
  

2.29 Numerical Fluid Mechanics
	
Fall 2011 – Lecture 19
	

REVIEW Lecture 18: 
• Finite Volume Methods 

– Integral and conservative forms of the cons. laws 
– Introduction 
– Approximations needed and basic elements of a FV scheme 

• Time-Marching and Grid generation 
• FV grids: Cell centered (Nodes or CV-faces) vs. Cell vertex;  Structured vs. Unstructured 

• Approximation of surface integrals (leading to symbolic formulas) 
• Approximation of volume integrals  (leading to symbolic formulas) 
• Summary: Steps to step-up a FV scheme 

– One Dimensional examples 
 x j  x j1/ 2 • Generic equation: d   

 f j1/ 2  f j1/ 2   s ( , )  x t  dx  
xdt j1/ 2 

• Linear Convection (Sommerfeld eqn): convective fluxes
	

– 2nd order in space
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Summary: 3 basic steps to set-up a FV scheme
	

• Grid generation (CVs) 

• Discretize integral/conservation equation on CVs 
d F n dA    – This integral is:    . S

dt S 
d – Which becomes for V fixed in time:            V  F  .n  dA   Sdt S
 

where    
1 dV and S   s dV 
  
V  V V t( )

– This implies: 
• The discrete state variables are the averaged values over each cell (CV):  P ' s  

• Need rules to compute surface/volume integrals as a function of  within CV 
• Evaluate integrals as a function of e values at points on and near CV. 

• Need to interpolate to obtain these e values on and near CV from averaged  P ' s            of nearby CVs 

• Other approach: impose piece-wise function  within CV, ensures that it satisfies  P ' s 
constraints, then evaluate integrals (surface and volume) 

• Select scheme to resolve/address discontinuities 

• Solve resultant discrete integral/flux eqns: (Linear) algebraic system for  P ' s  
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FV METHODS
	
Basic Elements of FV Scheme
	

1. Given  for each CV, construct an approximation to  (x, y, z) 
in each CV and evaluate fluxes F 

–		 Find  at the boundary using this approximation, evaluate fluxes F 

–		 This generally leads to two distinct values of the flux for each 
boundary 

2. Apply some strategy to resolve the flux discontinuity at the 
CV boundary to produce a single F over the whole 
boundary 

  
 .3. Integrate the flux F to obtain S F n dA  : 

4. Compute S by integration over each CV:  

Surface Integrals 

Volume Integrals 

5. Advance the solution in time to obtain the new values of  
d V  F .n  dA   S	  Time-Marchingdt S 
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TODAY (Lecture 19): 

FINITE VOLUME METHODS
 

• Summary: Steps to step-up a FV scheme 
• Examples: One Dimensional examples 

– Generic equations 
– Linear Convection (Sommerfeld eqn): convective fluxes 

• 2nd order in space, 4th order in space, links to CDS 

– Unsteady Diffusion equation: diffusive fluxes 
• Two approaches for 2nd order in space, links to CDS 

• Approximation of surface integrals and volume integrals revisited 
• Interpolations and differentiations 

– Upwind interpolation (UDS) 
– Linear Interpolation (CDS) 
– Quadratic Upwind interpolation (QUICK) 
– Higher order (interpolation) schemes 

• Time-Marching Methods: Euler’s methods 
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References and Reading Assignments
	

• Chapter 29.4 on “The control-Volume approach for Elliptic 
equations” of “Chapra and Canale, Numerical Methods for 
Engineers, 2010/2006.” 

• Chapter 4 on “Finite Volume Methods” of “J. H. Ferziger and 

M. Peric, Computational Methods for Fluid Dynamics. 

Springer, NY, 3rd edition, 2002”
	

• Chapter 5 on “Finite Volume Methods” of “H. Lomax, T. H. 
Pulliam, D.W. Zingg, Fundamentals of Computational Fluid 
Dynamics (Scientific Computation). Springer, 2003” 

• Chapter 5.6 on “Finite-Volume Methods” of T. Cebeci, J. P. 
Shao, F. Kafyeke and E. Laurendeau, Computational Fluid 
Dynamics for Engineers. Springer, 2005. 
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One-Dimensional Example II
	
Linear Convection (Sommerfeld) Eqn: 4th order approx.
	

