2.29 Numerical Fluid Mechanics
Fall 2011 — Lecture 11

REVIEW Lecture 10:

* Direct Methods for solving (linear) algebraic equations
— Gauss Elimination

— LU decomposition/factorization
— Error Analysis for Linear Systems and Condition Numbers
— Special Matrices (Tri-diagonal, banded, sparse, positive-definite, etc)

« [terative Methods: X"=Bx*+c k=0,1,2,...

— Jacobi’s method X' =-D'(L+U)x*+D"b

— Gauss-Seidel iteration |k — (D1 L)y'Ux*+(D+L)"'b
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2.29 Numerical Fluid Mechanics

Fall 2011 — Lecture 11
REVIEW Lecture 10, Iterative Methods Cont’d:

— Convergence: p(B)= max M,,‘ <1, where A =eigenvalue(B, ) | (ensures ||B||<1)

- Jacobi’s method {Sufﬁcient conditions:
- - - » Both converge if A diagonally dominant
« Gauss-Seidel iteration . . . .
» Gauss-Seidel also convergent if A positive definite
I<n
- riteria: N
Stop Criteria X~ x| <
Ir—r_| <& where r,=Ax -b
— Example sl <e

— Successive Over-Relaxation Methods: (decrease p(B) for faster convergence)
=(D+wL) ' [-oU+(1-w)D]X +o(D+wlL)'b

— Gradient Methods x.,, =x +a,, V.

i+1 7 i+l dQ(X) B -
» Steepest decent T v AX—-b=-r
T TN ( I’-TI Ir- J ! I, = b — AX; (residual at iteration i)

» Conjugate gradient
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TODAY (Lecture 11)

* End of (Linear) Algebraic Systems

(»;‘\ 74

— Gradient Methods and Krylov Subspace Methods

— Preconditioning of Ax=Db

* FINITE DIFFERENCES

— Classification of Partial Differential Equations (PDEs) and examples
with finite difference discretizations

— Error Types and Discretization Properties

« Consistency, Truncation error, Error equation, Stability, Convergence
— Finite Differences based on Taylor Series Expansions

« Higher Order Accuracy Differences, with Example

« Taylor Tables or Method of Undetermined Coefficients
— Polynomial approximations

« Newton’s formulas, Lagrange/Hermite Polynomials, Compact schemes
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Gradient Methods

Applicable to physically important matrices: “symmetric and positive definite”
ones

Construct the equivalent optimization problem

Q(X)= %XTAX— X'b

dQ(X) _ 5, b
dx
dQ(x
4Q(Xep) =0 = X, =X, Where Ax,=b
dx
« Propose step rule
X =X+ Vi,

« Common methods
— Steepest descent
— Conjugate gradient
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Steepest Descent Method

« Move exactly in the negative direction of Gradient

0QC) _ ax b= —(b— Ax)= -r
dx Y

r:residual, r, =b— Ax

« Step rule (Tr
X, =X +

i
I 0
" r"Ar v

Image by MIT OpenCourseWare.

Graph showing the steepest descent method.

« Q(x) reduces in each step, but not as effective as conjugate
gradient method
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Conjugate Gradient Method

Definition: “A-conjugate vectors” or “Orthogonality with respect to a matrix (metric)”:

if A is symmetric & positive definite,
For 1# ] wesay vV, are orthogonal with respect to A, if v.' Av ;=0

* Proposed in 1952 (Hestenes/Stiefel) so that directions v; are generated by the
orthogonalization of residuum vectors (search directions are A-conjugate)

— Choose new descent direction as different as possible from old ones, within A-metric

24
* Algorithm: :
23
vo=rp=b—- Az i N
do
21+
Q; = (”;r"i)/(”iTAvi) Step length N 1
Tiy1 = Ti + ov; Approximate solution . . : _ _ :
rit1 =T — o; Av; New Residual :
18
B = —(UIAT'&H)/('UIA%) Improved step length & : _
L Of6 OfT 058 0?9 i 1?1 172 1I3 1?4
viy1 = Tiy1 + Givs new search direction

X
Figure indicates solution obtained using
Conjugate gradient method (red) and

steepest descent method (green).
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2.29

Conjugate Gradient (CG) Method and
Krylov Subspace Methods

Conjugate Gradient Properties

[{g 1)

Accurate solution with “n” iterations, but decent accuracy with much fewer
number of iterations

Only matrix or vector products

|s a special case of Krylov subspace algorithms for symmetric PD matrices

Krylov Subspaces for Ax=Db: Definitions and Properties

Krylov sequence: the set of vectors b,Ab,A’b,---

Krylov subspace of size nis: K_= span{b,A b,---,A™" b}

The sequence converges towards the eigenvector with the largest eigenvalue
Vectors become more and more linearly dependent

Hence, if one extracts an orthogonal basis for the subspace, one would likely
get good approximations of the top eigenvectors with the n largest eigenvalues

An iteration to do this is the “Arnoldi’s iteration” which is a stabilized Gram-
Schmidt procedure (e.g. see Trefethen and Bau, 1997)

