

2.29 Numerical Fluid MechanicsFall 2011 – Lecture 15

REVIEW Lecture 14:

• Finite Difference: Boundary conditions

– Different approx. at and near the boundary => impacts linear system to be solved

• Finite-Differences on Non-Uniform Grids and Uniform Errors: 1-D

- $-$ If non-uniform grid is refined, error due to the 1st order term decreases faster than that of 2nd order term
- Convergence becomes asymptotically $2nd$ order (1st order term cancels)

• Grid-Refinement and Error estimation

- Estimation of the order of convergence and of the discretization error
- Richardson's extrapolation and Iterative improvements using Roomberg's algorithm

• Fourier Analysis of canonical PDE

Generic PDE:
$$
\frac{\partial f}{\partial t} = \frac{\partial^n f}{\partial x^n}
$$
, with $f(x,t) = \sum_{k=-\infty}^{\infty} f_k(t) e^{ikx} \Rightarrow \frac{df_k(t)}{dt} = (ik)^n f_k(t) = \sigma f_k(t)$ for $\sigma = (ik)^n$

– Differentiation, definition and smoothness of solution for ≠ order *n* of spatial operators

Outline for TODAY (Lecture 15): FINITE DIFFERENCES, Cont'd

- Fourier Analysis and Error Analysis
- Stability
	- Heuristic Method
	- Energy Method
	- Von Neumann Method (Introduction): 1st order linear convection/wave eqn

• Hyperbolic PDEs and Stabilty

- Example: 2nd order wave equation and waves on a string
	- Effective numerical wave numbers and dispersion
- CFL condition:
	- Definition
	- Examples: 1st order linear convection/wave eqn, 2nd order wave eqn
	- Other FD schemes
- Von Neumann examples: 1st order linear convection/wave eqn
- $-$ Tables of schemes for 1st order linear convection/wave eqn

- Lapidus and Pinder, 1982: Numerical solutions of PDEs in Science and Engineering. Section 4.5 on "Stability".
- Chapter 3 on "Finite Difference Methods" of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, 3rd edition, 2002"
- Chapter 3 on "Finite Difference Approximations" of "H. Lomax, T. H. Pulliam, D.W. Zingg, Fundamentals of Computational Fluid Dynamics (Scientific Computation). Springer, 2003"
- Chapter 29 and 30 on "Finite Difference: Elliptic and Parabolic equations" of "Chapra and Canale, Numerical Methods for Engineers, 2010/2006."

Fourier Error Analysis: 1st derivatives

- In the decomposition: $f(x,t) = \sum_{k=0}^{\infty} f_k(t) e^{ikx}$ $k = -\infty$
	- $-$ All components are of the form: $f_k(t) e^{ikx}$
	- Exact 1st order spatial derivative:

$$
\frac{\partial f_k(t) e^{ikx}}{\partial x} = f_k(t) ik e^{ikx} = f_k(t) (ik e^{ikx})
$$

– However, if we apply the centered finite-difference $(2^{nd}$ order accurate):

$$
\begin{aligned}\n\left(\frac{\partial f}{\partial x}\right)_j &= \frac{f_{j+1} - f_{j-1}}{2\Delta x} \Rightarrow \\
\left(\frac{\partial e^{ikx}}{\partial x}\right)_j &= \frac{e^{ik(x_j + \Delta x)} - e^{ik(x_j - \Delta x)}}{2\Delta x} = \frac{\left(e^{ik\Delta x} - e^{-ik\Delta x}\right)e^{ikx_j}}{2\Delta x} = i \frac{\sin(k\Delta x)}{\Delta x} e^{ikx_j} = i k_{\text{eff}} e^{ikx_j} \\
\text{where } k_{\text{eff}} &= \frac{\sin(k\Delta x)}{\Delta x} \qquad \text{(uniform grid resolution } \Delta x)\n\end{aligned}
$$

- $k_{\rm eff}$ = effective wavenumber
- $\sin(k\Delta x)$ $k^3\Delta x^2$ – For low wavenumbers (smooth functions): $k_{\text{eff}} = \frac{\sin(k\Delta x)}{\Delta} = k - \frac{k\Delta x}{\Delta} + ...$ *x* 6
	- Shows the 2nd order nature of center-difference approx. (here, of k by k_{eff})

