
  

 

2.29 Numerical Fluid Mechanics
	
Fall 2009 – Lecture 13
	

REVIEW Lecture 12: 
• Classification of Partial Differential Equations (PDEs) and 

examples with finite difference discretizations 
– Parabolic PDEs 
– Elliptic PDEs 
– Hyperbolic PDEs 

 x ( )  •		Error Types and Discretization Properties: L ( )   0 ,  Lˆ ̂   0
 

ˆL ( )   L x ( )   0   when  x  0– Consistency: 
p ( )  Lˆ  (– Truncation error:  L  ( )  O x  )   for  x  0x	 x 

– Error equation:   L   Lˆ ( ˆ    ˆ ( ) (for linear systems) ( )       ) L	x x x 

ˆ1– Stability:  Const. (for linear systems) L x 

ˆ1   ( p ) O x– Convergence: Lx x 
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2.29 Numerical Fluid Mechanics
	
Fall 2009 – Lecture 13
	

REVIEW Lecture 12, Cont’d: 
• Classification of PDEs and examples 
• Error Types and Discretization Properties 
• Finite Differences based on Taylor Series Expansions 

– Higher Order Accuracy Differences, with Examples 
• Incorporate more higher-order terms of the Taylor series expansion than 

strictly needed and express them as finite differences themselves (making 
them function of neighboring function values) 

• If these finite-differences are of sufficient accuracy, this pushes the remainder 
to higher order terms => increased order of accuracy of the FD method 

• General approximation:		  mu  s
 

 a u  
 m   i ji x
 x  j ir 

– Taylor Tables or Method of Undetermined Coefficients (Polynomial Fitting)
	
• Simply a more systematic way to solve for coefficients ai 
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FINITE DIFFERENCES – Outline for Today
	

• Classification of Partial Differential Equations (PDEs) and examples with 

finite difference discretizations (Elliptic, Parabolic and Hyperbolic PDEs)
	

•		 Error Types and Discretization Properties 
– Consistency, Truncation error, Error equation, Stability, Convergence 

•		 Finite Differences based on Taylor Series Expansions 
–		 Higher Order Accuracy Differences, with Example 
–		 Taylor Tables or Method of Undetermined Coefficients (Polynomial Fitting) 

•		 Polynomial approximations 
–		 Newton’s formulas 
–		 Lagrange polynomial and un-equally spaced differences 
–		 Hermite Polynomials and Compact/Pade’s Difference schemes 
–		 Boundary conditions 
–		 Un-Equally spaced differences 
–		 Error Estimation: order of convergence, discretization error, Richardson’s 

extrapolation, and iterative improvements using Roomberg’s algorithm 
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References and Reading Assignments
	

• Part 8 (PT 8.1-2), Chapter 23 on “Numerical Differentiation” 
and Chapter 18 on “Interpolation” of “Chapra and Canale, 
Numerical Methods for Engineers, 2010/2006.” 

• Chapter 3 on “Finite Difference Methods” of “J. H. Ferziger
and M. Peric, Computational Methods for Fluid Dynamics. 
Springer, NY, 3rd edition, 2002” 

• Chapter 3 on “Finite Difference Approximations” of “H. Lomax, 

T. H. Pulliam, D.W. Zingg, Fundamentals of Computational
Fluid Dynamics (Scientific Computation). Springer, 2003” 
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FINITE DIFFERENCES: 

Interpolation Formulas for Higher Order Accuracy
	

2nd approach: Generalize Taylor series using interpolation formulas 
• Fit the unknown function solution of the (P)DE to an interpolation curve 

and differentiate the resulting curve. For example: 
• Fit a parabola to data at points              x x x  ( x    x 

, then

, ,   x )i1 i i1 i i i1 
differentiate to obtain: 

