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ABSTRACT

In this paper, we present a novel method for inverse filtering a two dimensional (2-D) signal using phase-based
processing techniques. A 2-D sequence can be represented by a sufficient number of samples of the phase of its
Fourier transform and its region of support. This is exploited to perform deconvolution. We examine the effects
of additive noise and incomplete knowledge of the point spread function on the performance of this deconvolution
method and compare it with other 2-D deconvolution methods. The problem of finding the region of support
will also be briefly addressed. Finally, an application example will be presented.
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1. INTRODUCTION

A common problem that arises in signal processing is that of obtaining an original sequence from a sequence that
has been filtered or blurred. This is referred to as the inverse filtering problem. We are interested specifically in
inverse filtering 2-D signals.

The model we will consider is of a 2-D signal being convolved with a spatially invariant point spread function
(PSF) and then corrupted by additive noise. This model is widely used in practice in fields as diverse as
archeology,1 medical technology (specifically ultrasound,2 x-ray and CT scan imaging3), astronomy4 and general
image restoration.5

The most straightforward way to solve this problem is to simply divide the Fourier transform of the degraded
signal by the Fourier transform of the PSF. However, this gives poor results in the presence of additive noise.
Because filtering happens before the noise is added, the frequencies that have been most attenuated by the filter
tend to have the lowest SNR, but these are precisely the frequencies that the inverse filter amplifies.6

As an attempt to mitigate this, a cap is sometimes put on the magnitude of the Fourier transform of the
inverse PSF. That is, all frequencies with magnitudes above a given threshold are set to be the capped value.
This reduces the problem of noise amplification, but it is ad-hoc and still does not produce good results.

In this paper, we propose a new inverse filtering method based on the phase of the degraded signal. Specifically,
it has been shown by Hayes7 that a typical digital image of N1xN2 pixels can be reconstructed to within a scale
factor using (2N1 − 1)x(2N2 − 1) equally spaced samples of the phase of its Fourier transform and its region
of support (ROS). The reconstruction can be performed by an iterative algorithm which alternately applies the
spatial domain constraints (the ROS) and the Fourier domain constraints (the phase samples). This iteration
has been proven to converge to the desired solution7.8

The method we propose applies this to inverse filtering by subtracting the phase of the PSF from the phase
of the degraded signal and then using the reconstruction algorithm to obtain the restored image. We will refer
to this method as phase-based deconvolution. When there is no noise, this leads to the same result as dividing
the Fourier transform of the degraded image by the Fourier transform of the PSF.

In the presence of noise, the behavior of phase-based deconvolution is very difficult to analyze theoretically.
It requires only a subtraction, not a division, and so there is some basis for expecting noise amplification to not
be as dramatic as it is when doing direct inverse filtering. However, the relationship between additive noise in
the spatial domain and phase errors in the frequency domain is complicated and non-linear, and the effect that
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the errors in the “corrected” phase will have on the spatial domain image is similarly complicated. There is no
theoretical guarantee that an image even exists which satisfies both the Fourier and spatial domain constraints.

Because of the difficulties in analyzing phase-based deconvolution theoretically, we will do so experimentally
by computer simulation using digital images that have been blurred. Such experiments are useful measures of
the performance of phase-based deconvolution because image restoration is a common problem and potential
application (although phase-based deconvolution is not an image restoration system itself–it is agnostic to the
noise and does not perform any noise reduction) and because it provides a good way to see visually the results
of performing phase-based deconvolution.

There have been many methods developed for solving the specific problem of restoring blurred, noisy images,
and these all rely on assumptions about the noise, the original image, or both. For example, Wiener filtering
assumes the power spectral densities of the image and noise are known.6 Variations and extensions of Wiener
filtering, such as regularized filtering5 or the method proposed by Dabov et. al.9 assume the noise variance
is known. The Richardson-Lucy algorithm assumes the noise is Poisson.10 More recently, wavelet techniques
have been developed that depend on assumptions about the noise distribution.11 Total variation techniques
rely on the noise variance.12 Methods that depend on an assumption that the image is sparse in some domain
have also been explored13,14 as have methods that assume a particular distribution of the image coefficients15

or gradients1617.18 Methods that make use of image dictionaries obtained from a training set have also been
studied19.20

This list is not meant to be exhaustive. Many other image restoration algorithms exist, but the examples
given here illustrate the kinds of approaches taken to solving this problem. The results produced by these
methods can be quite good if the assumptions they make are correct. However, in some situations, it may be
desirable to have a more general method–one that does not rely on any assumptions about the image or the noise
but is still robust to noise. For example, this may be the case when the noise statistics are changing or difficult
to measure, or when the signal to be restored is not an image. As we will show, phase-based deconvolution is
such a method.

