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QUANTUM LOCALLY TESTABLE CODES∗

DORIT AHARONOV† AND LIOR ELDAR‡

Abstract. We initiate the study of quantum locally testable codes (qLTCs). Classical LTCs are
very important in computational complexity. These codes are defined as the linear subspace satisfying
a set of local constraints, with the additional requirement that their soundness, R(δ), which is the
probability that a randomly chosen constraint is violated, is proportional to the proximity δ, where
δn is the distance of a word from the code. Excellent LTCs exist in the classical world, and they
are tightly related to the celebrated PCP (probabilistically checkable proof) theorem. In quantum
complexity, quantum error correcting codes provide central examples in the study of the illusive
behavior of multiparticle entanglement, and they have played a crucial role in many computational
complexity results. We provide a definition of the quantum analogue of LTCs and motivate it
by connecting its central notions in the study of both entanglement and quantum Hamiltonian
complexity. A natural question is whether such codes exist, and how good can their soundness be.
To the best of our knowledge all quantum codes known today exhibit poor soundness. Moreover,
we show that the soundness of CSS codes (which are commonly used quantum codes defined by two
classical codes) is governed by the minimal soundness of the two classical codes; in the most natural
CSS code we examined as a candidate qLTC, namely, the Reed–Muller code, there is a tradeoff
between the parameters of the two codes, which prevents the resulting quantum code from being
qLTC. These facts seem to suggest a more general phenomenon, by which the soundness of qLTCs
is inherently restricted due to multiparticle entanglement. Our main technical contribution consists
of two complementary results regarding qLTCs which are stabilizer codes (denoted sLTCs). We first
prove a surprising, inherently quantum property of sLTCs. For small constant values of proximity,
the better the local expansion of the interaction graph of the constraints, the less sound the sLTC
becomes. This stands in sharp contrast to the classical setting. The complementary, more intuitive
result also holds (and is actually much more involved technically to prove in the quantum case): an
upper bound on the soundness when the code is defined on bad local expanders. Together we arrive
at a quantum upper bound on the soundness of sLTCs set on any graph, which does not hold in the
classical case. Many open questions are raised regarding what possible parameters are achievable
for qLTCs, and their relation to other objects of interest in quantum information theory. In the
appendix we also define a quantum analogue of PCPs of proximity (PCPPs) and point out that the
result of [E. Ben-Sasson et al., SIAM J. Comput., 36 (2006), pp. 889–974] by which PCPPs imply
LTCs with related parameters carries over to the sLTCs. This creates a first link between qLTCs
and quantum PCPs [D. Aharonov, I. Arad, and T. Vidick, ACM SIGACT News Archive, 44 (2013),
pp. 47–79].

Key words. locally testable codes, quantum error correcting codes, quantum PCP, stabilizer
codes
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1. Introduction. Consider the following question: We are given a classical code
of n-bit strings, defined by O(1)-local constraints (namely, an LDPC code1). We are
also given a word x which is of Hamming distance δn > 0 from the code (we say it
has proximity δ). The underlying question when dealing with locally testable codes
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1LDPC stands for low density parity check; this corresponds to the fact that the parity check
matrix has only a few coordinates in each row.
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QUANTUM LOCALLY TESTABLE CODES 1231

is, what is the probability that a constraint chosen uniformly at random is violated?
We denote by R(δ) (called the soundness) the lower bound on the probability that
any word of proximity exactly δ will violate a randomly chosen constraint. Locally
testable codes (LTCs) are those for which a large distance from the code guarantees
with high probability that one could detect that the word is not in the code, namely,
those codes with good soundness. The soundness parameter formally captures an
intuitive notion of “robustness” of these codes.

LTCs constitute perhaps the most natural and simple instantiation of the fol-
lowing type of problem, defining the topic of property testing: We are given a set of
strings P , which we refer to as a property, and access to coordinates of our choice of a
given string x. We would like to decide whether or not x possesses the property, i.e.,
lies inside P . Clearly, in many cases one needs to have access to all of x’s coordinates
in order to decide this question. However, when one relaxes the question and only
asks whether x is in P or far from it (far can be measured in different ways), then
it sometimes becomes possible to decide membership in various properties even when
reading only a small number of coordinates. In some sense, this is a combinatorial way
to study connections between global and local characterization of a certain property.

Indeed, since LTCs which initiated the field of property testing were first de-
fined [33], this has developed into a thriving area of its own. Equally importantly,
LTCs play an instrumental role in all proofs of the celebrated PCP (probabilistically
checkable proof) theorem [7, 8, 26].2 The understanding of the limitation and possi-
ble constructions of LTCs had developed into a very active field of its own (see, for
example, Goldreich’s survey [32]).

Here, we initiate the study of quantum LTCs, which, to the best of our knowledge,
were not defined or studied before. Our motivating question, like in the classical case,
is understanding global versus local behavior of sets, except now we are dealing with
quantum states in which multiparticle entanglement plays a crucial role, and in which
such global-versus-local tradeoffs are particularly interesting. What new behaviors
and limitations emerge when quantum entanglement enters the scene?

1.1. Classical locally testable codes: Background. The behavior of LTCs
is usually explored in one of two contexts: as an errorcorrecting code, or in relation
to PCPs (see [32]); depending on the context, one is interested in different ranges of
distances from the code, namely, different ranges of proximities. In particular, in the
context of error correction, the interesting regime of proximities is at most half the
distance of the code; in this regime, the error can still be corrected. In the context of
PCPs, on the other hand, larger distances can be of interest, since a cheating prover
may provide witnesses of arbitrary distance from the code.

The following terminology is often used: When the soundness R(δ) is at least some
constant, for any δ larger than some (other) constant, the code will be called weak-
LTC; but if the requirement is that R(δ) is bounded from below by a linear function
of δ for any δ, we will say that the code is a strong-LTC. Note that one cannot expect
the soundness to be better than linear in δ if we assume, as is commonly done, that
the number of constraints in which each bit is involved is bounded by a constant.

Some well-known classical strong-LTCs include the Reed–Muller code [48], the
Hadamard code [6], and Hast̊ad’s long code [40], which were used in the PCP proofs
of [7, 8, 26]. We mention in passing that these codes are not so satisfying when

2The PCP theorem states, roughly, that any NP problem can be cast in a format in which the
verifier only needs to read O(1) bits from the proof in order to determine its veracity with some
constant (say 2/3) probability.
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1232 DORIT AHARONOV AND LIOR ELDAR

considering the rate; the Hadamard code and the long code’s rates are exponentially
and doubly exponentially small, respectively; the best known LTCs [32] which are
achieved by combining the results of [26, 15] exhibit constant distance, constant query
complexity, and rates which are polylogarithmically small. A major open question in
the area of LTCs, called the c3 problem [34], asks whether good (namely, constant
relative rate and distance) weak-LTCs exist. Nevertheless, if one is interested only in
the soundness parameter, classical codes perform excellently.

Moreover, it is common wisdom in the PCP community that good soundness is
rather easy to achieve for proximities which are below some constant threshold (this
is achieved by random codes), and the difficulty in designing such codes arises for
proximity values beyond the minimal distance of the code (see Claim 5 in Appendix C
for a more precise statement, as well as discussion following the statement of Theorem
1 below).

1.2. Quantum locally testable codes: Definition and motivation. Quan-
tum error correcting codes have played a crucial role in quantum complexity the-
ory (see, e.g., [36, 37, 12, 11]), and their study is a vastly growing field (see, e.g.,
[35, 24, 55, 46, 47, 20, 30, 17, 42]); they are related to a variety of issues, including, of
course, resilience of quantum computations to noise, and their fault tolerance, as well
as various protocols in quantum cryptography and quantum communication. Very
importantly, quantum error correcting codes provide an excellent probe into under-
standing the illusive nature of multiparticle entanglement, which is attracting a lot
of attention in both the physics and quantum computation communities (see, e.g.,
[43, 18, 19]).

To the best of our knowledge the quantum analogue of LTCs has not yet been
defined. This is of particular interest since the notion of local testability of quantum
codes seems to provide a combinatorial handle into a topic of significant interest to the
scientific community nowadays, namely, the robustness of multiparticle entanglement
and its global versus local behavior. We provide here a first definition of quantum
locally testable codes (qLTCs) (see Definition 15) and initiate its study by providing
some results which indicate an intriguing difference between the quantum and clas-
sical behavior with respect to local testability. Later, in the discussion sections, we
discuss in much more detail the connection between our definition and various topics
of interest such as robustness of entanglement at room temperature, self-correcting
codes, and the quantum PCP conjecture.

To define a quantum LTC, we recall that a quantum LDPC code (namely, a code
with local constraints; see footnote 1) can be defined as the ground space (namely, the
zero eigenspace) of a Hermitian operator acting on n qubits, called a local Hamiltonian
H =

∑m
i=1 Πi. The local terms Πi are projections which act nontrivially only on O(1)

qubits. We will refer to the local terms Πi as quantum constraints. As is commonly
used in the quantum Hamiltonian complexity literature (see, for example, [2]), the
right quantum analogue to the probability for violating a randomly chosen constraint
is the average energy per constraint:3

(1)
1

m
〈ψ|H |ψ〉 = 1

m

m∑
i=1

〈ψ|Πi|ψ〉.

3Note that this is different from the average energy per qubit, which is perhaps the more com-
monly used quantity in physics.
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QUANTUM LOCALLY TESTABLE CODES 1233

To define the notion of soundness for such LDPC codes, we want to require that
this quantity be large when the distance from the code is large. We thus need some
reasonable notion of a Hamming distance on quantum states. Following standard def-
initions of distance between orthogonal code states, we say that the distance between
two orthogonal states |φ1〉, |φ2〉 is the maximum weight w, such that if E is any tensor
product of one-qubit Pauli matrices, of weight at most w (the weight of a Pauli is
the number of coordinates in which it is a nonidentity), then E induces no overlap
between them, i.e., 〈φ1|E|φ2〉 = 0. This definition can of course be extended to a
distance between a state and a set of states.

We can now define the soundness of the quantum code. We say that a quantum
code C on n qubits is a quantum locally testable code (qLTCs) with soundness R(δ)
if for all 0 < δ < 1 we have

(2) min
|ψ〉,dist(|ψ〉,C)≥δn

1

m
〈ψ|H |ψ〉 = R(δ);

i.e., for any state ψ that is within distance exactly δn from the code space, its average
energy with respect to the constraints, 1

m 〈ψ|H |ψ〉, is at least R(δ) (see Definition 15).
Following the classical case, we say that a code is a weak-qLTC if its soundness

is at least a constant for values of δ larger than some constant, And a strong-qLTC
would mean linear soundness as a function of the proximity for all distances.

1.2.1. Standard quantum codes as qLTCs. Since CSS codes [50] are an
important and rather easy to study family of quantum error correcting codes, which
are defined using classical codes, and, moreover, since classical LTCs are abundant,
it seems natural to start by asking whether we can find qLTCs among known codes
in this familiar class.

Recall that CSS codes are defined by a pair of classical codes Lx,Lz ⊆ Fn2 , with
the added restriction that L⊥

x ⊆ Lz (equivalently, L⊥
z ⊆ Lx). This extra restriction

allows us to map the defining constraints of such codes into an Abelian stabilizer
group with two types of constraints: Pauli X terms, corresponding to L⊥

x , and Pauli
Z terms, corresponding to L⊥

z . Furthermore, this definition allows for an elegant
analysis of the parameters of these codes by looking at the quotients Lx/L⊥

z , Lz/L⊥
x .

We observe (see Appendix F for the proof) that CSS codes inherit their soundness
from the minimal soundness of the two codes that comprise them.

Fact 1. Let Q(Lx,Lz) be a quantum CSS code built from two binary classical
codes Lx,Lz ⊆ {0, 1}n. If both Lx,Lz have query complexities q1, q2 and sound-
ness functions R1(δ), R2(δ), then Q as a quantum code has query complexity q =
max {q1, q2} and soundness R(δ), for which

(3) min {R1(δ), R2(δ)} ≥ R(δ) ≥ min {R1(δ/2), R2(δ/2)} .

An important first example to consider is the quantum version of Reed–Muller
codes, first defined in [53]. As stated before, classical Reed–Muller codes are strongly
locally testable. This is achieved by choosing the degree of the (multivariate) poly-
nomial, whose coefficients encode the data message, as constant. Quantum Reed–
Muller codes [53] can be constructed using classical Reed–Muller codes and their
dual, in the usual CSS paradigm. By the above fact, the resulting code will inherit
its soundness from one of the two classical codes that defines the CSS code—the one
with the worse soundness (see Fact 1). However, using a pair of classical RM-codes
C1 = RM(r1,m1), C2 = RM(r2,m2) (where ri is the degree of polynomials over
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1234 DORIT AHARONOV AND LIOR ELDAR

mi variables) in their locally testable form, to construct a CSS code, implies that
r2 = θ(m − r1), so at least one of r1, r2 is Ω(m). Unfortunately, a result by Alon
et al. [4], shows that testing an RM(r,m) code requires 2Ω(r) queries, thus making
the classical tests (and the quantum tests, by inheritance of Fact 1) highly nonlocal.
This implies that quantum Reed–Muller codes are very far from being locally testable.

