
  

2.29 Numerical Fluid Mechanics
	
Fall 2011 – Lecture 18
	

REVIEW Lecture 17: 
• Stability (Heuristic, Energy and von Neumann) 
• Hyperbolic PDEs and Stability, CFL condition, Examples 
• Elliptic PDEs 

– FD schemes: direct and iterative 
– Iterative schemes, 2D: Laplace, Poisson and Helmholtz equations 
– Boundary conditions, Examples 
– Higher order finite differences 
– Irregular boundaries: Dirichlet and von Neumann BCs 
– Internal boundaries 

• Parabolic PDEs and Stability 
– Explicit schemes 

• Von Neumann 
– Implicit schemes: simple and Crank-Nicholson 

• Von Neumann 
– Examples 
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2.29 Numerical Fluid Mechanics
	
Fall 2011 – Lecture 18
	

REVIEW Lecture 17, Cont’d: 
• Parabolic PDEs and Stability, Cont’d 

– Explicit schemes (1D-space) 
• Von Neumann 

– Implicit schemes (1D-space): simple and Crank-Nicholson 
• Von Neumann 

– Examples 
– Extensions to 2D and 3D 

• Explicit and Implicit schemes 

• Alternating-Direction Implicit (ADI) schemes 
d    dV  v n dA    ( . )    q .n dA   s dV Finite Volume Methods    

 
CV CS CS CVdt fixed     fixed 

Advective fluxes Other transports (diffusion, etc) 
Sum of sources and 
sinks terms (reactions, etc) • Integral and conservative forms of the cons. laws 

 .(v)     . q  s• Introduction t 
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TODAY (Lecture 18): 

FINITE VOLUME METHODS
 

• Introduction to FV Methods 
• Approximations needed and basic elements of a FV scheme 

– FV  grids  
– Approximation of surface integrals (leading to symbolic formulas)
	
– Approximation of volume integrals (leading to symbolic formulas)
	

• Summary: Steps to step-up FV scheme 
• Examples: One Dimensional examples 

– Generic equations 
– Linear Convection (Sommerfeld eqn.): convective fluxes 

• 2nd order in space, 4th order in space, links to CDS 

– Unsteady Diffusion equation: diffusive fluxes 
• Two approaches for 2nd order in space, links to CDS 
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References and Reading Assignments
	

• Chapter 29.4 on “The control-Volume approach for Elliptic 
equations” of “Chapra and Canale, Numerical Methods for 
Engineers, 2010/2006.” 

• Chapter 4 on “Finite Volume Methods” of “J. H. Ferziger and 

M. Peric, Computational Methods for Fluid Dynamics. 

Springer, NY, 3rd edition, 2002”
	

• Chapter 5 on “Finite Volume Methods” of “H. Lomax, T. H. 
Pulliam, D.W. Zingg, Fundamentals of Computational Fluid 
Dynamics (Scientific Computation). Springer, 2003” 

• Chapter 5.6 on “Finite-Volume Methods” of T. Cebeci, J. P. 
Shao, F. Kafyeke and E. Laurendeau, Computational Fluid 
Dynamics for Engineers. Springer, 2005. 
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FINITE VOLUME METHODS: Introduction
	

integral forms of the conservation equations: 

•		 Finite Difference Methods are based on a discretization of the 
differential form of the conservation equations 

•		 Finite Volume Methods are based on a discretization of the 

d	     ( . )    q .n dA  s dVdV  v n dA  	  
 

CV CS	 CS CVdt	      Advective (convective) fluxes Other transports (diffusion, etc) 
Sum of sources and 
sinks terms (reactions, etc) 

•		 Basic ideas/steps to set-up a FV scheme: 
–		Grid generation (CVs): 

• Divide the simulation domain into a set of discrete control volumes (CVs) 
• For maintenance of conservation, important that CVs don’t overlap
	

–		Discretize the integral/conservation equation on CVs: 
• Satisfy the integral form of the conservation law to some degree of 


approximation for each of the many contiguous control volumes
	

–		Solve the resultant discrete integral/flux equations 
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FV METHODS: Introduction
	

• FV approach has two main advantages:
	
