenomes called as promoter or enhancer (b) is smaller than 0.05 are called
true ‘dyadic’ regions, along with a small number of “‘ambiguous’ regions in state BivFInk.
Note that this particular clustering is only to arbitrate on these regions using group statistics
instead of one-by-one; the final clusterings are described next. Overall, we define ~2.3M
putative enhancer regions (12.63% of genome), ~80k promoter regions (1.44% of genome)
and ~130k dyadic regions (0.99% of genome), showing either promoter or enhancer
signatures across epigenomes.

10. Clustering of DNasel-accessible regulatory regions to identify modules of coordinated

activity

In order to cluster regulatory (i.e., enhancer, promoter or dyadic) regions based on their
activity patterns across all reference epigenomes, we expressed each region in terms of a
binary vector of length nxs, where n is the number of reference epigenomes (111) and sis
the number of chromatin states considered. For enhancers and promoters, s=3, as both of
these types of regions are made up of 3 chromatin states in the 15-state ChromHMM model
(enhancers: EnhG, Enh & EnhBiv, promoters: TssA, TsSAFInk & TssBiv).

The thus obtained binary matrices are subsequently clustered using a variation of a k-
centroid clustering algorithm19, Instead of Euclidean distance we use a Jaccard-index based
distance. This is done to be able to correctly cluster highly cell type restricted regions. From
a computational point of view, we optimized the method to both deal with the size of the
used data matrices and leverage their sparsity, in order to efficiently compute and update
distances for matrices with sizes on the order of 108x102. The algorithm has been further
modified to converge when less than 0.01% of cluster assignments change between
iterations.

We selected the number of clusters k by tuning the expected number of regions within each
cluster to be approximately 1000 for promoter and dyadic regions, and approximately
10,000 for enhancer regions, given their much larger count (81k, 129k, and 2.3M for
promoter, dyadic, and enhancer respectively). This results in a value of k=233 for enhancer
clusters (for ~10k elements per cluster), and the algorithm converged on k=226 non-empty
clusters, which are used for subsequent analyses.

Clusters are visualized (Fig. 7a) by *diagonalizing’ when possible. First, ‘ubiquitous’
clusters (defined as having at least 50% of epigenomes with an enhancer/promoter density of
> 25%) are shown. Then, the remaining clusters are ordered according to which epigenome
has the maximum enhancer density.
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Enrichment analyses of proximity to gene members of a catalogue of gene sets (Gene
Ontology (GO), Human Phenotype Ontology (HPO)) have been performed using the
GREAT tool®*. In particular, the GREAT web APl was used to automatically submit region
descriptions and retrieve results for subsequent parsing. We restricted ourselves to
interpretation of results with an enrichment ratio of at least 2, and multiple hypothesis
testing corrected, p-values < 0.01 for both the binomial and the hypergeometric distribution
based tests.

For visualization of a representative subset of enriched terms in Fig. 7b and Fig. 7c, we
select representative terms for display (after diagonalizing the enrichment matrix by re-
ordering the rows). We do this using a weighted bag-of-words approach to select highly-
enriched terms that contain many words that are overrepresented in gene-set labels showing
similar enrichment patterns. Briefly, sliding along the row names (gene-set terms) of the,
diagonalized, enrichment matrices, we collect word counts and multiply these by integer-
rounded -log10(g-values) obtained from GREAT. We do this in sliding windows of size 33
for Fig. 7b (resulting in 35 terms) and size 16 for Fig. 7c (resulting in 15 terms). For each
word in a window, these values are expressed relative to the same words across all row
names, registering to what extend they are over-represented. Each gene-set term in the
window is then assigned a score based on the mean over-representation of all words it
consists of. Lastly, gene-sets are co-ranked based on this mean over-representation and their
GREAT significance. The best-ranked gene set label is selected as the representative label
for that window. All terms are shown in Fig. S11d and available for download on the
supplementary website.

