REVIEW Lecture 14:

- **Finite Difference: Boundary conditions**
 - Different approx. at and near the boundary => impacts linear system to be solved

- **Finite-Differences on Non-Uniform Grids and Uniform Errors: 1-D**
 - If non-uniform grid is refined, error due to the 1^{st} order term decreases faster than that of 2^{nd} order term
 - Convergence becomes asymptotically 2^{nd} order (1^{st} order term cancels)

- **Grid-Refinement and Error estimation**
 - Estimation of the order of convergence and of the discretization error
 - Richardson’s extrapolation and Iterative improvements using Roomberg’s algorithm

- **Fourier Analysis of canonical PDE**
 - Generic PDE: $\frac{\partial f}{\partial t} = \frac{\partial^n f}{\partial x^n}$, with $f(x,t) = \sum_{k=-\infty}^{\infty} f_k(t) e^{ikx}$ \(\Rightarrow\) $\frac{df_k(t)}{dt} = (ik)^n f_k(t) = \sigma f_k(t)$ for $\sigma = (ik)^n$
 - Differentiation, definition and smoothness of solution for n order of spatial operators
Outline for TODAY (Lecture 15):
FINITE DIFFERENCES, Cont’d

• Fourier Analysis and Error Analysis

• Stability
 – Heuristic Method
 – Energy Method
 – Von Neumann Method (Introduction): 1st order linear convection/wave eqn

• Hyperbolic PDEs and Stability
 – Example: 2nd order wave equation and waves on a string
 • Effective numerical wave numbers and dispersion
 – CFL condition:
 • Definition
 • Examples: 1st order linear convection/wave eqn, 2nd order wave eqn
 • Other FD schemes
 – Von Neumann examples: 1st order linear convection/wave eqn
 – Tables of schemes for 1st order linear convection/wave eqn
References and Reading Assignments

• Lapidus and Pinder, 1982: Numerical solutions of PDEs in Science and Engineering. Section 4.5 on “Stability”.

Fourier Error Analysis: 1st derivatives

- In the decomposition: \[f(x, t) = \sum_{k=-\infty}^{\infty} f_k(t) e^{ikx} \]

 - All components are of the form: \(f_k(t) e^{ikx} \)

 - Exact 1st order spatial derivative:
 \[\frac{\partial f_k(t) e^{ikx}}{\partial x} = f_k(t) ik e^{ikx} = f_k(t) \left(ik e^{ikx} \right) \]

 - However, if we apply the centered finite-difference (2nd order accurate):
 \[\left(\frac{\partial f}{\partial x} \right)_j = \frac{f_{j+1} - f_{j-1}}{2\Delta x} \Rightarrow \]
 \[\left(\frac{\partial e^{ikx}}{\partial x} \right)_j = \frac{e^{ik(x_j+\Delta x)} - e^{ik(x_j-\Delta x)}}{2\Delta x} = \frac{\left(e^{ik\Delta x} - e^{-ik\Delta x}\right)e^{ikx}}{2\Delta x} = i \frac{\sin(k\Delta x)}{\Delta x} e^{ikx} = i k_{eff} e^{ikx} \]

 where \(k_{eff} = \frac{\sin(k\Delta x)}{\Delta x} \) (uniform grid resolution \(\Delta x \))

 - \(k_{eff} = \) effective wavenumber

 - For low wavenumbers (smooth functions):
 \[k_{eff} = \frac{\sin(k\Delta x)}{\Delta x} = k - \frac{k^3\Delta x^2}{6} + ... \]

 - Shows the 2nd order nature of center-difference approx. (here, of \(k \) by \(k_{eff} \))
Fourier Error Analysis, Cont’d: Effective Wave numbers

- Different approximations \(\left(\frac{\partial e^{ikx}}{\partial x} \right)_j \) have different effective wavenumbers

- CDS, 2nd order:
 \[
 k_{\text{eff}} = \frac{\sin(k\Delta x)}{\Delta x} = k - \frac{k^3\Delta x^2}{6} + ...
 \]