Another illuminating example to consider is Kitaev’s two-dimensional toric code
[43], which turns out to have very poor soundness. The toric code is a CSS codes, and
thus its poor soundness can be argued using the poor soundness of its classical codes,
but it is easier to explain using the existence of string-like error terms, which is perhaps
more familiar. A string operator of length L is a set of one-qubit Pauli operators all
of type X , say, applied on all qubits along some “string” in the lattice. Such a string
error induces only two violations, one at each end-point of the string. In particular,
one could choose a string of length θ(

√
n), which induces only two violations, thus

ruling out strong local testability of the toric code, because local testability for the
regime of proximities δ up to the order of 1/

√
n is ruled out.

This upper bound can in fact be made stronger; in fact, the toric code can be
shown to be not locally testable even up to δ = o(1). This is because for any δ > 0
we can devise an error term of weight δn, with a meager δ2 · n violated constraints as
follows: We divide the two-dimensional grid into boxes of side length 1/δ, and in each
one deploy a string error of length Ω(1/δ) at its center. We make the error sufficiently
short so its weight cannot be decreased modulo the centralizer of the stabilizer group
of the toric code. The weight of such an error (modulo the code) is δn, since in
each square, a fraction δ of the qubits are erred. On the other hand, the number of
violations is a fraction O(δ2) of the constraints, since this is the ratio in each box.
Hence, R(δ) is O(δ2) for subconstant δ’s. We observe that this behavior scales with
the dimension of the embedding space. For example, for the four-dimensional toric
code, using similar arguments, we can upper-bound R(δ) by O(δ3/2).4

One may be tempted to try nonconstant dimensional toric codes, having sound-
ness converging to a linear function of δ as δ(l−1)/(l−2), where l is the dimension of the
embedding space. However, in that case, the query complexity becomes nonconstant
as well, thereby undermining its local testability by fiat.

The apparent difficulty to derive what for classical LTCs is almost standard—
namely, strong soundness—even if we allow a vanishing rate raises the question of
whether quantum local testability is possible, even in a weak sense. We state our
motivating question.

Question 1. What are possible constructions of qLTCs? In particular, does
the additional aspect of multiparticle entanglement in qLTC, compared to their classi-
cal counterpart, pose limitations on the possible parameters of LTCs in the quantum
setting?

1.3. Main technical results.

1.3.1. Stabilizer qLTCs. Being probably the richest and most well-studied
class of quantum codes, stabilizer codes [35] are compelling and easy to work with.
We provide a simpler definition for stabilizer qLTCs (denoted sLTC; see Definition
17) and prove that it coincides with the definition of qLTCs on stabilizer codes in
Claim 3. The rest of our technical results concern sLTCs.

4As errors we take open two-dimensional manifolds of area 1/δ2, centered in boxes whose volume
is 1/δ4. The number of violated constraints in each box scales like the one-dimensional boundary of
its error, so it is O(1/δ). Hence, for an error of fractional weight (1/δ2)/(1/δ4) = δ2, the fractional
number of violations is O((1/δ)/(1/δ4 )) = O(δ3), or R(δ) = O(δ3/2).
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QUANTUM LOCALLY TESTABLE CODES 1235

1.3.2. Bounds on the soundness of sLTCs. We focus on sLTC’s on n qudits,
defined by m k = O(1)-local check terms, where each qudit participates in DL = O(1)
constraints. For such codes, we provide two upper bounds on the soundness. Both
bounds hold for values of proximities which are at most some constant fraction of the
minimal distance of the code. This constant is a function of k and DL. Usually, in
the classical setting, it is much easier to derive LTCs whose soundness is good (large)
for those small proximity values (see, e.g., our Claim 5). Here, we show that in this
supposedly easier range of parameters, qLTCs are severely limited compared to their
classical counterparts.

There is a twofold reason for being interested in linear soundness as a function of
the proximity, in the small proximity regime (namely, in strong qLTCs). First, in both
the quantum and classical cases, linear soundness as a function of the proximity is the
maximal soundness one can hope for (under the commonly used assumption which
we make here that each bit or qubit participates in the number of constraints DL,
and that these constraints are local). The fact that classically one can achieve this
makes the quantum requirement a reasonable goal to set. There is in fact also a second,
purely quantum motivation for studying strong soundness at low ranges of proximities:
There are indications that such strong soundness may imply that at subconstant
temperatures the equilibrium state of a quantum system is still highly entangled. We
refer the reader to the discussion section where we explain this connection between
qLTCs and robustness of entanglement.

To make the statement of the results simpler, we observe that the soundness R(δ)
is bounded above by the number of constraints that touch the erred qudits, divided
by m: hence it is at most δnDL/m = kδ (using DLn = km). It turns out that it is
more informative to present our results in the following terms.

Definition 1 (relative soundness).

(4) r(δ) = R(δ)/kδ.

The relative soundness is the soundness normalized by its maximal value (for an
exact definition, see Definition 18).

Bound on sLTCs set on local expanders. Our first main result proves that sLTCs
exhibit a severe limitation on their relative soundness at small proximities when set
on good expanders. More precisely, consider the bipartite graph of the code defined
with n bits on the left side, m constraints on the other side, and edges connecting each
constraint to all of its bits. This is sometimes referred to as the Tanner graph of the
code [54]. Our constraints are all k-local for some k = O(1). We say that the bipartite
graph is an ε-local expander if every subset of at most k qubits is examined nearly
by as many constraints as it possibly can, namely, by at least (1− ε)kDL constraints.
Theorem 1 shows that in the quantum setting, when the underlying bipartite graph of
the sLTC code is an ε-local expander, the relative soundness is O(ε). In other words,
the better the expansion, the worse the soundness. This holds for all proximities
smaller than some fraction of the minimal distance of the code, δmin.

Theorem 1 (stabilizer qLTCs based on expanding topology are limited). Let C
be a stabilizer code on n d-dimensional qudits, of relative minimal distance δmin, with
a k-local generating set G ⊂ Πnd , such that each qudit is examined by DL generators.
Put δ0 = min

{
1

k3·DL
, 12δmin

}
. Suppose the bipartite interaction graph of G is ε-local

expanding for ε < 1/2. Then, for all 0 < δ < δ0, we have r(δ) ≤ 2ε.D
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1236 DORIT AHARONOV AND LIOR ELDAR

See section 3 for exact definitions of stabilizer codes and their generators, and
Definition 18 for the exact definition of relative soundness.

Theorem 1 stands in sharp contrast to the classical case. Classically, codes can
easily be constructed on good expanders so that for small proximities their soundness
is excellent. We provide an explicit example whose relative soundness is arbitrarily
close to 1 by plugging the lossless expanders constructed in [22] into the expander
code construction of Sipser and Spielman [52]. This implies good classical codes with
constant query complexity and with almost optimal soundness for any proximity δ
smaller than some constant (see Claim 5 in Appendix C).

Bound on the soundness of any sLTC. Our second main result is an upper bound
on the relative soundness which holds for sLTCs set on any underlying bipartite graph,
not necessarily local expanders.

Theorem 2 (roughly). Let C be a stabilizer code on n d-dimensional qudits,
of k-local terms (k ≥ 4) with relative distance δmin = Ω(n−ε) for some constant
ε ∈ [0, 1), where each qudit interacts with O(1)-local terms. Any error of fractional
weight δ < 1

2δmin ≤ 1 has r(δ) ≤ α(d)(1 − γgap) for some constant function γgap =
γgap(k, d) > 0.

In the above theorem α(d) = 1− 1/(d+1); this is a technical upper bound on the
relative soundness of qLTCs defined on d-dimensional qudits, stemming quite easily
from the size of the alphabet d (see subsection 5.1).

The proof of the theorem uses probabilistic bounds in which some exponential-
decay behavior “defeats” a linear function. This occurs at k = 4, hence the limitation
in the statement of the theorem. We point out, though, which the case of k = 3,
which was left out of the theorem, is in fact irrelevant for qubits/qutrits [3] since any
quantum code with such parameters has distance O(1).

Theorem 2 shows that the soundness is further bounded by some seemingly deeper
quantum phenomenon. We stress that this upper bound, which is not exhibited in
classical codes, is found in the range of parameters of δ (small constants) in which
it is supposed to be easiest to achieve soundness for LTCs; see, e.g., Claim 5 in
Appendix C.

1.3.3. Quantum PCPs of proximity. LTCs are tightly connected [32] to
PCPs of proximity (PCPPs), which are proof systems defined very similarly to PCPs
(see [14]). For the reader familiar with PCPs, they too consider a verifier who gets
access to an untrusted proof; however, PCPPs differ from PCPs in two important as-
pects: first, they are weaker, in the sense that they are required to reject only inputs
that are far from the language, whereas in PCPs any input out of the language should
be rejected; second, the verifier is charged not only for the number of queries out of
the proof, but also for the number of queries out of (part of) the input. For a formal
definition, see Appendix H.

Ben Sasson et al. [14] provide a standard construction of an LTC from a PCPP.
Given a PCPP for membership in a code, and an error correcting code C, they
construct an LTC code C′, which inherits its soundness parameter from the soundness
parameter of the PCPP and its distance from the code C (see Construction 4.3 and
Proposition 4.4 in [14]; see also our Appendix H).

In Appendix H, we suggest a definition of quantum PCPPs and show that a
similar result to that of [14] holds in the quantum setting. The meaning of the
definition of qPCPP and of the above-described connection, and their relevance and
importance to the quantum PCP conjecture, are far from clear (see, for example, [2]
for doubts regarding the classical approach to proving the quantum PCP conjecture,
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and the direct applicability of quantum error correcting codes in this context). Still we
provide these definitions and results in the appendix to make the point that a syntactic
connection does carry over also in the quantum regime. Finding a deep meaning to
the connection between qLTCs and the quantum local testability of proofs remains
an open problem, similarly to the classical case [32].

1.4. Overview of proofs of Theorems 1 and 2.

1.4.1. Bounds on sLTC codes on expanders. To prove Theorem 1, we want
to use good local expansion in order to construct an error which will not have a
large energy penalty (namely, will not violate too many constraints) but which will
be of large weight. More precisely, the error should have a large weight modulo
the centralizer of the stabilizer group (see Definition 17), and yet should not violate
too many stabilizer generators (recall that an error violates a stabilizer generator, or
constraint, if it does not commute with it; see Definition 8).

The key idea is that in a local expander, intersections between stabilizer generators
which consist of more than one qudit are rare (see Fact 3). The size of the intersection
matters since for two generators that intersect on a single qubit, the restrictions of
those operators to that qubit must commute, because the two generators commute
overall (see Definition 8). We note that it cannot be that all generators when restricted
to a given qudit commute, because this would mean that this qubit is trivial for the
code (see remark at the end of subsection 2.4). An error defined on a qudit in such
a way that it commutes with the majority of the generators acting on it will violate
only a small fraction of the constraints acting on that qudit.

To extend this to errors of larger weight (up to some small constant fraction of
the minimal distance), we apply the above idea to each of the generators in a large
“sparse” set of generators, namely, a set in which each two terms are of at least some
constant distance apart in the interaction bipartite graph (formally, a 1-independent
set of terms; see Definition 20). It is not difficult to see that due to the distance
between the generators, the error weight remains large even modulo the centralizer.

1.4.2. Upper bound on soundness for stabilizer sLTCs on any graph.
To prove Theorem 2, we want to prove that regardless of the graph they are set on,
the relative soundness of sLTCs can never achieve optimal soundness in a well-defined
sense. We use the bound of Theorem 1 (the “surprising” side) augmented with a claim
that quantum stabilizer codes not only suffer from the quantum effect of Theorem 1
but also cannot avoid the classical effect by which codes with poor local expansion
have low soundness, namely, that large error patterns are examined by relatively few
check terms, so the number of constraints they violate is relatively low. Together,
this means that for any underlying graph, whether a good or a bad local expander,
the relative soundness is nontrivially bounded.

In the classical case, arguing that poor expansion implies poor relative soundness
is almost trivial for proximities which are less than half the minimal distance of the
code; see below. A similar phenomenon, by which poor local expansion implies poor
local testability, holds also in the quantum case, but the proof turns out to be quite
nontrivial. Let us clarify what we’re trying to show. We want to show that if the
expansion is bad, one can construct an error of large weight but which does not have
large relative penalty. Let us start with the classical argument.

