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Abstract

We present the first algorithm that implements an abstract MAC (absMAC) layer in the
Signal-to-Interference-plus-Noise-Ratio (SINR) wireless network model. We first prove that
efficient SINR implementations are not possible for the standard absMAC specification. We
modify that specification to an ”approximate” version that better suits the SINR model. We
give an efficient algorithm to implement the modified specification, and use it to derive efficient
algorithms for higher-level problems of global broadcast and consensus.

In particular, we show that the absMAC progress property has no efficient implementation
in terms of the SINR strong connectivity graph G1−ε, which contains edges between nodes of
distance at most (1−ε) times the transmission range, where ε > 0 is a small constant that can be
chosen by the user. This progress property bounds the time until a node is guaranteed to receive
some message when at least one of its neighbors is transmitting. To overcome this limitation, we
introduce the slightly weaker notion of approximate progress into the absMAC specification. We
provide a fast implementation of the modified specification, based on decomposing the algorithm
of [9] into local and global parts. We analyze our algorithm in terms of local parameters such
as node degrees, rather than global parameters such as the overall number of nodes. A key
contribution is our demonstration that such a local analysis is possible even in the presence of
global interference.

Our absMAC algorithm leads to several new, efficient algorithms for solving higher-level
problems in the SINR model. Namely, by combining our algorithm with high-level algorithms
from [25], we obtain an improved (compared to [9]) algorithm for global single-message broad-
cast in the SINR model, and the first efficient algorithm for multi-message broadcast in that
model. We also derive the first efficient algorithm for network-wide consensus, using a result
of [31]. This work demonstrates that one can develop efficient algorithms for solving high-level
problems in the SINR model, using graph-based algorithms over a local broadcast abstraction
layer that hides the technicalities of the SINR platform such as global interference. Our algo-
rithms do not require bounds on the network size, nor the ability to measure signal strength,
nor carrier sensing, nor synchronous wakeup.

∗Full version [16] available at arxiv.org.
†Supported by Icelandic Research Fund grants 120032011 and 152679-051.
‡Supported by the following grants: AFOSR Contract Number FA9550-13-1-0042, NSF Award 0939370-CCF, NSF

Award CCF-1217506, NSF Award CCF-AF-0937274.



1 Introduction

Two active areas in Distributed Computing Theory are the attempts to understand wireless net-
work algorithms in the Signal-to-Interference-plus-Noise-Ratio (SINR) model and abstract Medium
Access Control layers (absMAC).

• The SINR model captures wireless networks in a more precise way than traditional graph-
based models, taking into account the fact that signal strength decays according to geometric
rules and interference and does not simply stop at a certain border.

• Abstract MAC layers (a.k.a Local Broadcast Layers), express guarantees for local broadcast
while hiding the complexities of managing message contention. These guarantees include
message delivery latency bounds: an acknowledgment bound on the time for a sender’s message
to be received by all neighbors, and a progress bound on the time for a receiver to receive
some message when at least one neighbor is sending.

In this paper we combine the strengths of both models by abstracting and modularizing broadcast
with respect to global interference and decay via the SINR formula. This marks the start of
a systematic study that simplifies the development of algorithms for the SINR model. At the
same time we provide an example that modularizing and abstracting broadcast using MAC layers
is beneficial and does not necessarily result in worse time-bounds than those of the broadcast
algorithm being decomposed.

Traditionally, SINR platforms are quite complicated (compared to graph-based platforms), and
consequently are very difficult to use directly for designing and analyzing algorithms for higher-level
problems1. We show how absMACs can help to mask their complexity and make algorithms easier
to design. This demonstrates the potential power of absMACs with respect to algorithm design
for the SINR model. During this process we point out and overcome inherent difficulties that
at first glance seem to separate the MAC layers from the SINR model and other physical models.
These difficulties arise because absMACs are graph-based interference models, while physical models
capture (global) interference by specific signal-propagation formulas. Overcoming this mismatch is
a key difficulty addressed in this work.

We tackle this mismatch by introducing the concept of approximate progress into the absMAC
specification and analysis. The definition of approximate progress enables us to obtain a good
implementation of an absMAC, which enables anyone to immediately transform generic algorithms
designed for an absMAC into algorithms for the SINR model. The main observation that inspired
the definition of approximate progress is a proof, that no SINR absMAC implementation is able to
guarantee fast progress in an SINR-induced graph G, while fast progress can be guaranteed with
respect to an approximation G̃ ofG. Roughly speaking, as SINR-induced strong connectivity graphs
are defined based on discs representing transmission ranges, we choose G̃ := G1−2ε to approximate
G := G1−ε by making the disc a tiny bit smaller than in G.

