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2.29 Numerical Fluid Mechanics 

 Fall 2011 – Lecture 21 

REVIEW Lecture 20: Time-Marching Methods and ODEs–IVPs 

• Time-Marching Methods and ODEs – Initial Value Problems 

 

– Euler’s method 
– Taylor Series Methods    

• Error analysis: for two time-levels, if truncation error is of O(hn), the global error is of O(hn-1) 
– Simple 2nd order methods  

• Heun’s Predictor-Corrector and Midpoint Method (part of Runge-Kutta’s methods) 

• To achieve higher accuracy in time: utilize information (known values of the 
derivative in time, i.e. the RHS f ) at more points in time 
– Runge-Kutta Methods  

• Additional points are between tn and tn+1 
– Multistep/Multipoint Methods: Adams Methods 

• Additional points are at past time steps  
– Practical CFD Methods 
– Implicit Nonlinear systems 
– Deferred-correction Approach 
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TODAY (Lecture 21): End of Time-Marching 

Methods, Grid Generation and Complex Geometries 

• Time-Marching Methods and ODEs – IVPs: End 
– Multistep/Multipoint Methods 
– Implicit Nonlinear systems 
– Deferred-correction Approach 

• Complex Geometries 
– Different types of grids 
– Choice of variable arrangements 

• Grid Generation 
– Basic concepts and structured grids 

• Stretched grids 
• Algebraic methods 
• General coordinate transformation 
• Differential equation methods 
• Conformal mapping methods 

– Unstructured grid generation 
• Delaunay Triangulation 
• Advancing Front method 
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References and Reading Assignments 

• Chapters 25 and 26 of “Chapra and Canale, Numerical Methods 
for Engineers, 2010/2006.” 

• Chapter 6 (end) and Chapter 8 on “Complex Geometries” of “J. 
H. Ferziger and M. Peric, Computational Methods for Fluid 
Dynamics. Springer, NY, 3rd edition, 2002” 

• Chapter 6 (end) on “Time-Marching Methods for ODE’s” of “H. 
Lomax, T. H. Pulliam, D.W. Zingg, Fundamentals of 
Computational Fluid Dynamics (Scientific Computation). 
Springer, 2003” 

• Chapter 9 on “Grid Generation” of T. Cebeci, J. P. Shao, F. 
Kafyeke and E. Laurendeau, Computational Fluid Dynamics for 
Engineers. Springer, 2005. 

• Ref on Grid Generation only:  

– Thompson, J.F., Warsi Z.U.A. and C.W. Mastin, “Numerical Grid 
Generation, Foundations and Applications”, North Holland, 1985  
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Multistep/Multipoint Methods 

• Additional points are at time steps at which data has already 

been computed 

• Adams Methods: fitting a (Lagrange) polynomial to the 

derivatives at a number of points in time 

– Explicit in time (up to tn): Adams-Bashforth methods 

 

 

– Implicit in time (up to tn+1): Adams-Moulton methods 

 

 

– Coefficients  βk’s can be estimated by Taylor Tables: 

•  Fit Taylor series so as to cancel higher-order terms 

1 ( , )
n

n n k
k k

k n K

f t t   

 

  

1
1 ( , )

n
n n k

k k
k n K

f t t   




 

  



PFJL  Lecture 21,    5 Numerical Fluid Mechanics 2.29 

Example: Taylor Table for the  

Adams-Moulton 3-steps (4 time-nodes) Method 

1
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Taylor Table: 
 
• The first row (Taylor 

series) + the last 5 
rows (Taylor series for 
each term) must sum 
to zero 

• This can be satisfied 
up to the 5th column 
(4th order term) 

• Hence, the AM method 
with 4-time levels is 4th 
order accurate 

1 0 1 2solving for the ' 9 / 24, 19 / 24, 5/ 24   and 1/ 24k s          
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Example of Adams Methods for  

Time-Integration 

(Adams-Bashforth, with ABn meaning nth order AB) 

(Adams-Moulton, with AMn meaning nth order AM) 
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Practical Time-Integration Methods for CFD 

• High-resolution CFD requires large discrete state vector sizes to store the spatial 

information 

• This means that up to two times (one on each side of the current time step) have 

often been utilized (3 time-nodes): 