– Ensures that the discretization is conservative, locally and globally 

• Mass, Momentum and Energy are conserved in a discrete sense 
• In general, if discrete equations are summed over all CVs, the global  


conservation equation are retrieved (surface integrals cancel out)
	
• These local/global conservations can be obtained from a Finite Difference (FD) 

formulation, but they are natural/direct for a FV formulation 

– Does not require a coordinate transformation to be applied to irregular 
meshes 

• Can be applied to unstructured meshes (arbitrary polyhedra in 3D or polygons 
in 2D) 

• In our examples, we will work with 
d     ( . )     q .n dA  s dVdV  v n dA V ( )  t S t( )  S t( )  V ( )  tdt 

where V(t) is any discrete control volume. We will assume for now that they 
don’t vary in time: V(t)=V 
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FV METHODS
	
Several Approximations Needed
	

• To integrate discrete CV equation: 
d	     ( . )     q .n dA  s dVdV  v n dA  	  
V S	 S Vdt 

–		A “time-marching method” needs to be used to integrate      dV to 
the next time step(s) V 

d	 ddV dt V dt 

–		Total flux estimate F required at the boundary of each CV 
	  	     F .n dA   (v n dA ) .  q .n dA  	 S S	 S 

e.g. F = advection + diffusion fluxes 

– Total source term (sum of sources) must be integrated over each CV
	

S   s dV  
V 

d • Hence cons. eqn. becomes:   . SF n dA   dt S 

• These needs lead to basic elements of a FV scheme, but we 
need to relate   and  
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FV METHODS
	
Several Approximations Needed, Cont’d
	

. 
S 

dV  F  n  dA  S
dt 

  

 
  
  

d • “Time-marching method” for CV equation:   .  SF n dA  dt S  

– The average of  over a CV cell,    
1 dV , satisfies
V V 

d d 1(since  dV  (V  dV ) 

)

dt V dt V V 

for V fixed in time. 

– Hence, after discrete time-integration, we would have updated the cell-averaged 
quantities  

•For the total flux estimate F at CV boundary: “Reconstruction” of  from  

– Fluxes are functions of  => to evaluate them, we need to represent  within the cell 

– This can be done by a piece-wise approximation which, when averaged over the 
CV, gives back  

– But, each cell has a different piece-wise approximation => fluxes at boundaries can 
be discontinuous. Two example of remedies: 

• Take the average of these fluxes (this is a non-dissipative scheme, analogous to central 
differences) 
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FV METHODS
	
Basic Elements of FV Scheme
	

1. Given  for each CV, construct an approximation to  (x, y, z) 
in each CV and evaluate fluxes F 

–		 Find  at the boundary using this approximation, evaluate fluxes F 

–		 This generally leads to two distinct values of the flux for each 
boundary 

2. Apply some strategy to resolve the flux discontinuity at the 
CV boundary to produce a single F over the whole 
boundary 

  
 .3. Integrate the flux F to obtain S

F n dA  : 

4. Compute S by integration over each CV:  

Surface Integrals 

Volume Integrals 

5. Advance the solution in time to obtain the new values of  
d V  F .n  dA   S	  Time-Marchingdt S 
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Different Types of FV Grids
	

• Usual approach (used here): 
– Define CVs by a suitable grid Node Centered 
– Assign computational node to CV center 

– Advantages: nodal values will represent the 

mean over the CV at high(er) accuracy 

(second order) since node is centroid of CV
	

• Other approach: 
– Define nodal locations first 

CV-Faces Centered
 

– Construct CVs around them (so that CV 
faces lie midway between nodes 

– Advantage: CDS approximations of 
derivatives (fluxes) at boundaries are more
accurate (faces are midway between two 
nodes) 
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Different Types of FV Grids, Cont’d
	

•Other specialized variants 
– Cell centered vs. Cell vertex 

– Structured: 
• All mesh points lie on 


intersection two/three lines
 

– vs. Unstructured: 
• Meshes formed of triangular or 


quadrilateral cells in 2D, or 

tetrahedra or pyramids in 3D
 

• Cells are identified by their 

numbers (can not be indentified 

by coordinate lines, e.g. i.j)