This abstraction makes it easier to design algorithms for higher-level problems in the SINR
model and has further benefits. One of the most intriguing properties of abstract MAC layers
is their separation of global from local computation. This is beneficial in two ways. On the one
hand this separation allows us to expose useful SINR techniques in the simple setting of local
broadcast. On the other hand this separation provides the basic structure to perform an analysis
based on local parameters, such as the number of nodes in transmission/communication range

1We refer by higher-level problems to e.g. network-wide broadcast, consensus, or computing fast relaying-routes,
max-flow and other problems whose solution requires a good understanding of lower-level problems. Here, we refer
by lower-level problems to e.g. achieving connectivity, minimizing schedules and capacity maximization, which are
better understood by now.
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and the distance-ratios between them, which is beneficial as pointed out in the full version of this
paper [16]. Due to this, and the plug-and-play nature of the absMAC theory, we obtain a faster
algorithms for global single-message broadcast than [9] and fast algorithms for global multi-message
broadcast and consensus in the SINR model. To achieve these results, we simply plug our absMAC
implementation and bounds into the results of [25] and [31].

Future Benefits of Abstract MAC Layers in the SINR Model. Many higher-level problems
such as global broadcast, routing and reaching consensus are not yet well understood in the SINR
model and recently gained more attention [9, 11, 18, 19, 21, 34, 35]. Many of these problems in the
algorithmic SINR can be attacked in a structured way by using and implementing absMACs that
hide all complications arising from the SINR model and global interference. Using MAC layers,
graph-based algorithms can be analyzed in the SINR model even without knowledge of the SINR
model and might still lead to almost optimal algorithms as we demonstrate here.

2 Contributions and Related Work

We devote large parts of this article to prove theorems on implementing an absMAC in the SINR
model and how to modify the absMAC specification to get better results. Based on these theo-
rems we derive results on higher-level problems in the SINR model. We provide more details on
contributions in the full version of this paper [16]. Our model assumptions in the SINR model
and absMAC are listed in Section 3 and are adapted from [9] and [20]. Table 1 summarizes our
algorithmic contributions.

Efficient implementation of acknowledgments. Theorem 4.1 transfers Algorithm 1 of [17]
and its analysis to implement fast acknowledgments of the absMAC and modifies it to use local
parameters. The full version of this paper [16] provides a close lower bound.

Proof of impossibility of efficient progress. Theorem 4.2 shows that one cannot expect
an efficient implementation of progress using the standard definition of absMAC. In particular
one cannot implement an absMAC in the SINR model that achieves progress much faster than
acknowledgments.

The notion of approximate progress. Achieving progress faster than acknowledgment is
key to several algorithms designed for absMACs. Motivated by the above lower bound, we relax
the notion of progress in the specification of an absMAC to approximate progress. Definition 5.1
introduces approximate progress with respect to an approximation (or some subgraph) of the graph
in which local broadcast is performed. Although this new notion of approximate progress is weaker
than the usual (single-graph) notion of progress, bounds on approximate progress turn out to be
strong enough to yield, e.g., good bounds for global broadcast as long as G is, e.g., connected—see
Theorem 7.2. The introduction of approximate progress is the main conceptual contribution of this
article.

Efficient implementation of approximate progress. We modify the global single-message
broadcast algorithm of [9] to guarantee approximate progress in an absMAC (a local multi-message
environment). Our modifications make this algorithm suitable for a localized analysis, which bounds
the runtime in terms of local parameters and the desired success probability, see Theorem 6.1. This
analysis, which removes the parameter n from the runtime is the main technical contribution of
this article and leads to the improved global broadcast algorithms mentioned below.

Global consensus, single-message and multi-message broadcast in the SINR model.
We immediately derive an algorithm for global consensus (CONS) in Corollary 4.3 by combining
our acknowledgment-bound with a result of [31]. Section 7 combines our absMAC implementation
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with results of [25] in a straightforward way to derive algorithms for global single-message broadcast
(SMB) and global multi-message broadcast (MMB).

Task/Bound Lower bound Upper bound presented here

fack ∆G1−ε
(+) O

(
∆G1−ε · log

(
Λ
εack

)
+ log(Λ) log

(
Λ
εack

))
fprog ∆(∗)

G1−ε
O
(

∆G1−ε · log
(

Λ
εack

)
+ log(Λ) log

(
Λ
εack

))
fapprog – O

((
logα(Λ) + log∗

(
1

εapprog

))
log(Λ) log

(
1

εapprog

))
global SMB Ω

(
DG1−ε

log
(

n
DG1−ε

)
O
((
DG1−2ε

+ log
(

n
εSMB

))
logα+1(Λ)

)(†)

+ log2(n)
)(‡)

global MMB Ω
(
DG1−ε

log
(

n
DG1−ε

)
O
(
DG1−2ε logα+1(Λ) + k∆G1−ε log

(
nk

εMMB

)
+ k log(n) + log2(n)

)(‡)
+ polylog

(
nkΛ
εMMB

))(†)

global CONS – O
(
DG1−ε(∆G1−ε + log(Λ)) log

(
nΛ

εCONS

))(†)

Table 1: Summary of algorithmic results, see Section 3 for details on notation. The table compares our
new upper bounds to (known and new) lower bounds. Known lower bounds are graph-based and transfer to
our setting, as we use weaker assumptions. To compare graph-based lower bounds with our upper bounds,
one might choose Λ = n to account for possible high degree and choose εSMB = εMMB = n−c to achieve
w.h.p. correctness. (*) Lower bound proven in this paper using absMAC assumptions of [25]. (†) Lower
bounds require runtimes of global broadcast to depend on n even though we perform a local analysis. (‡)
Combinations of lower bounds of [1, 12, 29] for graph based models. (+) Trivial lower bound (the full version
of this paper [16] provides more details.)