2 2 2 2( ) x   f x  ) x   f x  )     f x  ( (  x    x 
i1 i i1 i1 i i1 i

f x'( i )  
x x (x    x )i1 i i i1 

• This is a 2nd order approximation 
• For uniform spacing, reduces to centered difference seen before 
• In general, approximation of first derivative has truncation error of the order 

of the polynomial 

• All types of polynomials or numerical differentiation methods can be 
used to derive such interpolations formulas 

• Polynomial fitting, Method of undetermined coefficients, Newton’s 
interpolating polynomials, Lagrangian and Hermite Polynomials, etc 
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FINITE DIFFERENCES Higher Order Accuracy: 

Taylor Tables or Method of Undetermined Coefficients
	

Taylor Tables: Convenient way of forming linear combinations of Taylor Series 
on a term-by-term basis 

The Taylor table for a centered three point Lagrangian approximation to a second derivative. 

What we are 
looking for 

Taylor 
series at: 

j-1 

j 

j+1 

Sum each column starting from left, force the sums to zero and so choose a, b, c, etc 
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FINITE DIFFERENCES
	
Higher Order Accuracy: Taylor Tables Cont’d
	

The Taylor table for a centered three point Lagrangian approximation to a second derivative. 

Sum each column starting from left and force the sums to be zero by proper choice of a, b, c, etc: 

1 1 1 a 0         
  
         
1 0 1 b  0  a b c  1 2 1 = Familiar 3-point          central difference 1 0  1 c 2              

Truncation error is first column in the table that does not vanish, here fifth column of table: 

4 2 41 a c  4   u   x   u     x    x 2    4   4  x  24 24   x  j 12  x  j 
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FINITE DIFFERENCES
	
Higher Order Accuracy: Taylor Tables Cont’d
	
The Taylor table for a backward three point Lagrangian approximation to a second derivative. 

3 2 31 8       a a u x u 2 1  3 a a b  1 4  3 / 2  and     x  2 1    x    3   3  x  6 6   x  j 3  x  j
(as in lecture 12)
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Finite Differences using Polynomial approximations 

Numerical Interpolation: Newton’s Iteration Formula
	

Standard triangular family of polynomials 
Newton’s Computational Scheme 

Divided Differences 
2 

3 

0 0 

x2 

+ 

 
By recurrence: 

First 
divided 

differences 

Second 
divided 

differences 
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Finite Differences using Polynomial approximations 

Equidistant Newton’s Interpolation
	

Equidistant Sampling Divided Differences 
Equidistant Step size Implied 

Triangular Family of Polynomials 
Equidistant Sampling 
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Numerical Differentiation using Newton’s 

algorithm for equidistant sampling
	

n=1 
Triangular Family of Polynomials f(x) 

Equidistant Sampling 

h 

First order 
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Forward Difference 

2 22 2 

Numerical Differentiation using Newton’s 

algorithm for equidistant sampling, Cont’d
	

Second order 

f(x) n=2 

h hCentral Difference 

Second Derivatives 

n=3 

n=2 Forward Difference
 

Central Difference
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Finite Differences using Polynomial approximations 

Numerical Interpolation: Lagrange Polynomials
	

(Reformulation of Newton’s polynomial)
	

f(x)
 
1
 

k-3 k-2 k-1 k k+1 k+2 x
 

Difficult to program 
Difficult to estimate errors 
Divisions are expensive 

Important for numerical integration 
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Hermite Interpolation Polynomials and 

Compact / Pade’ Difference Schemes
	

• Use the values of the function and its derivative(s) at given points k 
– For example, for values of the function and of its first derivatives at pts k 

n m  u ( )   ak ( )  uk bk x  u x  x  ( )  
k 1 k 1  x k 

• General form for implicit/explicit schemes (here focusing on 
space) 

s m q  u b  a u   i  m   i ji x 
ir  x  j i  i p 

– Generalizes the Lagrangian approach by using Hermitian interpolation
	

• Leads to the “Compact difference schemes” or “ Pade’ schemes ” 
• Are implemented by the use of efficient banded solvers 

2.29 Numerical Fluid Mechanics PFJL  Lecture 13,  14 
14



  

FINITE DIFFERENCES: Higher Order Accuracy 

Taylor Tables for Pade’ schemes
	

Taylor table for a central three point Hermitian approximation to a first derivative. 
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FINITE DIFFERENCES: Higher Order Accuracy 

Taylor Tables for Pade’ schemes, Cont’d
	

Taylor table for a central three point Hermitian approximation to a first derivative. 