• 1D exact integral equation still 
 d  x j   f  f  0j1/ 2 j1/ 2 dt 

• Us  e  4th order accurate surface/volume integrals 
Image by MIT OpenCourseWare.

– Replace piecewise-constant approx. to  (x) with piece-wise quadratic 
approx (ξ= x – x 2 

j ):    ( )  a  b  c 

– Satisfy   P  ' s     (average) constraints, i.e. choose a, b, c so that: 
1 x / 2  1 
 d 

x
 ( )     , 

  / 2  1 3x 2  
  j 1 d

/
  ( )   

 
     ,  d( )    

x j j13 x    / 2  x  x   / 2  x x / 2  

– This gives: 
j 1  2 j  j 1 j 1  j 

a b     
  ,   1 , c  j1 j j 126

2x 2 2x 24  

– We still need to evaluate the values of  (x) at the boundaries so as to 

compute the advective fluxes at these boundaries: f L f R L R

j1/ 2 , j1/ 2 , f j1/ 2 , f j1/ 2 
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One-Dimensional Example II
	
Linear Convection (Sommerfeld) Eqn: 4th order approx.
	

• Since f = c  compute  at surfaces:
	
   2 2  5    5 L j j1 j2 L j1 j j1  ,   ,j1/ 2 j1/ 2 6 6 
   5  2   5  2 R j1 j j1 R j2 j1 j  ,  j1/ 2 j1/ 2 6 6 

• Resolve flux discontinuity  again, use average values 
L R L R L R L Rf  f c  c f  f c  cˆ j1/ 2  j1/ 2  j1/ 2  j1/ 2  ˆ j1/ 2 j1/ 2 j1/ 2 j1/ 2 f   f  j1/ 2 j1/ 2 2 2 2 2 
  7  7    7  7    ˆ j1 j j1 j2 ˆ j2 j1 j j1 f  c  f  cj1/ 2 j1/ 2 12 12 

• Done with integrals  we can substitute in 1D conv. eqn: 
 x j  x  j     8   d    d  ˆ ˆ d j  j2 8 j1 j1  j2 f  f   f  f    x  c  0j1/ 2 j1/ 2 j1/ 2 j1/ 2 dt dt dt 12 

• For periodic domains: d Φ c ( 1,  8,0,8,1)  Φ  0 B  
dt 2x P 
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(from Lecture 12) 

Centered 
Differences 
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2 

2 

( ,  )  ( ,  )  x t  x  t  

t x 
  

 
  

One-Dimensional Example III
	
2nd order approx. of diffusion equation:
	

• 1D exact integral equation same form! 
  

1/ 2 1/ 2 0j 
j j 

d x 
f f

dt   

   
   

but with: f           
x
 

• Approximation of surface (flux) integral: Approach 1
	

  O x  

      
– Direct: we know that to second-order (since   j  j  ( 2 ) and CDS) 

 j1 j 2 ˆ j1 j ˆ j  j1
f     O(x )  f j1/ 2      and    f j1/ 2  j1/ 2 x
 x x x
j1/ 2 

– Substitute into integral equation: 
d x   d    2   j ˆ ˆ j j1 j j1
 f  f    x   0j1/ 2 j1/ 2 dt dt x
 

– In the matrix form, with Dirichlet BCs: 
• Semi-discrete FV scheme is as CDS in space, 

but in terms of cell-averaged data 
2 (1, 2,1) ( )d 

dt x 


   
 

Φ B Φ bc 
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2( )  a b c        

One-Dimensional Example III
	
2nd order approx. of diffusion equation:
	

2 

2 

( ,  )  ( ,  )  x t 
t x 

 x  t   


 
  

• Approximation of surface (flux) integral: Approach 2 
 

   2a  b– Use a piece-wise quadratic approx.: 
x  

• Note that a, b, c remain as before, they are set by the volume average constraints 