Suppose we would like to upper-bound the soundness function r(δ) of a classical
code C, for some range of proximity values (0, δ0], for δ0 ≤ δmin(C)/2. Consider a
set of bits S whose fractional size is δ0 and which has expansion error ε > 0, namely,
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1238 DORIT AHARONOV AND LIOR ELDAR

the number of constraints touching it is ε close to optimal. A priori, the binary word
w ∈ {0, 1}n which is the indicator vector on S (i.e., 1 on bits of S, and 0 otherwise)
is violated by at most |S|DL(1− ε) check terms by the assumption on the expansion.
On the other hand, by linearity of the code and the fact that |S|/n ≤ δ0, we have
that dist(w,C) = |S|. Hence the ratio of violation to distance is at most DL(1− ε).

In the quantum setting, however, an analogous Pauli error on a set of qubits S may
just seem to be large, whereas it can be actually represented much more succinctly.
Formally, for a stabilizer code generated by group G, we need to examine the weight
of any Pauli word w modulo its centralizer, C(G). If we restrict w to have weight at
most δmin/2, this amounts to finding its minimal weight modulo G. We would hence
like to devise an error pattern that cannot be downsized significantly modulo G, but
would still “sense” the nonexpanding nature of S, and hence have fewer-than-optimal
violations. This corresponds to checking that the weight of an error is not reduced
modulo the dual code—a requirement which does not appear in the classical setting,
and makes the proof much more difficult.

To this end we prove the onion fact (Fact 8), which might be of interest of its own.
It states that given an error on at most k/2 of the k qudits supporting a generator
g ∈ G, its weight cannot be reduced modulo G within the k-neighborhood of g (the
k-neighborhood is, roughly, the qudits belonging to the set of terms of distance k from
g in the interaction graph). The “onion” in the name is due to the fact that the proof
(given in subsection 5.3.3) works via some hybrid argument on the onion-like layers
Γ(i)(u) surrounding the qudits of a generator u.

Building on this fact, our strategy in constructing an error pattern is to con-
centrate the error on a large set of faraway generators whose k-neighborhoods are
nonintersecting (we call those generators “islands”). We now argue as follows. If
we draw a random error on the qudits belonging to these “islands”, with probability
calibrated so that the expected number of errors per “island” is, say, 1 error, the
following will occur: On one hand, many islands have more than one error, so they
“sense” the suboptimality of expansion. On the other hand, only a meager fraction,
exponentially small in k, of the “islands” with at least two errors will have more than
k/2 errors; only those by the onion fact (Fact 8) can be potentially reduced modulo
the centralizer. Hence with high probability the weight of the random error cannot
be significantly reduced modulo the centralizer, yet it still has a less-than-optimal
number of violations due to the expansion.

On a technical level, in order to actually find a large error that has both a large
weight and small energy penalty, we need its size to be diverging in n, so we require
that the minimal distance of the code is sufficiently large (diverging in n, though not
necessarily linear in n).

1.5. Discussion: Relation to other notions of robustness of entangle-
ment. The definition of local testability in the quantum setting suggests a probe to
the study of the robustness of multiparticle entanglement, a topic of much current
interest.

Another, perhaps more natural definition of entanglement robustness, which has
a more direct physical motivation, is requiring that the Gibbs state at room (namely,
constant) temperature of a local Hamiltonian is highly entangled as a mixed state. In
physics, the Gibbs state, namely, the state of a system at equilibrium at temperature
T , is defined to be the density matrix derived by assigning to an eigenstate of the
Hamiltonian with eigenvalue E a probability which is proportional to e−E/T . The
amount of entanglement in density matrices is hard to define even for two-qubit states,
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but we can use the following natural definition: We say that the Gibbs state is highly
entangled if, for any distribution D of pure states realizing the density matrix, a
state chosen randomly according to D is with all but negligible probability highly
entangled.

A stronger formulation is via Hastings’ NLTS (no low-energy trivial states) con-
jecture [41]. This conjecture states roughly that there exist local Hamiltonians such
that all their low-energy states (not just all their ground states, as in quantum error
correcting codes) are highly entangled. The question of whether NLTS local Hamil-
tonians exist is a major open question in quantum Hamiltonian complexity [2] as a
necessary step towards clarifying the widely open quantum PCP conjecture [1, 2], a
quantum analogue of the PCP theorem.5 It is not hard to see that NLTS systems have
a highly entangled Gibbs state for sufficiently small but nonzero temperature. Hence,
the NLTS conjecture (and thus also the qPCP conjecture) implies the existence of
local Hamiltonians whose Gibbs states are entangled at room temperatures.

We note that NLTS Hamiltonians and qLTCs seem related: while in qLTCs low
energies imply closeness to the code, in NLTS Hamiltonians they imply high entan-
glement, which is well known to be necessary for code states. Indeed, some weak
connections between the two notions were already proven.6 We believe that under-
standing any one of those notions better would lead to much better understanding of
the other.

There are strong indications that qLTCs may imply the existence of multiparticle
entanglement in the Gibbs distribution at temperatures proportional to δmin for a
somewhat different, more combinatorial notion of multiparticle entanglement than
the one usually used in the literature. This will be explained in a follow-up work
by one of us [29]. Very roughly, the idea in [29] is to characterize the existence of
multiparticle entanglement in a state by providing a lower bound on the ability of
classical low-depth circuits to generate the correlations exhibited by measuring that
state. It is then shown that if the soundness is linear in δ for a wide enough range of
values of δ starting from some sufficiently small fraction of δmin, then any quantum
state satisfying at least 1−O(δmin) of the local tests of the code is highly entangled
under the above definition. This indicates that possibly all quantum states with
energy at most O(δmin), as in the Gibbs state, may be highly entangled.

qLTC’s can be related also to the well-known physical notion of self-correcting
memories [21, 25, 39, 23, 38, 56]; in fact, they can be viewed as a strengthening
of that notion. A self-correcting memory is a medium in which a quantum state is
maintained almost in tact for a long time without active error correction, even at
constant temperatures, because any transition between two orthogonal code states
will encounter a high energy barrier. In qLTCs, the requirement is that not only
should such transitions encounter a high energy barrier at some point, but also that
at any point along the transition the energy barrier scale with the distance from the
code space. We note that a strong qLTC of linear minimal distance would imply a self
correcting memory, far better (in terms of the energy barrier) than the state-of-the-art
self-correcting memories known today [38, 56].

1.6. Related work. Theorem 1 is related to a recent result of the current au-
thors [3] which investigated low energy states of local Hamiltonian set of expanders.

5The qPCP question states, roughly, that it is quantum-NP hard to approximate the ground
energies of local Hamiltonians even to within a constant fraction. There has been much recent work
attempting to make progress on the qPCP question (see the recent survey [2] and references therein).

6One can show that qLTCs do not have tensor-product states with small (constant) mean energy.
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1240 DORIT AHARONOV AND LIOR ELDAR

It was shown in [3] that when a quantum local Hamiltonian, whose terms mutually
commute, is set on a good local expander, then already at low energies we can find
states which are almost nonentangled. As the expansion improves, this happens at
lower and lower energies. In Theorem 1 we show that as the expansion improves, the
soundness deteriorates, which means that already states with low energy can be very
far from the code.

Another result of similar spirit was derived by Brandão and Harrow [16] for non-
commuting 2-local Hamiltonians on standard expanders. In both results good expan-
sion poses a limitation on the expressiveness of quantum constraint systems.

We note that both the proof of our Theorem 1 and the result of [3] start with
Facts 2 and 3 regarding the percentage of unique neighbors in good local expanders;
however, the proofs proceed from that point onward in very different directions.

It is interesting to compare this behavior to the results of Dinur and Kaufman
[28], who showed that classical LTC codes must be set on a good local expander. More
precisely, given a code with soundness R(δ) = ρ · δ for all δ > δ0 for some constant δ0,
the edge expansion of the underlying graph is at least cρ for some constant c. This
might seem to provide another classical contrast to our Theorem 1, in addition to our
Claim 5. However, [28] does not use bipartite graph expansion but rather the graph
in which an edge connects any two nodes that participate in a common constraint;
the two notions of expansion are very different, and hence direct comparison to the
[28] result is not possible.

1.7. Conclusions and open questions. Our results raise the following funda-
mental question: could it be that the notion of quantum local testability, and more
generally, the notion of testing global quantum properties using local proves, is inher-
ently limited?

Our upper-bound results are unfortunately restricted to stabilizer codes; however,
those are very general structures which are known to be capable of exhibiting very
intricate quantum behaviors (including the existence of good error correcting quantum
codes). It seems thus natural to ask how general those results are, and whether
quantum local testability is somehow inherently limited, at least when the properties
to be tested are represented by linear subspaces.

Many open questions arise regarding qLTCs. Can we find qLTCs with much better
soundness than those mentioned in this article? Do qLTCs exist with parameters
which are as good as those that are described in [32], even disregarding the rate,
namely, constant relative distance, constant query complexity, and constant soundness
for all proximities larger than some constant δ0 > 0? If not, can we prove appropriate
upper bounds on qLTCs? Can we rule out the c3 conjecture in the quantum setting?

The upper bounds we provided here point to an inherently quantum phenomenon,
which constitutes an obstacle against local testability for qLTCs in the low-proximity
range of parameters. Both of our main theorems reflect, in fact, a deeper phenomenon
called monogamy of entanglement, which was identified also in [3] for commuting lo-
cal Hamiltonian and in [16] for 2-local general Hamiltonians. Essentially, this phe-
nomenon limits the amount of entanglement that a single qudit with O(1) quantum
levels can “contain.” Whether Theorem 2 hints at a more profound limitation on
quantum local testability of codes that holds also for larger values of δ calls for fur-
ther research.

Finally, we remark that though in the classical setting LTCs have been instrumen-
tal in PCP theory [7, 8, 26], it is yet unclear whether qLTCs can be applied directly
for qPCPs. Still, their study is likely to shed light on the important and tightly
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related open problem of robustness of multiparticle entanglement, tightly related to
the qPCP question.

Organization of paper. In section 2 we provide the necessary background on
quantum error correcting codes and on local expanders. Section 3 provides defini-
tions of quantum locally testable codes (qLTCs) and stabilizer qLTCs, as well as
basic results. Section 4 provides bounds on the soundness of quantum LTCs on local
expanders, and section 5 provides an absolute bound on soundness of stabilizer LTCs
regardless of the expansion of their underlying graph. Finally, in the appendices we
provide several proofs which are on the more technical side. In Appendix H we pro-
vide our definition of quantum PCPPs and the construction and proof of the induced
qLTC.

2. Preliminaries.

2.1. Notation.
Notation 1. A quantum system or code is defined on a finite-dimensional Hilbert

space H, comprised of n d-dimensional qudits, i.e., H = Cd⊗n.
Notation 2. A bipartite graph is denoted by G = (L,R;E): L is the set of left

vertices of size |L| = n (corresponding to qudits), R is the set of right vertices |R| = m
(corresponding to constraints), and E is the set of edges between L and R. DL will
denote the left degree of a bipartite graph. k will denote the locality of the constraints,
namely, the right degree of the graph.

Notation 3. Given S ⊆ R (or L) in a bipartite graph, Γ(S) denotes the
neighbor set of S in L (or R). N (q) will denote the qudit-neighborhood of a qudit
q in L, namely, all the qudits participating in all the constraints acting on q (so,
Nq = Γ(2)(q)). We will use ε to denote the expansion error for bipartite graphs (as
in Definition 13).

Notation 4. We will use δ = δ(w,C) to denote the relative distance of a word w
from a code C, sometimes referred to as proximity. δmin denotes the relative minimal
distance of the code.

2.2. The Pauli groups.
Definition 2 (Pauli group). The group Πn is the n-fold tensor product of Pauli

operators A1⊗A2⊗· · ·⊗An, where Ai ∈ {I,X, Y, Z}, along with multiplicative factors
±1,±i with matrix multiplication as group operation.

The Pauli group can be generalized to particles of any dimensionality d.
Definition 3 (Pauli group generalized to Fd). Let Xk

d : |i〉 �→ |(i+ k) (mod d)〉,
P �d |j〉 �→ wj�d |j〉 be the generalized bit and phase flip operators on the d-dimensional
Hilbert space, where wd = e2πi/d is the primitive dth root of unity. Let Πd be the
group generated by these operators and all roots of unity of order d. The group Πnd is
the n-fold tensor product of Pauli operators A1 ⊗A2 ⊗ · · · ⊗An, where Ai ∈

{
Xk
dP

�
d

}
along with the multiplicative factors wjld .

The weight of a Pauli operator is defined to be the number of locations where it
is a nonidentity.