11. Predicting regulators active in each tissue / cell type / lineage

We collect 1,772 known TF recognition motifs (position weight matrices) from primarily
large-scale databases8”-111-116 and measure their enrichment in the enhancers for each
enhancer module compared to the union of the 226 enhancer modules (as described in 67
and 9) using a 0.3 conservation-based confidence cutoffo:72, We cluster motifs using a 0.75
correlation cutoff resulting in 300 motif clusters®’ and select for each motif cluster the motif
with the highest enrichment in any enhancer module for further analysis.

We compute an expression score for each enhancer module and transcription factor as the
Pearson correlation between the TF expression across cell types with expression data
(quantile-normalized log(RPKM) with zeros replaced by 1og(0.0005)) and the ‘center’ of a
module. For each enhancer module, its center is defined as a vector of length 111,
containing the fraction of regions in that module called as (any type of) enhancer in each of
the 111 epigenomes analyzed. This expression score is meant to act as the “expression” of a
transcription factor within a module of cell types. We then compute an expression-
enrichment value for each transcription factor as the correlation of this expression score and
the enrichment of the corresponding motif across enhancer modules. The top 40 motifs in
terms of their absolute expression-enrichment correlation and the clusters with log2
enrichment or depletion of at least log2=1.5 for at least one motif are shown in Fig. 8 and
Extended Data 8a (only one motif is shown in Fig. 8 for each factor).
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We show all 84 motifs that were significantly enriched (log2>=1.5) in any enhancer
modules, across the full set of 226 enhancer modules (Fig. S13a) and in the 101 modules in
which they were significantly enriched (Extended Data 8a). Similarly, we show all 10
enriched motifs across the full set of 111 individual reference epigenomes (Fig. S13b) and
specifically in the 15 enriched epigenomes (Fig. S13c). Lastly, we show all 19 enriched
motifs across the full set of 17 tissue groups (Fig. S13d), and specifically within the 10
groups that showed significant enrichments (Fig. S13e).

For visualization of regulator-cell type links (Fig. 8), we compute edge weights between
each cell type and motif using these motif-module enrichments. For each motif and cell
type, we compute the sum across all modules of the product of the log2 motif enrichment
and the value of the cell type within the module center (only consider the highly associated
cell types by replacing values <0.7 with 0). We show all resulting edge weights of at least
1.5 and visualize the network using Cytoscapell’.

Based on the same motif enrichment method mentioned above, we computed the motif
enrichment in the tissue-specific DGF regions in each library. The tissue-specific DGF
regions were identified by selecting the DGF region occurring no more than 20 DGF
libraries among 42 DGF libraries. To generate Extended Data 9b, we standardized the
motif enrichment in each library into z-scores for each motif (row) and color each DGF
library (column) based on their tissue type.

12. DNA Motif Positional Bias in Digital Genomic Footprinting Sites

We compute the positional enrichment of each driver motif (Extended Data 9c, Extended
Data 10) related to the Digital Genomic Footprinting(DGF) sites in each cell type (Table
S5b). For each driver TF motif, we generated two views corresponding to the motif position
(the center of the motif instance) relative to the center of closest DGF site (center view) and
the motif position relative to the boundary of closest DGF site (boundary view). We only
consider the motif instances with closest DGF site within 100bp. For center view, we plotted
the motif occurrence density respect to the distance to DGF center for different cell type. For
the boundary view, we considered the shortest distance of the center of a motif instance to
the both side of DGF boundary, and gave a negative distance value if the motif instance is
inside the DGF, otherwise the distance value is positive. Similar to center view, we plot the
motif density respect to the derived distance value in the boundary view for each cell type.