Fourier Error Analysis, Cont'd: Effective Wave numbers

• Different approximations $\left(\frac{\partial e^{ikx}}{\partial x}\right)$ have different effective wavenumbers *e ikx* $\left(\begin{array}{cc} \partial x \end{array}\right)_j$ 3λ ...2 $s = \text{CDS}$, 2nd order: $k_{\text{eff}} = \frac{\sin(k\Delta x)}{2} = k - \frac{k^3 \Delta x}{2}$ $\epsilon_{\text{eff}} = \frac{\epsilon_{\text{eff}}}{\Delta x} = k - \frac{\epsilon_{\text{eff}}}{6} + ...$ \sim CDS, 4th order: $k_{\text{eff}} = \frac{\sin(k \Delta x)}{2}$ $k_{\text{eff}} = \frac{\sin(k\Delta x)}{3\Delta x} (4 - \cos(k\Delta x))$ $-$ Pade scheme, 4th order: $i\,k_{\rm eff} = \frac{3\,i\,\sin(k\Delta x)}{(2+\cos(k\Delta x))\Delta x}$ $3i \sin(k\Delta x)$ The fourth-order Padé scheme is given by $\kappa^* \Delta x$ $(\delta_x u)_{j-1} + 4(\delta_x u)_j + (\delta_x u)_{j+1} = \frac{3}{4\pi}(u_{j+1} - u_{j-1}).$ 2.5 4th Padé The modified wavenumber for this scheme satisfies⁶ 1.5 $i\kappa^* e^{-i\kappa \Delta x} + 4i\kappa^* + i\kappa^* e^{i\kappa \Delta x} = \frac{3}{4\pi} (e^{i\kappa \Delta x} - e^{-i\kappa \Delta x})$, 4th Central 1.0 which gives $2nd$ Central $i\kappa^* = \frac{3i\sin\kappa\Delta x}{(2+\cos\kappa\Delta x)\Delta x}$. 0.2 $0₀$ $\overline{2.5}$ 1.5 $\overline{2}$ 0.5 J $\overline{1}$ $\kappa \Delta x$ Δx **Note that** k_{eff} **is bounded:** $0 \le k_{\text{eff}} \le k_{\text{max}}$ $k_{\rm max} \Delta x$ Fig. 3.4. Modified wavenumber for various schemes © Springer. All rights reserved. This content is excluded $k_{\text{max}} = \frac{\pi}{\Delta x}$ from our Creative Commons license. For more information, see <http://ocw.mit.edu/fairuse>.

Source: Lomax, H., T. Pulliam, and D. Zingg. *Fundamentals of Computational Fluid Dynamics*. Springer, 2001.

5

Fourier Error Analysis, Cont'd Effective Wave Speeds

 e ikx Different approximations $\left(\frac{\partial\,\bm{e}^{i k x}}{\partial x}\right)$ also lead to different effective wave speeds: $\left(\begin{array}{cc} \partial x \end{array}\right)_j$ *f* • Consider linear convection equations: $\frac{\partial f}{\partial x} + c \frac{\partial f}{\partial y} = 0$ ∂t ∂x $f(x,t) = \sum_{k=0}^{\infty} f_k(0) e^{ikx+\sigma t} = \sum_{k=0}^{\infty} f_k(0) e^{ik(x-\sigma t)}$ (since $\sigma = -ik c$) $\mathcal{F} = -\infty$
 k $\mathcal{F} = -\infty$ $(t) c \left(\frac{\partial e^{ikx}}{\partial x} \right) =$ $f_k^{num.}(t)e^{ikx} \Rightarrow \frac{df_k}{dt} - e^{ikx_j} = -f_k^{num.}(t)e^{i\left(\frac{\partial}{\partial x}\right)}\Big|_j = -f_k^{num.}(t)e^{i\left(k\right)}\frac{e^{ikx_j}}{dt}$

which we can solve exactly (our interest here is only error due to spatial approx.)

$$
\Rightarrow f_k^{num.}(t) = f_k(0)e^{-ik_{\text{eff}}ct}
$$
\n
$$
\Rightarrow f^{numerical}(x,t) = \sum_{k=-\infty}^{\infty} f_k(0)e^{ikx-ik_{\text{eff}}ct} = \sum_{k=-\infty}^{\infty} f_k(0)e^{ik(x-c_{\text{eff}}t)}
$$
\n
$$
\Rightarrow \frac{c_{\text{eff}}}{c} = \frac{\sigma_{\text{eff}}}{\sigma} = \frac{k_{\text{eff}}}{k} \quad \text{(defining } \sigma_{\text{eff}} = -ik_{\text{eff}}c = -ik c_{\text{eff}}
$$

- Often, $c_{\rm eff}/\,c$ < 1 => numerical solution is too slow.
- Since $\rm c_{eff}$ is a function of the effective wavenumber,

the scheme is dispersive (even though the PDE is not)

Fig. 3.5. Numerical phase speed for various schemes

© Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see [http://ocw.mit.edu/fairuse.](http://ocw.mit.edu/fairuse)

Source: Lomax, H., T. Pulliam, and D. Zingg. *Fundamentals of Computational Fluid Dynamics*. Springer, 2001.

