REVIEW Lecture 10:

• Direct Methods for solving (linear) algebraic equations
 – Gauss Elimination
 – LU decomposition/factorization
 – Error Analysis for Linear Systems and Condition Numbers
 – Special Matrices (Tri-diagonal, banded, sparse, positive-definite, etc)

• Iterative Methods:
 \[x^{k+1} = B x^k + c \]
 \[k = 0, 1, 2, ... \]

 – Jacobi’s method
 \[x^{k+1} = -D^{-1} (L + U) x^k + D^{-1} b \]

 – Gauss-Seidel iteration
 \[x^{k+1} = -(D + L)^{-1} U x^k + (D + L)^{-1} b \]
REVIEW Lecture 10, Iterative Methods Cont’d:

- **Convergence:**
 \[\rho(B) = \max_{i=1...n} |\lambda_i| < 1, \text{ where } \lambda_i = \text{eigenvalue}(B_{n \times n}) \]
 (ensures \(||B|| < 1 \))

 - Jacobi’s method
 - Gauss-Seidel iteration
 \[i \leq n_{\text{max}} \]
 \[\|x_i - x_{i-1}\| \leq \varepsilon \]
 \[\|r_i - r_{i-1}\| \leq \varepsilon, \text{ where } r_i = Ax_i - b \]

- **Stop Criteria:**
 \[\|r_i\| \leq \varepsilon \]

- **Example**

- **Successive Over-Relaxation Methods:** (decrease \(\rho(B) \) for faster convergence)
 \[x_{i+1} = (D + \omega L)^{-1} \left[-\omega U + (1 - \omega)D \right] x_i + \omega (D + \omega L)^{-1} b \]

- **Gradient Methods**
 \[x_{i+1} = x_i + \alpha_{i+1} v_{i+1} \]
 - Steepest decent
 \[x_{i+1} = x_i + \left(\begin{array}{c} r_i^T r_i \\ r_i^T Ar_i \end{array} \right) r_i \]
 \[\frac{dQ(x)}{dx} = Ax - b = -r \]
 \[r_i = b - Ax_i \text{ (residual at iteration } i) \]
 - Conjugate gradient
TODAY (Lecture 11)

• End of (Linear) Algebraic Systems
 – Gradient Methods and Krylov Subspace Methods
 – Preconditioning of $Ax=b$

• FINITE DIFFERENCES
 – Classification of Partial Differential Equations (PDEs) and examples with finite difference discretizations
 – Error Types and Discretization Properties
 • Consistency, Truncation error, Error equation, Stability, Convergence
 – Finite Differences based on Taylor Series Expansions
 • Higher Order Accuracy Differences, with Example
 • Taylor Tables or Method of Undetermined Coefficients
 – Polynomial approximations
 • Newton’s formulas, Lagrange/Hermite Polynomials, Compact schemes
Gradient Methods

- Applicable to physically important matrices: “symmetric and positive definite” ones
- Construct the equivalent optimization problem

\[Q(x) = \frac{1}{2} x^T A x - x^T b \]

\[\frac{dQ(x)}{dx} = A x - b \]

\[\frac{dQ(x_{opt})}{dx} = 0 \Rightarrow x_{opt} = x_e, \text{ where } A x_e = b \]

- Propose step rule

\[x_{i+1} = x_i + \alpha_{i+1} v_{i+1} \]

- Common methods
 - Steepest descent
 - Conjugate gradient
Steepest Descent Method

• Move exactly in the negative direction of Gradient

\[\frac{dQ(x)}{dx} = Ax - b = -(b - Ax) = -r \]

\(r \): residual, \(r_i = b - Ax_i \)

• Step rule

\[x_{i+1} = x_i + \frac{r_i^T r_i}{r_i^T A r_i} r_i \]

• \(Q(x) \) reduces in each step, but not as effective as conjugate gradient method

Graph showing the steepest descent method.
Conjugate Gradient Method

- Definition: “\(A\)-conjugate vectors” or “Orthogonality with respect to a matrix (metric)”: if \(A\) is symmetric & positive definite,