Numerical Fluid Mechanics PFJL Lecture 11,
7

7



Conjugate Gradient (CG) Method and
Krylov Subspace Methods

 CG method is a Krylov Subspace method for PD matrices:

— The search/residual vectors of CG span the Krylov subspace

b,AD,
— Hence, intermediate solutions of CG method X e in K, = span{ }

- A""'b
* Krylov Subspace methods

— Based on the idea of projecting the “Ax=b problem” into the Krylov
subpace of smaller dimension n

— Provide variations of CG for non-symmetric non-singular matrices
 Generalized Minimal Residual (GMRES) or MINRES (for sym. but non P.D. A)

— Approximates the solution Ax=b by the vector X, € K., that minimizes the norm of
the residual Ax, - b

» (Stabilized) bi-conjugate gradients (BiCGstab)
e Quasi-minimal residual
— See Trefethen and Bau, 1997, Asher and Grief, 2011; and other refs

« This field is full of acronyms!
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Preconditioning of Ax =Db

:Pké-conditioner approximately solves A x = D.

A S
A4 SF SN
([ ] AN o N
/(S NN

Pre-multiply by the inverse of a non-singular matrix M, and solve instead:
M-IAx=M-1b or AMI(Mx)=b
— Convergence properties based on M-'!A or A M-! instead of A !
— Can accelerate subsequent application of iterative schemes
— Can improve conditioning of subsequent use of non-iterative schemes: GE, LU, etc
« Jacobi preconditioning:

— Apply Jacobi a few steps, usually not efficient

Other iterative methods (Gauss-Seidel, SOR, SSOR, etc):

— Usually better, sometimes applied only once

* Incomplete factorization (incomplete LU)

« Coarse-Grid Approximations and Multigrid Methods:
— Solve A x=Db on a coarse grid (or successions of coarse grids)

— Interpolate back to finer grid(s)
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Example of Convergence Studies
fqr Linear Solvers

v 10 g
‘ — Jacobi "\ = = =SOR
— . = Gauss-Seidel AN - O
10"‘ - - = SOR 10 ™
iJ\ k: \
10"’:;\_‘ 10° s
Y\ A
E sh \\ =1 .‘ A . .
2100 4\ " t A Fig 7.5: Example 7.10, with N=3:
o X\ o™ ! convergence behavior of various iterative
S ! A schemes for the discretized Poisson
N » o\ 1 = ¥ % equation.
! \ " 2 : \
10 6 1 \ 10 9 A
L ‘0 10‘00 2000 3000 & 0 50 100
lterations Iterations
10" v .
p— 0
107 = = PCG/IC(0)
f oA = = =PCG/ICT(.01)1
\ \
107 \ \
\ . .
E V.’ Fig 7.7: Iteration progress for CG, PCG
o . \ . g
ENT N with the 1C(0) preconditioner and PCG
2 107} 3 \ with the IC preconditioner using drop
3 3 tolerance tol=0.01
107 \
A
\
10"} '
107 . . i : : . .
0 10 = % L = o Ascher and Greif, Siam-2011

lterations

Courtesy of Society for Industrial and Applied Mathematics (SIAM). Used with permission.
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Review of/Summary for lterative Methods

Useful reference tables for this material:
Tables PT3.2 and PT3.3 in Chapra, S., and R. Canale. Numerical Methods for Engineers. 6th ed.
McGraw-Hill Higher Education, 2009. ISBN: 9780073401065.
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FINITE DIFFERENCES - Outline

« Classification of Partial Differential Equations (PDEs) and examples with
finite difference discretizations

— Elliptic PDEs
— Parabolic PDEs
— Hyperbolic PDEs

« Error Types and Discretization Properties

— Consistency, Truncation error, Error equation, Stability, Convergence
 Finite Differences based on Taylor Series Expansions
« Polynomial approximations

— Equally spaced differences
» Richardson extrapolation (or uniformly reduced spacing)

* lterative improvements using Roomberg’s algorithm
— Lagrange polynomial and un-equally spaced differences
— Compact Difference schemes
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References and Reading Assignments

« Part 8 (PT 8.1-2), Chapter 23 on “Numerical Differentiation”
and Chapter 18 on “Interpolation” of “Chapra and Canale,
Numerical Methods for Engineers, 2010/2006.”

» Chapter 3 on “Finite Difference Methods” of “J. H. Ferziger
and M. Peric, Computational Methods for Fluid Dynamics.
Springer, NY, 3 edition, 2002”

« Chapter 3 on “Finite Difference Approximations” of “H. Lomax,
T. H. Pulliam, D.W. Zingg, Fundamentals of Computational
Fluid Dynamics (Scientific Computation). Springer, 2003
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Differential Equation

L(p, w,xr, t) =0 “Differentiation”

Diff E " “Integration”
Sommerfeld Wave Equation (c= wave speed). erence Lquation
This radiation condition is sometimes used at Liyn (pmn, Wmn, Tn; tm) =0
open boundaries of ocean models. System of Equations
) N-1
Discrete Model S Fi(w;) = B;
J=0
1 Linear System of Equations
b t N-1 _ _
Z Aijwj = B; Solvmg Ilne”ar
———————— 7=0 equations
X, X Eigenvalue Problems