To access the significance of the motif concentration within DGF in each cell type, we
compute the DGF enrichment ratio as the ratio between the number of motif instance with
distance less than 20bp to the DGF center and that number in the immediate flanking
window, that is, the number of motif instance with distance to the DGF center larger than
20bp and smaller than 40bp. As control, we randomly sampled the same number of motif
instances from the shuffled versions of the given motif, and obtained the DGF enrichment
ratio for the shuffled motif instances. The DGF enrichment ratio of the true motif is further
converted to z-score by mean and standard deviation from the DGF enrichment ratios of
shuffled motif from 1000 times random sampling. Then the adjusted p-value is further
computed from z-score and bonferroni correction for number of cell types.
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epigenomic modification
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The motifs that were predictive of epigenomic modifications’® were compared to Digital
Genomic Footprinting data (DGF) in Table S5. This was done in three cell types where both
DGF and predictive motifs were available: ‘H1 BMP4 Derived Mesendoderm Cultured
Cells’ (E004), “H1 BMP4 Derived Trophoblast Cultured Cells’ (E005), and ‘H1 Derived
Mesenchymal Stem Cells’ (E006). The motifs that were predictive of the following seven
modifications were considered: H3K27me3, H3K27ac, H3K9me3, H3K36me3, H3K4mel,
H3K4me3 and DNA methylation valleys (DMV)!, To identify overlaps the predictive
motifs were scanned against the modification peaks of the corresponding modification and
the location of the best match between motif and sequence was recorded. Then we counted
the number of times the locations of the best motif matches overlapped a DGF by at least
one bp. These counts were compared to the number of overlaps identified randomly, which
was calculated by comparing DGF to random locations within the modifications peaks. The
reported random frequency was the average of 100 repeats. To calculate the fold enrichment
we divided the observed frequency by the random frequency.

14. Tissue-specific activity of disease-associated regions

We tested the enrichment of SNPs from individual Genome-wide Association Studies
(GWAS) for the gapped peak call sets based on histone marks H3K4mel, H3K4me3,
H3K36me3, H3K9me3, H3K27me3, H3K9ac, and H3K27ac as well as the DNase peak call
set based on MACS2 in each reference epigenome where available. The SNPs used were
curated into the NHGRI GWAS catalog’# and obtained through the UCSC Table
Browser18 on September 12, 2014. We restricted the enrichment analysis to chr1-22 and
chrX. We defined a study to be a unique combination of annotated trait and pubMedID. To
reduce dependencies between pairs of SNPs assigned to the same study, we pruned SNPs
such that no two SNPs were within 1MB of each other on the same chromosome. The
pruning procedure considered each SNP in ranked order of p-value with the the most
significant coming first, and we retained a SNP if there was no already retained SNP on the
same chromosome within IMB. We computed hypergeometric p-values for the enrichment
of each pruned set of SNPs overlapping peak calls against the pruned GWAS catalog as the
background. We estimated separately for each mark a mapping from a p-value to a false
discovery rate across tests for all study and reference epigenome combinations by generating
100 randomized versions of the pruned GWAS catalogs shuffling which SNPs were
assigned to which study and computing the average fraction of reference epigenome-study
combinations that reached that level of significance (in a continuous mapping of p-values to
FDR) using randomized catalogs divided by the number based on the actual GWAS catalog.
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Extended Data
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Extended Data 1.
a-d. Tissues and Cell Types of Reference Epigenomes. Comprehensive listing of all 111

reference epigenomes generated by the consortium, along with epigenome identifiers
(EIDs), including: (a) adult samples; (b) fetal samples; (c) ESC, iPSC, and ESC-derived
cells; and (d) primary cultures. Colors indicate the groupings of tissues and cell types (as in
Fig. 2b, and throughout the manuscript). For five samples (adult osteoblasts, and fetal liver,
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spleen, gonad, and spinal cord), no color is present, indicating that these are not part of the
111 reference epigenomes (ENCODE 2012 samples, or not all five marks in the core set
were present), but datasets from these samples are high quality and were sometimes used in
companion paper analyses, and are available to the public. e. Assay correlations. Heatmap
of the pairwise experiment correlations for the core set of five histone modification marks
(H3K4mel, H3K4me3, H3K36me3, H3K27me3, H3K9me3) across all 127 reference
epigenomes, the two common acetylation marks (H3K27ac and H3K9ac), and DNA
accessibility (DNase) across the reference epigenomes where they are available. Yellow
indicates relatively higher correlation and blue lower correlation. Rows and columns were
ordered computationally to maximize similarity of neighboring rows and columns (see
Methods). All experiments for H3K9me3, H3K27me3, H3K36me3, DNase, and H3K4mel
are consistently ordered into distinct and contiguous groups. For H3K4me3, H3K9ac, and
H3K27ac, experiments group primarily based on the mark, but in some cases, the
correlations and ordering appear more cell type driven.
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Extended Data 2. Chromatin state model robustness and enrichments
a. Chromatin state model robustness. Clustering of 15-state ‘core’ chromatin state model