• Remarks 
– Discretization principles the same for all grid variants 

• => For now, we work with (a): Cell centered ( i,j is the center of the cell, similar to FD) 
• In 3D, a cell has a finite volume (but if unit distance perpendicular to plane is assumed, it behaves as 2D) 

– What changes are the relations between various locations on the grid and accuracies 
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Approximation of Surface Integrals
	

• Typical (cell centered) 2D and 3D 
Cartesian CV (see conventions on 2 figs) 

• Total/Net flux through CV boundary 
–		Is sum of integrals over four (2D) or six 


(3D) faces: 

 

 .	 fF n dA 	  dA  	 
 

  S	 Skk 

– For now, we will consider a single typical CV 

surface, the one labeled ‘e’
 

• To compute surface integral,  is needed 
everywhere on surface, but  only 
known at nodal (CV center) values => 
two successive approximations needed: 
– Integral estimated based on values at one 


or more locations on the cell face
 

– These cell faces values approximated in 
terms of nodal values 
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Approximation of Surface Integrals, Cont’d
	

1D surfaces (2D CV) 
•	 Goal: estimate Fe   f dA  

Se 

• Simplest approximation: 
midpoint rule (2nd order) 
–		 Fe is approximated as a product of


the integrand at cell-face center

(itself approximation of mean value 

over surface) and the cell-face area
	

	   2 F	  f  dA   f S  f S   O(y2 )   f ( )  f ( ye )  f '( ye )  f ''( e 2  ey	 y )  R   y  ye  e e e e 2!S 	 e 

– Since  fe is not available, it has to be 

obtained by interpolation
	

• Has to be computed with 2nd order 

accuracy to preserve accuracy of

midpoint rule
	

e ef S  
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Approximation of Surface Integrals, Cont’d 

• Goal: estimate Fe   f dA  
Se 

• Another 2nd order approximation: 
Trapezoid rule 

– Fe is approximated as: 

( f  f ) 2ne seF  f dA  S  O(y )e  e 
e 
S 2 

– In this case, it is the fluxes at the corners fne and fse that need to be obtained by 
interpolation 

• Have to be computed with 2nd order accuracy to preserve accuracy 

• Higher-order approximation of surface integrals require more than 2

locations
 

( f  4 f  f )– Simpson’s rule (4th order approximation): F  f dA  S ne e se  O(y4 )e  eS 6 – Values needed at 3 locations 
e 

– To keep accuracy of integral: e.g. use cubic polynomials to estimate these values 
from  P’s nearby 

2.29 Numerical Fluid Mechanics PFJL  Lecture 18,  14 
14

yj+1

xi-1 xi xi+1

yj-1

y

j
i

x

yj

NW

WW W

SW S SE

E EE

N NE

∆y

∆x

n
w

s

nw ne
neP

sw se

e

Notation used for a Cartesian 2D and 3D grid. Image by MIT OpenCourseWare.



  

                         

Approximation of Surface Integrals, Cont’d
	
2D surface (for 3D problems)
	

• Goal: estimate F   f dA   for 3D CV e Se 

• Simplest approximation: still the 
midpoint rule (2nd order) 
– Fe is approximated as: 

F  f dA  S f  O(y2 , z2 )e  e eSe 

• Higher-order approximation (require values elsewhere e.g. at vertices) 
possible but more complicated to implement for 3D CV 

• Integration easy if variation of  	fe over 2D surface is assumed to have 
specific easy shape to integrate, e.g. 2D polynomial interpolation, then 
integration 
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Approximation of VOLUME Integrals 

• Goal: estimate S  s dV  
V 

1 
  dV

V V 

• Simplest approximation: product of  	CV 
volume with the mean value of the 
integrand (approximated by the value at 
the center of the node P) 
– SP approximated as: 

S  s  dV   s V  s VP  P PV 

• Exact if sp is constant or linear within CV 

• 2nd order accurate otherwise 

• Higher order approximation require more 
locations than just the center 
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Approximation of VOLUME Integrals 