This paper is organized as follows. In the next section, we present the performance of phase-based deconvo-
lution in the presence of noise, and in Section 3, we compare phase-based deconvolution to some of the image
restoration methods mentioned above as a demonstration of how robust it is. In Section 4, we examine the case
when the PSF is not known completely. In Section 5, we briefly explore how the ROS of the image may be found.
In Section 6, we look at a specific application example, and we conclude the paper in Section 7.

2. PERFORMANCE IN THE PRESENCE OF NOISE

Before we discuss performance, an error measure is needed. This is not a simple matter, as different types of
artifacts can have quite different effects on the viewer, even if they lead to a similar quantitative error. The error
measure used here is a variation of mean squared error where the restored image is first scaled by a factor chosen
to minimize the mean squared error, and then the mean squared error is computed. This will be referred to as
optimal scaling mean squared error (OS-MSE). This measure was chosen both because phase-based deconvolution
reconstructs the image only to within a scaling factor and because the measure was reasonably consistent with
subjective visual quality. However, it should be thought of as only a rough indicator of quality. Example images
will also be included to illustrate the different types of artifacts. The problem of choosing the scaling factor in
practice will not be addressed here except to indicate that it can be estimated from the degraded image.

When there is no noise, the phase-based reconstruction algorithm is guaranteed to converge. When there is
noise, there is not a theoretical guarantee, but our experiments indicate that it does.21 Furthermore, when the
iteration is started with a constant initial magnitude, the solution tends to improve as the iteration progresses,
and the convergent solution is almost always the optimal solution or very close to the optimal solution in the
OS-MSE sense.

We will now compare phase-based deconvolution to other inverse filtering techniques–that is, to methods that
do not rely on any assumptions about the noise or image. Direct, thresholded, and phase-based deconvolution
are all inverse filtering (or deconvolution) techniques. We will refer to methods that do make assumptions about
the noise or image as image restoration techniques.
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Figure 1. Comparison of inverse filtering methods in the presence of noise.

Degraded image Direct deconvolution Thresholded deconvolution Phase-based deconvolution

Figure 2. Artifacts in images restored with inverse filtering methods.

To compare the performance of phase-based deconvolution with other deconvolution methods, a variety of
images were blurred with an 11x11-point Gaussian filter (σ = 5) and various levels of white Gaussian noise
were added to the blurred images. These images were then deblurred using direct, thresholded, and phase-based
deconvolution, and the OS-MSEs between the restored images and the original images were computed.

The results for the cameraman image were typical. The OS-MSE curves for the inverse filtering methods are
shown in Fig. 1, and the artifacts in the restored images when the noise variance was 10−2 are shown in Fig. 2.
In Fig. 2 and all subsequent images, the black boarders around the restored and original images are not shown,
so, whereas the degraded images are 266x266 pixels, the original and restored images are only 256x256 pixels.
As Figs. 1 and 2 show, phase-based deconvolution does significantly better than either direct or thresholded
deconvolution.

It is worth noting here that phase-based deconvolution is computationally expensive, with each iteration
requiring the computation of a DFT and an inverse DFT of at least twice the size of the signal, and with about
a thousand iterations required for convergence. (This varied from one image to the next, but 500 to 1,500
iterations was typical.) However, the gains shown here are certainly worth the computational cost. If phase-
based deconvolution were to be used as a step in a full image restoration system, it would be practical only in a
setting where computational power was not a major concern.

3. DEMONSTRATION OF ROBUSTNESS

Phase-based deconvolution is so robust to noise that it can be compared to simple image restoration methods
that rely on some knowledge of the noise. The results are shown in Fig. 3. The restoration methods used here are
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Figure 3. Phase-based deconvolution compared to restoration methods in the presence of noise.

Original image Degraded image Wiener filtering

Regularized filtering Richardson-Lucy iteration Phase-based deconvolution

Figure 4. Artifacts in restored images when noise variance was 1.