learned jointly across reference epigenomes (Fig. 4a) with chromatin state models learned
independently in 111 reference epigenomes. We applied ChromHMM to learn a 15-state
ChromHMM model using the five core marks in each of the 111 reference epigenomes
generated by the Roadmap Epigenomics program, and clustered the resulting 1680 state
emission probability vectors (leaves of the tree) with the 15 states from the joint model
(indicated by arrows). We found that the vast majority of states learned across cell types
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clustered into 15 clusters, corresponding to the joint model states, validating the robustness
of chromatin states across cell types. This analysis revealed two new clusters (red crosses)
which are not represented in the 15 states of the jointly-learned model: ‘HetWk’, a cluster
showing weak enrichment for H3K9me3; and ‘Rpts’, a cluster showing H3K9me3 along
with a diversity of other marks, and enriched in specific types of repetitive elements
(satellite repeats) in each cell type, which may be due to mapping artifacts. This joint
clustering also revealed subtle variations in the relative intensity of H3K4mel in states
TXFInk, Enh, and TssBiv, and H3K27me3 in state TssBiv. Overall, this analysis confirms
that the 15-state chromatin state model based on the core set of five marks provides a robust
framework for interpreting epigenomic complexity across tissues and cell types. b.
Enrichments for 15-state model based on five histone modification marks. Top Left: TF
binding site overlap enrichments of 15 states in H1-ESC from the ‘core” model for
transcription factor binding sites (TFBS) based on ChlP-seq data in H1-ESC. TF binding
coverage for other cell-types based on matched TF ChlP-seq data is shown in Fig. S2. Top
Right: Enrichments for expressed and non-expressed genes in H1-ESC and GM12878.
Bottom: Positional enrichments at the transcription start site (TSS) and transcription end site
(TES) of expressed (expr.) and repressed (repr.) genes in H1-ESC. Transition probabilities
show frequency of co-occurrence of each pair of chromatin states in neighboring 200-bp
bins. d. Definition and enrichments for 18-state ‘expanded’ model that also includes
H3K27ac associated with active enhancer and active promoter regions, but which was only
available for 98 of the 127 reference epigenomes. Inclusion of H3K27ac distinguishes active
enhancers and active promoters. Top: TFBS enrichments in H1-ESC (E003) chromatin
states using ENCODE TF ChlIP-seq data in H1-ESC . Bottom: Positional enrichments in H1-
ESC for genomic annotations, expressed and repressed genes, TSS and TES, and state
transitions as in Extended Data 2b and Fig. 4a-c. Right: Average fold-enrichment (colors
bars) and standard deviation (black line) across 98 reference epigenomes (Fig. S3d) for the
fold enrichment for non-coding of genomic segments (GERP) in each chromatin state (rows)
in the 18-state model. Even after excluding protein-coding exons (see Fig. S3b vs. Fig. S3d),
the TSS-proximal states show the highest levels of conservation, followed by EnhBiv and
the three non-transcribed enhancer states. In contrast, Tx and TxXWk elements are weakly
depleted for conserved regions, and Znf/Rpts, and Het are strongly depleted for conserved
elements.
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Extended Data 3. Relationship between histone marks, DNA methylation, DNA accessibility, and