2.3. General quantum error correction.
Definition 4 (quantum code). A quantum code on n qudits is given by a set

of (m) projections Πi. The code is defined to be the simultaneous 0 eigenstates of all
those projections.
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1242 DORIT AHARONOV AND LIOR ELDAR

Definition 5 (quantum error detection 1 [45]). Let C ⊆ H be a quantum code
on n qudits. Let ΠC be the orthogonal projection onto C. We say that the set of
errors E is detectable by C if, for any E ∈ E, we have

(5) ΠCEΠC = γEΠC ,

where γE is some constant which may depend on E.
Definition 6 (quantum error detection 2 [45]). A set E is detectable by C if,

for any |ψ〉, |φ〉 ∈ C with 〈ψ|φ〉 = 0, and any E ∈ E, 〈ψ|E|φ〉 = 0.
Claim 1 (see [45]). Definitions 6 and 5 are equivalent.
The proof can be found in the appendix. Definition 6 gives rise to the following

natural definition.
Definition 7 (minimal distance of a code [45]). Let C be a quantum code

detecting error set E ⊂ Πnd . C has minimal distance δmin(C) if, for any two orthogonal
code states |φ〉, |ψ〉 and any E ∈ E of weight at most δmin(C)− 1, we have 〈φ|E|ψ〉 =
0.

2.4. Stabilizer quantum error correcting codes.
Definition 8 (stabilizer code). A stabilizer code C is defined by an Abelian

subgroup A = A(G) ⊂ Πnd , generated by a set G ⊂ Πnd . The code space is defined as
the mutual 1-eigenspace of all elements in G (we require that −I /∈ G so that this code
space is not empty). An element E ∈ Πnd is said to be an error if it does not commute
with at least one element of G, i.e., E /∈ Z(G), where Z(G) is the centralizer of G. An
element E ∈ Πnd is said to be a logical operation if it commutes with all of G, but is
not generated by G, i.e., E ∈ Z(G) − A. A stabilizer code is said to be k-local if each
term g ∈ G is an element of Πnd with weight exactly k.7

To fit with the terminology of Definition 4, consider for each generator g the
projection Πg which projects on the orthogonal subspace to the 1-eigenspace of g.

Definition 9 (succinct representation). A k-local set of generators G is said to
be succinct if there does not exist a different generating set G′, such that A(G) = A(G′)
and wt(g) < k for some g ∈ G′.

The following is a well-known fact [35] which will be useful later on, and which
we prove in Appendix D.

Lemma 1 (stabilizer decomposition). Let C be a stabilizer code on n qudits, and
consider the sets EC = {E|φ〉, |φ〉 ∈ C} with E ∈ Πnd . Then two sets EC, E′C are
either orthogonal or equal to each other, and {EC}E∈Πn

d
span the entire Hilbert space.

Moreover, consider the partition of the entire Hilbert space to sets of states which are
common eigenvectors of all generators of C with exactly the same set of eigenvalues
for each generator. Then this partition is exactly the partition derived by the EC’s,
and two orthogonal EC’s have two lists of eigenvalues which differ on at least one
generator. In particular, any n qudit state |ψ〉 may be written as a sum of orthogonal
vectors

|ψ〉 =
∑
i

Ei|ηi〉,

where Ei ∈ Πnd and |ηi〉 ∈ C.

7In the literature, a k-local term usually implies that the support of the term is at most k qudits.
Here for simplicity of analysis we specify that it is exactly k qudits.
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Definition 10 (weight of an error in stabilizer codes). Let C be a stabilizer code
on n d-dimensional qudits, with generating set G ⊂ Πnd . For E ∈ Πnd , we denote

1. the number of locations in which E is a nonidentity by wt(E);
2. the weight of E modulo the group A(G) by wtG(E):

wtG(E) = min
f∈A(G)

{wt(fE)}.

3. the weight of E modulo the centralizer Z(G) by wtZ(G)(E):

wtZ(G)(E) = min
z∈Z(G)

{wt(zE)}.
The above claims give rise to the following definition of distance in a stabilizer

code.
Definition 11 (minimal distance of a stabilizer code). Let C be a k-local sta-

bilizer code on n d-dimensional qudits, with generating set G ⊂ Πnd . The minimal
distance of C is defined as the minimal weight of any logical operation on C:

δmin(C) = minE∈Z(G)−A(G)wt(E).

Claim 2 (equivalence of distance definitions). A stabilizer code C has δmin(C) ≥
ρ by Definition 11 iff it has distance ≥ ρ by Definition 7.

The proof is given in Appendix E. A code C on n qudits is said to have a constant
relative distance δ > 0 if its distance is at least δn. We will make use of the following
assumption, which we isolate so that we can refer to it later on.

Remark. If there is a qudit q such that all states in the code look like |α〉 tensor
with some state on the remaining qudits, for some fixed one-qudit state |α〉 of that
qudit q, we say that q is trivial for the code. We will assume in the remainder of the
paper that for all codes we handle, no qudits are trivial for the code, since such qudits
can be simply discarded.

2.5. Interaction graphs and their expansion. We assume in the rest of the
paper that each qudit participates in exactly DL constraints. We define bipartite
expanders similar to [52, 22], who used them to construct locally testable classical
codes. Note that we require expansion to hold only for sets of constant size k.

Definition 12 (bipartite interaction graph). Let C be a quantum code on n
d-dimensional qudits, whose check terms {Πi}i are k-local. We define the bipartite
interaction graph of C G = G(C) = (L,R;E) as follows: the nodes L correspond to
the qudits, the nodes R correspond to the check terms, and the set of edges connect
each constraint Πi ∈ R to all the qudits in L on which it acts nontrivially. We note
that G is left DL-regular and right k-regular.

Definition 13 (bipartite expansion). Let G = (L,R;E) be a bipartite graph that
is left DL-regular, right k-regular. A subset of qudits S ⊆ L is said to be ε-expanding
if |Γ(S)| ≥ |S|DL(1 − ε), where Γ(S) is the set of neighbors of S in this graph. ε is
called the expansion error for this set. G is said to be ε-local expanding if every subset
S ⊆ L, |S| ≤ k has expansion error at most ε.

We state two technical facts on good bipartite expanders that will be useful later
on. The proofs are in Appendix B.

Fact 2. Consider S ⊆ L in a bipartite graph G(L,R : E), and let S be
ε-expanding for ε < 1

2 . Then a fraction at most 2ε of all vertices of Γ(S) have
degree strictly larger than 1 in S.

Fact 3. Let S ⊆ L in a bipartite graph G = (L,R;E), such that S is ε-expanding
for ε < 1

2 . Then there exists a vertex q ∈ S, such that the fraction of neighbors of q
with at least two neighbors in S is at most 2ε.
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1244 DORIT AHARONOV AND LIOR ELDAR

3. Locally testable quantum codes. In this section we define locally testable
quantum codes, both in the general case and in the specific case of stabilizer codes.
We then show that our definitions coincide for stabilizer codes.

3.1. Local testability of general quantum codes. We first generalize Def-
inition 7 from a definition of distance of a code to a definition of distance from a
code.

Definition 14 (distance from a quantum code). Let C be a quantum code on a
Hilbert space H of n qubits. For any two orthogonal states |φ〉, |ψ〉 ∈ H, we define the
Hamming distance between them δ(|φ〉, |ψ〉) as the maximal integer ρ, such that for
any E ∈ Πnd , with wt(E) ≤ ρ− 1, we have 〈ψ|E|φ〉 = 0. Similarly, given a state |φ〉
orthogonal to C, we say that the distance of |φ〉 from C denoted by δ(|φ〉, C) is the
minimum over all |ψ〉 ∈ C of δ(|φ〉, |ψ〉).

We note here that the distance of a state from the code in the above can be
larger than the distance of the code. This is akin to the classical case, where locally
testable codes are required to identify words far from the code, even if they cannot
be (uniquely) decoded, so that these codes can be used as proof systems.

Definition 15 (quantum locally testable codes (qLTCs)). Let R = R(δ) be
some function R(δ) : [0, 1] → [0, 1]; this is called the soundness function. Let C
be a quantum code on n d-dimensional qudits, defined as the ground space of H =∑m

i=1 Π
i
C , where ΠiC are m k-local projections for some constant k. We say that C is

quantum locally testable with soundness R(δ) if

(6) ∀δ0 > 0, |Ψ〉 : δ(|Ψ〉, C) ≥ δ0n⇒ 1

m
〈Ψ|H |Ψ〉 ≥ R(δ0).

The query complexity of the code is defined to be k.
Definition 16 (strong qLTC). We call a qLTC code C strongly qLTC if there

exists a constant R > 0, such that

(7) min
|ψ〉∈C⊥

1
m 〈ψ|H |ψ〉
δ(|ψ〉, C) ≥ R.

One could also be interested in local testability in different regimes of the pa-
rameters δ. We say that a code is locally testable in a certain regime of proximities
(δ0, δ1) if there exists a constant R > 0, such that for any 0 < δ0 < δ1 < 1,

(8) min
δ0n≤δ(|ψ〉,C)≤δ1n

1
m〈ψ|H |ψ〉
δ(|ψ〉, C) ≥ R.

3.2. Local testability of quantum stabilizer codes. We now show that local
testability defined above (Definition 15) has a natural interpretation in the context of
stabilizer codes.

Definition 17 (local testability for stabilizer codes (sLTCs)). Let R(δ) be some
function R(δ) : [0, 1] → [0, 1]. We say that a stabilizer code C on n d-dimensional
qudits is an sLTC with query complexity k and soundness R(δ) if there exists a gen-
erating set G for C, where each element has support k, such that the following holds:
for any E ∈ Πnd with wtZ(G)(E) ≥ δn, a uniformly random generator g ∈ G does not
commute with E with probability at least R(δ).

3.2.1. Equivalence of definitions of locally testable codes. We now show
that the definition of sLTCs (Definition 17) is in fact a special case of the general
qLTCs (Definition 15).
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QUANTUM LOCALLY TESTABLE CODES 1245

Claim 3.

1. If C is a stabilizer code with generating set G, which is an sLTC with query
complexity k and soundness R(δ), then the set of projections {Pg}g∈G, where
I − Pg is the projection on the 1-eigenspace of g defines a qLTC with query
complexity k and soundness R(δ).

2. If C is a qLTC with query complexity k and soundness R(δ), defined by a set
of projections {Pg}g∈G , such that the set {I − 2Pg}g∈G generates an Abelian
subgroup of Πnd , then C is also an sLTC with query complexity k and sound-
ness R(δ).

Proof. sLTC ⇒ qLTC. By definition of a stabilizer code, for any |φ〉 ∈ C, we
have g|φ〉 = |φ〉 for all g ∈ G, so Pg|φ〉 = 0 for all g ∈ G. Next, consider a state
|φ〉 orthogonal to C, such that δ(|φ〉, C) ≥ δn. We would now like to show that a
projection chosen randomly from {Pg}g∈G is violated by |φ〉 with probability at least

R(δ). Consider the following orthogonal decomposition of φ as implied by Lemma 1:

(9) |φ〉 =
∑
i

αi|αi〉 =
∑
i

αiEi|ηi〉, αi �= 0,

where Ei ∈ Πnd , |ηi〉 ∈ C, and Ei|ηi〉 are orthogonal. We claim that for each i,
wtZ(G)(Ei) ≥ δn; otherwise, it is easy to see that there exists some E′ ∈ Πnd , wt(E

′) <
δn, such that for at least one i, we have E′Ei ∈ Z(G). Since for any J ∈ Z(G),
JC = C, we have that, alternatively, E′|αi〉 ∈ C. Since E′ is unitary, and the
|αi〉’s are orthogonal, then the E′|αi〉’s are orthogonal, and thus E′|φ〉 has a nonzero
projection on C—contrary to the assumption that δ(|φ〉, C) ≥ δn.

If Ei and g ∈ G do not commute, Eig = ωgEi for some ω �= 1. In particular,
Ei|ηi〉 is an ω-eigenstate of g. This means it is orthogonal to the 1-eigenspace of g,
and therefore

(10) 〈αi|Pg|αi〉 = 1.

Yet, by the sLTC property of C, for each i, Ei does not commute with a fraction at
least R(δ) of the generators of G. Thus, a randomly chosen check term is violated by
|αi〉 with probability at least R(δ), so

(11)
1

|G|
∑
g∈G

〈αi|Pg|αi〉 ≥ R(δ).