Wiener filtering, regularized filtering (Wiener filtering with a smoothness constraint), and the Richardson-Lucy
iteration. For the purposes of Wiener and regularized filtering, the noise variance was assumed known and the
signal to noise ratio was computed from the degraded image. The Richardson-Lucy iteration was stopped at the
first local minimum in OS-MSE. In practice, the OS-MSE would not be available and the stopping point would
have to be estimated using the noise statistics. Artifacts produced by the various restoration methods are shown
in Fig. 4.

As shown in Fig. 3, at low noise levels, phase-based deconvolution performed better than Wiener filtering and
was competitive with regularized filtering and the Richardson-Lucy iteration. At high noise levels, it generally
performed somewhat worse than the restoration methods. This is expected as those methods attempt to account
for (and therefore depend on knowledge of) the noise, whereas phase-based deconvolution does not.
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Figure 5. Comparison of methods when knowledge of the PSF was incomplete.

It should be emphasized that this comparison is not meant to imply that phase-based deconvolution should
be used as an image restoration system by itself. It is merely a dramatic demonstration of the result that
phase-based deconvolution is very robust to noise.

4. INCOMPLETE KNOWLEDGE OF THE PSF

4.1 Known Size

Situations arise in which the PSF is not known completely, if at all. While various methods exist to make some
estimate of an unknown PSF, these methods focus on using the statistics of the degraded image and similar
images to estimate the magnitude of the PSF.6 However, for the large class of low-pass filters that have zero
phase, the phase is much easier to estimate. “Zero phase” filters have phases only of 0 or π, and the locations of
the phase changes are much more dependent on the size of the filter than on its taper. Therefore, if the size of
an unknown PSF can be determined, the phase of a simple averager of the same size may provide an adequate
guess of the phase of the true PSF.

Experiments have shown that, when an image is blurred with an 11x11-point Gaussian filter (σ = 5) and
deblurred with an 11x11-point averager, the convergent solution of phase-based deconvolution produced much
better results than other inverse filtering methods in all cases. It also generally did better than the restoration
methods.

Interestingly, when the PSF was not known completely, the convergent solution was not always the best
solution in the OS-MSE sense (though the iteration did always converge). It was sometimes advantageous to
stop the reconstruction algorithm before convergence. However, without having the original image, it would be
difficult to know when to stop the iteration to achieve an optimal solution, and the convergent solution was also
generally acceptable.

These results are illustrated in Fig. 5 for twelve different images. The artifacts present in the restored
cameraman images are shown in Fig. 6. The blurring function for these images was an 11x11-point Gaussian
filter (σ = 5), the deblurring function was an 11x11-point averager, and no noise was added. The result for
phase-based deconvolution in Fig. 6 is the convergent solution.

When low levels of noise were added to the blurred image, phase-based deconvolution continued to do better
than the restoration methods. At high noise levels, the effect of noise began to dominate the effect of the
PSF error, and the restoration methods tended to do better than phase-based deconvolution. Phase-based
deconvolution always performed much better than any other inverse filtering method. These results are illustrated
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Figure 6. Artifacts in restored images when knowledge of the PSF was incomplete.
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Figure 7. Comparison of methods in the presence of noise and incomplete knowledge of the PSF.

in Fig. 7. Again, the blurring filter was an 11x11-point Gaussian filter (σ = 5), and the deblurring filter was an
11x11-point averager.

It is interesting to note that Wiener and regularized filtering give better results as the noise increases. This
happens because they take the noise statistics as inputs and in this case a larger noise variance is a better
description of the error due to the incorrect blurring filter than a smaller noise variance. This demonstrates an
advantage of inverse filtering techniques over image restoration techniques: Because inverse filtering techniques
do not rely on any noise statistics, there is no penalty for not knowing the noise accurately.

Again, these results do not imply that phase-based deconvolution should be used as an image restoration
system. It is simply an inverse filtering technique that is extremely robust to a certain class of errors in the
estimate of the PSF.
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Figure 8. Comparison of methods when knowledge of the PSF was incomplete.

4.2 Unknown Size

To demonstrate the importance of knowledge of the size of the PSF (rather than taper) to phase-based deconvo-
lution, the same experiments were performed with a 9x9-point averager as the estimate of the blurring function,
which was still the 11x11-point Gaussian filter used previously. These results are shown in Fig. 8. Comparing
Fig. 8 with Fig. 5, it is clear that phase-based deconvolution does not perform nearly as well when the estimated
PSF is of the wrong size, though it still performs much better than any other inverse filtering method. Interest-
ingly, in some cases the restoration methods perform better when the estimated PSF was a 9x9-point averager
than when it was an 11x11-point averager. This implies that there is some sense in which the 9x9-point averager
is a better overall estimate of the 11x11-point Gaussian filter, even though it is a worse estimate of the phase.