 For \(i \neq j\) we say \(v_i, v_j\) are orthogonal with respect to \(A\), if \(v_i^T A v_j = 0\)

- Proposed in 1952 (Hestenes/Stiefel) so that directions \(v_i\) are generated by the orthogonalization of residuum vectors (search directions are \(A\)-conjugate)
 - Choose new descent direction as different as possible from old ones, within \(A\)-metric

- Algorithm:

\[
\begin{align*}
v_0 &= r_0 = b - Ax_0 \\
\text{do} & \quad \text{Step length} \\
\alpha_i &= (v_i^T r_i)/(v_i^T Av_i) & \text{Approximate solution} \\
x_{i+1} &= x_i + \alpha_i v_i & \text{New Residual} \\
r_{i+1} &= r_i - \alpha_i Av_i & \text{Improved step length} \\
\beta_i &= -(v_i^T Ar_{i+1})/(v_i^T Av_i) & \text{new search direction} \\
v_{i+1} &= r_{i+1} + \beta_i v_i & \\
\text{until a stop criterion holds}
\end{align*}
\]

Figure indicates solution obtained using Conjugate gradient method (red) and steepest descent method (green).
Conjugate Gradient (CG) Method and Krylov Subspace Methods

• Conjugate Gradient Properties
 – Accurate solution with “n” iterations, but decent accuracy with much fewer number of iterations
 – Only matrix or vector products
 – Is a special case of Krylov subspace algorithms for symmetric PD matrices

• Krylov Subspaces for $Ax=b$: Definitions and Properties
 – Krylov sequence: the set of vectors $b, Ab, A^2 b, \cdots$
 – Krylov subspace of size n is: $K_n = \text{span}\{b, Ab, \cdots, A^{n-1} b\}$
 – The sequence converges towards the eigenvector with the largest eigenvalue
 – Vectors become more and more linearly dependent
 – Hence, if one extracts an orthogonal basis for the subspace, one would likely get good approximations of the top eigenvectors with the n largest eigenvalues
 – An iteration to do this is the “Arnoldi’s iteration” which is a stabilized Gram-Schmidt procedure (e.g. see Trefethen and Bau, 1997)
Conjugate Gradient (CG) Method and Krylov Subspace Methods

• CG method is a Krylov Subspace method for PD matrices:
 – The search/residual vectors of CG span the Krylov subspace
 – Hence, intermediate solutions of CG method x_n are in $K_n = \text{span} \left\{ b, Ab, \ldots, A^{n-1}b \right\}$

• Krylov Subspace methods
 – Based on the idea of projecting the “$Ax=b$ problem” into the Krylov subspace of smaller dimension n
 – Provide variations of CG for non-symmetric non-singular matrices
 • Generalized Minimal Residual (GMRES) or MINRES (for sym. but non P.D. A)
 – Approximates the solution $Ax=b$ by the vector $x_n \in K_n$ that minimizes the norm of the residual $Ax_n - b$
 • (Stabilized) bi-conjugate gradients (BiCGstab)
 • Quasi-minimal residual
 – See Trefethen and Bau, 1997, Asher and Grief, 2011; and other refs
 • This field is full of acronyms!
Preconditioning of $A \, x = b$

• Pre-conditioner approximately solves $A \, x = b$.

Pre-multiply by the inverse of a non-singular matrix M, and solve instead:

$$M^{-1} A \, x = M^{-1} \, b \quad \text{or} \quad A \, M^{-1} (M \, x) = b$$

– Convergence properties based on $M^{-1} A$ or $A \, M^{-1}$ instead of A!
– Can accelerate subsequent application of iterative schemes
– Can improve conditioning of subsequent use of non-iterative schemes: GE, LU, etc

• Jacobi preconditioning:
 – Apply Jacobi a few steps, usually not efficient

• Other iterative methods (Gauss-Seidel, SOR, SSOR, etc):
 – Usually better, sometimes applied only once

• Incomplete factorization (incomplete LU)

• Coarse-Grid Approximations and Multigrid Methods:
 – Solve $A \, x = b$ on a coarse grid (or successions of coarse grids)
 – Interpolate back to finer grid(s)
Example of Convergence Studies for Linear Solvers

Fig 7.5: Example 7.10, with N=3: convergence behavior of various iterative schemes for the discretized Poisson equation.

