
  

2.29 Numerical Fluid Mechanics
	
Fall 2011 – Lecture 11
	

REVIEW Lecture 10: 
• Direct Methods for solving (linear) algebraic equations 

– Gauss Elimination 
– LU decomposition/factorization 
– Error Analysis for Linear Systems and Condition Numbers 
– Special Matrices (Tri-diagonal, banded, sparse, positive-definite, etc) 

• Iterative Methods: 

– Jacobi’s method 

– Gauss-Seidel iteration 

1 0,1, 2,... k k k   x  B  x  c  

1  -1  -1  -k k   x  D  (L  U)  x  D  b  

k 1  -1  -1  k( D ) (U  x  )   x L D L b 
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2.29 Numerical Fluid Mechanics
	
Fall 2011 – Lecture 11
	

REVIEW Lecture 10, Iterative Methods Cont’d: 
– Convergence: 

1...
( ) max 1, where eigenvalue( )i i n ni n 

    
  B B (ensures ||B||<1) 

• Jacobi’s method Sufficient conditions: 
• Both converge if A diagonally dominant• Gauss-Seidel iteration 
• Gauss-Seidel also convergent if A positive definite 

i  nmax – Stop Criteria:  xi  xi 1 

 , where ri  Axi  bri  ri 1 

 ri– Example 
– Successive Over-Relaxation Methods: (decrease  ( )B for faster convergence) 

1 1L  U  D x  (x  (D  ) [    (1   ) ]   D L) bi1 i 

– Gradient Methods x  x  vi1 i i1 i1 dQ( )x
  Ax  b    r• Steepest decent T r r    dx 

x  x   r  i1 i T
i i 

 i r  b Ax  (residualat iteration i)r Ar   i i i i  
• Conjugate gradient 
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TODAY (Lecture 11)
	
•		 End of (Linear) Algebraic Systems 

–		Gradient Methods and Krylov Subspace Methods 

–		Preconditioning of  Ax=b 

•		 FINITE DIFFERENCES 
–		Classification of Partial Differential Equations (PDEs) and examples 

with finite difference discretizations 

–		Error Types and Discretization Properties 
• Consistency, Truncation error, Error equation, Stability, Convergence 

–		Finite Differences based on Taylor Series Expansions 
• Higher Order Accuracy Differences, with Example 
• Taylor Tables or Method of Undetermined Coefficients 

–		Polynomial approximations 
• Newton’s formulas, Lagrange/Hermite Polynomials, Compact schemes 
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Gradient Methods
	

•		 Applicable to physically important matrices: “symmetric and positive definite” 
ones 

•		 Construct the equivalent optimization problem 

Q(x)  
1 

xT Ax  xT b
2 

dQ(x) 
 Ax  b

dx 
dQ(xopt )  0  xopt  xe , where Axe  b

dx 

•		 Propose step rule 
xi 1  xi  i 1vi 1 

•		 Common methods 
–		 Steepest descent 
–		 Conjugate gradient 
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Steepest Descent Method
	

• Move exactly in the negative direction of Gradient
	

dQ(x) 
 Ax  b  (b  Ax)  r

dx 
r : residual , ri  b  Axi 

• Step rule rT
i r

x i
i 1  xi  r

rT i
i Ari 

Graph showing the steepest descent method. 

• Q(x) reduces in each step, but not as effective as conjugate 
gradient method 
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Conjugate Gradient Method
	
• Definition: “A-conjugate vectors” or “Orthogonality with respect to a matrix (metric)”: 

if A is symmetric & positive definite, 

For i  j we say vi ,v j are orthogonal with respect to A, if vi
T Av j  0 

• Proposed in 1952 (Hestenes/Stiefel) so that directions vi are generated by the 
orthogonalization of residuum vectors (search directions are A-conjugate) 

– Choose new descent direction as different as possible from old ones, within A-metric 

• Algorithm: 

Step length 

Approximate solution 

New Residual 

Improved step length & 

new search direction Figure indicates solution obtained using 
Conjugate gradient method (red) and 
steepest descent method (green). 
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Conjugate Gradient (CG) Method and 

Krylov Subspace Methods
	

•		 Conjugate Gradient Properties 
–		 Accurate solution with “n” iterations, but decent accuracy with much fewer 

number of iterations 
–		 Only matrix or vector products 
–		 Is a special case of Krylov subspace algorithms for symmetric PD matrices
	

•		 Krylov Subspaces for Ax=b: Definitions and Properties 
–		 Krylov sequence: the set of vectors , , 2b A b A  b, 

n1–		 Krylov subspace of size n is: Kn  span b A b  , ,, A b 
–		 The sequence converges towards the eigenvector with the largest eigenvalue 
–		 Vectors become more and more linearly dependent 
–		 Hence, if one extracts an orthogonal basis for the subspace, one would likely 

get good approximations of the top eigenvectors with the n largest eigenvalues 
–		 An iteration to do this is the “Arnoldi’s iteration” which is a stabilized Gram-