• Rewriting this equations in a way such that differences wrt. the Euler’s method are 

easily seen, one obtains (θ = 0 for explicit schemes): 

1 1 1
1 1 0 1 1( , ) ( , ) ( , )n n n n n

n n nu u h f t u f t u f t u    

  
     

1 1 1 1
1 1(1 ) (1 2 ) ( , ) (1 ) ( , ) ( , )n n n n n n

n n nu u u h f t u f t u f t u         

 
              

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse


Implementation of Implicit Time-Marching Methods: 

Nonlinear Systems and Larger dimensions 

• Consider the nonlinear system (discrete in space): 

 

• For an explicit method in time, solution is straightforward 

– For explicit Euler: 

– More general, e.g. AB: 

 

• For an implicit method 

– For Implicit Euler: 

– More general:  

 

=> a nontrivial scheme is needed to obtain 
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Implementation of Implicit Time-Marching Methods: 

Larger dimensions and Nonlinear systems  

• Two main options for an implicit method, either: 

1. Linearize the RHS at tn : 

• Taylor Series: 

                                            where  

• Hence, the linearized system (for the frequent case of system not explicitly 

function of t):
 

 

2. Use an iteration scheme at each time step, e.g. fixed point iteration (direct), 

Newton-Raphson or secant method 

• Newton-Raphson: 

n• Iteration often rapidly convergent since initial guess to start iteration at t  close 
n+1to unknown solution at t  
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Deferred-Correction Approaches 

• Size of computational molecule affects both storage 

requirements and effort needed to solve the algebraic system 

at each time-step 

– Usually, we wish to keep only the nearest neighbors of the center 

node P in the LHS of equations (leads to tri-diagonal matrix or 

something close to it) ⇒ easier to solve linear/nonlinear system 

– But, approximations that produce such molecules are often not 

accurate enough 

• Way around this issue? 

– Leave only the terms containing the nearest neighbors in the LHS and 

bring all other more-remote terms to the RHS 

• This requires that these terms be evaluated with previous or old values, 

which may lead to divergence of the iterative scheme 

• Better approach? 
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Deferred-Correction Approaches, Cont’d 

• Better Approach 

– Compute the terms that are approximated with a high-order approximation 

explicitly and put them in the RHS  

– Take a simpler approximation to these terms (that give a small 

computational molecule). Insert it twice in the equation, with a + and - sign 

– One of these two simpler approximation, keep it in the LHS of the 

equations (with unknown variables values, e.g. implicit/new). Move the 

other to the RHS (e.g. computing it explicitly using existing/old values) 

– The RHS now contains the difference between two explicit approximations 

of the same term, and is likely to be small  

• Likely no convergence problems to an iteration scheme (Jacobi, GS, SOR, etc) 

or gradient descent (CG, etc) 

– Once the iteration converges, the low order approximation terms (one 

explicit, the other implicit) drop out and the solution corresponds to the 

higher-order approximation 

•  Using H & L for high & low orders: 
oldH L H L      A x b A x b A x A x
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Deferred-Correction Approaches, Cont’d 

• This approach can be very powerful and general 

– Used when treating higher-order approximations, non-orthogonal 

grids, corrections needed to avoid oscillation effects, etc 

– Since RHS can be viewed as a correction  called deferred-

correction 

– Note: both L&H terms could be implicit in time (use L&H implicit 

starter to get first values and then most recent old values in bracket 

during iterations) 

• Explicit for H (high-order) term, implicit for L (low-order) term 

 

 

• Implicit for both L and H terms 

old

implicit explicit implicit
H L H L      A x b A x b A x A x

old

implicit implicit implicit
H L H L      A x b A x b A x A x



PFJL  Lecture 21,    13 Numerical Fluid Mechanics 2.29 

Deferred-Correction Approaches, Cont’d 

• Example 1: FD methods with High-order Pade’ schemes 

– One can use the PDE itself to express implicit Pade’ time derivative         

as a function of  n+1 (see homework 6) 

– Or, use deferred-correction (within an iteration scheme of index r): 
• In time: 

 

• In space: 

 

• The complete 2nd order CDS would be used on the LHS. The RHS would be 

the bracket term: the difference between the Pade’ scheme and the “old” CDS. 