• Since a, b are symmetric: R L   j1  j 2f  f           ( ) O xj1/ 2 j1/ 2 x xj1/ 2 

  j j1 2f R  f L         ( )  O xj1/ 2 j1/ 2 x xj1/ 2 

• There are no flux discontinuities in this case 

– Substitute into integral equation: 
d x  j  d  j  j1  2 j  j1ˆ ˆ f  f    x   0j1/ 2 j1/ 2 dt dt x 

– In the matrix form, with Dirichlet BCs: 
• Semi-discrete FV scheme is as CDS in space,
	

but in terms of cell-averaged data
	
2 (1, 2,1) ( )d 

dt x 


  

Φ B Φ bc 
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Expressing fluxes at the surface based on cell-averaged (nodal)
	
values: Summary of Two Approaches and Boundary Conditions
	

• Set-up of surface/volume integrals: 2 approaches (do things in opposite order)
	
1. (i) Evaluate integrals using classic rules (symbolic evaluation); (ii) Then, to obtain 

the unknown symbolic values, interpolate based on cell-averaged (nodal) values 
( )   f  dA   F  G ( )  i F  e  e e 

e 
 S  F  F ( ' )   e P s Similar for other integrals: 

ii ( ) e  H ( P ' s)  H (P ' s)  (S  s dV ,   
1 dV , etc ) V V V 

2. (i) Select shape of solution within CV (piecewise approximation); (ii) impose 
volume constraints to express coefficients in terms of nodal values; and (iii) then 
integrate. (this approach was used in the examples). 

( )  ( )  x  J ( ) i a a x 
i i   ( )   ( )  Similar for higher dimensions:  a x x( )  a ( )  x P  

i  ii   
i 

P 

 F  F ( ' )   s 
P  ( ,  )   J a x y  ; etc  V  e P x y  ( ,  )

i 
( )  f dA   ( ,  )  x y    ;iii F e   ai P P P etc  

 S P e 

• Boundary conditions: 
– Directly imposed for convective fluxes 

– One-side differences for diffusive fluxes 
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Approach 1: Evaluate integrals symbolically, then 

interpolate based on neighboring cell-averages
	

•		 Surface/Volume integrals: Approach 1 
(i)		 Evaluate integrals based on classic rules (symbolic evaluation)    
(ii)		 Then, to obtain the unknown symbolic values, interpolate based on 


neighboring cell-averaged (nodal) values
	

•		 If we utilize the first approach 
– Symbolic evaluation: 

• To evaluate total surface fluxes (convective + diffusive), 
	 	   F  .n dA   (v n dA ) .	  q .n dA  	 S S	 S 

values of  and its gradient normal to the cell face at one or more locations on 

that face are needed. They have to be expressed as a function of nodal values.
	

• Similar for volume integrals 

– Next is interpolation: 
• Express the ’s as a function of nodal values. Numerous possibilities. Only most 

common mentioned next. 
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Approx. of Surface/Volume Integrals: 
Classic symbolic formulas
	




• Surface Integrals Fe   f dA  
Se 

– 2D problems (1D surface integrals) 

• Midpoint rule (2nd order): Fe     f dA  f eS e  ef e S   O(y2 )  ef eS  
S e

( f ne 
 f 

• Trapezoid rule (2nd order): F  f dA  S se )  2e  e  O(y )
Se 2 

( f  4 f  f )• Simpson’s rule (4th order): Fe   f dA  S ne e se 
e  O(y 4 )

Se 6 
– 3D problems (2D surface integrals) 

• Midpoint rule (2nd order): Fe   
 f dA   S f   O(y2, z2
 e e )

Se 

• Higher order more complicated to implement in 3D 

• Volume Integrals: 
– 2D/3D problems, Midpoint rule (2nd order): S P    s  sd PV V   sP V

V 

– 2D, bi-quadratic (4  x yth order, Cartesian): S P  16s  P 4s   s 4s   n 4s   w 4s  s  s  s  s 
36  e se  sw  ne  nw
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Notation used for a Cartesian 2D and 3D grid.   
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Interpolations and Differentiations
	