gene expression

a. H3K27ac-marked “active’ enhancers show higher levels of DNA accessibility, based on
enrichment of DNase-seq signal confidence scores (-log10(Poisson p-value))for elements in
each chromatin state in our extended 18-state model that includes the core five histone
modification marks and H3K27ac, similar to Fig. 4e. b. Level of whole-genome bisulfite
methylation for all chromatin states in the 18-state model shows that H3K27ac-marked
‘active’ enhancers associated with H3K27ac in addition to H3K4mel show lower
methylation levels, consistent with higher regulatory activity. The whiskers in a. and b. show
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1.5 x IQR (interquartile range) and the filled circles are individual outliers c. DNA
methylation levels for genes showing different expression levels. The depletion of DNA
methylation in promoter regions, and the enrichment of DNA methylation in transcribed
regions, are both more pronounced for highly expressed genes. The enrichment for high
DNA methylation is more pronounced in the 3’ ends of the most highly expressed genes. d.
Genes associated with active enhancer states have consistently significantly higher
expression. ‘Active enhancer’ associated genes have at least one EnhAl and/or EnhA2 +/
—-20Kb from TSS (18-state model). ‘Weak-enhancer’genes are associated with EnhG1,
EnhG2, EnhWKk, EnhBiv. Lowest expression have genes that are not associated with any
enhancer. Plots with red markers show median expression of genes associated with “active’
enhancers, yellow markers ‘weak’ enhancers, and white markers no association with any
enhancer state. e. Higher-expression genes show greater association with H3K27ac-marked
‘active’ enhancers. Highly expressed genes are consistently more frequently associated with
H3K27ac-marked active enhancers (EnhAl and EnhA2) across all cell types. Fraction of
genes associated with H3K27ac-marked *‘active’ enhancers (red), H3K27ac-lacking ‘weak’
enhancers only (yellow), or no enhancers (white) for genes of varying expression levels in
each cell type with RNA-seq data.
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Extended Data 4. Methylation relationship with chromatin state
a-c. DNA methylation levels in 15-state model across technologies. We observed significant

differences in the average methylation levels observed that were correlated with the different
DNA methylation platforms used, but their relative relationships in average chromatin state
methylation were conserved. Relative to WGBS (panel a, repeated from Fig. 4d for
comparison purposes), RRBS (panel b) showed the lowest overall methylation levels (as
expected given its CpG island enrichment), while mCRF showed the highest (panel ¢). This
highlights the importance of recognizing and potentially correcting for DNA methylation
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platform specific biases prior performing integrative analyse. d,e. Distribution of DNA
methylation levels measured using RRBS and mCRF in 18-state model (defined in Extended
Data 2¢). WGBS is shown in Extended Data 3b. The whiskers in a., b., c., d., and e. show
1.5 x IQR (interquartile range) and the filled circles are individual outliers f. DNA
methylation variation across cell types. Density plots denote distribution of DNA
methylation levels from 0% to 100% for each chromatin state across the 95 reference
epigenomes profiled for whole-genome bisulfite (WGBS, red), reduced representation
bisulfite (RRBS, blue), or MeDIP/MRE (mCRF, green). The respective color (red, blue, or
green) was set to the maximum In(density+1) value for each chromatin state and respective
platform, with intermediate values colored on a natural log scale. For each panel,
epigenomes are listed in the same order, shown on the right, with abbreviations of samples
in the order of Fig. 2 for each technology.
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a. Chromatin state variability for 18-state expanded model across 98 epigenomes
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Extended Data 5. Chromatin state variability, switching, and genomic coverage
a. Variability level for 18-state model. Chromatin state variability (similar to Fig. 5a),

quantified based on the fraction of the genomic coverage (y-axis) of each state (color) that is
consistently labeled with that state in at most N (ranging from 1 to 98) reference
epigenomes, using the 18-state model learned based on 6 chromatin marks, including
H3K27ac. b. Chromatin state over- and under-representation for 18-state expanded
model. c. Log-ratio (logig) of chromatin state switching probabilities for the 18-state
expanded model across 34 high-quality, non-redundant epigenomes that have H3K27ac
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data, relative to intra-tissue switching probabilities across replicates or samples from
multiple individuals. d. Chromatin state coverage grouped by epigenomic domains. Top:
Chromosome “painting’ of 11 clusters shown in Fig. 5d and discovered based on chromatin
state co-occurrence at the 2Mb scale across reference epigenomes. Bottom: Enrichment of
CpG islands in each cluster clearly showing higher CpG density ‘active’ clusters 3 and 6
comparing to passive clusters 9-11. Each box plot shows a distribution of CpG total
occupancy in 2Mb bins in each cluster (with box boundaries indicate 25th and 75th
percentiles the whiskers extend to the most extreme datapoints the algorithm considers to
not be outliers. Points are drawn as outliers if they are larger than Q3+W*(Q3-Q1) or
smaller than Q1-W*(Q3-Q1), where Q1 and Q3 are the 25th and 75th percentiles,
respectively.).
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a . H3K4me1 in Enh b , H3K4me3 in TssA C_H3K27me3 in ReprPC