Schmidt procedure (e.g. see Trefethen and Bau, 1997) 
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Conjugate Gradient (CG) Method and 

Krylov Subspace Methods
	

• CG method is a Krylov Subspace method for PD matrices: 
–		The search/residual vectors of CG span the Krylov subspace 

, , b A b  
– Hence, intermediate solutions of CG method xn are i n Kn  span 	 n1

, A b
• Krylov Subspace methods 

– Based on the idea of projecting the “Ax=b problem” into the Krylov
	
subpace of smaller dimension n
 

–		Provide variations of CG for non-symmetric non-singular matrices 
• Generalized Minimal Residual (GMRES) or MINRES (for sym. but non P.D. A) 

–		 Approximates the solution Ax=b by the vector xx n  Kn that minimizes the norm of 
the residual Axn - b 

• (Stabilized) bi-conjugate gradients (BiCGstab) 
• Quasi-minimal residual 

– See Trefethen and Bau, 1997, Asher and Grief, 2011; and other refs 
• This field is full of acronyms!
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Preconditioning of A x = b
 
• Pre-conditioner approximately solves A x = b. 

Pre-multiply by the inverse of a non-singular matrix M, and solve instead: 
M-1A x = M-1 b or A M-1 (M x) = b 

– Convergence properties based on M-1A or A M-1 instead of A ! 
– Can accelerate subsequent application of iterative schemes 
– Can improve conditioning of subsequent use of non-iterative schemes: GE, LU, etc 

• Jacobi preconditioning: 
– Apply Jacobi a few steps, usually not efficient 

• Other iterative methods (Gauss-Seidel, SOR, SSOR, etc): 
– Usually better, sometimes applied only once 

• Incomplete factorization (incomplete LU) 
• Coarse-Grid Approximations and Multigrid Methods: 

– Solve A x = b on a coarse grid (or successions of coarse grids) 
– Interpolate back to finer grid(s) 
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Example of Convergence Studies 
for Linear Solvers 

Fig 7.5: Example 7.10, with N=3: 
convergence behavior of various iterative 
schemes for the discretized Poisson 
equation. 

Fig 7.7: Iteration progress for CG, PCG 
with the IC(0) preconditioner and PCG 
with the IC preconditioner using drop 
tolerance tol=0.01 

Ascher and Greif, Siam-2011 
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Review of/Summary for Iterative Methods
	

Useful reference tables for this material: 

Tables PT3.2 and PT3.3 in Chapra, S., and R. Canale. Numerical Methods for Engineers. 6th ed. 

McGraw-Hill Higher Education, 2009. ISBN: 9780073401065.
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FINITE DIFFERENCES - Outline
	

•		 Classification of Partial Differential Equations (PDEs) and examples with 
finite difference discretizations 
–		 Elliptic PDEs 
–		 Parabolic PDEs 
–		 Hyperbolic PDEs 

•		 Error Types and Discretization Properties 
– Consistency, Truncation error, Error equation, Stability, Convergence 

•		 Finite Differences based on Taylor Series Expansions 
•		 Polynomial approximations 

–		 Equally spaced differences 
• Richardson extrapolation (or uniformly reduced spacing) 
• Iterative improvements using Roomberg’s algorithm 

–		 Lagrange polynomial and un-equally spaced differences 
–		 Compact Difference schemes 
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References and Reading Assignments
	

• Part 8 (PT 8.1-2), Chapter 23 on “Numerical Differentiation” 
and Chapter 18 on “Interpolation” of “Chapra and Canale, 
Numerical Methods for Engineers, 2010/2006.” 

• Chapter 3 on “Finite Difference Methods” of “J. H. Ferziger
and M. Peric, Computational Methods for Fluid Dynamics. 
Springer, NY, 3rd edition, 2002” 

• Chapter 3 on “Finite Difference Approximations” of “H. Lomax, 

T. H. Pulliam, D.W. Zingg, Fundamentals of Computational
Fluid Dynamics (Scientific Computation). Springer, 2003” 
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Differential Equation 

Difference Equation 

System of Equations 

Linear System of Equations 

Eigenvalue Problems 

Non-trivial Solutions 

“Root finding” 

“Differentiation” 
“Integration” 

“Solving linear 
equations” 

From Mathematical Models to Numerical Simulations 

Continuum Model 
w w

 c  0 
t x 

Sommerfeld Wave Equation (c= wave speed). 
This radiation condition is sometimes used at 
open boundaries of ocean models. 