2.1 Comparison of Algorithmic Results with Previous Work

Global single-message broadcast. Table 2 compares the runtime of our algorithm for global
SMB with previous work. Currently [9] and [20] provide the best implementations of global SMB
in the SINR model (see the runtimes in Table 2). The result of [9] is as good or better than [20]
in case logα+1(Λ) ≤ log(n) and vice versa. To make it possible to compare our result to theirs,
we need to choose εSMB = 1/nc such that global SMB is correct w.h.p.. Furthermore, we execute
our algorithm with ε′ := ε/2 instead of ε, while algorithms in previous work are executed without
changing ε. This ensures that our bounds are stated in terms of the same parameter DG1−ε rather
than the possibly larger parameterDG1−2ε . At the same time the choice of ε′ affects the runtime only
by a constant factor. This results in a runtime of our algorithm of O

(
(DG1−ε + log(n)) logα+1(Λ)

)
in the strong connectivity graph G1−ε. This improves over the algorithm presented in [9] in the
full range of all parameters, and improves in case of logα+1(Λ) ≤ min(DG1−ε log(n), log2(n)) over
the algorithm of [20]. Note that compared to [20] we (and [9]) assume knowledge of a bound on Λ.
The key-ingredient of this improvement is our localized analysis in combination with [25].

Global multi-message broadcast. The algorithm for global MMB derived from [17] runs
in O((DG1−ε + k)(∆G1−ε · logn + log2 n)) time. Roughly speaking, our algorithm replaces the
dependency on the potentially large multiplicative termDG1−ε∆G1−ε byDG1−ε up to polylog factors.
Section 2.2 summarizes global MMB in related models.
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Article Runtime bound for global SMB We improve this runtime in case of
this O

((
DG1−ε

+ log (n)
)

logα+1(Λ)
)

[9] O
(
DG1−ε

logα+1(Λ) log(n)
)

all parameters and ranges
[20] O

(
DG1−ε

log2(n)
)

logα+1(Λ) ≤ min(DG1−ε
log(n) , log2(n))

Table 2: Comparison of the runtime of our global SMB protocol with previous results.

2.2 Related Work

We provide more details on related work in the full version of this paper [16].

Graph Based Wireless Networks (Chlamtac et al. [5]). Upper bounds for global
SMB [8, 27] in networks of unknown topology are tight due to a lower bound of Ω(D log(n/D) +
log2 n) by Alon et al. [1, 29]. The sequence of work [3, 13, 24] considered global MMB. Ghaffari
et al. [12] presented a lower bound of Ω(k logn) for global broadcast of k messsages. These lower
bounds can be transferred to the SINR-model using SINR-induced graphs.

Abstract MAC layer (Kuhn et al. [28]). The probabilistic absMAC we consider was defined
by Khabbazian et al. [25]. AbsMAC implementations were provided in [25, 26] and applications
were provided in [6, 7, 14, 25, 28, 31]. We use optimal algorithms for global SMB and MMB in the
probabilistic absMAC due to [25] and results on CONS by Newport [31].

SINR model (e.g. Moscibroda and Wattenhofer [30]). Local broadcast was studied in
various models, e.g in [15, 17, 33]. We modify the analysis of [17] to use purely local parameters.
Global MMB algorithms can be implied once local broadcast is available. Yu et al. [34, 35] obtained
almost optimal bounds using arbitrary power control. Arbitrary power control used in [35] can yield
arbitrary speed ups compared to our model [22, 30] and we get close to their runtime. Global SMB
was studied in the sequence of papers [9, 19, 20, 21] using various model assumptions. Daum et al. [9]
proposed a model that uses weak model assumptions, which we use as well. Thanks to a completely
new approach they show how to perform global broadcast in G1−ε within O(D logα+1(Λ) log(n))
rounds w.h.p.. We transfer and modify this algorithm to implement approximate progress in a
probabilistic absMAC and provide a significantly extended analysis. Shortly after [9], Jurdzinski
et al. [20] came up with a O(D log2 n) algorithm that improves over the one of [9] for a range of
parameters. Table 2 compares these results to ours. Power control was also used in [4] to achieve
connectivity and aggregation, which in turn can be used for broadcast as well.