When the CDS becomes as accurate as Pade’, this term in the bracket is zero 

• Note: Forward/Backward DS could have been used instead of CDS, e.g. in 

time, 

1nt




 
 
 

1 1 Pade'
1 1 1 1

2 2

rr r
n n n n

n nt t t t
     

 

   
         

        
          

1 1 Pade'
1 1 1 1

2 2

rr r
i i i i

i ix x x x
     

 

   
         

        
          

1 1 Pade'
1 1

1 1

rr r
n n n n

n nt t t t
     

 

 

 

         
        

          
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Deferred-Correction Approaches, Cont’d 

• Example 2 with FV methods: Higher-order Flux approximations 

– Higher-order  flux approximations are computed with “old values” and a 

lower order approximation is used with “new values” (implicitly) in the 

linear system solver: 
 

    where Fe is the flux. The Low order approximation can be UDS or CDS.  

• Convergence and stability properties are close to those of the Low order implicit 

term since the bracket is often small compared to this implicit term  

• In addition, since bracket term is small, the iteration in the algebraic equation 

solver can converge to the accuracy of higher-order scheme 

• Additional numerical effort is explicit with “old values” and thus much smaller 

than the full implicit treatment of the higher-order terms 

– A factor can be used to produce a mixture of pure low and pure high order. 

This can be used to remove undesired properties, e.g. oscillations of high-

order schemes 

oldL H L
e e e eF F F F    

old
(1 )L H L

e e e eF F F F       
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Grid Generation and Complex Geometries: 

Introduction 
• Many flows in engineering and science involve complex geometries 

• This requires some modifications of the algorithms: 

– Ultimately, properties of the numerical solver depend on the: 

• Choice of the grid  

• Vector/tensor components (e.g. Cartesian or not) 

• Arrangement of the variables on the grid 

• Different types of grids: 

– Structured grids: families of grid lines such that members of the same family do 

not cross each other and cross each member of other families only once 

– Advantages: simpler to program, neighbor connectivity, resultant algebraic 

system has a regular structure => efficient solvers 

– Disadvantages: can be used only for simple geometries, difficult to control the 

distribution of grid points on the domain (e.g. concentrate in specific areas) 

– Three types (names derived from the shape of the grid): 

• H-grid: a grid which can map into a rectangle 

• O-grid: one of the coordinate lines wraps around or is “endless”. One introduces an 
artificial cut at which the grid numbering jumps 

• C-grid: points on portions of one grid line coincide (used for body with sharp edges) 
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Grid Generation and 

Complex Geometries: 

Structured Grids 

• Example: create a grid for the flow 
over a heat exchanger tube bank 
(only part of it is shown) 

 

 

 

 

 

• Stepwise 2D Cartesian grid 

– Number of points non constant or 
use masks 

– Steps at boundary introduce errors 

• vs. non-orthogonal, structured grid 

H-Type grids 

© Prentice Hall. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse


PFJL  Lecture 21,    17 Numerical Fluid Mechanics 2.29 

Grid Generation and 

Complex Geometries: 

Block-Structured Grids 

• Grids for which there is one or 
more level subdivisions of the 
solution domain 

– Can match at interfaces or not 

– Can overlap or not 

• Block structured grids with 
overlapping blocks are sometimes 
called “composite” or “Chimera” 
grids 

– Interpolation used from one grid to 
the other 

– Useful for moving bodies (one 
block attached to it and the other is 
a stagnant grid) 

• Special case: Embedded or Nested 
grids, which can use different 
dynamics at different scales 

Grid with 3 Blocks, with an O-Type grid 
(for coordinates around the cylinder) 

Grid with 5 blocks, including H-Type and C-Type, 
and non-matching interface: 

“composite” or Chimera” Grid 

Grids © Springer. All rights reserved. This content is excluded from our Creative  

Commons license. For more information, see http://ocw.mit.edu/fairuse. 

http://ocw.mit.edu/fairuse
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Grid Generation and 

Complex Geometries: 

 

Other examples of 

Block-structured Grids 

Cartesian grid for NACA 0012 aerofoil. Inset shows cut cells near aerofoil surface. Courtesy of Andreas Haselbacher. Figure 1.7 in  
"A grid-transparent numerical method for compressible viscous flows on mixed unstructured grids." © Andreas Haselbacher, 1999. 