Since by Lemma 1 the decomposition above coincides with the simultaneous eigenbasis
of G, we have

(12)
1

|G| 〈φ|
∑
g∈G

Pg|φ〉 = 1

|G|
∑
i

∑
g∈G

|αi|2〈αi|Pg|αi〉 ≥ R(δ).

qLTC ⇒ sLTC. First, by definition, the set of states that are in the mutual
ground space of the Pg’s are stabilized (i.e., eigenvalue 1) with respect to (w.r.t.)
the terms G, and vice versa. Now, let E ∈ Πnd , whose weight modulo Z(G) is at
least δn. Let |φ〉 ∈ C be any code state, and denote |ψ〉 = E|φ〉. We claim that
δ(|ψ〉, C) ≥ δn. Otherwise there exists E′ ∈ Πn, wt(E′) < δn, such that E′|ψ〉 has
a nonzero projection on C, and hence E′E|φ〉 has a nonzero projection on C, so by
Lemma 1, we have that E′EC = C. Therefore, E′E commutes with all G, and hence
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1246 DORIT AHARONOV AND LIOR ELDAR

E′E ∈ Z(G), which implies that wtZ(G)(E) < δn, a contradiction. By the qLTC
property of C, we have

(13) 〈ψ|
∑
g∈G

Pg|ψ〉 ≥ |G| · R(δ).

Since |ψ〉 = E|φ〉, then for any generator g, g|ψ〉 = gE|φ〉 = ωEg|φ〉 = ωE|φ〉 for
some ω ∈ C. So for any g ∈ G, |ψ〉 is some eigenstate of g. Hence |ψ〉 is either in the
1-eigenspace of Pg or in its 0-eigenspace, so by (13) it violates a fraction at least R(δ)
of all generators G.

4. Bound on the soundness of stabilizer LTCs on local expanders. In
this section we prove Theorem 1. We define the relative soundness formally.

Definition 18 (relative soundness). Define r : [0, 1] �→ [0, 1] as follows:

r(δ) = R(δ)/Θ(δ), Θ(δ) ≡ min{δk, 1}.

Here, we will be interested in δ < 1/k, for which r(δ) = R(δ)/kδ.

4.1. A useful fact about restrictions of stabilizers.
Definition 19 (restriction of stabilizers). For an E ∈ Πnd , let E|q denote the

qth component of the tensor product E, and let E|−q denote the tensor product of
all terms except the qth. Similarly, for a generating set G, we denote by G|q the set
{g|q, g ∈ G}, and similarly for G|−q.

We now prove a useful fact: the restrictions to a given qudit q of all the generators
of a stabilizer code with absolute distance strictly larger than 1 cannot all commute.

Fact 4. Let C be a stabilizer code with absolute minimal distance strictly larger
than 1. Then for any qudit q and any generator g acting on q, there exists another
generator h(q) acting on q such that [g|q, h|q] �= 0.

Proof. Assume on the contrary that there is a qudit q and a generator g such
that for all other generators h, we have [g|q, h|q] = 0. Let Q = g|q. We have that
Q′ = Q⊗I−q, namely, the tensor product with identity on the other qubits, commutes
with all g ∈ G, and thus Q′ ∈ Z(G). However, Q′ cannot be inside A(G), since
otherwise q is in some constant state (the 1-eigenvector of Q) |α〉 for all code states,
and thus q is trivial for the code (see remark at the end of subsection 2.4). Hence,
Q′ ∈ Z(G) − A(G), so the minimal distance of the code by Definition 11 is 1, in
contradiction to our assumption.

4.2. Proof of Theorem 1. In the proof we will make use of “sparse” sets of
constraints, defined as follows (we later generalize this definition to t-independent
sets; see Definition 22).

Definition 20 (1-independent set of constraints). For a given constraint u,
consider Γ3(u), the set of qudits acted upon by constraints which act on qudits in u.
A set of constraints U is said to be 1-independent if, for any two constraints u,w ∈ U ,
Γ3(u) ∩ Γ3(w) = ∅.

Proof of Theorem 1.
Generating the error. We want to construct an error E ∈ Πnd , wtZ(G)(E) ≥ δn,

that will not violate too many constraints in G. Let C be a stabilizer code with a
k-local generating set G, such that the bipartite interaction graph of C is an ε-local
bipartite expander. Let U be a 1-independent set of constraints of size δn. For values
δ ≤ 1

k3DL
a 1-independent must exist, by a simple greedy algorithm that iteratively

discards all constraints intersecting a given constraint. For a given constraint u ∈ U
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and i ∈ [k], let αi(u) denote the fraction of generators g ∈ G that act on a qudit i
in u and intersect u in at least one other qudit, out of all generators that act on i.
Then for each u ∈ U we define q(u) to be a qudit of minimal αi(u) over all i ∈ [k].
Let T = {q(u)|u ∈ U}. Let us define an error pattern:

(14) E =
⊗
u∈U

u|q(u).

We first note that E /∈ Z(G). This is true by Fact 4: for each qudit q in the
support of E, E|q does not commute with h|q for some h ∈ G. But since T is induced
by a 1-independent set, h does not touch any other qudit in the support of E except
q, so this implies [h,E] = [h|q, E|q] �= 0. We will now show that E has large weight
modulo Z(G), but is penalized by a relatively small fraction of G.

Weight analysis. By definition, we have that wt(E) = |T | = |U | = δn. We claim
that

(15) wtZ(G)(E) = |T |.

Since δ was chosen to be smaller than half of the minimal distance of the code C,
wtZ(G)(E) = wtG(E), and so it suffices to lower-bound wtG(E).

Suppose on the contrary that wtG(E) < |T |. Then there exists Δ ∈ A(G), such
that E′ = ΔE has wt(E′) < |T |. Since the weight of E′ is strictly smaller than that
of E, there must be one qudit q0 in T , such that on the neighborhood N (q0) the
weight of E′ is strictly smaller than that of E, which is 1; namely, E′ must be equal
to the identity on all the qudits in the qudit neighborhood of q0. Here, we have used
the fact that the qudit neighborhoods of different qudits in T are nonintersecting.
This is true by the fact that the qudits were chosen by picking one qudit from each
constraint out of a 1-independent set of constraints (Definition 20). This means that
Δ must be equal to the inverse of E on this neighborhood. But this inverse is exactly
the following: It is equal to E|−1

q0 on q0, and to the identity on all other qudits in the
neighborhood. By construction, E|q0 on q0 (and therefore also E−1|q0 = Δq0) does
not commute with h|q0 for some h ∈ G. Since Δ is an identity on all qudits of h other
than q0, this implies that Δ does not commute with h, in contradiction to the fact
that Δ ∈ A(G).

Soundness analysis. We upper-bound the number of generators that do not com-
mute with E. For each u ∈ U , the number of generators g ∈ G that do not commute
with E|q(u) is at most the number of generators that share at least two qudits with
u. By Fact 3 there exists a qudit q ∈ Γ(u) such that the fraction of its check terms
with at least two qudits in Γ(u) is at most 2ε; since we chose q(u) to be the qudit
that minimizes that fraction over all qudits on which u acts, we have that for q(u),
the fraction of terms acting on it that intersect u with at least 2 qudits is at most 2ε.
Thus, the absolute number of generators acting on q(u) that intersect u in at least
two qudits is at most 2εDL. Hence the overall number of generators violated by E
is at most 2ε|T |DL. By (15) this is equal to 2εDLwtZ(G)(E). Using DLn = mk, we
have R(δ) ≤ 2εkδ and so r(δ) ≤ 2ε.

We now show that a slightly stronger version of the above theorem holds. This
version will be used for showing Theorem 2.

Claim 4. Let C be a stabilizer code, with a k-local succinct generating set, where
each qubit is examined by DL constraints. If there exists a 1-independent set of con-
straints U ⊆ R, such that |U | = δn for some 0 < δ < 1/k and Γ(U), the set of qudits
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1248 DORIT AHARONOV AND LIOR ELDAR

that the constraints in U act on, satisfies |Γ(Γ(U))| ≥ |Γ(U)|DL(1− ε), then for any
δ′ ≤ δ we have that r(δ′) ≤ 2ε.

Proof. For a set S ⊆ L, let Γ1(S) denote the number of neighbors of S having
a single neighbor in S, and let Γ≥2(S) ≡ Γ(S) − Γ1(S). Put S = Γ(U), and let

S =
⊔k
i=1 Si denote a partition of S into k disjoint sets, where each Si takes a single

(arbitrary) qubit from each Γ(u), u ∈ U . By assumption, |Γ(S)| ≥ |S|DL(1 − ε),
whereas the total degree of S is |S|DL. By an argument similar to the pigeonhole
principle, |Γ≥2(S)| ≤ |S|DLε, so |Γ1(S)| ≥ |S|DL(1−2ε). Since each unique neighbor
of S examines exactly one partition Sj , there exists a partition S0 examined by at
least |S0|DL(1− 2ε) = δnDL(1− 2ε) constraints from Γ1(S).

Now, given any δ′ ≤ δ, let S′
0 be a subset of S0 of size δ′n, maximizing the ratio

Γ1(S
′)/|S′| over all sets S′ ⊆ S0 of this size. Since each element of Γ1(S) examines

just one element of S, such a set exists, with ratio at least DL(1 − 2ε). A tensor-
product error E defined by taking, for each u ∈ U , the restriction to its qubit in S′

0,
we have by the same arguments leading to (15) that wtZ(G)(E) = δ′n, whereas the
maximal penalty is at most 2εDLδ

′n, because the penalty arises only from nonunique
neighbors. Therefore R(δ′) ≤ 1

m2εDLδ
′n = 2εkδ′, and since δ′ ≤ δ < 1/k it follows

that r(δ′) ≤ 2ε.

5. An upper bound on soundness. We now show an absolute constant strictly
less than 1, upper-bounding the relative soundness of any good quantum stabilizer
code generated by k-local generators, whose qudits are acted upon by DL stabilizers
each. We start with an easy alphabet-based upper bound.

5.1. Alphabet-based bound on soundness. In attempting to understand
soundness of good stabilizer codes, one must first account for limitations on the sound-
ness that seem almost trivial and occur even when there is just a single error.

Definition 21 (single-error soundness). Let t(d) = 1/(d+1). For prime integer
d, the single error relative soundness in dimension d is defined to be α(d) = 1− t(d).

The motivation for the above definition is as follows. For any qudit q, there
always exists Q ∈ Πd, Q �= I, such that a fraction at least t(d) of the generators
touching q commute to Q when restricted to q. If we consider a single-qudit error
on q to be equal to Q, then it would commute with t(d) of the generators acting
on q; thus they can violate at most α(d) of the constraints acting on q. Hence, one
can expect that it is possible to construct an error of linear weight whose relative
soundness r(δ) is bounded by the single-error relative soundness using qudits whose
neighboring constraints are far from each other. Indeed, we show the following fact.

Fact 5 (alphabet bound on soundness). Let d be some prime number. For any
stabilizer code C on n d-dimensional qudits with a k-local succinct generating set G,
whose left-degree is DL, and relative minimal distance δmin, we have r(δ) ≤ α(d) for
any δ ≤ min

{
1/(k3DL),

1
2δmin

}
.

Proof. We first proof the theorem for d = 2. Similarly to Theorem 1, given the
parameters assumed in the statement of the fact, there exists a 1-independent set
of constraints U of size δn. For each constraint u ∈ U we select arbitrarily some
qubit q = q(u) ∈ Γ(u) and examine the restrictions to q of all stabilizers acting
nontrivially on q. Let P (q) denote the set of all such restrictions. Let MAJ(q) denote
the element of Πd that appears a maximal number of times in P (q). We then set
E =

⊗
u∈UMAJ(q(u)). We first realize that E is an error: we want to show that

there exists a generator g such that E and g do not commute. Otherwise, E commutes
with all generators. Since by construction, each generator intersects E with at most
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one qudit, this means that the restrictions to q also commute: [E|q, g|q] = 0 for all q(u)
acted upon by E. This is a contradiction by Fact 4; hence, there must be a generator
which does not commute with E, so E is indeed an error. Similarly to the proof
of (15) in the proof of Theorem 1, we also have wtZ(G)(E) = δn. Furthermore, for
each qudit q, the fraction of generators on q whose restriction to q does not commute
with E|q is at most α(d), since the number of appearances of E|q =MAJ(q) in P (q)
is at least t(d) = 1 − α(d). Hence the number of violated constraints is at most
α(d) · |U | ·DL = α(d)δnDL. Since δ < 1/k it follows that r(δ) ≤ α(d).

Consider the case of d > 2 for prime d. In this case, for each Pauli E = Xa
d ·P bd ∈

Πnd , where at least one of a, b is nonzero, we have that the d − 1 unique powers of
E of the form Et, t ∈ [1, . . . , d − 1], commute with E . Hence, the d2 − 1 nonidentity
elements of Πnd can be partitioned into d+ 1 equivalence classes S1, . . . , Sd+1, where
in each class all terms commute. In this case, the error E defined on the set U is
computed by taking, for each u ∈ U , some representative Pauli term Ei ∈ Si if Si is
the equivalence class that appears the largest number of times in the restriction of all
generators to u, out of all equivalence classes S1, . . . Sd+1. In such a case, it follows
that r(δ) ≤ 1− 1

d+1 = α(d).