3 Model and Definitions

Graphs and their properties. Let G = (V,E) be a graph over n nodes V and edges E.
We denote by dG(v, w) the hop-distance between w and v (the number of edges on a shortest
(u, v)-path), and by DG := maxu,v∈V dG(u, v) the diameter of graph G. All neighbors of v in
G are called G-neighbors of v. We define v’s neighborhood to be NG(v) := {u|(v, u) ∈ E} and
extend this to NG,r(v) := {u|dG(v, u) ≤ r} for the r-neighborhood, r ∈ N. For any set W ⊆ V we
generalize this to NG,r(W ) := ⋃

w∈W NG,r(w). δG(v) := |NG(v) \ {v}| denotes the degree of v and
∆G := maxv∈V δG(v) the degree of G. Let S ⊆ V be a subset of G’s vertices, then G|S = (S,E|S)
denotes the subgraph of G induced by nodes S, where E|S := {(u, v) ∈ E|u, v ∈ S}. A set
S ⊆ S′ ⊆ V is called a maximal independent set (MIS) of S′ in G if 1) any two nodes u, v ∈ S are
independent, that is (u, v) /∈ E, and 2) any node v ∈ S′ is covered by some neighbor in S, that
is NG(v) ∩ S 6= ∅. A graph G = (V,E) is (polynomial) growth-bounded if there is a polynomial
bounding function f(r) such that for each node v ∈ V , the number of nodes in the neighborhood
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NG,r(v) that are in any independent set of G is at most f(r) for all r ≥ 0. This allows us to bound
the size of neighborhoods depending on the maximal degree of the network. When performing a
localized analysis this yields union-bounds depending on the maximal degree, rather than the size
of the network.

Lemma 3.1. Let G be polynomially growth-bounded by function f , then it holds that |NG,r(v)| ≤
∆f(r) for all v ∈ V and r ∈ N.

Proof. The proof appears in the full version of this paper [16].

The SINR model. Nodes are located in a plane and we write d(v, w) for the Euclidean distance
between points v, w (often corresponding to node’s positions). It is clear from the context when
d refers to hop-distance or Euclidean distance. When a node v (of a wireless network) sends a
message, it transmits with (uniform) power P > 0. A transmission of v is received successfully
at a node u, if and only if SINRu(v) := P/d(v,u)α∑

w∈S\{u,v} P/d(w,u)α+N ≥ β, where N is a universal
constant denoting the ambient noise. The parameter β > 1 denotes the minimum SINR (signal-
to-interference-noise-ratio) required for a message to be successfully received, α is the so-called
path-loss constant. Typically it is assumed that α ∈ (2, 6], see [15]. Here, S is the subset of nodes
in V that are sending. By R := (P/βN)1/α we denote the transmission range, i.e. the maximum
distance at which two nodes can communicate assuming no other nodes are sending at the same
time. For a ∈ R+, we define Ra := a ·R. If d(v, u) ≤ Ra and a < 1, we say u and v are connected
by a a-strong link. Like previous literature [2, 9, 10, 15, 23] we consider a link to be strong if it
is (1 − ε)-strong for constant ε > 0. If Ra < d(u, v) ≤ R1, we say u and v are connected by an
a-weak link. A (1−ε)-weak link is just called weak link. We consider the strong connectivity graph
G1−ε = (V,E1−ε), where (u, v) ∈ E1−ε, if u, v ∈ V are connected by a strong link. Given a graph
G, we denote by ΛG the ratio between the maximum and minimum Euclidean length of an edge in
E. In case that G is G1−ε, we simply write Λ instead of ΛG1−ε .

Abstract MAC layers. We use the definitions of Ghaffari et al. [14] adapted to the probabilistic
setting of [25]. To initiate a broadcast in a graph G, the MAC layer provides an interface to higher
layers via input bcast(m)i for any node i ∈ V and message m ∈ M . To simplify the definition of
this primitive, assume w.l.o.g. that all local broadcast messages are unique. When a node u ∈ V
broadcasts a message m, the model delivers the message to all neighbors in E. It then returns an
acknowledgment of m to u indicating the broadcast is complete, denoted by ack(m)u. In between
it returns a rcv(m)v event for each node v that received message m. This model provides two
timing bounds . The first is the acknowledgment bound, which guarantees that each broadcast
will complete and be acknowledged within fack time. The second is the progress bound, which
guarantees : fix some (u, v) ∈ E and interval of length fprog throughout which u is broadcasting
a message m; during this interval v must receive some message (though not necessarily m, but a
message that some location is currently working on, not just some ancient message from the distant
past). The progress bound, in other words, bounds the time for a node to receive some message
when at least one of its neighbors is broadcasting. In both theory and practice fprog is typically
much smaller than fack [25]. Further motivation and power of these delay bounds is demonstrated
e.g. in [14, 25, 28]. We emphasize that in abstract MAC layer models the order of receive events is
determined non-deterministically by an arbitrary message scheduler. The timing of these events is
also determined nondeterministically by the scheduler, constrained only by the above time bounds.

The Standard Abstract MAC Layer. Nodes are modeled as event-driven automata.
While [14] assumes that an environment abstraction fires a wake-up event at each node at the
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beginning of each execution, we assume conditional wake-up to be consistent with the model of [9],
see Definition 3.2. This is a weaker wake-up assumption with respect to upper bounds when com-
pared to synchronous wake-up [14]. This strengthens our algorithmic results. In contrast to this our
lower bounds assume synchronized wake-up, which is in turn the weaker assumption with respect
to lower bounds. The environment is also responsible for any events specific to the problem being
solved. In multi-message broadcast, for example, the environment provides the broadcast messages
to nodes at the beginning.

Definition 3.2 (Conditional (a.k.a non-spontaneous) wake-up of [9] adapted to absMACs). Once
a node receives an input from the MAC-environment (above the MAC layer) or a transmission from
the network below the MAC layer, the node wakes up and participates in the algorithm.