© Prentice Hall. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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Grid Generation and Complex Geometries: 

Unstructured Grids 

• For very complex geometries, most flexible grid is one for 

which one can fit any physical domain: i.e. unstructured 

• Can be used with any discretization scheme, but best 

adapted to FV and FE methods 

• Grid most often made of: 

– Triangles or quadrilaterals in 2D 

– Tetrahedra or hexahedra in 3D 

• Advantages 

– Unstructured grid can be made orthogonal if needed 

– Aspect ratio easily controlled 

– Grid may be easily refined 

• Disadvantages: 

– Irregularity of the data structure: nodes locations and 

neighbor connections need to be specified explicitly 

– The matrix to be solved is not regular anymore and the size 

of the band needs to be controlled by node ordering 

Triangular grid for three-element aerofoil. Courtesy 
of Andreas Haselbacher. Used with permission. Figure 
1.5 in "A grid-transparent numerical method for 
compressible viscous flows on mixed unstructured 
grids." © Andreas Haselbacher, 1999. 
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Unstructured Grids Examples: 

Multi-element grids 
• For FV methods, what matters is 

the angle between the vector 
normal to the cell surface and the 
line connecting the CV centers  

– 2D equilateral triangles are 
equivalent to a 2D orthogonal grid 

• Cell topology is important: 

– If cell faces parallel, remember that 
certain terms in Taylor expansion 
can cancel  higher accuracy 

– They nearly cancel if topology close 
to parallel 

• Ratio of cells’ sizes should be 
smooth 

• Generation of triangles or 
tetrahedra is easier and can be 
automated, but lower accuracy 

• Hence, more regular grid (prisms, 
quadrilaterals or hexahedra) often 
used near boundary where solution often vary rapidly 

© Springer. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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Complex Geometries:  

The choice of velocity (vector) components 

• Cartesian (used in this course) 

– With FD, one only needs to employ modified equations to take into 

account of non-orthogonal coordinates (change of derivatives due to 

change of spatial coordinates from Cartesian to non-orthogonal) 

– In FV methods, normally, no need for coordinate transformations in the 

PDEs: a local coordinate transformation can be used for the gradients 

normal to the cell faces 

• Grid-oriented: 

– Non-conservative source terms appear in the equations (they account 

for the re-distribution of momentum between the components) 

– For example, in polar-cylindrical coordinates, in the momentum 

equations: 

• Apparent centrifugal force and apparent Coriolis force 
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Complex Geometries:  

The choice of variable arrangement 

• Staggered arrangements 

– Improves coupling u ↔ p 

– For Cartesian components 

when grid lines change by 

90 degrees, the velocity 

component stored at the 

cell face makes no 

contribution to the mass 

flux through that face 

– Difficult to use Cartesian 

components in these cases 

– Hence, for non-orthogonal grids, grid-oriented velocity components often used 

• Collocated arrangements (mostly used here) 
– The simplest one: all variables share the same CV 
– Requires more interpolation 

Variable arrangements on a non-orthogonal grid. Illustrated are a staggered 
arrangement with (i) contravarient velocity components and (ii) Cartesian velocity 
components, and (iii) a colocated arrangement with Cartesian velocity 
components. 

Velocities Pressure

(I) (II) (III)

Image by MIT OpenCourseWare.
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Classes of Grid Generation 

• An arrangement of discrete set of grid points or cells needs to be generated 

for the numerical solution of PDEs (fluid conservation equations) 

– Finite volume methods:  

• Can be applied to uniform and non-uniform grids 

– Finite difference methods:  

• Require a coordinate transformation to map the irregular grid in the spatial domain to a 

regular one in the computational domain 

• Difficult to do this in complex 3D spatial geometries 

• So far, only used with structured grid (could be used with unstructured grids with 

polynomials  defining the shape of  around a grid point) 

• Three major classes of grid generation: i) algebraic methods, ii) differential 

equation methods and iii) conformal mapping methods 

• Grid generation and solving PDE can be independent 

– A numerical (flow) solver can in principle be developed independently of the grid 

– A grid generator then gives the metrics (weights) and the one-to-one 

correspondence between the spatial-grid and computational-grid 
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