Evaluation of the Stability of a FD Scheme

ˆ $\tau_{\Lambda x} = L(\phi) - L_{\Lambda x}(\hat{\phi} + \varepsilon) = -L_{\Lambda x}(\varepsilon)$ Stability: $\Vert L_{\Lambda x}^{-1}$ ˆRecall: $\tau_{\Delta x} = L(\phi) - L_{\Delta x}^{\hat{}}(\hat{\phi} + \varepsilon) = -L_{\Delta x}^{\hat{}}(\varepsilon)$ Stability: $\|\hat{L_{\Delta x}^{-1}}\|$ < Const. (for linear systems)

- • Heuristic stability:
	- – Stability is defined with reference to an error (e.g. round-off) made in the calculation, which is damped (stability) or grows (instability)
	- –– Heuristic Procedure: Try it out
		- Introduce an isolated error and observed how the error behaves
		- Requires an exhaustive search to ensure full stability, hence mainly informational approach
- • Energy Method
	- Basic idea:
		- Find a quantity, L₂ norm e.g. $\sum (\phi_j^n)^2$
		- *j* • Shows that it remains bounded for all n
	- –– Less used than Von Neumann method, but can be applied to nonlinear equations and to non-periodic BCs
- \bullet Von Neumann method (Fourier Analysis method)

Evaluation of the Stability of a FD Scheme Energy Method Example

- Consider again: $\frac{\partial \varphi}{\partial t} + c \frac{\partial \varphi}{\partial x} = 0$ $\frac{\partial \phi}{\partial t} +$ $\frac{\partial \phi}{\partial t} + c \frac{\partial \phi}{\partial x} =$
- A possible FD formula ("upwind" scheme for c>0): $\frac{\phi_j^{n+1} \phi_j^n}{\Delta t} + c \frac{\phi_j^n \phi_{j-1}^n}{\Delta x} = 0$

 $(t = n\Delta t, x = j\Delta x)$ which can be rewritten: t

$$
\phi_j^{n+1} = (1 - \mu) \phi_j^n + \mu \phi_{j-1}^n = 0 \quad \text{with} \quad \mu = \frac{c \Delta t}{\Delta x}
$$

For the rest of this derivation, please see equations 2.18 through 2.22 in Durran, D. *Numerical Methods for Wave Equations in Geophysical Fluid Dynamics*. Springer, 1998. ISBN: 9780387983769.

Evaluation of the Stability of a FD Scheme Energy Method Example

For the rest of this derivation, please see equations 2.18 through 2.22 in Durran, D. *Numerical Methods for Wave Equations in Geophysical Fluid Dynamics*. Springer, 1998. ISBN: 9780387983769.

Von Neumann Stability

- Widely used procedure
- Assumes initial error can be represented as a Fourier Series and considers growth or decay of these errors
- In theoretical sense, applies only to periodic BC problems and to linear problems

– Superposition of Fourier modes can then be used

• Again, use,
$$
f(x,t) = \sum_{k=-\infty}^{\infty} f_k(t) e^{ikx}
$$
 but for the error: $\varepsilon(x,t) = \sum_{\beta=-\infty}^{\infty} \varepsilon_{\beta}(t) e^{i\beta x}$

• Being interested in error growth/decay, consider only one mode:

 $\varepsilon_{\beta}(t) e^{i\beta x} \approx e^{\gamma t} e^{i\beta x}$ $\approx e^{\gamma t} e^{i \beta x}$ where γ is in general complex and function of β : $\gamma = \gamma(\beta)$

^t • Strict Stability: for the error not to grow in time,

 $-$ in other words, for $t=n\Delta t$, the condition for strict stability can be written:

 $|e^{\gamma \Delta t}| \leq 1$ or for $\xi = e^{\gamma \Delta t}$, $|\xi| \leq 1$ von Neumann condition