The enhanced abstract MAC layer. The enhanced abstract MAC layer model differs from
the standard model in two ways. First, it allows nodes access to time (formally, they can set timers
that trigger events when they expire), and assumes nodes know fack and fprog. Second, the model
also provides nodes an abort interface that allows them to abort a broadcast in progress.

The probabilistic abstract MAC layer. We use parameters εprog and εack to indicate the
error probabilities for satisfying the delay bounds fprog and fack. Roughly speaking this means that
the MAC layer guarantees that progress is made with probability 1− εprog within fprog time. With
probability 1 − εack the MAC layer correctly outputs an acknowledgment within fack time steps.
More details can be found in Section 4.2 of [25].

Problems. We derive algorithms in the SINR-model that perform the tasks listed below cor-
rectly with probability 1− εtask. When choosing εtask ≤ n−c we say that an algorithm performs a
task with high probability (w.h.p.). Here, c > 0 is an arbitrary constant provided to the algorithm
as an input-parameter. We use the notation w.h.p. only to compare our results with previous work.

Multi-message broadcast (MMB) problem [25]. This problem inputs k ≥ 1 messages
into the network at the beginning of an execution, perhaps providing multiple messages to the same
node. We assume k is not known in advance. The problem is solved once every message m, starting
at some node u, reaches every node in G. Note that we assume G is connected to be consistent
with previous work in the SINR model, while in [14] this is not assumed. We treat messages as
black boxes that cannot be combined.

Single-message broadcast (SMB) problem [25]. The SMB problem is the special case of
MMB with k = 1. The single node at which the message is input is denoted by i0.

Consensus problem (CONS) problem [31]. In this problem each node begins an execution
with an initial value from {0, 1}. Every node has the ability to perform a single irrevocable decide
action for a value in {0, 1}. To solve consensus, an algorithm must guarantee the following three
properties: 1) agreement: no two nodes decide different values; 2) validity: if a node decides
value v, then some node had v as its initial value; and 3) termination: every non-faulty process
eventually decides.

General model assumptions. As in [9] wake up of nodes is conditional, see Definition 3.2.
Nodes are located in the Euclidean plane2 and locations are unknown. Nodes send with uniform
power, where the fixed power level P is not known to the nodes. We use the common assumption
that α > 2, see [15]. No collision detection mechanism is provided. As previous work we assume
G1−ε is connected. MAC-layer based work [25] requires us to assume that nodes can detect if a
received message originates from a neighbor in a graph G–in our setting this is G1−ε–(only one

2Our results can be generalized to any growth-bounded metric space when revising the assumption on α.
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graph G is used in [25], while messages from any sender in the network might arrive but do not
cause rcv-events). We remark that the assumption that nodes can detect if a received message
originated in the G1−ε-neighborhood is not used by any of the algorithms presented in this paper.
Therefore this assumption could be dropped if one is not interested in implementing an absMAC
that performs local broadcast exactly in G1−ε. In particular, our absMAC implementation outputs
rcv events for all bcast-messages received, which can be modified if required by other higher-level
algorithms designed for absMACs and when the G1−ε-neighborhood is known. The reader might
consider the full version of this paper [16] for further details.

4 Efficient Acknowledgments and Impossibility of Fast Progress

Theorem 4.1. In the SINR model using the assumptions of Section 3, acknowledgments of an
absMAC can be implemented w.r.t. graph G1−ε with probability guarantee 1 − εack in time fack =
O
(
∆G1−ε log

(
Λ
εack

)
+ log(Λ) log

(
Λ
εack

))
.

The proof of Theorem 4.1 is a straightforward modification of [17] to local parameters.
Many algorithms that are implemented in an absMAC benefit from the fact that typically fprog

is much smaller than fack. Often it is the case that fprog = O(polylog (fack)). We show that
for any implementation of the absMAC [25] for G1−ε in the SINR model such a difference of the
runtime is impossible. As the bound on fack in Theorem 4.1 is close to our lower bound on fprog, we
conclude that this algorithm is an almost optimal implementation of absMAC in the SINR-model
with respect to both fack and fprog.

Theorem 4.2. For worst-case locations of points there is no implementation of the absMAC in the
SINR model that provides local broadcast in G1−ε and achieves fast progress. In particular it holds
that fprog ≥ ∆G1−ε. This is true even for an optimal schedule computed by an (even central) entity
that has unbounded computational power, has full knowledge as well as control of the network and
can choose an arbitrary power assignment.

We defer the full proof to the full paper [16]. The key idea is to have two sets U and V of
nodes, each set of nodes on a line with unit distance between nodes. These two lines are located
at distance R1−ε := 10∆ to each other such that at most one node in set V can receive a message
from U at a time. Note that this is independent of ε.

𝑅1−𝜖

𝑈 𝑉

Figure 1: Graph G1−ε based on the construction used in the proof of Theorem 4.2. Here we choose
∆ = 5.