- CDS, 4th order:
 \[
 k_{\text{eff}} = \frac{\sin(k\Delta x)}{3\Delta x} (4 - \cos(k\Delta x))
 \]

- Pade scheme, 4th order:
 \[
 ik_{\text{eff}} = \frac{3i\sin(k\Delta x)}{(2 + \cos(k\Delta x))\Delta x}
 \]

The fourth-order Padé scheme is given by

\[
(\delta_x u)_{j-1} + 4(\delta_x u)_j + (\delta_x u)_{j+1} = \frac{3}{\Delta x}(u_{j+1} - u_{j-1}).
\]

The modified wavenumber for this scheme satisfies

\[
i\kappa^* e^{-i\kappa\Delta x} + 4i\kappa^* + i\kappa^* e^{i\kappa\Delta x} = \frac{3}{\Delta x}(e^{i\kappa\Delta x} - e^{-i\kappa\Delta x}),
\]

which gives

\[
i\kappa^* = \frac{3i\sin \kappa \Delta x}{(2 + \cos \kappa \Delta x)\Delta x}.
\]

Note that \(k_{\text{eff}} \) is bounded:
\[
0 \leq k_{\text{eff}} \leq k_{\max}
\]

\[
k_{\max} = \frac{\pi}{\Delta x}
\]
Fourier Error Analysis, Cont’d

Effective Wave Speeds

Different approximations \(\left(\frac{\partial e^{ikx}}{\partial x} \right)_j \) also lead to different effective wave speeds:

- Consider linear convection equations: \(\frac{\partial f}{\partial t} + c \frac{\partial f}{\partial x} = 0 \)

 - For the exact solution:
 \[
 f(x,t) = \sum_{k=-\infty}^{\infty} f_k(0) e^{ikx+\sigma t} = \sum_{k=-\infty}^{\infty} f_k(0) e^{ik(x-ct)}
 \]
 (since \(\sigma = -ikc \))

 - For the numerical sol.: if \(f = f_{num}^k(t)e^{ikx} \Rightarrow d f_{num}^k(t)/dt e^{ikx} = -f_{num}^k(t) c \left(\frac{\partial e^{ikx}}{\partial x} \right)_j = -f_{num}^k(t) c \left(i k_{eff} e^{ikx} \right) \)

 which we can solve exactly (our interest here is only error due to spatial approx.)

 \[
 \Rightarrow f_{num}^k(t) = f_k(0)e^{-i k_{eff} c t}
 \]

 \[
 \Rightarrow f_{numerical}(x,t) = \sum_{k=-\infty}^{\infty} f_k(0) e^{ikx-i k_{eff} c t} = \sum_{k=-\infty}^{\infty} f_k(0) e^{ik(x-c_{eff} t)}
 \]

 \[
 \Rightarrow \frac{c_{eff}}{c} = \frac{\sigma_{eff}}{\sigma} = \frac{k_{eff}}{k} \quad \text{(defining } \sigma_{eff} = -i k_{eff} c = -i k c_{eff} \text{)}
 \]

 - Often, \(c_{eff}/c < 1 \Rightarrow \text{numerical solution is too slow.} \)

 - Since \(c_{eff} \) is a function of the effective wavenumber, the scheme is dispersive (even though the PDE is not)
Evaluation of the Stability of a FD Scheme

Recall: \(\tau_{\Delta x} = L (\phi) - \hat{L}_{\Delta x}(\hat{\phi} + \epsilon) = -\hat{L}_{\Delta x}(\epsilon) \)

Stability: \(\left\| \hat{L}_{\Delta x}^{-1} \right\| < \text{Const.} \) (for linear systems)

• **Heuristic stability:**
 - Stability is defined with reference to an error (e.g. round-off) made in the calculation, which is damped (stability) or grows (instability)
 - Heuristic Procedure: Try it out
 • Introduce an isolated error and observed how the error behaves
 • Requires an exhaustive search to ensure full stability, hence mainly informational approach