• Goal: estimate S  V s dV  

1 
  dV

V V 

• Higher order approximations: 
– Requires  

values at other locations than 
P 

– Obtained either by interpolating nodal 

values or by using shape functions/ 

polynomials 


• Consider 2D case (volume integral is a surface integral) using shape functions 
– Bi-quadratic shape function leads to a 4th order approximation (9 coefficients) 

2 2 2 2 2 2( ,  )  a  a x   a y  a x   a y  a xy  a x y  a xy  a x  ys x y 0 1 2 3 4 5 6 7 8 

– 9 coefficients obtained by fitting s(x,y) to 9 node locations (center, corners, middles) 

– For Cartesian grid, this gives: 
 a3 2 a4 2 a8 2 2 SP   s dV     x y a0  x  y  x y V  12 12 144  

Only four coefficients (linear dependences cancel), but they still depend on the 9 nodal values 
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Approximation of VOLUME Integrals, Cont’d
	
2D and 3D
	

• 2D case example, Cont’d 
– For a uniform Cartesian grid, one obtains the 2D integral as a function of the 9 

nodal values: x yS  s  dV   16s  4s  4s  4s  4s  s  s  s  s P  P s n w e se sw ne nw V 36 

– Since only value at node P is available, one must interpolate to obtain values at 
surface locations 

– Has to be at least 4th order accurate interpolation to retain order of integral 
approximation 

• 3D case: 
– Techniques are similar to 2D case: above 4th order approx directly extended 

– For Higher Order 
• Integral approximation formulas are more complex 

• Interpolation of node values are more complex 
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Approx. of Surface/Volume Integrals: 

Classic symbolic formulas
	

• Surface Integrals Fe   f dA  
Se 

– 2D problems (1D surface integrals) 
F  f dA   f S  f S   O(y2 )  f S  e e e• Midpoint rule (2nd order): e  

e 
 e e eS 

( f  f )ne se 2• Trapezoid rule (2nd order): Fe  S
f dA  S 

2 
 O(y )e 

e 

( f  4 f  f )ne e se 4• Simpson’s rule (4th order): F  S
f dA  S 

6 
 O(y )e  e 

e 

– 3D problems (2D surface integrals) 

• Midpoint rule (2nd order): F  f dA   S f   O(y2, z2 )e  e eSe 

• Higher order more complicated to implement in 3D 

S  s dV ,   dV• Volume Integrals:  
1 
 V  V V 

– 2D/3D problems, Midpoint rule (2nd order): S   s  dV   s V  s VP  P PV 

x y– 2D, bi-quadratic (4th order, Cartesian): S  
36 
 16s  4s  4s  4s  4s  s  s  s  s P P  s  n  w  e se  sw  ne  nw  
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Summary: 3 basic steps to set-up a FV scheme
	

• Grid generation (“create CVs”) 

• Discretize integral/conservation equation on CVs 
d F n dA    – This integral eqn. is:   . Sdt S 

d – Which becomes for V fixed in time:            V  F  .n  dA   Sdt S
 

where    
1 
 dV and S   s  dV 
  

V  V V 

– This implies: 
• The discrete state variables are the averaged values over each cell (CV): P ' s  

• Need rules to compute surface/volume integrals as a function of  within CV 
• Evaluate integrals as a function of e values at points on and near CV. 

• Need to interpolate to obtain these e values on and near CV from averaged P ' s            of nearby CVs 

• Other approach: impose piece-wise function  within CV, ensures that it satisfies P ' s 
constraints, then evaluate integrals (surface and volume) 

• Select scheme to resolve/address discontinuities 

• Solve resultant discrete integral/flux eqns: (Linear) algebraic system for P ' s  
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One-Dimensional Examples: Generic 1D FV
	

 

j-1/2 j+1/2
∆ x

• Grid generation (fixed CVs) j-2 j-1 j j+1 j+2

L   R L   R

– Consider equispaced grid: x x x
j = jΔ

Image by MIT OpenCourseWare.