e

d . H3K36me3 in Tx @ . H3K9me3 in Het

Extended Data 6. Hierarchical clustering of epigenomes using diverse marks
a-e. Clustering of all 127 reference epigenomes, including ENCODE samples, using

H3K4mel, H3K4me3, H3K27me3, H3K36me3 and H3K9me3 signal in Enh, TssA,
ReprPC, Tx and Het chromatin states, respectively. All panels show hierarchical clustering
with optimal leaf ordering. Colors indicate sample groups, as defined in Fig. 2. Numbers on
internal nodes represent bootstrap support scores over 1,000 bootstrap samples.
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Extended Data 7.

a-i. Multidimensional scaling (MDS) plots showing tissue/cell type similarity using different
epigenomic marks. Multi-Dimensional Scaling (MDS) analysis results, showing reference
epigenomes using their group coloring defined in Fig. 2. Thin lines connect same-group
reference epigenomes. The first 4 axes of variation are shown in pairs. Marks are assessed in
regions with relevant chromatin states (see Methods). j. Variance explained by each MDS
dimension. The first 5 dimensions shown in Fig. S10 (Fig. 6b,c) explain between 45% and
80% of the total epigenometo-epigenome variance for all histone modification mark
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correlations, and additional dimensions explain less than 10%. Only a few components of
H3K4me3 in TssA chromatin states explains a much larger fraction of the variance than
other marks, possibly due to its stability across cell types.

5 Enhancer modules with significant motif enrichments (n=101 of 226)
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Extended Data 8.
a. Regulatory motifs enriched in clusters. Enrichment (red) or depletion (blue) of

regulatory motifs (rows) in the enhancer modules (columns) relative to shuffled control
motifs. For each motif is shown the motif name, consensus logo, and correlation between
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activators, and negative correlation (purple) indicates a repressive role for the factor. Only

clusters with enrichment or depletion of at least 2°1.5-fold for one motif are shown. b.

Average activity level of enhancers of each module in each reference epigenome
(black=high, white=low). Bottom: Total size of each enhancer module showing enrichment
(in kb).
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a. Regulatory motif enrichment, DGF enrichment, and positional bias for predicted driver
motifs, based on strong (positive or negative) correlations between TF expression and
enhancer module activity. a. Regulatory motif enrichments for the 40 regulators showing
the strongest absolute correlation between TF expression and module activity. Of these, 36
were also recovered solely based on their motif enrichment scores (Extended Data 8), but six
were only discovered based on their correlations (Esrra_4, Max_4, Mga_3, Nfatcl_3,
Rest_2, and Tead3_1), illustrating the importance of studying motif enrichments in the
context of TF expression and enhancer activity patterns. b. Predicted driver regulatory
motifs are enriched in high-resolution DNase footprints. Enrichment of predicted driver
motif instances (Fig. 8 and Extended Data 9a) in 42 high-resolution (6bp-40bp) Digital
Genomic Footprinting (DGF) libraries from deeply sequenced DNase datasets®® shows
consistent tissue preferences in matching cell types. For example, POU5SFL1 in iPS cells,
HNF1B and HNF4A1 in digestive tissues, RFX4 in mesendoderm and neural lineages,
MFE2B in muscle. c. Matrix of significant positional bias across factors and cell types. For
each Digital Genomics Footprinting (DGF) dataset (columns), positional bias score
(heatmap) of predicted driver regulatory motifs (rows) found to be significantly enriched
(Fig. 8, Extended Data 9a) in enhancer modules (Fig. 7a).
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Extended Data 10. Positional biases of predicted driver motifs relative to high-resolution DNase
footprint centers and boundaries