Norm of amplification factor ξ smaller than 1

 $|e^{\gamma t}| \leq 1 \quad \forall \gamma$

Evaluation of the Stability of a FD Scheme Von Neumann Example

- Consider again: $\frac{\partial^2 \mathbf{r}}{\partial t} + c \frac{\partial^2 \mathbf{r}}{\partial x} = 0$
- $\frac{\partial \phi}{\partial t} +$ $\frac{\partial \phi}{\partial t}+c\frac{\partial \phi}{\partial x}=$
- A possible FD formula ("upwind" scheme) $\frac{\phi_j^{n+1} \phi_j^n}{\Delta t} + c \frac{\phi_j^n \phi_{j-1}^n}{\Delta x} = 0$
	- $(t = n\Delta t, x = j\Delta x)$ which can be rewritten:

$$
\phi_j^{n+1} = (1 - \mu) \phi_j^n + \mu \phi_{j-1}^n \quad \text{with} \quad \mu = \frac{c \Delta t}{\Delta x} \qquad \qquad \sum_{j=1}^n \phi_j^n
$$

• Consider the Fourier error decomposition (one mode) and discretize it:

$$
\varepsilon(x,t) = \varepsilon_{\beta}(t) e^{i\beta x} = e^{\gamma t} e^{i\beta x} \Longrightarrow \varepsilon_{j}^{n} = e^{\gamma n \Delta t} e^{i\beta j \Delta x}
$$

• Insert it in the FD scheme, assuming the error mode satisfies the FD:

$$
\varepsilon_j^{n+1} = (1 - \mu) \varepsilon_j^n + \mu \varepsilon_{j-1}^n \implies e^{\gamma (n+1)\Delta t} e^{i\beta j\Delta x} = (1 - \mu) e^{\gamma n\Delta t} e^{i\beta j\Delta x} + \mu e^{\gamma n\Delta t} e^{i\beta (j-1)\Delta x}
$$

• Cancel the common term (which is $\varepsilon_j^n = e^{\gamma n \Delta t} e^{i \beta j \Delta x}$) and obtain:

$$
e^{\gamma \Delta t} = (1 - \mu) + \mu e^{-i \beta \Delta x}
$$

n+1

Evaluation of the Stability of a FD Scheme von Neumann Example

• The magnitude of $\xi = e^{\gamma \Delta t}$ is then obtained by multiplying ξ with its complex conjugate:

$$
|\xi|^2 = ((1 - \mu) + \mu e^{-i\beta \Delta x})(1 - \mu) + \mu e^{i\beta \Delta x} = 1 - 2\mu(1 - \mu)\left(1 - \frac{e^{i\beta \Delta x} + e^{-i\beta \Delta x}}{2}\right)
$$

Since
$$
\frac{e^{i\beta \Delta x} + e^{-i\beta \Delta x}}{2} = \cos(\beta \Delta x) \text{ and } 1 - \cos(\beta \Delta x) = 2\sin^2(\frac{\beta \Delta x}{2}) \implies \frac{|\xi|^2}{2} = 1 - 2\mu(1 - \mu)(1 - \cos(\beta \Delta x)) = 1 - 4\mu(1 - \mu)\sin^2(\frac{\beta \Delta x}{2})
$$

• Thus, the strict von Neumann stability criterion gives

$$
|\xi| \le 1 \quad \Leftrightarrow \quad \left| 1 - 4\mu (1 - \mu) \sin^2 \left(\frac{\beta \Delta x}{2} \right) \right| \le 1
$$
\nSince $\sin^2 \left(\frac{\beta \Delta x}{2} \right) \ge 0 \quad \forall \beta \quad \left(\left(1 - \cos \left(\beta \Delta x \right) \right) \ge 0 \quad \forall \beta \right)$

we obtain the same result as for the energy method:

$$
|\xi| \le 1 \iff \mu(1-\mu) \ge 0 \iff 0 \le \frac{c \Delta t}{\Delta x} \le 1 \qquad (\mu = \frac{c \Delta t}{\Delta x})
$$

Equivalent to the CFL condition

Partial Differential Equations (from Lecture 12) Hyperbolic PDE: B² - 4 A C > 0

Examples:

- Sommerfeld Wave/radiation equation,

1st order
	-

Steady (linearized) inviscid convection

- Allows non-smooth solutions
- Information travels along characteristics, e.g.:

 $-$ For (3) above: $\frac{d\mathbf{x}_c}{dt}$ = U($\mathbf{x}_c(t)$)

 $-$ For (4), along streamlines: $\frac{d\, \mathbf{x}_{\text{c}}}{d s}$ = U

- Domain of dependence of $\mathbf{u}(\mathbf{x},T) =$ "characteristic path"
	- e.g., for (3), it is: **x**
- Finite Differences, Finite Volumes and Finite Elements x, y x, y

Partial Differential Equations (from Lecture 12) Hyperbolic PDE

Waves on a String

Typically Initial Value Problems in Time, Boundary Value Problems in Space Time-Marching Solutions: Explicit Schemes Generally Stable

2.29 Numerical Fluid Mechanics Fall 2011

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.