We will assume from this point onward that d is prime.8

5.2. Separation from alphabet-based soundness. In this section we show
that the alphabet-based bound on the relative soundness in fact cannot be achieved,
and the relative soundness is further bounded by a constant factor strictly less than
1, which is due to what seems to be an inherently quantum phenomenon. We will
use the geometry of the underlying interaction graph to achieve this separation by
treating expanding instances and nonexpanding instances differently. Before stating
the main theorem of this section, we require a generalization of Definition 20 and a
simple fact.

Definition 22 (t-independent set of constraints). Let C be a quantum code with
a set of k-local constraints, whose underlying bipartite graph is G(C) = (L,R;E).
A set of constraints U ⊆ R is said to be t-independent if for any a, b ∈ U we have
Γ(2t+1)(a) ∩ Γ(2t+1)(b) = ∅.

The following fact can be easily derived by a greedy algorithm.

Fact 6. Let η = η(k,DL) = k−(2k+1)D
−(2k−1)
L . For any quantum code C

whose bipartite graph G(C) is left DL-regular and right k-regular, there exists a k-
independent set of size at least ηn.

Proof. Pick a constraint u, remove all constraints in Γ(4k)(u), and repeat. The
number of constraints we have removed for each constraint is (kDL)

2k. Hence, we
can proceed for m/(kDL)

2k steps. We get that the fraction of constraints is at least

k−(2k)D
−(2k)
L , and since mk = nDL, we get the desired result.

Theorem 2. Let C be a stabilizer code on n d-dimensional qudits, with δmin =
Ω(n−ε) for some constant ε ∈ [0, 1), and a k-local (k ≥ 4) succinct generating
set G ⊂ Πnd , where the right degree of the interaction graph of G is DL. Then
there exists a function γgap = γgap(k) > min

{
10−3, 0.01/k

}
such that for any δ ≤

min{δmin/2, η/10} (for η as defined in Fact 6) we have r(δ′) ≤ α(d) (1− γgap) for
some δ′ ∈ (0.99δ, 1.01δ).

8For composite d, the proof of Fact 5 does not hold. Using Bézout’s identity, one can prove a
version of Fact 5 with a weaker bound, α(d) = 1−θ(1/d2). The results in the remainder of the paper,
and in particular Theorem 2, also need to be adapted for composite d. The analysis is somewhat
cumbersome, and we omit it for simplicity.
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The proof of the theorem will use, on one hand, Claim 4, which upper-bounds
the soundness of expanding instances, and on the other hand a lemma on nonexpand-
ing instances which tries to “mimic” the behavior of the classical setting, in which
nonexpanding topologies suffer from poor soundness. We now state this lemma.

Lemma 2. Let C be a stabilizer code on n qudits of dimension d, with δmin =
Ω(n−ε) for some constant ε ∈ [0, 1), and a k-local (k ≥ 4) succinct generating set
G, where the left degree of the interaction graph of G is DL. Let γgap = γgap(k) =
min

{
10−3, 0.01/k

}
. If there exists a k-independent set U of size |U | = δn, with

δ < 1
2δmin, such that the bipartite expansion error of Γ(U) is at least ε = 0.32, i.e.,

|Γ(Γ(U))| = |Γ(U)|DL(1− ε′) for some ε′ ≥ 0.32, then

(16) r(δ′) ≤ α(d) · (1− γgap)

for some δ′ ∈ (0.099δ, 0.101δ).
The proof of this lemma is technically nontrivial, and we defer it to a separate

section. From this lemma, it is easy to show Theorem 2.
Proof of Theorem 2. The parameters of the theorem allow us to apply directly

Fact 6; hence there exists a k-independent set S of size at least ηn for η as defined in
Fact 6. Since δ ≤ η/10 there exists a k-independent set S of size 10δ. Now, one of
the following holds:

1. S has expansion error at least 0.32. By Lemma 2, we have

(17) r(δ0) < α(d)(1 − γgap)

for some δ0 ∈ (0.099 · (10δ), 0.101 · (10δ)) = (0.99δ, 1.01δ), and γgap(k) from
Lemma 2, which is at least min

{
10−3, 0.01/k

}
.

2. The set S is ε-expanding for ε < 0.32, in which case, since S is in particular
R-independent, then by Claim 4, the soundness function is upper-bounded
by r(δ′) ≤ 2ε < 2/3 − 0.01 ≤ α(d) − 0.01 for all δ′ ≤ |S|/n. In particular
r(δ0) < α(d)(1 − 0.01/k).

Taking the higher of these two bounds, we get the desired upper bound for r(δ0).

5.3. Proof of Lemma 2. In the following we first define the error. We provide
the proof that the expected penalty of this error is small in Fact (7), then state and
prove the onion fact in section 5.3.3 and use it to prove Fact 9, in which we show
that the error has large weight modulo the group. Finally we combine all the above
to finish the proof of the lemma.

5.3.1. Constructing the error. Let U ⊆ R be a k-independent set as promised
by the conditions of the lemma. Then |U | = δn, and denoting S = Γ(U), we have
that |S| = δnk. Therefore, |Γ(S)| = |S|DL(1 − ε′) for some ε′ ≥ 0.32. Let E be the
following random error process: for each qudit of S independently, we apply I with
probability 1 − p for p = 1/(10k), and one of the other elements of Πd with equal
probability p · t(d), where t is defined in Definition 21.

(18) E =
⊗
i∈S

Ei, where Ei =
{
Ii with probability 1− 1/(10k),
Xk
dP

l
d with probability t/(10k).

We note here that the choice of p is such that, on average, each k-tuple has only a
small number of errors; the expectation of the number of errors is an absolute constant
1/10 (not a fraction of k). This will help, later on, to lower-bound the weight of the
error modulo the group.

D
ow

nl
oa

de
d 

01
/1

1/
16

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QUANTUM LOCALLY TESTABLE CODES 1251

5.3.2. Analyzing penalty. We first claim that on average E has a relatively
small penalty w.r.t.G, using the fact that the expansion error is at least 0.32 as in the
condition of Lemma 2. For any E , let penalty(E) denote the number of generators of
G that do not commute with E .

Fact 7.

(19) EE [penalty(E)] ≤ pα|S|DL (1− 0.02/k) .

Proof. Let G = (L,R;E) denote the bipartite graph corresponding to G, with R
being the generators of G and L the qudits. Let S = Γ(U) be as before. Let the error
process E be the one defined above. For any constraint c ∈ Γ(S) which is violated
when applied to this error, observe that there must be a qudit i ∈ supp(c) such that
[c|i, Ei] �= 0. We now would like to bound the number of constraints violated by E
using this observation and linearity of expectation.

For an edge e ∈ E connecting a qudit i in S and a constraint c in Γ(S), let x(e)
denote the binary variable which is 1 iff the error term Ei does not commute with
c|i. In other words, an edge marked by 1 is an edge whose qudit causes its constraint
to be violated. By construction, for each e ∈ E which connects the qudit i and the
constraint c we have

(20) EE [x(e)] = p(1− t).

This is true since a constraint c restricted to the qudit i, c|i, does not commute with
the error restricted to the same qudit i, Ei, iff Ei is both a nonidentity (which happens
with probability p) and not equal to c|i.

If we had just now added x(e) over all edges going out of S (whose number is
|S|DL), then by linearity of expectation this would have given an upper bound on the
expected number of violated constraints equal to

(21)
∑
e

p(1− t) = p|S|DLα(d).

Unfortunately this upper bound does not suffice; to strengthen it we would now
like to take advantage of the fact that many of those edges go to the same constraint,
due to the fact that the expansion is bad; thus, instead of simply summing these
expectation values, we take advantage of the fact that two qudits touching the same
constraint cannot contribute twice to its violation. Observe that it may even be the
case that some edges may cause constraints to become “unviolated,” so the actual
bound may be even lower.

Let Einj ⊆ E be an arbitrary subset of the edges between S and Γ(S) chosen by
picking a single edge for each constraint in Γ(S). For an edge e ∈ E let c(e) denote the
constraint incident on e, and let einj(c(e)) denote the edge in Einj that is connected
to c(e).

We now bound the expectation by subtracting x(e) from the sum if the Boolean
variable x(einj(c(e))) is 1; this avoids counting the violation of the same constraint
twice due to the two edges. We have

(22) EE [penalty] ≤ EE

⎡
⎣ ∑
e∈Einj

x(e) +
∑

e/∈Einj

(1− x(einj(c(e)))) · x(e)
⎤
⎦ .
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1252 DORIT AHARONOV AND LIOR ELDAR

Expanding the above by linearity of expectation gives us

(23) E [penalty] ≤
∑

e∈Einj

EE [x(e)] +
∑

e/∈Einj

EE [x(e)]−
∑

e/∈Einj

EE [x(einj(c(e))) · x(e)]

(24) =
∑
e∈E

EE [x(e)]−
∑

e/∈Einj

EE [x(einj(c(e))) · x(e)] .

The first summand in (24) was already computed in (21). We now lower-bound
the correction given by the second term, using the fact that for any e /∈ Einj

(25) EE [x(einj(c(e))x(e)] = EE [x(einj(c(e)))]EE [x(e)],

since E is independent between different qudits. We can thus substitute (20) in (24)
and get

(26) EE [penalty] ≤ pα|S|DL − |S|DLε(pα)
2,

where we have used the fact that |E\Einj | = |S|DLε. This is equal to

(27) pα|S|DL(1− pαε).

Using p = 1/(10k), ε ≥ 0.32, α(d) ≥ 2/3, we get the desired bound.

5.3.3. The onion fact.
Fact 8 (onion fact). Let C be a stabilizer code on n qudits with a succinct

generating set G of locality k, such that δmin(C) ≥ k. Let E ∈ Πnd such that supp(E) ⊆
Γ(u) for some generator u ∈ G. Finally let Δ ∈ A(G), and let EG = Δ ·E. Then, for
any i ∈ [k], if wt(E|Γ(u)) = i, then wt(EG |Γ(2k+1)(u)) ≥ min {i, k − i}.

Proof. If Δ|Γ(u) = I, then

(28) wt
(
EG |Γ(2k+1)(u)

) ≥ wt
(
EG |Γ(u)

)
= wt

(
E|Γ(u)

)
= i,

so in this case we are done.
Otherwise, Δ|Γ(u) is a nonidentity and so has at least one nonidentity coordi-

nate. Since Δ is a nonidentity, by the assumption on the succinctness of G we have
wt(Δ) ≥ k.

Moreover, we claim that wt
(
Δ|Γ(2k+1)(u)

) ≥ k. Otherwise, consider the following
process. Start with the generator u, and consider the qudits in Γ(u). Now add the
qudits in Γ(3)(u) (namely, the qudits that are acted upon by generators intersecting
u). Then add the next level, and so on for k levels, at which point we have added all
qudits belonging to Γ(2k+1)(u). By the pigeonhole principle, if wt

(
Δ|Γ(2k+1)(u)

)
< k,

then there must exist a level t, 1 ≤ t ≤ k, such that Δ has zero support on qudits
added in this level.

We now claim that Δ̃ = Δ|Γ(2(t−1)+1)(u) is in the centralizer Z(G) but its weight is
less than k. This, together with the fact that Δ̃ /∈ A(G), shown in the next paragraph,
contradicts the assumption that δ(C) ≥ k. To see that Δ̃ is in the centralizer, we
observe first that Δ commutes with all elements of G that act only on qudits in
Γ(2t−1)(u), and since Δ̃ agrees with Δ on Γ(2t−1)(u), Δ̃ also commutes with them.
We also observe that Δ̃ trivially commutes with all elements in G whose support does
not intersect Γ(2t−1)(u). Hence we only need to worry about those terms that act on
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at least one qudit in Γ(2t+1)(u)− Γ(2t−1)(u) and at least one qudit in Γ(2t−1)(u). Let
v be some such term. Note that v does not act on any qudit outside Γ(2t+1)(u) by
definition. We know that Δ commutes with v. But by the choice of t, we know that Δ
is trivial on those qudits added at the tth level, and hence Δ restricted to Γ(2t+1)(u)
(which contains the qudits of v) is the same as Δ restricted to Γ(2t−1)(u). And so Δ
restricted to Γ(2t−1)(u) commutes with v.