Despite this lower bound we can already provide a first application of designing an absMAC
for the SINR. Corollary 4.3 is an application of Theorem 4.1 to [31], see the full version of this
paper [16].
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Corollary 4.3 (Theorem 4.2. of [31] transferred to our setting). In the SINR model using the
assumptions of Section 3, network-wide consensus can be solved with probability 1− εCONS in time
fCONS = O

(
DG1−ε(∆G1−ε + log(Λ)) log

(
nΛ

εCONS

))
.

5 Approximate Progress

Motivated by the lower bound of the previous section we modify the absMAC specification. An
easy way would be to relax the progress bound and output a rcv-event not only for messages sent
by G1−ε-neighbors, but for all message received (i.e. sent by any G1 neighbor). This is problematic
when considering randomized algorithms. In particular when computing e.g. overlay networks. It
might happen that only G1 \ G1−ε-neighbors of a node v are chosen for the overlay due to the
random event of low interference. This could of course be avoided by directly implementing the
absMAC with respect to G1 rather than G1−ε, which in turn results in a Ω(n) lower bound for
fprog and fack (e.g. when all nodes are located at distance at least R1 such that messages can only
be received when exactly one node is sending). Later these overlay nodes might not be able to
serve v. To avoid such a setting, we introduce an approximate progress bound into the absMAC
specification, where we use a graph G and an approximation (or any subgraph) G̃ of G in which
progress is measured.

In the next sections we show that this generalization of progress has three desirable properties,
it 1) captures SINR behavior in the sense that we present an absMAC implementation in the SINR
model that provides fast (approximate) progress, and 2) replaces (with minor assumptions and
effects) the progress bound in the runtime-analysis of e.g. global single-message and multi-message
broadcast in the MAC layer [25], and 3) does not affect the correctness of these algorithms. There-
fore we consider this notion of approximate progress to be a good modification of the specification
of abstract MAC layers with respect to the SINR model.

Definition 5.1 (Approximate progress). Let there be (reliable3) broadcast implemented with respect
to a graph G and let G̃ := (V, Ẽ) be a subgraph4 of G. Consider a node i and assume that a G̃-
neighbor of i is broadcasting a message. The approximate progress bound guarantees that a rcv event
with a message originating in a G-neighbor occurs at node i within time fapprog with probability
1 − εapprog. We say that approximate progress is implemented with respect to graphs G and (its
approximation) G̃.

We formalize this using the notation of [25]: Let β be a closed execution that ends at time t.
Let I be the set of G̃-neighbors of j that have active bcasts at the end of β, where bcast(mi)i is the
bcast at i. Suppose that I is nonempty. Let I ′ be the set of G-neighbors of j that have active bcasts
at the end of β. Suppose that no rcv(mi)j event occurs in β, for any i ∈ I ′. Define the following
sets A and B of time-unbounded executions that extend β. Set A contains all executions in which
no abort(mi)i occurs for any i ∈ I. Set B contains all executions in which, by time t+ fapprog, at
least one of the following occurs: 1) an ack(mi)i for every i ∈ I, 2) a rcv(mi)j for some i ∈ I ′, or
3) A rcvj for some message whose bcast occurs after β. If Pβ[A] > 0, then Pβ[B|A] ≥ 1− εapprog.

This notation is useful, as there are settings where it is not crucial that progress is made with
respect to exactly G. Already progress in subgraph G̃ might yield good overall bounds for solving
a problem on G especially when e.g. (depending on the problem at hand) DG̃ ≈ DG or G̃2. As we
show in Theorem 7.1, in the global SMB and MMB algorithms of [25] local broadcast does not need

3The notation of approximate progress might later be extended to unreliable broadcast [14].
4Graph G̃ can be any subgraph of G but will typically be an approximation of G, which results in the name

approximate progress. Later we consider graph G̃ := G1−2ε, which approximates G := G1−ε with respect to the
SINR formula and Euclidean distances in the sense that it contains all, but the longest edges of G.
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to be precise such that under some conditions progress can be replaced by approximate progress. In
the SINR model one might choose, e.g., G := G1−ε ⊇ G1−2ε =: G̃, as we do. This choice captures
that any G1−ε-neighbor is almost a G1−2ε-neighbor. In addition its signal has a similar strength
when it arrives at the receiver and in reality might even be the same, as signal strengths can vary
slightly. We discuss differences to the dual-graph model for unreliable communication of [14] in the
full version of this paper [16].

6 Implementation of Fast Approximate Progress

We implement approximate progress with respect to G := G1−ε and G̃ := G1−2ε. In the full version
of this paper [16] we show that the Decay method cannot achieve fast approximate progress in
the SINR model. Therefore we describe a method different from Decay and obtain:

Theorem 6.1. In the SINR model using the assumptions of Section 3, we implement approximate
progress of an absMAC with respect to graphs G1−ε and its approximation G1−2ε with probability
at least 1− εapprog in time approximate progress of an absMAC with respect to graphs G1−ε and its
approximation G1−2ε with probability at least 1− εapprog in time

fapprog = O
((

logα(Λ) + log∗
(

1
εapprog

))
log(Λ) log

(
1

εapprog

))
.