Au=Xue (A-X)u=0

Non-trivial Solutions

z, = zo+nAz, n=0,1,...N—1 det(A —AI) =0  “Root finding’

t = to+mAt, m=0,1,... M —1

dw Aw dw Aw : —
de =~ Az’ dt = At Consistency/Accuracy and Stability => Convergence
(Lax equivalence theorem for well-posed linear problems)

P parameters
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Classification of

Partial Differential Equations
(2D case, 2" order)

4y PXY,)
Quasi-linear PDE for ¢(X, Y)
AGzz + Bozy + Coyy = F(2,Y,0,0z,0y)
A,B and C Constants HM(X,,Y) PM(X,,Y)
B?2 _4AC > 0 Hyperbolic
B? —4AC = (0 Parabolic
B? —4AC < 0 Eliptic
n)
(Only valid for two independent variables: x,y) FrxY.) R

* In general: A, B and C are function of: X, Yy, ¢, ¢,, ¢,

« Equations may change of type from point to point if A, B and C vary with x, y, . etc

 Navier-Stokes, incomp., const. viscosity: Du — 6_u+ (u-Vyus= _lvp +v ViUu+g

Dt ot
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Classification of

Partial Differential Equations
(2D case, 2" order)

Meaning of Hyperbolic, Parabolic and Elliptic
« The general 2" order PDE in 2D:
A, +Bg, +Cgo, =F
is analogous to the equation for a conic section:
AX> +Bxy +Cy* =F

hyperbolas

_ _ ellipse
* Conic section:

- Is the intersection of a right circular cone and a plane, circle
which generates a group of plane curves, including the
circle, ellipse, hyperbola, and parabola

- One characterizes the type of conic sections using the
discriminant B2-4AC

« PDE:
« B2-4AC > 0 (Hyperbolic)
« B2-4AC =0 (Parabolic)
« B2-4AC < 0 (Elliptic) Images courtesy of puk

on Wikipedia. License: CC-BY.

parabola
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Partial Differential Equations
Parabolic PDE: B2-4 AC=0

Examples Heat conduction equation,
oT /forced or not (dominant in 1D)
C BT, (=2
ot op op
) /Unsteady, diffusive, small amplitude flows
E =v Vu+g or perturbations (e.g. Stokes Flow)
» Usually smooth solutions (“diffusion ¢
effect” present)
* "Propagation” problems BC 1 EBC 5.
« Domain of dependence of u is T(000=fM)] DXy 0<t<e) T(LL,H=h(0)
domain D (X, y, 0 <t <o) I :
 Finite Differences/Volumes, Finite

L: 3 > X,y
Elements IC: T(x,y,0)=F(x,y) <My
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Partial Differential Equations
Parabolic PDE

Heat Flow Equation
Insulation

KTo (1) =0pT (X1),0<x<L,0<t<oo .\

Initial Condition

T(x,0)=f(x),0<x<L

Boundary Conditions
T(O,t) =c,

T(0,t)=c,,0 <t <oo o

T(L,t)=c, X
T(L,t)=c,,0<t<0

IVP in one dimension (t), BVP in the other (x)

k Thermal conductivity Time Marching, Explicit or Implicit Schemes

o Specific heat

p Density IVP: Initial Value Problem
T Temperature BVP: Boundary Value Problem
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Partial Differential Equations
Parabolic PDE

Heat Flow Equation

T (xt)=Cc"T, (Xt),0<x<L,0<t<oo

Insulation

c= |—
folos
Initial Condition

T(x,0)=f(x),0<x<L \
Boundary Conditions T(O”t(;ogl(t) —
T(0,t)=09,(1),0<t <o T(LH=g,(t) X
T(L,t)=0,(t),0<t <o
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Partial Differential Equations
Parabolic PDE

Equidistant Sampling

h = L/n t
k = T/m

Discretization
z; = (i—1h, i=2,...,n—1
t;, = (J—-1Vk j=1,....m

Forward (Euler) Finite Difference

T(,t,)-T(X,t) TO,)=g,(t) T{L,H)=0,(1)
T(xt) = I oK) e I o
Centered Finite Difference \\ jJ- 1
T(X ,, 2T (X, t)+T(X,,,
TXX(X,t)— ( i—1 J) ( ; ]) ( 1 J) O(hz)
h <

\\ o

_T(XH J) i-1 i i+1 o

Finite Difference Equatlon T(x,0) = f(x) X

Tiin— T _ T =21+ T
Kk h2
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Quasi-linear PDE

Aézx + Bézy + Céyy — F(I, Y, O, él’, Oy)

A,B and C Constants

B?> —4AC > 0
B2 —4AC = 0

ELLIPTIC:

Partial Differential Equations
B2-4 AC<0

B’ —4AC < 0

2.29

¢ #y)
P(%1.Y) D(x,y) P(%2.)
Hyperbolic
Parabolic
Elliptic
PXY1)
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