We showed that Δ̃ is in Z(G). If it also belongs to A(G), this contradicts suc-
cinctness of G; otherwise it is in Z(G) − A(G), implying the distance of C is at most
k − 1, contrary to assumption. This means that wt

(
Δ|Γ(2k+1)(u)

) ≥ k. Therefore, we
now know by the triangle inequality on the Hamming distance that

wt
(
EG |Γ(2k+1)(u)

) ≥ wt
(
Δ|Γ(2k+1)(u)

)− wt
(
E|Γ(2k+1)(u)

)
(29)

= wt
(
Δ|Γ(2k+1)(u)

)− wt
(
E|Γ(u)

) ≥ k − i.

Taking the minimal of the bounds from (28), (29) completes the proof.

5.3.4. Analyzing error weight. First, we consider the case that δmin = Ω(1),
and hence |S| = Ω(n). We note that the expected weight of E is p|S|, and since |S| is
linear in n, by Chernoff the probability that the weight of E is smaller by more than
a constant fraction than this expectation is 2−Ω(n). We need to show a similar bound
on the weight modulo the centralizer group; given that δ < δmin/2 we only need to
bound the weight modulo A(G). Let Δ ∈ A be some element in the stabilizer group
and let EG = Δ · E . We now need to lower-bound wt(EG).

Fact 9. For integer k, let k̂ = �k/2�+ 1. Let y(k) : [4,∞] → R be the function

(30) y(k) =

⎧⎪⎪⎨
⎪⎪⎩

1− 2(−k̂+1)log(k)+k−2.3k̂+4.54, k ≥ 12,
0.9999, 6 ≤ k ≤ 11,
0.9992, k = 5,
0.9985, k = 4.

We claim

(31) ProbE (wt(EG) < |S|py(k)) = 2−Ω(n).

Proof (sketch; the detailed proof can be found in Appendix G). The proof builds
on the onion fact (Fact 8) as follows: The onion fact shows that “islands” with fewer
than k/2 errors cannot “lose” error weight modulo the centralizer of G. The proof uses
standard probabilistic arguments to argue that the random error pattern we chose is
such that the vast majority of islands have fewer than this threshold error weight,
and so the overall error weight is virtually unharmed.

Then we claim that the proof of Fact 9 can be easily extended to the case where
δmin = Ω(n−ε) for some ε ∈ [0, 1). This is because the Chernoff bound used in that
proof is sufficiently strong to retain the same asymptotic estimates.

5.3.5. Concluding the proof of Lemma 2.
Proof. By Fact 7 the average penalty of E is small, i.e.,

(32) E [Penalty(E)] ≤ |S|DLpα(1− 0.02/k) � P.

Yet, by Fact 9 with probability exponentially close to 1, we have

(33) wt(EG) ≥ |S|py(k) �Wlow ≥ |S|p · 0.99.
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Similarly, by the Hoeffding bound with probability exponentially close to 1, we have

(34) wt(EG) < |S|p(1 + 0.01) �Whigh.

Since all penalties are nonnegative, we conclude that conditioned on |wt(EG)/(|S|p)
−1| < 0.01, we have E [Penalty(E)] ≤ P + 2−Ω(n). Therefore, there must exist an
error E whose weight modulo G deviates by a fraction at most 0.01 from |S|p, and
whose penalty is at most P + 2−Ω(n).

We would like to bound the soundness of this error, which is the ratio of the
penalty to its relative weight times DL. We get that its soundness is at most

(35) r =
P + 2−Ω(n)

DLWlow
≤ 1

DL
· |S|DLpα(1− 0.019/k)

|S|py(k) = α

(
1− 0.019/k

y(k)

)
.

We now note that in the last expression, for all k ≥ 12, the ratio 1−0.019/k
y(k) is at

most 1 − 0.01/k. For all values of 4 ≤ k < 12 we substitute the appropriate value

of y(k) and get similarly that the ratio 1−0.019/k
y(k) is at most 1 − 10−3. Hence, the

soundness of the error r is at most α(d)(1 − γgap), where γgap is as defined in the
statement of Lemma 2.

Appendix A. Proof of Claim 1. We prove that Definitions 6 and 5 are
equivalent.

Proof. If Definition 5 holds, then for any E ∈ E and any two orthogonal states of
the code |φ〉, |ψ〉, we have

(36) 〈φ|E|ψ〉 = 〈φ|ΠCEΠC |ψ〉 = γE〈φ|ΠC |ψ〉 = γE〈φ|ψ〉 = γE0 = 0.

On the other hand, suppose that for any two orthogonal states |φ〉, |ψ〉 in the code,
and any E ∈ E , we have 〈φ|E|ψ〉 = 0. Choose some orthogonal basis of the code
C {|bi〉}mi=1. Then for each of these basis vectors, we have 〈bi|E|bj〉 = 0 for i �= j.
Hence, in particular, the operator E|C , i.e., E restricted to C, is a diagonal matrix
diag(λ1, . . . , λm). We claim further that E|C = γEI for some constant γE , and hence
ΠCEΠC = γEΠC . Suppose, on the contrary that there exist two eigenvalues of E|C
that are different, say λ1 �= λ2. Consider the orthogonal states |φ〉 = 1√

2
(|b1〉+ |b2〉),

|ψ〉 = 1√
2
(|b1〉 − |b2〉). Then |φ〉, |ψ〉 are in the code by linear closure, and are orthog-

onal, and yet

(37) 〈φ|E|ψ〉 = 1

2
〈b1|E|b1〉− 1

2
〈b1|E|b2〉+ 1

2
〈b2|E|b1〉− 1

2
〈b2|E|b2〉 = 1

2
(λ1−λ2) �= 0,

contrary to our assumption on E.

Appendix B. Proofs of geometrical facts on local expanders.

B.1. Proof of Fact 2. For S ⊆ R let Γ1(S) ⊆ Γ(S) denote the subset of the
neighbors of S with exactly one neighbor in S. Similarly, let Γ≥2(S) denote the subset
of neighbors with at least two neighbors in S.

Proof. The average degree of a vertex in Γ(S) w.r.t. |S| is at most DLS
DLS(1−ε) =

1
1−ε .

Let α1 denote the fraction |Γ1(S)|/|Γ(S)|, where Γ1(S) is the set of neighbors of S
with degree exactly 1 with respect to S. Then

(38)
1

1− ε
≥ α11 + (1 − α1)m,
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where m is the average degree of a vertex with at least two neighbors in S. Then by
simple algebra

(39) α1(m) ≥ 1− 1

m− 1
· ε

1− ε
,

so α1(m) is a monotonously increasing function of m, and since m ≥ 2, then α1 is
minimized for m = 2. Hence,

(40) α1 ≥ 1− ε

1− ε
,

and since ε < 1/2, we have

(41) α1 ≥ 1− ε(1 + 2ε) ≥ 1− 2ε.

B.2. Proof of Fact 3. By definition, we have |Γ(S)| ≥ |S|DL(1 − ε). Let
Einj ⊆ E(S) be a subset of the edges incident on S such that each u ∈ Γ(S) has
a single neighbor in S connected by an edge of Einj . Then Einj is of size |Γ(S)|
which is at least |S|DL(1 − ε). Also |E(S)| = |S|DL, thus |E(S) − Einj | ≤ |S|DLε.
Therefore |Γ≥2(S)| ≤ |S|DLε. Hence, Γ1(S) = Γ(S) − Γ≥2(S) is of size at least
|S|DL(1−ε)−|S|DLε = |S|DL(1−2ε). Therefore, when ε < 1/2 there exists a vertex
v ∈ S with at least DL(1−2ε) neighbors in Γ1(S). Since v has DL neighbors in Γ(S),
then the fraction of neighbors of v with at least two neighbors in S is at most 2ε when
ε < 1

2 .

Appendix C. Existence of arbitrarily sound classical LTCs on local
expanders.

Claim 5. For any ε ∈ (0, 1/2), ρ ∈ (0, 1) there exists δ = δ(ρ, ε), and an
explicit infinite family of codes {Cε(n)}n∈N of n bits, of constant fractional rate ρ,
and constant fractional distance δmin = δmin(ρ, ε), whose check terms are O(1)-local
on average, and all errors of weight less than δn have soundness r(δ) ≥ 1 − 3ε.
Moreover, the underlying graph of these codes is an ε-local expander.

Proof. The construction of [22] generates explicitly for any ε, ρ a left-DL-regular
bipartite graph G = (L,R;E) such that |R|/|L| = 1 − ρ, and for any subset S ⊆ L,
|S| ≤ |L|δ the neighbor set of S is of size at least |S|DL(1 − ε), where DL is the
left degree of G. Note that since the left degree is DL, the average right degree is
DL|L|/|R| = DL

1
1−ρ , which is a constant, given that DL is a constant.

The code is defined by assigning to each right node a parity check over its incident
vertices. Let us lower-bound the fractional rate of this code: it is at least ρ =
(|L| − |R|)/|L|, since each constraint in R at most halves the dimension of the code
space. The fractional minimal distance of the code is at least δ, since any nonzero
word of fractional weight at most δ is rejected, since there exists at least one check
term that “sees” just a single bit at state 1, by Fact 2. Hence, these are so-called
“good” codes.

Furthermore, their soundness is at least 1− 3ε since an error on a set of bits S of
size |S| ≤ δn is examined by at least |S|DL(1−ε) constraints. By Fact 2 at least 1−2ε
of those constraints examine S in exactly one location; all constraints that touch a
given error set S in exactly one location will be violated. Hence the total number
of constraints that will be violated is at least |S|DL(1 − ε)(1 − 2ε) ≥ |S|DL(1 − 3ε).
Therefore, the soundness function R(δ′) is at least (1− 3ε)δ′k for all δ′ ∈ [0, δ].
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Appendix D. Proof of Lemma 1: Decomposition to cosets of a stabilizer
code. For any E ∈ Πnd and any g ∈ G, we have Eg = ωgE, where ω ∈ C. Therefore,
for any |η〉 in C, we have that E|η〉 is an ω-eigenstate of g. Then for any E ∈ Πnd , we
have that EC is some simultaneous eigenspace of G. But, since Πnd spans over C all
unitaries on n qudits, it must be that every simultaneous eigenspace of G is equal to
EC for some E ∈ Πnd . In particular, any state |φ〉 may be written as a sum,

(42) |φ〉 =
∑
i

Ei|ηi〉,

where Ei ∈ Πnd and |ηi〉 ∈ C.

Appendix E. Proof of Claim 2: Equivalence of definitions of minimal
distance of a code. We prove that a stabilizer code C has δ(C) ≥ ρ by Definition
11 iff it has distance ≥ ρ by Definition 7.

If the minimal weight of a Pauli in Z(G) − A(G) has weight at least ρ, then all
terms E ∈ Πnd of weight strictly less than ρ (namely, at most ρ−1) are either generated
by G or outside Z(G). Take any two orthogonal code states |φ〉, |ψ〉. If E ∈ A(G), then
all code states are stabilized by E, so we have 〈φ|E|ψ〉 = 1 · 〈φ|ψ〉 = 0. If E /∈ Z(G),
E does not commute with some generator, so, in particular, E does not preserve the
simultaneous 1-eigenspace of all generators, namely, the code. By Lemma 1, this
implies that EC is orthogonal to C. Thus we have in this case as well 〈φ|E|ψ〉 = 0.
Hence the minimal distance of the code, according to Definition 7, is at least d.

Proving the converse, assume that δ(C) < ρ, i.e., minE∈Z(G)−A(G)wt(E) < ρ.
Then there exists E ∈ Πnd , of weight less than ρ, that commutes with all generators of
G but not generated by them, so there exists some state |φ〉 ∈ C, such that E|φ〉 �= |φ〉,
yet E|φ〉 ∈ C (see [35, p. 27]). Thus, there exists a nonzero projection of E|φ〉 on
some other code state |ψ〉 orthogonal to |φ〉. Therefore, 〈ψ|E|φ〉 �= 0, contrary to
Definition 6.

Appendix F. Quantum LTCs built from CSS codes inherit classical
parameters: Proof of Fact 1. We define the check matricesHx, Hz of the quantum
CSS code by taking exactly the locally testable check matrices of the corresponding
classical codes Lx,Lz. So the generating group G of the stabilizer code Q corresponds
either to rows of the matrix Hx (translated to Pauli X) or to rows of the matrix
Hz (translated to Pauli Z). Hence by definition, the query complexity is at most
max {q1, q2}. We now consider the soundness function:

1. Lower bound. Consider an operator w ∈ Πn, with wtC(G)(w) ≥ δn. This
implies that the Pauli operator of minimal weight Δ—so that w ·Δ commutes
with all of G—has wt(Δ) ≥ δn. Decomposing such Δ to a product of two
tensor products of X and Z operators, Δx,Δz , implies that of the binary
strings that correspond to these operators, at least one of them has distance at
least 1

2δn from Lx,Lz . By local testability of these codes, this string violates a
fraction at least min {R1(δ/2), R2(δ/2)} of all check terms (Hx, Hz). Hence Δ
violates, as a quantum operator, the same fraction of check terms. Therefore
R(δ) ≥ min {R1(δ/2), R2(δ/2)}.