6.1 Algorithm

The algorithm presented by [9] achieves w.h.p. global SMB in G1−ε. We review this algorithm
and show how to modify it to guarantee fast (probabilistic) approximate progress with respect to
G1−2ε. In the following, set S1 contains all nodes with an ongoing broadcast. Set S1 changes after
each epoch depending on the algorithm using the absMAC.

High-level description of Algorithm 1 of [9] and the intuition behind it. This algo-
rithm performs DG1−ε many epochs. For Φ = Θ(log Λ), each epoch computes approximations
H̃1, H̃2, . . . , H̃Φ of a sequence of constant degree graphs H1, H2, . . . ,HΦ. Each Hφ is defined based
on nodes Sφ, s.t. when each node in Sφ transmits with probability p ∈ (0, 1/2], the transmission
corresponding to an edge of Hφ is successful with probability µ ∈ (0, p). Sets Sφ, φ ∈ [2,Φ], are
maximal independent sets in H̃φ−1 and the algorithm of [32] is simulated to compute such MIS
(and uses a node’s unique ID ∈ poly n as an input). Each transmission during the computations of
Sφ and H̃φ is repeated T := Θ (logn) to ensure w.h.p. correctness. Finally for each φ, all nodes Sφ
transmit their bcast-message Θ(logα(Λ) log(n)) times. Intuitively Sφ is a sparser version of Sφ−1
and [9] shows that SΦ contains only nodes that cannot communicate with each other. Using this and
further insights they argue that for any node in NG1−ε(S1) there is a φ ∈ [1,Φ] such that 1) there
is a node u ∈ Sφ at distance at most R1−ε, and 2) the density of Sφ is so low that interference from
other nodes allows uφ’s message to reaches u w.h.p. (when the transmission is repeated sufficiently
often). This shows that in each epoch all nodes in NG1−ε(S1) receive the (single!) bcast-message5

w.h.p.. We provide more details in the full version of this paper [16].

Our modifications and motivation behind these changes: (I) We replace the inputs for the
MIS algorithm. Instead of unique ID ∈ poly n we use temporary labels li,φ ∈ [1, (poly Λ)/εapprog].

5We denote by bcast-message any messages that contains information to be broadcast due to a bcast-event. By
messages, we refer to messages sent for coordination among the nodes.
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(II) We replace T = Θ (logn) by Θ (log(Λ/εapprog)) and reduce the number of repeated transmis-
sions of bcast-messages from O(logα(Λ) log(n)) to O(logα(Λ) log(1/εapprog)). (III) We rename the
computed graphs from H̃φ to ˜̃Hφ. (IV) We execute the algorithm with respect to G1−2ε instead
of G1−ε. If εapprog > n−c, these modifications reduce the runtime of an epoch, but also lower the
probability of correctness. Therefore computed graphs are very unlikely to be global approxima-
tions of Hφ (and we change their name to ˜̃Hφ). Still, the parameters are chosen such that we can
show that the probability of approximate progress is at least 1− εapprog as outlined in Section 6.2.

6.2 Outline of the Analysis

We analyze the effect of the two main modifications of the algorithm of [9] with respect to their
analysis and put it into the context of approximate progress. More details of this careful analysis
are provided in the full version of this paper [16].

First modification: non-unique labels in the MIS computation. We argue in the model
of [32] the sets Sφ computed by our modified MIS-algorithm are independent sets in H̃φ−1. Further-
more, for any given node v, with probability 1 − εapprog/3, this set is maximal in a neighborhood
around v “large enough” to ensure that this part of computations involved in approximate progress
at node v is correct.

Second modification: fewer repetitions of transmissions. In the algorithm of [9] each
node sends every bcast-message O(logα(Λ) logn) times, while we use only O(logα(Λ) log(1/εapprog))
repeated transmissions. This implies that [9] can assume that all communication is successful
at any point w.h.p.. For large εapprog we only have weak probability guarantees for success of
communication. One side-effect is that with very high probability the computed graphs ˜̃Hφ are not
the desired global approximations of graphs Hφ. This in turn affects correctness of approximate
progress and we need to analyze local and global implications caused by reducing the number of
repeated transmissions.

1. Global implications of unsuccessful transmissions: Global interference might increase
in the long term and we need to bound this. Unsuccessful transmissions during the compu-
tation of ˜̃Hφ might remain undetected and cause that edges are missing in ˜̃Hφ. This event
influences future computations of nearby nodes until the current epoch ends. Influenced nodes
might cause additional global interference. In the full version of this paper [16] we bound
the expected additional interference from these nodes. It turns out that T is chosen such
that this interference can be tolerated in other parts of our proof and when transferring the
analysis of [9]. After ˜̃Hφ is computed, all transmissions are successful. They use the same
schedule used to compute ˜̃Hφ.

2. Local implications of unsuccessful transmissions: Transmissions of messages need to
be successful in all “large enough” neighborhoods of v in graphs ˜̃Hφ to guarantee approximate
progress at point v. These unsuccessful transmissions can only appear during the computation
of ˜̃Hµ

p [Sφ] and while transmitting the bcast-message. Only if communication is locally suc-
cessful, it is guaranteed that graph ˜̃Hφ is an approximation of Hφ w.r.t. the above mentioned
neighborhood of v, which is necessary in order to transfer the analysis of [9]. We analyze the
probability that ˜̃Hφ is locally an approximation in the full version of this paper [16]. Finally,
approximate progress is made only if communication of bcast-messages succeeds locally.