5. FINDING THE REGION OF SUPPORT

In the previous two sections, it has been assumed that the ROS of the image was known. However, for the class
of pictures where the image is on a large black field (for example, astronomical images), this may not be the
case.

Experiments were performed to determine the effect of an incorrect ROS on the result produced by phase-
based deconvolution when the PSF was known and there was no noise. These experiments indicated that a ROS
estimated too large leads to a much smaller error than a ROS estimated too small. This may be because a ROS
estimated too small enforces the zeroing of pixels that should be non-zero, whereas a ROS estimated too large
merely allows non-zero values in pixels that should be zero. The frequency domain aspect of the iteration may
or may not try to make those pixels non-zero. This should be a guiding principle when looking at methods to
determine the ROS–there should be a bias towards methods that overestimate the ROS.

Several such methods have been considered. Results indicate that morphological processing is quite promising.
Using fairly low thresholds, morphological processing can generally determine the ROS to within a few pixels
even at high noise levels, and using a ROS determined in this way gives similar results to using the correct ROS
under the conditions considered in the previous two sections.

6. APPLICATION EXAMPLE

In this section, we discuss an application example. An original image was processed with a low-pass filter in
discrete space. The resulting blurred image was quantized and the original was lost. It is now desirable to
retrieve the original image from the blurred, quantized image. The blurring function will be assumed known.
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Table 1. Number of times each method produced the optimal restoration

Method coarse fine total
Wiener filtering 1 0 1
regularized filtering 14 13 27
Richardson-Lucy iteration 7 17 24
phase-based 20 24 44
thresholded inverse filtering 0 1 1
no processing 2 0 2

Degraded image
(OS-MSE=194.4)

Thresholded deconvolution
(OS-MSE=1072)

Wiener filtering
(OS-MSE=78.43)

Regularized filtering
(OS-MSE=31.91)

Richardson-Lucy iteration
(OS-MSE=42.10)

Phase-based deconvolution
(OS-MSE=21.67)

Figure 9. Artifacts in restored images when the blurred image was quantized to 8 bits.

While admittedly somewhat contrived, this example will serve to illustrate the utility of an inverse filtering
method that is robust to noise.

Restoration was attempted on eleven different images, with quantization levels ranging from four to twelve
bits. The images considered were fairly “typical” black and white images with a variety of characteristics
(horizontal and vertical edges, details, flat areas, etc.) Phase-based deconvolution was generally much better
than any other inverse filtering method in the OS-MSE sense, and it was generally also competitive with the
restoration methods considered thus far. This is illustrated by Table 1, which shows the number of times each
restoration method produced the best result in the OS-MSE sense when the blurred images were quantized
coarsely (4-7 bits) and finely (8-12 bits).

As can be seen from Table 1, phase-based deconvolution does as well as or better than any other restoration
method. This demonstrates the advantage of having a robust inverse filtering method–it does not depend on any
description of the noise, and so performs well when the noise is difficult to describe accurately, as quantization
noise is.

Additionally, phase-based deconvolution produces different types of artifacts than the other methods. Which
types of artifacts are most objectionable will likely depend on application. The restored cameraman images are
shown in Fig. 9 to give an example of what these artifacts look like.

Proc. of SPIE-IS&T Vol. 9410  941002-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/12/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



7. CONCLUSION

In this paper, we have presented a novel method of two-dimensional inverse filtering using only the phase and
region of support of the degraded signal and the phase of the PSF. It has been shown that this method performs
much better than other inverse filtering methods in the presence of noise and is even comparable to some basic
restoration methods at low noise levels. When only the size of the PSF is known, the phase can be estimated
from an averager of that size, and phase-based deconvolution can produce results that are generally better than
what is produced by other inverse filtering or restoration methods. The problem of finding the ROS of the
image was addressed, and results indicate that morphological processing can perform quite well. An application
example was presented which highlighted the utility of an inverse filtering method (as opposed to a restoration
method) when the noise was due to quantization of the blurred image.

Finally, in this paper, we considered using only the phase for the image reconstruction. If any reliable
magnitude information is available, we note that such information could easily be incorporated in the iterative
algorithm.
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