a. Driver TF motif instance logo, as in Fig. 8 and Extended Data 9a. b. Distribution of motif
instances relative to the center of the high-resolution DNase sites (digital genome footprints,
DGF, lengths range from 6bp to 40bp), each curve colored according to the cell/tissue type
(from Fig. 2, Table S5b). c. Distribution of shuffled motifs that match composition and
number of conserved occurrences in the genome89.72, d. Positional bias relative to boundary
of DGF region for true motifs, similar to b. e. Positional bias relative to boundary of DGF
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region for shuffled motifs, similar to c. f. Cell types showing significant positional bias after
multiple testing correction, colored according to Fig. 2 and Table S5b.
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Extended Data 11. Epigenomic enrichments of genetic variants associated with diverse traits
Tissue-specific enrichments for peaks of diverse epigenomic marks for genetic variants

associated with complex disease, expanding Fig. 9. Enrichments are shown for: a.
H3K4mel peaks (enhancers). This panel includes all the data shown in Fig. 9, but expands
the enrichments shown to all reference epigenomes (columns), and additional traits (rows)
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that did not meet the FDR=0.02 threshold. b. H3K27ac peaks (active enhancers). a-b.
Studies were defined by a set of SNPs annotated in the GWAS catalog with the same
combination of a trait (far left column) and publication shown by the Pubmed ID (far right
column), uncorrected p-value (in -logp), and estimated FDR.
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Extended Data 12. Epigenomic enrichments of genetic variants associated with diverse traits
Tissue-specific enrichments for peaks of diverse epigenomic marks for genetic variants

associated with complex disease, expanding Fig. 9. Enrichments are shown for: a.
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H3K4me3 peaks (promoters). b. H3K9ac peaks (active promoters and active enhancers). c.
DNase peaks (accessible regions). d. H3K36me3 peaks (transcribed regions). e. H3K27me3
peaks (Polycomb-repressed regions). f. H3K9me3 peaks (heterochromatin regions). a-f.
Studies were defined by a set of SNPs annotated in the GWAS catalog with the same
combination of a trait (far left column) and publication shown by the Pubmed ID (far right
column), uncorrected p-value (in -logyg), and estimated FDR.
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Figure 1. Tissues and cell types profiled in the Roadmap Epigenomics Consortium
Primary tissues and cell types representative of all major lineages in the human body were

profiled, including multiple brain, heart, muscle, Gl-tract, adipose, skin, and reproductive
samples, as well as immune lineages, ESCs and induced Pluripotent Stem (iPS) cells, and
differentiated lineages derived from ESCs. Box colors match groups shown in Fig. 2b.
Epigenome identifiers (EIDs, Fig. 2c) for each sample shown in Extended Data 1.
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Figure 2. Datasets available for each reference epigenome
List of 127 epigenomes including 111 by the Roadmap Epigenomics program (E001-E113)

and 16 by ENCODE (E114-E129). Full list of names and quality scores in Table S1. a-d:
Tissue and cell types grouped by type of biological material (a), anatomical location (b),
showing reference epigenome identifier (EID, c), and abbreviated name (d). PB=Peripheral
Blood. ENCODE 2012 reference epigenomes shown separately. e-g. Normalized strand
cross-correlation quality scores (NSC)37 for the core set of five histone marks (e), additional
acetylation marks (f) and DNase-seq (g). h. Methylation data by WGBS (red), RRBS (blue),
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and mCRF (green). 104 methylation datasets available in 95 distinct reference epigenomes.
i. Gene expression data using RNA-seq (Brown) and microarray expression (Yellow). j. 26
epigenomes contain a total of 184 additional histone modification marks. k. 60 highest-
quality epigenomes (purple) were used for training the core chromatin state model, which
was then applied to the full set of epigenomes (purple and orange).
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Figure 3. Epigenomic information across tissues and marks
a. Chromatin state annotations across 127 reference epigenomes (rows, Fig. 2) in a ~3.5Mb

region on chromosome 9. Promoters are primarily constitutive (red vertical lines), while
enhancers are highly dynamic (dispersed yellow regions). b. Signal tracks for IMR90
showing RNA-seq, a total of 28 histone modification marks, whole-genome bisulfite DNA
methylation, DNA accessibility, Digital Genomic Footprints (DGF), input DNA, and
chromatin conformation information’2. c. Individual epigenomic marks across all

Nature. Author manuscript; available in PMC 2015 August 19.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

etal.