10



6.3 Key Lemmas of the Analysis

Full proofs of the following lemmas appear in the full version of this paper [16]. We start by ana-
lyzing the effect of using (potentially) non-unique labels chosen uniformly at random ∈

[
1, poly Λ

εapprog

]
in the modified MIS computation, which is the first difference to [9], as pointed out in Section 6.2.

Lemma 6.2. Let H = (V,E) be a constant degree growth-bounded graph and let U ⊆ V be a set
of nodes of size at most O(Λ2). Consider an execution of our modification of the MIS-algorithm
of [32] on H in the CONGEST model using random labels ∈

[
1, poly Λ

εapprog

]
. Then the set of nodes

in state dominator is 1) an independent set, and 2) with probability at least 1 − εapprog
3Φ this set is

maximal with respect to NH,c·4Φ·log∗(Λ/εapprog)(U), the c · 4Φ · log∗(Λ/εapprog)-neighborhood of U in
H.

We analyze Case 1 pointed out in Section 6.2, i.e. we bound the global interference from nodes
with undetectable unsuccessful transmissions.

Definition 6.3 (Set W of nodes with wrong neighborhoods (due to unsuccessful transmissions)).
Denote by W ⊆ S1 the set of all those nodes v such that for at least one φ ∈ {1, · · · ,Φ} it is
not the case that NHµ

p [Sφ](v) ⊆ N ˜̃Hµ
p [Sφ](v) ⊆ N

H
µ(1−γ)
p [Sφ](v), i.e. v’s direct neighborhood does not

(1− γ)-approximate NHµ
p [Sφ](v).

Lemma 6.4. Given point i in space, the expected total additional interference IW (i) that point i
receives from all nodes in W at any given time is less than

( εapprog
Λ

)Θ(1).

The full paper [16] introduces the notion of a successful epoch at a given point i in a formal way.
In summary, given point i, an epoch is successful at point i, if three properties are satisfied: 1) all
computations of graphs ˜̃Hµ

p [S1], . . . , ˜̃Hµ
p [SΦ−1], and 2) the corresponding sets Sφ are correct within

a certain area around i and 3) some message was transmitted to i successfully at some point. We
show that

Lemma 6.5. Given set S1 and a node i and let there be a G1−2ε-neighbor of i with an ongoing
broadcast event bcast(m)j. Assume Properties 1 and 2 of the definition [16] of a successful epoch
at point i are satisfied. Then there is a phase φ′ ∈ {1, . . . ,Φ} such that in phase φ node i receives
a bcast-message from a G1−ε-neighbor of i with probability 1− εapprog/3.

These are the key lemmas that are used together with a bound on the runtime of an epoch to
derive Theorem 6.1.

7 Application: Improved Network-Wide Broadcast

In the full version of this paper [16] we implement the probabilistic absMAC of [25] in a formal
way using Theorems 4.1 and 6.1 and the corresponding algorithms. We combine this absMAC
implementation with algorithms from [25] for global broadcast in this absMAC. In Theorem 7.1 we
argue that we can replace fprog and εprog in the relevant Theorems of [25] by fapprog and εapprog
under certain conditions and state the effect that this replacement has on other parameters of the
runtime.

Theorem 7.1. Let G be a graph in which local broadcast is available via the probabilistic absMAC
of [25]. Let G̃ be the graph in which approximate progress is measured and let the vertex sets of
the connected components of G̃ and G be the same. Then one can replace fprog, εprog and DG in
Theorems 7.7 and 8.20 of [25] concerning their global SMB and MMB algorithms by fapprog, εapprog
and DG̃.
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In the algorithms of [25], once a node i receives a message, node i broadcasts the message if it
did not broadcast it before. The result of global broadcast is independent of whether a message was
received due to transmission from a G̃-neighbor or a G-neighbor as long as the components of G̃
and G are the same. Only the runtime changes. In time fprog with probability 1− εprog a message
is received by a node v when a G1−ε-neighbor of v is sending. Therefore the runtime presented
in [25] depends on DG1−ε . Compared to this, with probability 1− εapprog in time fapprog a message
arrives when a G1−2ε-neighbor is sending. Therefore DG1−ε needs to be replaced by DG1−2ε , see
the full version of this paper [16] for details.

Theorem 7.2. Consider the SINR model using the model assumptions stated in Section 3. We
present an algorithm that performs global SMB in graph G1−ε with probability at least 1− εSMB in
time O

((
DG1−2ε + log

(
n

εSMB

))
· logα+1(Λ)

)
.

The second algorithm presented in the proof performs global MMB in graph G1−ε with probability
at least 1− εMMB in time O

(
DG1−2ε logα+1(Λ) + k′

(
∆G1−ε + polylog

(
nkΛ
εMMB

))
log

(
nk

εMMB

))
The proof applies our Theorems 4.1, 6.1 and 7.1 to Theorems 7.7 and 8.20 of [25], see the full
version of this paper [16] for details.
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