Sum each column starting from left and  force the sums to be zero by proper choice of a, b, c, etc: 

1 1 1 0 0 a   0     

     1 0 1 1 1 b 1  

       1  
 11 0  2 2 c    0    a b c d e   3 0  3 1 1
       4 1 0 1 3 2 d 0        

 1 0  1 4 4 e   0     
        

Truncation error is first column in the table that does not vanish, here sixth column: 

 x4  5u x   5 120  x  j 
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Compact / Pade’ Difference Schemes: Examples 

We can derive family of compact centered approximations for      up to 6th order using: 

Comments: 

• Pade’ schemes use 
fewer computational 
nodes and thus are 
more compact than CDS 

• Can be advantageous 
(more banded systems!) 
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Higher-Order Finite Difference Schemes
	
Considerations
	

• Retaining more terms in Taylor Series or in polynomial 
approximations allows to obtain FD schemes of increased 
order of accuracy 

• However, higher-order approximations involve more nodes, 
hence more complex system of equations to solve and more 
complex treatment of boundary condition schemes 

• Results shown for one variable valid for mixed derivatives 
• To approximate other terms that are not differentiated: reaction 

terms, etc 
– Values at the center node is normally all that is needed 
– However, for strongly nonlinear terms, care is needed (see later) 

• Boundary conditions must be discretized 
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Finite Difference Schemes: 

Implementation of Boundary conditions
	

• For unique solutions, information is needed at boundaries 
• Generally, one is given either: 

i) the variable:   u x(  x , ) t  u ( )t                                           (Dirichlet BCs) bnd bnd 

 uii) a gradient in a specific direction, e.g.: = bnd (t)        (Neumann BCs) 
x ( xbnd ,  )  t 

iii) a linear c ombination of the two quantities  (Robin BCs) 

• Straightforward cases: 
– If value is known, nothing special needed (one doesn’t solve for the BC) 
– If derivatives are specified, for first-order schemes, this is also 


straightforward to treat
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Finite Difference Schemes: 

Implementation of Boundary conditions, Cont’d
	

• Harder cases: when higher-order approximations are used 
– At and near the boundary: nodes outside of domain would be needed 

• Remedy: use different approximations at and near the boundary 
– Either, approximations of lower order are used 
– Or, approximations go deeper in the interior and are one-sided. For example, 

 u u2  u1• 1st order forward-difference:  0   0  u2  u1x t x2  x( xbnd , ) 	  1 

• Parabolic fit to the bnd point and two inner points: 
2 2	 2 2u x(  x )  u (x  x )  u (x  x )  (x  x )  u 3 2 1 2 3 1 1  3 1 2 1   u3  4 u2  3u1	 	  for equidistant nodes x , ) 	  (x  )(   x x   x2 )x x  )(   2x	 ( xbnd t	 2 1 3 1 3 

 u 2u  9u 18u 11u4 3 2 1 3• Cubic fit to 4 nodes (3rd order difference):  ( )  for equidistant nodes 	 O x
x 6x( xbnd ,  )  t 

18u  9u  2u 6x   u 2 3 4• Compact schemes, cubic fit to 4 pts: u( t  u1 	    for equidistant nodes , ) 	  xbnd	 11 11  x 1 

• In Open-boundary systems, boundary problem is not well posed => 
–		Separate treatment for inflow/outflow points, multi-scale approach and/or 


generalized inverse problem (using data in the interior)
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