2. Upper bound. Let us examine, say, Lx. Let w be any word in Fn
2 at distance

at least δn from Lx. Let us take the word in F2n
2 comprising [w, 0] and

examine its corresponding Pauli word, denoted by w′. (By corresponding
here we mean by the usual isomorphism between the n-fold tensor product
Pauli group and the 2n-fold additive group modulo 2.) Then w′ is composed
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entirely of Pauli X operators and has wtC(G)(w′) ≥ δn, i.e., the minimal-
weight Pauli operator Δ, such that Δ·w′ ∈ C(G) is composed entirely of Pauli
X operators and has weight exactly δ(w,Lx). By quantum local testability of
Q we have that w′ violates a fraction R(δ) of the constraints. But w′ can only
violate constraints of Hx (i.e., Pauli Z constraints), because it is composed
entirely of Pauli X operators, thereby trivially commuting with all Hz (Pauli
X constraints). This implies that w must violate a fraction at least R(δ) of
the constraints of Hx. Hence R1(δ) ≥ R(δ). The same holds by symmetry
for R2(δ).

Appendix G. Lower bound on weight: Proof of Fact 9. Let x ∼ B(k, p =
1/(10k)) denote a random variable which is the sum of k independent and identically
distributed Boolean variables, each equal to 1 with probability p; in other words, x is a
binomial process; B(i) = Prob(x = i). Let U be a k-independent set of size Ω(n), and
let E be the error process defined in subsection 5.3.1. Let Ui =

{
u ∈ U |wt(E|Γ(u)) = i

}
be the set of generators which have exactly i erroneous qudits. Using the Hoeffding
bound, for a given i ∈ [k] and a given any constant χ > 0, we have

(43) ProbE

(∣∣∣∣ |Ui||U | −B(i)

∣∣∣∣ ≥ χ

)
= 2−Ω(n).

By the union bound, we have that for any constant χ > 0

(44) ProbE

(
∃i, such that

∣∣∣∣ |Ui||U | −B(i)

∣∣∣∣ ≥ χ

)
= 2−Ω(n).

Since the set U is a k-independent set, then the sets
{
Γ(k)(u)

}
u∈U are nonintersecting,

so

(45) wt(EG) ≥
∑
u∈U

wt
(EG |Γ(k)(u)

)
.

By the onion fact (Fact 8), for each u ∈ Ui we have wt
(EG |Γ(k)(u)

) ≥ min {i, k − i},
hence

(46) wt(EG) ≥
∑
i∈[k]

|Ui|min {i, k − i} =
|S|
k

∑
i∈[k]

|Ui|
|U | min {i, k − i}

using k|U | = |S|. Using (44) with probability close to 1 we have

(47)

wt(EG) ≥ |S|
k

∑
i∈[k]

(B(i)− χ)min {i, k − i} ≥ |S|
k

⎛
⎝∑
i∈[k]

B(i)min {i, k − i} − 2−k
2

⎞
⎠

for χ = 2−k
2

/k2.
We separate the rest of the proof into two cases: k ≥ 12 and 4 ≤ k < 12. We

start with the case k ≥ 12. Recall k̂ = �k/2�+ 1. Let

(48) Aloss =
∑
i≥k̂

B(i)(2i− k).
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Then by (47) we have that with probability exponentially close to 1

(49) wt(EG) ≥ |S|
k

⎛
⎝∑
i∈[k]

B(i)i −Aloss − 2−k
2

⎞
⎠ =

|S|
k

(
pk − 2−k

2 −Aloss

)
.

In the rest of the proof for k ≥ 12 we upper-bound Aloss and substitute in the
above equation to derive the desired result. Using an upper bound of the binomial,
we have

(50)

B(k̂) =

(
k

k̂

)
pk̂(1 − p)k−k̂ ≤ 2k · (10k)−k̂(1− p)k−k̂ ≤ k−k̂10−k̂2k ≤ 2−k̂log(k)+k−3.3k̂ .

For any i ≥ k̂ and p < 1/2 we have

(51) B(i+ 1) = B(i)

(
k − i

i+ 1

)(
p

1− p

)
< B(i)

p

1− p
< 2pB(i).

Substituting (51) and (50) into the expression for Aloss we have

(52) Aloss =

k∑
i≥k̂

B(i)(2i− k) ≤ 2−k̂log(k)+k−3.3k̂
k∑
i≥k̂

(2p)(i−k̂)(2i− k)

(53) ≤ 2−k̂log(k)+k−3.3k̂+1+k̂
k∑
i≥k̂

p(i−k̂)(i− �k/2�).

Changing summation i− �k/2� �→ j we have that the above is at most

(54) 2−k̂log(k)+k−2.3k̂+1

�k/2∑
j≥1

pj−1j ≤ 2−k̂log(k)+k−2.3k̂+1

�k/2∑
j≥1

pj−1k

(55)

≤ 2−k̂log(k)+k−2.3k̂+1k

�k/2∑
j≥1

pj−1 ≤ 2−k̂log(k)+k−2.3k̂+1k·1.1 ≤ 2(−k̂+1)log(k)+k−2.3k̂+1.2,

where in the last inequality we bound the sum by
∑

i≥0 p
i and set p = 1/(10k) ≤

1/100, using k ≥ 12. Substituting this value into (49) we have that with probability
2−Ω(n) close to 1

wt(EG) ≥ |S|
k

(
pk − 2−k

2 − 2(−k̂+1)log(k)+k−2.3k̂+1.2
)

(56)

≥ |S|
k

(
pk − 2(−k̂+1)log(k)+k−2.3k̂+1.21

)
,(57)

where in the last inequality we used again k ≥ 12. Continuing, using p = 1
10k , the

above bound is equal to

(58) = |S|p
(
1− 2(−k̂+1)log(k)+k−2.3k̂+1.21+log2(10)

)
≥ |S|py(k)

for all k ≥ 12. For values of 4 ≤ k < 12 we directly substitute k into (47), evaluate,
and show it is at least |S|py(k).
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Appendix H. Quantum PCP of proximity.

H.1. Classical PCPs of proximity. We begin by presenting the definitions
following [14]. A pair language L is a subset of {0, 1}n × {0, 1}� for � = poly(n). For
a pair language L, let L(x) = {y|(x, y) ∈ L}.

Definition 23 (PCP of proximity (PCPP)). For functions s, δ : Z+ → [0, 1], a
verifier V = V (x) is a probabilistically checkable proof of proximity (PCPP) system for
a pair language L with proximity parameter δ and soundness error s if the following
two conditions hold for every pair of strings (x, y) ∈ {0, 1}n × {0, 1}�:

1. Completeness: If (x, y) ∈ L, there exists π such that V (x) accepts oracle y ◦π
with probability 1.

2. Soundness: If y is δ(|x|)-far from L(x), then for every π, the verifier V (x)
accepts oracle y ◦ π with probability at most s(|x|).

If s and δ are not specified, then both can be assumed to be constants in (0, 1). The
query complexity of the verifier V , q(V ), is defined to be the number of coordinates
that V queries out of y and π.

In the above definition, V is not charged for reading x but is charged for reading
y even though it is part of the input. This is a more stringent restriction than in
the case of a PCP proof; however, the requirements on the proof system are weaker:
V is supposed to reject only words which are far from words in the language. As in
the case of PCP, we would like the query complexity to be as low as possible and,
optimally, q(V ) = O(1).

A good pair language to keep in mind is CIRCUIT-VAL, i.e., the pairs (x, y),
where x is a circuit on n bits of polynomial size, and y is a string on n bits, and
(x, y) ∈ L if x(y) = 1, i.e., the circuit x evaluates to 1 on input y. Though this
problem lies in P, a simple argument (Proposition 2.4 in [14]) shows that a PCPP for
CIRCUIT-VAL implies a PCP for the NP complete decision language CIRCUIT-SAT,
the set of all x, for which there exists y, such that x(y) = 1.

H.2. From PCPPs to LTCs. Given a PCPP, [14] provides a standard con-
struction of an LTC with related parameters as follows. Given is a PCPP for mem-
bership in a code, namely, for the pair language of (C,w), a code and a member in
that code. Suppose the proximity parameter of the PCPP is δ, the soundness s, and
the query complexity k. Suppose also that we are given a code C with distance D.
Then one can construct an error correcting code C ′ which is an LTC with k-local
constraints, whose weighted distance is D, and whose soundness is proportional to
the soundness s.

C′ is defined as the strings w ◦ π for all w in C, where π is the proximity proof of
w. If one defines the distance by weighting only the coordinates in the first register,
then C′ trivially has the same distance as C.9 The local test for the code C′ as an
LTC are the k-local tests performed by the verifier of the PCPP. Consider now a word
w′ ◦ π′ which is δ-far from any w ◦ π in the code C′, where the distance is measured
again by taking into account only the coordinates of the left register. This means that
w′ is δ-far from a word in the code C; then the tests will reject the word w′ ◦ π′ with
probability s, which will thus be the soundness of the code for proximity δ.

H.3. Quantum PCPPs. We now define the quantum analogue of PCPs of
proximity. We consider quantum pair languages L ⊆ {0, 1}n ⊗Hprf , where Hprf is a

9In [14] this choice of definition of distance is referred to as equivalent to the one used in [14],
in which many repetitions of the string w are taken, so that the weight of the error on the second,
proof, register becomes negligible.
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Hilbert space of � d-dimensional qudits for � = poly(n). For a quantum pair language
L let L(x) = Span {|ψ〉 ∈ Hprf , (x, |ψ〉) ∈ L}.

Definition 24 (quantum PCP of proximity). Fix functions s, δ : Z+ → [0, 1].
Let V = V (x) be a function from n bit strings x to sets of m k-local projections
{Πi}mi=1, each acting on Hprf ⊗ Hpxmty. V is a quantum probabilistically checkable
proof of proximity (qPCPP) system, for a quantum pair language L, with proximity
parameter δ and soundness error s, if the following two conditions hold for every pair
(x, |ψ〉):

1. Completeness: If (x, |ψ〉) ∈ L, there exists |w〉 ∈ Hpxmty, such that for all
check terms Πi ∈ V (x)

(59) Πi (|ψ〉 ⊗ |w〉) = 0.

2. Soundness: If |φ〉 is a quantum state in Hprf ⊗Hpxmty whose reduced density
matrix to Hprf is supported on states, each of distance at least δ(|x|) from
L(x), then

(60)
1

m

∑
i

〈φ|Πi|φ〉 ≥ s(|x|) : .

The query complexity of the verifier V is k.

H.4. From qPCPPs to qLTCs. Given is a qPCPP for membership in a quan-
tum code on � qudits, namely, for the pair language L composed of pairs (C, |ψ〉): a
code (described by n bits) and an �-qudit state in the code. Suppose L has a qPCP of
proximity with parameters δ, s for some functions s, δ : Z+ → [0, 1], with projections
Πi. Let C

′ be the code space ⊆ Hprf ⊗Hpxmty, defined as

(61) Span {|φ〉 ⊗ |Π(φ)〉 such that |φ〉 ∈ C} ,

where |Π(φ)〉 is some proof of proximity for |φ〉 from the qPCPP. Let distprf denote
the distance from the code space as in Definition 14, except it only counts nonidentity
Paulis acting on the register Hprf .

Claim 6. C′ is a qLTC with query complexity k and soundness R(δ) = s (where
the proximity δ is defined with respect to the distance distprf ).

Proof. Set {Πi}mi=1 as the check terms for L(C). These are k-local terms, so
C′ has query complexity k. By definition of the qPCPP, for any state |φ〉 in the
code space of C′, we have Πi|φ〉 = 0 for any Πi ∈ V (C′). Let us assume now that
distprf (|φ〉, C′) ≥ δ(|C|) · �. Then, by Definition 14, for any Pauli operator E acting
on Hprf ⊗Hpxmty, whose support on Hprf is at most δ(|C|) · �− 1, we have that E|φ〉
is still orthogonal to C′. In particular, for any E whose support is contained in Hprf ,
and whose weight is at most δ(|C|) · �− 1, we have that E|φ〉 is still orthogonal to C′.
It is easy to see that the reduced state of |φ〉 to Hprf is a mixture of orthogonal states
{|ηi〉}i, each of which is at least δ(|C|) · �-far from C. By virtue of the soundness
of the qPCPP, |φ〉 will be rejected by the check terms Πi with probability at least
s(|C|).

Acknowledgments. The authors would like to thank Eli Ben-Sasson, Irit Dinur,
and Tali Kaufman for insightful discussions.
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