Fig 7.7: Iteration progress for CG, PCG with the IC(0) preconditioner and PCG with the IC preconditioner using drop tolerance tol=0.01

Ascher and Greif, Siam-2011

Courtesy of Society for Industrial and Applied Mathematics (SIAM). Used with permission.
Useful reference tables for this material:
FINITE DIFFERENCES - Outline

- Classification of Partial Differential Equations (PDEs) and examples with finite difference discretizations
 - Elliptic PDEs
 - Parabolic PDEs
 - Hyperbolic PDEs
- Error Types and Discretization Properties
 - Consistency, Truncation error, Error equation, Stability, Convergence
- Finite Differences based on Taylor Series Expansions
- Polynomial approximations
 - Equally spaced differences
 - Richardson extrapolation (or uniformly reduced spacing)
 - Iterative improvements using Roomberg’s algorithm
 - Lagrange polynomial and un-equally spaced differences
 - Compact Difference schemes
References and Reading Assignments

From Mathematical Models to Numerical Simulations

Continuum Model

\[\frac{\partial w}{\partial t} + c \frac{\partial w}{\partial x} = 0 \]

Sommerfeld Wave Equation (c= wave speed). This radiation condition is sometimes used at open boundaries of ocean models.

Discrete Model

\[t_m = t_0 + m \Delta t, \quad m = 0, 1, \ldots M - 1 \]
\[x_n = x_0 + n \Delta x, \quad n = 0, 1, \ldots N - 1 \]

\[\frac{dw}{dx} \approx \frac{\Delta w}{\Delta x}, \quad \frac{dw}{dt} \approx \frac{\Delta w}{\Delta t} \]

Consistency/Accuracy and Stability => Convergence

(Lax equivalence theorem for well-posed linear problems)

Differential Equation

\[L(p, w, x, t) = 0 \]

“Differentiation”

“Integration”

Difference Equation

\[L_{mn}(p_{mn}, w_{mn}, x_n, t_m) = 0 \]

System of Equations

\[\sum_{j=0}^{N-1} F_i(w_j) = B_i \]

Linear System of Equations

\[\sum_{j=0}^{N-1} A_{ij} w_j = B_i \]

“Solving linear equations”

Eigenvalue Problems

\[\overline{A} u = \lambda u \iff (\overline{A} - \lambda \overline{I}) u = 0 \]

Non-trivial Solutions

\[\det(\overline{A} - \lambda \overline{I}) = 0 \]

“Root finding”

2.29 Numerical Fluid Mechanics
Classification of Partial Differential Equations
(2D case, 2nd order)

Quasi-linear PDE for $\phi(x, y)$

$$A\phi_{xx} + B\phi_{xy} + C\phi_{yy} = F(x, y, \phi, \phi_x, \phi_y)$$

A, B and C Constants

$B^2 - 4AC > 0$ Hyperbolic

$B^2 - 4AC = 0$ Parabolic

$B^2 - 4AC < 0$ Elliptic

(Only valid for two independent variables: x,y)

- In general: A, B and C are function of: $x, y, \phi, \phi_x, \phi_y$
- Equations may change of type from point to point if A, B and C vary with x, y, . etc
- Navier-Stokes, incomp., const. viscosity:

$$\frac{Du}{Dt} = \frac{\partial u}{\partial t} + (u \cdot \nabla) u = -\frac{1}{\rho} \nabla p + \nu \nabla^2 u + g$$
Classification of Partial Differential Equations
(2D case, 2nd order)

Meaning of Hyperbolic, Parabolic and Elliptic

• The general 2nd order PDE in 2D:
 \[A\phi_{xx} + B\phi_{xy} + C\phi_{yy} = F \]

 is analogous to the equation for a conic section:
 \[Ax^2 + Bxy + Cy^2 = F \]

• Conic section:
 - Is the intersection of a right circular cone and a plane, which generates a group of plane curves, including the circle, ellipse, hyperbola, and parabola
 - One characterizes the type of conic sections using the discriminant \(B^2 - 4AC \)

