
  

  

2.29 Numerical Fluid Mechanics
	
Fall 2011 – Lecture 15
	

REVIEW Lecture 14: 
• Finite Difference: Boundary conditions 

– Different approx. at and near the boundary => impacts linear system to be solved
	

• Finite-Differences on Non-Uniform Grids and Uniform Errors: 1-D 
– If non-uniform grid is refined, error due to the 1st order term decreases faster than 

that of 2nd order term 
– Convergence becomes asymptotically 2nd order (1st order term cancels) 

• Grid-Refinement and Error estimation 
– Estimation of the order of convergence and of the discretization error 
– Richardson’s extrapolation and Iterative improvements using Roomberg’s algorithm 

• Fourier Analysis of canonical PDE 
n  f  f ikx  d f  ( )t n n– Generic PDE:  ,  with  ( , )  f ( ) e  f ( )   f for    ikf x t  t  k  ik t  ( )t     n k k kt x k  d t  

– Differentiation, definition and smoothness of solution for ≠ order n of spatial 

operators
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Outline for TODAY (Lecture 15): 

FINITE DIFFERENCES, Cont’d
 

• Fourier Analysis and Error Analysis 
• Stability 

– Heuristic Method 
– Energy Method 
– Von Neumann Method (Introduction): 1st order linear convection/wave eqn 

• Hyperbolic PDEs and Stabilty 
– Example: 2nd order wave equation and waves on a string 

• Effective numerical wave numbers and dispersion 
– CFL condition: 

• Definition 
• Examples: 1st order linear convection/wave eqn, 2nd order wave eqn 
• Other FD schemes 

– Von Neumann examples: 1st order linear convection/wave eqn 
– Tables of schemes for 1st order linear convection/wave eqn 
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References and Reading Assignments
	

• Lapidus and Pinder, 1982: Numerical solutions of PDEs in 
Science and Engineering. Section 4.5 on “Stability”. 

• Chapter 3 on “Finite Difference Methods” of “J. H. Ferziger
and M. Peric, Computational Methods for Fluid Dynamics. 
Springer, NY, 3rd edition, 2002” 

• Chapter 3 on “Finite Difference Approximations” of “H. Lomax, 

T. H. Pulliam, D.W. Zingg, Fundamentals of Computational
Fluid Dynamics (Scientific Computation). Springer, 2003” 

• Chapter 29 and 30 on “Finite Difference: Elliptic and Parabolic 
equations” of “Chapra and Canale, Numerical Methods for 
Engineers, 2010/2006.” 
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Fourier Error Analysis: 1st derivatives 
 

• In the decomposition: f ( , )  x t    fk ( )  t eikx  

k  

– All components are of the form: fk ( )t eikx 
  

 f t( )  eikx 
  
k i kx  i kx  – Exact 1st order spatial derivative: 
 x 

 fk ( )t ik e   fk ( )t ik  e   
– However, if we apply the centered finite-difference (2nd order accurate): 

  f  f j1  f j1  
 x  j 2x 

ikx  ( j x ) i k  x  ( j  x ) i kx i kx  i kx  ji k  x    e  e  e e  e  e sin(kx) i kx  i kx     i e  i k  e  
j 

eff 
j 

 x  j 2x 2x x
 

sin(  )
k xwhere   keff        (uniform grid resolution x)
x 

– keff = effective wavenumber
	
sin(k x ) k 3x2
 

– For low wavenumbers (smooth functions): k    eff k ...
x 6 

• Shows the 2nd order nature of center-difference approx. (here, of k by keff) 
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Fourier Error Analysis, Cont’d: 

Effective Wave numbers
	

  eikx  • Different approximations    have different effective wavenumbers 
  x  j 

sin(k x ) k x– CDS, 2nd order: k  k 
3 2 

 ... eff x 6 
sin(k x)– CDS, 4th order:  

   kx)k 4 cos(  eff 3x 
3 sin(  kx)– Pade scheme, 4th order: i k   

i
 
eff 2 cos(   )x
 k x  

kmax Δx Note that keff is bounded: 0  k  keff max 

kmax  
x 
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Fourier Error Analysis, Cont’d
	
Effective Wave Speeds
	

  eikx  Different approximations  
          also lead to different effective wave speeds: 
  x  j 

 f  f• Consider linear convection equations:  c  0 
  


t x 

– , )  
 

For the exact solution: f (x  f ( i k t 
k t  0) e x     fk (0) e ik  ( x  c )t  (sin ce i ) k  c      

k  k  
num. i kx 

– For the numerical sol.: if f  f num . ( ) i kt x d f
 e  k e ikx  j   f num.   e  t( ) c   f num 

k 
. i k jx  

k   k t( ) c  efi f e k  
dt  x  j 

which we can solve exactly (our interest here is only error due to spatial approx.) 
 f num .

k t ( )  f ei k  eff c t  
k (0)  ceff 





 

   
 c 
 f numerical ( ,  )  x f (0 ie kt  )  x i k  eff c t   f (0 eik)  ( x  ceff t )

k k 
k  k  

c eff  
  eff k

 eff (defining  
c  k eff  i k  eff  c   i k  c  eff 

– Often, ceff / c < 1 => numerical solution is too slow. 