– Control volume j extends from  xj - Δx/2 to  xj +Δx/2 

– Boundary values are: j 1/ 2  (x j1/ 2 ) 

– Boundary total fluxes (convective+diffusive) are: f j1/ 2  f ( j 1/ 2 ) 

– Average cell and source values: 
1 1 x 


x 

 j ( )      
j 1/2 ,  )   

  t  d  (  V  d j 1/ 2 

V x j ( )   S t   x  t   
x  s  d 

j V    (  s  ,  x  )  t  dx  
V x j  1/2 V x j  1/ 2 

• Discretize generic integral/conservation equation on CVs
	

– The  integral  form         d         
 V     F   .             S      d   A  

S 
  becn  omes: 

dt 

d  x j     x
 

j 

j 1/ 2  
 1/ 2 

dt  j  1/ 2  f   f   ( ,  )  s  dx  t  x  
x j  1/ 2 
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One-Dimensional Examples, Cont’d
	
Note: Cell-average vs. Center value
	

 

• With  ξ= x – xj and a Taylor series expansion 

1 j 1/2 
 j ( )t  

x 
(x t  dx  , )  

xx j 1/2 

2 2 1 x /2     
   j    R2  d 

x /2x x 2 x2 
j j 
 

x2 2 4
 

 

   ( )    O xj 224 x j 

  j ( )t   j  O(x2 ) 

• Thus: cell-average value and center value differ only by 
second order term 
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One-Dimensional Example I
	
Linear Convection (Sommerfeld) Eqn:
	

• With convection only, our generic 1D eqn. 

( ,  )  ( ,  )  0x t  x t  c 
t x 

  
  

  

d    x j  x j1/ 2 s x t  dx   f j1/ 2  f j1/ 2    ( , )  
xdt j1/ 2 

becomes: 

– 

( )   jx  

– 

R 
j1/ 2 f ( j1/ 2 )  c j1 

L L R Rf j1/ 2  f ( j1/ 2 )  c j1 f j1/ 2  f ( j1/ 2 )  c j 

• Compute surface/volume integrals as a function of  within CV 
Here impose/choose first piecewise-constant approximation to  (x): 

This gives simple flux terms. The only issue is that they differ depending 
on the cell from which the flux is computed: 

  
1/ 2 1/ 2 0j 

j j 

d x 
f f

dt   

   
   

1/ 2 j 1/ 2 jx x x  

L L 
jf R 

1/ 2 (f 1/ 2 )j jc   f  
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One-Dimensional Example I
	
Linear Convection (Sommerfeld) Eqn, Cont’d
	

• Now, we have obtained the fluxes at the CV boundaries in terms 
of the CV-averaged values 

• We need to resolve the flux discontinuity => average values of 
the fluxes on either side, leading the (2nd order) estimates: 

L R L Rf  f c  c f  f c  cˆ j1/ 2 j1/ 2 j1 j ˆ j1/ 2 j1/ 2 j j1f   f  j1/ 2 j1/ 2 2 2 2 2 
• Substitute into integral equation 

d x d x  d x   c   c    j  ˆ ˆ   c   j c jj j j 1 j1 f  f   f  f   j1/ 2 j1/ 2 j1/ 2 j1/ 2 dt dt dt 2 2 
d c  cj j1 j1 x   0
dt 2 

• With periodic BCs, storing all cell-averaged values into a vector Φ 

d Φ c
 B P ( 1,0,1)  Φ  0 (where BP is a circulant tri-diagonal matrix, P for periodic) dt 2x 
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One-Dimensional Example I
	
Linear Convection (Sommerfeld) Eqn, Cont’d
	

• The resultant linear algebraic system is circulant tri-diagonal (for 
periodic BCs) 

d Φ c 
P ( 1,0,1)  Φ  0 B 

dt 2x 

• This is as the 2nd order CDS!, except that it is written in terms of 
cell averaged values instead of center values 
– It is also 2nd order in space 

– Has same properties as classic CDS: 
• Non-dissipative (check Fourier analysis or eigenvalues of BP which are 

imaginary), but can provide oscillatory errors 

• Stability (recall tables for FD schemes, linear convection eqn.) of time-marching 
c t  – If centered in time, centered in space, explicit: stable with CFL condition: 
x 

 1 

 – If implicit in time: unconditionally stable for all t x,
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