• **Energy Method**
 - Basic idea:
 • Find a quantity, \(L_2 \) norm e.g. \(\sum_j (\phi_j^n)^2 \)
 • Shows that it remains bounded for all \(n \)
 - Less used than Von Neumann method, but can be applied to nonlinear equations and to non-periodic BCs

• **Von Neumann method** (Fourier Analysis method)
Evaluation of the Stability of a FD Scheme

Energy Method Example

• Consider again:

\[
\frac{\partial \phi}{\partial t} + c \frac{\partial \phi}{\partial x} = 0
\]

• A possible FD formula (“upwind” scheme for \(c > 0 \)):

\[
\frac{\phi_j^{n+1} - \phi_j^n}{\Delta t} + c \frac{\phi_j^n - \phi_{j-1}^n}{\Delta x} = 0
\]

\((t = n\Delta t, x = j\Delta x) \) which can be rewritten:

\[
\phi_j^{n+1} = (1 - \mu) \phi_j^n + \mu \phi_{j-1}^n = 0 \quad \text{with} \quad \mu = \frac{c \Delta t}{\Delta x}
\]

Evaluation of the Stability of a FD Scheme
Energy Method Example

Von Neumann Stability

- Widely used procedure
- Assumes initial error can be represented as a Fourier Series and considers growth or decay of these errors
- In theoretical sense, applies only to periodic BC problems and to linear problems
 - Superposition of Fourier modes can then be used
- Again, use, $f(x,t) = \sum_{k=-\infty}^{\infty} f_k(t) e^{ikx}$ but for the error: $\varepsilon(x,t) = \sum_{\beta=-\infty}^{\infty} \varepsilon_\beta(t) e^{i\beta x}$
- Being interested in error growth/decay, consider only one mode: $\varepsilon_\beta(t) e^{i\beta x} \approx e^{\gamma t} e^{i\beta x}$ where γ is in general complex and function of β: $\gamma = \gamma(\beta)$
- Strict Stability: for the error not to grow in time, $|e^{\gamma t}| \leq 1 \ \forall \gamma$
 - in other words, for $t = n\Delta t$, the condition for strict stability can be written: $|e^{\gamma \Delta t}| \leq 1$ or for $\xi = e^{\gamma \Delta t}$, $|\xi| \leq 1$

Norm of amplification factor ξ smaller than 1
Evaluation of the Stability of a FD Scheme

Von Neumann Example

- Consider again:

\[
\frac{\partial \phi}{\partial t} + c \frac{\partial \phi}{\partial x} = 0
\]

- A possible FD formula ("upwind" scheme)

\[
\frac{\phi_j^{n+1} - \phi_j^n}{\Delta t} + c \frac{\phi_j^n - \phi_{j-1}^n}{\Delta x} = 0
\]

\(t = n\Delta t, \ x = j\Delta x\) which can be rewritten:

\[
\phi_j^{n+1} = (1 - \mu) \phi_j^n + \mu \phi_{j-1}^n \quad \text{with} \quad \mu = \frac{c \Delta t}{\Delta x}
\]

- Consider the Fourier error decomposition (one mode) and discretize it:

\[
\varepsilon(x,t) = \varepsilon_\beta(t) e^{i\beta x} = e^{\gamma t} e^{i\beta x} \Rightarrow \varepsilon_j^n = e^{\gamma n \Delta t} e^{i\beta j \Delta x}
\]

- Insert it in the FD scheme, assuming the error mode satisfies the FD:

\[
\varepsilon_j^{n+1} = (1 - \mu) \varepsilon_j^n + \mu \varepsilon_{j-1}^n \Rightarrow e^{\gamma (n+1) \Delta t} e^{i\beta j \Delta x} = (1 - \mu) e^{\gamma n \Delta t} e^{i\beta j \Delta x} + \mu e^{\gamma n \Delta t} e^{i\beta (j-1) \Delta x}
\]

- Cancel the common term (which is \(\varepsilon_j^n = e^{\gamma n \Delta t} e^{i\beta j \Delta x}\)) and obtain:

\[
e^{\gamma \Delta t} = (1 - \mu) + \mu e^{-i\beta \Delta x}
\]
Evaluation of the Stability of a FD Scheme
von Neumann Example