Discrete Model 

tm t 

x xn 

m
 

n
n 

Consistency/Accuracy and Stability => Convergence 
(Lax equivalence theorem for well-posed linear problems)p parameters 
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Classification of 

Partial Differential Equations
	

(2D case, 2nd order) 
y	 n(x,y2) 

x yQuasi-linear PDE for ( ,  )

A,B and C Constants   n(x1,y)	  n(x2,y) 

Hyperbolic 

Parabolic 

Elliptic 
 n(x,y1)(Only valid for two independent variables: x,y) 

x y  , • In general: A, B and C are function of: , ,  x , y 

• Equations may change of type from point to point if A, B and C vary with x, y, . etc 
Du u	 1• Navier-Stokes, incomp., const. viscosity: 	   (u   ) u    p  2u  g
Dt t  
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Classification of 

Partial Differential Equations
	

(2D case, 2nd order) 
Meaning of Hyperbolic, Parabolic and Elliptic 

• The general 2nd order PDE in 2D: 
hyperbolas

A  B  C  Fxx xy yy 

is analogous to the equation for a conic section: 
Ax2  Bxy   Cy  2  F 

ellipse
• Conic section: 

- Is the intersection of a right circular cone and a plane, 
which generates a group of plane curves, including the 

circle 

circle, ellipse, hyperbola, and parabola 
- One characterizes the type of conic sections using the 


discriminant B2-4AC
 

• PDE:  
• B2-4AC > 0  (Hyperbolic) 

parabola
• B2-4AC = 0  (Parabolic) 
• B2-4AC < 0  (Elliptic) 
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Partial Differential Equations
	
Parabolic PDE: 

Examples 

T  2	 
  T  f , (  )

t 	  

u 2  u g
t 

•	 Usually smooth solutions (“diffusion 
effect” present) 

• “Propagation” problems 
•	 Domain of dependence of u is 

domain D ( x, y, 0 < t < ∞): 

•	 Finite Differences/Volumes, Finite 
Elements 

B2 - 4 A C = 0 

Heat conduction equation, 

forced or not (dominant in 1D)
 

Unsteady, diffusive, small amplitude flows 
or perturbations (e.g. Stokes Flow) 

t 

BC 1:	 
D( x, y, 0 < t <∞) 

BC 2: 
T(0,0,t)=f1(t)	 T(Lx,Ly,t)=f2(t) 

0 
IC: T(x,y,0)=F(x,y) Lx ,Ly 

x, y 
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Partial Differential Equations
	
Parabolic PDE
	

Heat Flow Equation 
Insulation 

T x t  , T  x t  ,  ,0   x  L,0   t       xx t 

Initial Condition 

 ,0  f (  ),0   xT x  x   L 

Boundary Conditions x = 0 
T(0,t) = c1 x = L

T (0, ) t  c1,0  t    T(L,t)=c2 

Rod 

T L t  ( , )   c2 ,0   t    
IVP in one dimension (t), BVP in the other (x) 

 Thermal conductivity Time Marching, Explicit or Implicit Schemes 
 Specific heat 
 Density IVP: Initial Value Problem 
T Temperature BVP: Boundary Value Problem 
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

Partial Differential Equations
	
Parabolic PDE
	

Heat Flow Equation 

 ,   c T  x t  ,  ,0   x  L,0  T x t  2   t    t  xx  Insulation 

 c  
 

Initial Condition 
 ,0  f (  ),0   xT x  x   L
 

x = 0
 
Boundary Conditions T(0,t) = g1(t)
 x = L 

T(L,t)=g2(t) 

Rod 

(0, ) t  g1( ),0  t    T t 
( , )   g2 (  ),0     T L t  t   t 
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Partial Differential Equations
	
Parabolic PDE
	

Equidistant Sampling 

xT(x,0) = f(x) 

T0,t)=g1(t) L,t)=g2(t) 
j+1 

j-1
j 

ii-1 i+1 

Discretization 

Finite Difference Equation 

1( ,  )  ( ,  )
( ,  )  (  )  i j i j 

t 

T x  t  T  x  t
T x  t  O  k  

k 
 

  

1 1 2 
2 

(  ,  )  2  (  ,  )  (  ,  )
( ,  )  (  )i j i j i j 

xx 

T x  t  T  x  t  T x  t
T x  t  O  h  

h 
  

  

, ( ,  )i j  i  jT T x t 

, 1  ,  1,  ,  1,  2 
2 

2i j  i j  i  j  i j  i  jT T T T T 
c

k h 
    

 

Centered Finite Difference 

Forward (Euler) Finite Difference 

t
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D(x,y) 

Partial Differential Equations
	
ELLIPTIC: B2 - 4 A C < 0
	

A,B and C Constants 

Hyperbolic 

Parabolic 

Elliptic 

y 
 n(x,y2) 

Quasi-linear PDE 

  n(x1,y)  n(x2,y) 

 n(x,y1) 
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