(to obtain fluxes “Fe ” as a function of cell-average values)
	

• Upwind Interpolation (UDS) for convective fluxes 

– Approximates e by its value at the node upstream of
“e”. This is equivalent to using backward or forward-

difference approx for a first derivative (depends on 

direction of flow) => Upwind Differencing Scheme, 

which is also called or Donor-cell. 

  
 if 

                                                                                                                                                 
P    . v n  0


                                                                                                                                                 

e  
e

                                                                                                                                                     
  

 


 if  v n.   0 E e 

– This approximation never yields oscillatory solutions (boundedness criterion), but it 

is numerically diffusive:
	

 (x  x )2  2 
• Taylor expansion about  x e P   P:   (x  x ) e P

e P   R
 x P 2  x 2 2

P 

• UDS retains only first term: 1st order scheme in space 

ˆ         f e  e    .   v  P n   .  v n   x  e e   .   x v n  ... e  x P 

• Leading truncation error is “diffusive”, it has the form of a diffusive flux 
 

• The numerical diff    . v n  eusion is                 x     (has 2 components when flow is oblique to the grid) 
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Interpolations and Differentiations
	
(to obtain fluxes “Fe” as a function of cell-average values)
	

• Linear Interpolation (CDS) for convective/diffusive 
– Approximates e (value at face center) by its linear fluxes
	

interpolation between two nearest nodes:
	
x  x

e  E e  P (1   e  ) where  e  e P
 xE  xP 

• e is the interpolation factor 

– This approx. is 2nd order accurate (for convective fluxes): 
• Taylor expansion of  E about xP to eliminate first derivative: 

 ( xE  xP )
2 2    ( x  x ) 2 R E P E P 2

E  P  ( x E  x P )   R2    2  
x P 2 x 

 
P x 2

P x E  x P 2 x x  P E xP 

 ( x e  x )2 2 ( x  x x  x)  ) 2(  
 e  P   ( x  x )  P  R     e P E e

e P x 2 x 2 2 E e P    e  ) (  1  2  R '2
P P 

2 x P 

• Truncation error is proportional to square of grid spacing, on uniform/non-uniform grids. 

• As all approximations of order higher than one, this scheme can provide oscillatory 
solutions 

• Corresponds to central differences, hence its CDS name 
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Interpolations and Differentiations
	
(to obtain fluxes “Fe” as a function of cell-average values)
	

• Linear Interpolation (CDS) for convective/diffusive fluxes 

– Linear profile between two nearest nodes leads to simplest 

approx. of gradient (diffusive fluxes)
	

 E P E P (1 ) 
x 

 
x  xe E P 

– Taylor expansions of  ’s around xe, one obtains: 

2 2 2 3 3 3( x  x )  ( x  x )   ( x  x )  ( x  x )  e P E e e P E e   R3x 2  32 (  xE  xP ) x e 6 (  xE  xP ) x e 

– Approximation is 2nd order accurate if e is midway between P and E (e.g. uniform grid) 

– When the grid is non-uniform, the formal accuracy is 1st order, but error reduction when grid is 
refined is asymptotically 2nd order 
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Interpolations and Differentiations 
(to obtain fluxes “F ” as a function of cell-average values) e

• Quadratic Upwind Interpolation (QUICK) 

– Approx. by quadratic profile between two nearest nodes. 

– In accord with convection, third point chosen on upstream side:

• i.e. chose W if flow is from P to E, or EE if flow from E to P. 