- The magnitude of \(\xi = e^{i\Delta t} \) is then obtained by multiplying \(\xi \) with its complex conjugate:

\[
|\xi|^2 = \left((1 - \mu) + \mu e^{-i\beta \Delta x}\right)\left((1 - \mu) + \mu e^{i\beta \Delta x}\right) = 1 - 2\mu(1 - \mu)\left(1 - \frac{e^{i\beta \Delta x} + e^{-i\beta \Delta x}}{2}\right)
\]

Since \(\frac{e^{i\beta \Delta x} + e^{-i\beta \Delta x}}{2} = \cos(\beta \Delta x) \) and \(1 - \cos(\beta \Delta x) = 2\sin^2\left(\frac{\beta \Delta x}{2}\right) \) \(\Rightarrow \)

\[
|\xi|^2 = 1 - 2\mu(1 - \mu)(1 - \cos(\beta \Delta x)) = 1 - 4\mu(1 - \mu)\sin^2\left(\frac{\beta \Delta x}{2}\right)
\]

- Thus, the strict von Neumann stability criterion gives

\[
|\xi| \leq 1 \quad \Leftrightarrow \quad 1 - 4\mu(1 - \mu)\sin^2\left(\frac{\beta \Delta x}{2}\right) \leq 1
\]

Since \(\sin^2\left(\frac{\beta \Delta x}{2}\right) \geq 0 \quad \forall \beta \quad \left(1 - \cos(\beta \Delta x)\right) \geq 0 \quad \forall \beta \)

we obtain the same result as for the energy method:

\[
|\xi| \leq 1 \quad \Leftrightarrow \quad \mu(1 - \mu) \geq 0 \quad \Leftrightarrow \quad 0 \leq c\frac{\Delta t}{\Delta x} \leq 1 \quad (\mu = c\frac{\Delta t}{\Delta x})
\]

Equivalent to the CFL condition
Partial Differential Equations

Hyperbolic PDE: \(B^2 - 4AC > 0 \)

Examples:

1. \(\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \)
 Wave equation, 2\(^{nd}\) order

2. \(\frac{\partial u}{\partial t} \pm c \frac{\partial u}{\partial x} = 0 \)
 Sommerfeld Wave/radiation equation, 1\(^{st}\) order

3. \(\frac{\partial u}{\partial t} + (U \cdot \nabla) u = g \)
 Unsteady (linearized) inviscid convection
 (Wave equation first order)

4. \((U \cdot \nabla) u = g \)
 Steady (linearized) inviscid convection

- Allows non-smooth solutions
- Information travels along characteristics, e.g.:
 - For (3) above: \(\frac{dx_c}{dt} = U(x_c(t)) \)
 - For (4), along streamlines: \(\frac{dx_c}{ds} = U \)
- Domain of dependence of \(u(x, T) \) = “characteristic path”
 - e.g., for (3), it is: \(x_c(t) \) for \(0 < t < T \)
- Finite Differences, Finite Volumes and Finite Elements
Partial Differential Equations
Hyperbolic PDE

Waves on a String

\[\frac{\partial^2 u(x,t)}{\partial t^2} = c^2 \frac{\partial^2 u(x,t)}{\partial x^2} \quad 0 < x < L, \quad 0 < t < \infty \]

Initial Conditions

\[u(x,0) = f(x), \quad 0 \leq x \leq L \]
\[u_t(x,0) = g(x), \quad 0 < x < L \]

Boundary Conditions

\[u(0,t) = 0, \quad 0 < t < \infty \]
\[u(L,t) = 0, \quad 0 < t < \infty \]

Wave Solutions

\[u = \begin{cases}
F(x - ct) & \text{Forward propagating wave} \\
G(x + ct) & \text{Backward propagating wave}
\end{cases} \]

Typically Initial Value Problems in Time, Boundary Value Problems in Space
Time-Marching Solutions: Explicit Schemes Generally Stable
2.29 Numerical Fluid Mechanics
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.