Page 61

epigenomes in which they are available. d. Relationship of figure panels highlights dataset
dimensions.
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Figure 4. Chromatin states and DNA methylation dynamics
a. Chromatin state definitions, abbreviations, and histone mark probabilities. b. Average

genome coverage. Genomic annotation enrichments in H1-ESC. c. Active and inactive gene
enrichments in H1-ESC (see Extended Data 2b for GM12878). d. DNA methylation. e.
DNA accessibility. d-e. Whiskers show 1.5 * interquartile range. Circles are individual
outliers. f. Average overlap fold enrichment for GERP evolutionarily conserved non-coding
regions. Bars denote standard deviation. g. DNA methylation (WGBS) density (color, In
scale) across cell types. red=max In(density+1). Left column indicates tissue groupings, full
list shown in Extended Data 4f. h. DNA methylation levels (left) and TF enrichment (right)
during ESC differentiation. i. Chromatin mark changes during cardiac muscle
differentiation. Heatmap=average normalized mark signal in Enh. C5 cluster enrichment>4.
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Figure 5. Cell type differences in chromatin states
a. Chromatin state variability, based on genome coverage fraction consistently labeled with

each state. b. Relative chromatin state frequency for each reference epigenome. c.
Chromatin state switching logg relative frequency (inter-cell-type vs. inter-replicate). d.
Clustering of 2Mb intervals (columns) based on relative chromatin state frequency (fold
enrichment), averaged across reference epigenomes. LaminB1 occupancy profiled in ESCs.
Red lines show cluster average.
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Figure 6. Epigenome relationships
a. Hierarchical epigenome clustering using H3K4mel signal in Enh states. Numbers indicate

bootstrap support scores over 1,000 samplings. b-c. Multidimensional scaling (MDS) plot of
cell type relationships based on similarity in H3K4mel signal in Enh states (b) and
H3K27me3 signal in ReprPC states (c). First four dimensions shown as dim1 vs. dim2 and

dim3 vs. dim4.
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Figure 7. Regulatory modules from epigenome dynamics
a. Enhancer modules by activity-based clustering of 2.3 million DNase-accessible regions

classified as Enh, EnhG or EnhBiv (color) across 111 reference epigenomes. Vertical lines
separate 226 modules. Broadly-active enhancers shown first. Module I1Ds shown in Fig.
S1ic. b-c. Proximal gene enrichments®* (b) for each module using gene ontology (GO)
biological process (panel b) and human phenotypes (panel ¢). Rectangles pinpoint
enrichments for selected modules. Representative gene set names (left) selected using bag-
of-words enrichment.
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Figure 8. Linking regulators to their target enhancers
Module-level regulatory motif enrichment (Fig. S11) and correlation between regulator

expression and module activity patterns (Extended Data 8a) are used to link regulators
(boxes) to their likely target tissue and cell types (circles). Edge weight represents motif
enrichment in the reference epigenomes of highest module activity.
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Figure 9. Epigenomic enrichments of genetic variants associated with diverse traits

Tissue-specific H3K4mel peak enrichment for genetic variants associated with diverse

traits. Circles denote reference epigenome (column) of highest enrichment for SNPs

reported by a given study (row), defined by trait and publication (PubMed identifier, PMID).

Tissue (Abbrev) and p-value (-logyg) of highest enrichment are shown. Only rows and

columns containing a value meeting a FDR of 2% are shown (Full matrix for all studies
showing at least 2% FDR in Extended Data 11-12).
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