– Sinc  ce  eff is a function of the effective wavenumber, 

the scheme is dispersive (even though the PDE is not) 
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Evaluation of the Stability of a FD Scheme 
ˆ1  ˆ ˆ ) ˆ Recall:  L ( )   L (         L ( )  Stability:  Const.                 (for linear systems) x x	 x L x 

•		 Heuristic stability: 
–		Stability is defined with reference to an error (e.g. round-off) made in 

the calculation, which is damped (stability) or grows (instability) 
–		Heuristic Procedure: Try it out 

• Introduce an isolated error and observed how the error behaves
	

• Requires an exhaustive search to ensure full stability, hence mainly 
informational approach 

•		 Energy Method 
–		Basic idea: 

n• Find a quantity,  L2 norm e.g.  j 
2 

j 

• Shows that it remains bounded for all n 

–		Less used than Von Neumann method, but can be applied to 
nonlinear equations and to non-periodic BCs 

•		 Von Neumann method (Fourier Analysis method) 
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Evaluation of the Stability of a FD Scheme
	
Energy Method Example
	

• Consider again: 0c 
t x 
 
 

 
 

  n1 n n n   j j j j1• A possible FD formula (“upwind” scheme for c>0):  c  0
t x 

(t = nΔt, x = jΔx) which can be rewritten: t 

1 
1(1 ) 0 with n n n 

j j j 
c t 

x 
          


         

 x 

For the rest of this derivation, please see equations 2.18 through 2.22 in 
Durran, D. Numerical Methods for Wave Equations in Geophysical Fluid 
Dynamics. Springer, 1998. ISBN: 9780387983769. 
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Evaluation of the Stability of a FD Scheme
	
Energy Method Example
	

For the rest of this derivation, please see equations 2.18 through 2.22 in 
Durran, D. Numerical Methods for Wave Equations in Geophysical Fluid 
Dynamics. Springer, 1998. ISBN: 9780387983769. 
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Von Neumann Stability 
• Widely used procedure 
• Assumes initial error can be represented as a Fourier Series and 

considers growth or decay of these errors 
• In theoretical sense, applies only to periodic BC problems and to 

linear problems 
– Superposition of Fourier modes can then be used 

 

 x t t • Again, use,  f ( , )  x t    fk ( )  t eikx  but for the error: ( , )     ( )  ei x  

k    

• Being interested in error growth/decay, consider only one mode: 
i x  t i x
      ( ) ( ) t e   e e where    is in general complex and function of :    

 te  1 • Strict Stability: for the error not to grow in time,   

– in other words, for t = nΔt, the condition for strict stability can be written:   
t te  1 or for   e ,   1 von Neumann condition 

Norm of amplification factor ξ smaller than 1 
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Evaluation of the Stability of a FD Scheme
	
Von Neumann Example
	

(t = nΔt, x = jΔx) which can be rewritten: 
1 

1(1 ) with   n n n 
j j j 

c t  
x 

          
 


       

 jj-1 
n 

n+1 

• Consider again: 0c 
t x 
 
 

 


  
n1 n n n   j j j j1• A possible FD formula (“upwind” scheme)  c  0
t x 

• Consider the Fourier error decomposition (one mode) and discretize it:
	
i x  t i x n n i jx   t( , )    ( )  e  e e   j  e e x t  t  

• Insert it in the FD scheme, assuming the error mode satisfies the FD:
	
n1 n n  (n1)  t i jx  nt i jx  nt i ( j1)  x 
j (1    ) j     j1  e e    ) e e   e    (1  e 

n  nt i jx• Cancel the common term (which is  j  e e                      ) and obtain: 
 t i x(1 )   ee    
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Evaluation of the Stability of a FD Scheme
	
von Neumann Example
	

t• The magnitude of    e is then obtained by multiplying ξ with its 
complex conjugate: 

i x i x 
2 i x i x  e  e 

  (1  )   e    (1  )   e   1  2 (1  ) 1  2  
i x i xe  e 2  xSince  cos(  x) and 1 cos(  x)  2sin ( )  

2 2
 
2  x    2 (1     cos(  )    (1  )sin ( )1  ) 1  x 1 4 2 

2 

• Thus, the strict von Neumann stability criterion gives 
2  x  1  1  4 (1   )sin (  )   1 

2 
2  xSince sin ( )  0   1  cos(  x)  0  

2 
we obtain the same result as for the energy method: 

1  (1  )  0  0  1  (  )c t  c t  
x x 

    
       

  
Equivalent to the 
CFL condition 
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(from Lecture 12)Partial Differential Equations
	
Hyperbolic PDE: B2 - 4 A C > 0
	

Examples: 2u 2 
2u Wave equation, 2nd order(1)  c 

t2 x2
 

u u
 Sommerfeld Wave/radiation equation, (2)  c  0 
t x 1st order 
u Unsteady (linearized) inviscid convection(3)	  (U   ) u  g
t (Wave equation first order) 

(4) (U ) u  g Steady (linearized) inviscid convection 

• Allows non-smooth solutions 
t 

• Information travels along characteristics, e.g.: 
c– For (3) above: d x 
 ( ( ))  U xc t

dt 
d xc– For (4), along streamlines:  U
ds 

• Domain of dependence of u(x,T) = “characteristic path” 
• e.g., for (3), it is:  xc(t) for 0< t < T 0 x, y

• Finite Differences, Finite Volumes and Finite Elements 
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(from Lecture 12)Partial Differential Equations
	
Hyperbolic PDE
	

Waves on a String 
2 2 t ( , )  2  (  , )  u x t  u x t  

2  c 2 0  x  L, 0  t    
t x 

Initial Conditions 

Boundary Conditions u0,t) uL,t) 

Wave Solutions 

u(x,0), ut(x,0) x 

Typically Initial Value Problems in Time, Boundary Value Problems in Space
 
Time-Marching Solutions: Explicit Schemes Generally Stable 
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