• PDE:
 - \(B^2 - 4AC > 0 \) (Hyperbolic)
 - \(B^2 - 4AC = 0 \) (Parabolic)
 - \(B^2 - 4AC < 0 \) (Elliptic)

Images courtesy of puk on Wikipedia. License: CC-BY.
Partial Differential Equations

Parabolic PDE: \[B^2 - 4AC = 0 \]

Examples

\[
\frac{\partial T}{\partial t} = \frac{\kappa}{\sigma \rho} \nabla^2 T + f, \quad (\alpha = \frac{\kappa}{\sigma \rho})
\]

\[
\frac{\partial \mathbf{u}}{\partial t} = \nu \nabla^2 \mathbf{u} + \mathbf{g}
\]

- Usually smooth solutions (“diffusion effect” present)
- “Propagation” problems
- Domain of dependence of \(u \) is domain \(D \) (\(x, y, 0 < t < \infty \)):

- Finite Differences/Volumes, Finite Elements

Heat conduction equation, forced or not (dominant in 1D)

Unsteady, diffusive, small amplitude flows or perturbations (e.g. Stokes Flow)
Partial Differential Equations
Parabolic PDE

Heat Flow Equation
\[\kappa T_{xx}(x,t) = \sigma \rho T_t(x,t), \quad 0 < x < L, 0 < t < \infty \]

Initial Condition
\[T(x,0) = f(x), \quad 0 \leq x \leq L \]

Boundary Conditions
\[T(0,t) = c_1, \quad 0 < t < \infty \]
\[T(L,t) = c_2, \quad 0 < t < \infty \]

\(\kappa \) Thermal conductivity
\(\sigma \) Specific heat
\(\rho \) Density
\(T \) Temperature

IVP in one dimension \((t)\), BVP in the other \((x)\)
Time Marching, Explicit or Implicit Schemes

IVP: Initial Value Problem
BVP: Boundary Value Problem
Partial Differential Equations
Parabolic PDE

Heat Flow Equation

\[T_t(x,t) = c^2 T_{xx}(x,t), \quad 0 < x < L, \quad 0 < t < \infty \]

\[c = \sqrt{\frac{\kappa}{\rho \sigma}} \]

Initial Condition

\[T(x,0) = f(x), \quad 0 \leq x \leq L \]

Boundary Conditions

\[T(0,t) = g_1(t), \quad 0 < t < \infty \]

\[T(L,t) = g_2(t), \quad 0 < t < \infty \]
Partial Differential Equations
Parabolic PDE

Equidistant Sampling

\[
\begin{align*}
 h &= \frac{L}{n} \\
 k &= \frac{T}{m}
\end{align*}
\]

Discretization

\[
\begin{align*}
 x_i &= (i-1)h, \quad i = 2, \ldots, n-1 \\
 t_j &= (j-1)k, \quad j = 1, \ldots, m
\end{align*}
\]

Forward (Euler) Finite Difference

\[
T_t(x,t) = \frac{T(x_{i+1},t_j) - T(x_i,t_j)}{k} + O(k)
\]

Centered Finite Difference

\[
T_{xx}(x,t) = \frac{T(x_{i-1},t_j) - 2T(x_i,t_j) + T(x_{i+1},t_j)}{h^2} + O(h^2)
\]

\[
T_{i,j} = T(x_i,t_j)
\]

Finite Difference Equation

\[
\frac{T_{i+1,j} - T_{i,j}}{k} = c^2 \frac{T_{i-1,j} - 2T_{i,j} + T_{i+1,j}}{h^2}
\]
Partial Differential Equations

ELLiptic: $B^2 - 4AC < 0$

Quasi-linear PDE

$$A\phi_{xx} + B\phi_{xy} + C\phi_{yy} = F(x, y, \phi, \phi_x, \phi_y)$$

A, B and C Constants

- $B^2 - 4AC > 0$ Hyperbolic
- $B^2 - 4AC = 0$ Parabolic
- $B^2 - 4AC < 0$ Elliptic
2.29 Numerical Fluid Mechanics
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.