This gives: 
e U g 1   ( D U  )  g 2  (  U )  UU  

                                                                                                                                                 

 

 

where D, U and UU denote the downstream, first upstream and second 

downstream, respectively
	

(x  x x ) x )(  (x  x x ) x ( )g– Coefficients in terms of nodal coordinates:  1  e U e UU  ; g  e U D e

(x D  x x  ) xD  )UU(  2
U  (x  xU  U xU   ) xD  ( )UU

– Uniform grids: coefficients of  ’s are 3/8 for node D, 6/8 for node U and -1/8 for node UU 

– Somewhat more complex scheme than CDS (larger computational molecules by one node in 

each direction)
	

– Approximation is 3nd order accurate on both uniform and non-uniform grids. For uniform grids: 
6 3 1 3 x3 3  

 e    U   D 
8 8 UU  3  R

8  x4  8  3
U 

• But, when this interpolation  scheme is used with midpoint rule for surface integral, becomes 2nd order 
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Interpolations and Differentiations
	
(to obtain fluxes “Fe= f ( e )” as a function of cell-average values)
	

• Higher Order Schemes (for convective/diffusive fluxes) 
– Interpolations of order higher than 3 make sense if integrals are 

also approximated with higher order formulas
	

– In 1D problems, if Simpson’s rule (4th order error) is used for 

the integral, a polynomial interpolation of order 3 can be used:
	

 x ( )  a  a  x 2a x  3
0 1 2 3  a x  




=> 4 unknowns, hence 4 nodal values (W, P, E and EE) needed 
= Symmetric formula for  (no need for “upwind” as with 0th or 2nd 

 order polynomials)e

– Wit  h   ), one can insert in the symbolic integral formula. For a uniform Cartesian grid: 
27 • Convective Fluxes:          P  27  3  3                     E W                    EE                (similar formulas used for values at corners) 

e 48 

• For Diffusive Fluxes (1st derivative): 
  27  27  

 a1   2 
2 a  x 3a x   for a uniform Cartesian grid  :  E  P W E

x e x e 24 x 

– This FV approximation is often called a 4th-order CDS (linear FV interpol. was 2nd-order CDS) 

– Polynomials of higher-degree or of multi-dimensions can be used, as well as cubic splines (to 

ensure continuity of first two derivatives at the boundaries). This increases the cost.
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Interpolations and Differentiations
	
(to obtain fluxes “Fe= f (e)” as a function of cell-average values) 

• Compact Higher Order Schemes 

– Polynomial of higher order lead too large computational 

molecules => use deferred-correction schemes and/or 

compact (Pade’) schemes
	

 x  a a  x a– Ex. 1: obtain the coefficients of                             ( )  0  1x a2
2  3x

3

by 

fitting two values and two 1st derivatives at the two nodes on 
either side of the cell face 

P E x     4 ( ) O x• 4th order scheme: e    2 8 x P x E  
• Use CDS to approximate derivatives. Result retains the fourth order: 

     P E P E W EE 4e    O x( )
2 16 

– Ex. 2: use a parabola, fit the values on either side of the cell face and the derivative on the 

upstream side (equivalent to the QUICK scheme, 3rd order)
	

3 1 x      +e U D4 4 4 x U 

– Similar schemes are obtained for derivatives (diffusive fluxes), see Ferziger and Peric (2002) 

• Other Schemes: more complex and difficult to program 

– Large number of approximations used for convective fluxes: Linear Upwind Scheme, Skew 

Upwind schemes, Hybrid. Blending schemes to eliminate oscillations at higher order.
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Methods for Unsteady Problems – Time Marching Methods 

ODEs – Initial Value Problems (IVPs)
	

• Major difference with spatial dimensions: Time advances in a single direction
	

– FD schemes: discrete values evolved in time 
– FV schemes: discrete integrals evolved in time 

• After discretizing the spatial derivatives (or the integrals for finite volumes), 
we obtained a (coupled) system of (nonlinear) ODEs, for example: 

d Φ d Φ
 B Φ  (bc)   or  B(Φ t with  Φ t0 0, ) ; ( )  Φ

dt dt 

• Hence, methods used to integrate ODEs can be directly used for the time 
integration of spatially discretized PDEs 
– We already utilized several time-integration schemes with FD schemes. Others are 

developed next. 
– For IVPs, methods can be developed with a single eqn.: d f (, )t ; with  ( )   t0 0dt 
– Note: solving steady (elliptic) problems by iterations is similar to solving time-


evolving problems. Both problems thus have analogous solution schemes.
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