
PFJL Lecture 21, 1 Numerical Fluid Mechanics 2.29

2.29 Numerical Fluid Mechanics

 Fall 2011 – Lecture 21

REVIEW Lecture 20: Time-Marching Methods and ODEs–IVPs

• Time-Marching Methods and ODEs – Initial Value Problems

– Euler’s method
– Taylor Series Methods

• Error analysis: for two time-levels, if truncation error is of O(hn), the global error is of O(hn-1)
– Simple 2nd order methods

• Heun’s Predictor-Corrector and Midpoint Method (part of Runge-Kutta’s methods)

• To achieve higher accuracy in time: utilize information (known values of the
derivative in time, i.e. the RHS f) at more points in time
– Runge-Kutta Methods

• Additional points are between tn and tn+1
– Multistep/Multipoint Methods: Adams Methods

• Additional points are at past time steps
– Practical CFD Methods
– Implicit Nonlinear systems
– Deferred-correction Approach

0 0() or (,) ; with ()d d t t
dt dt

   
Φ ΦBΦ bc B Φ Φ Φ

1
1 (,)

n

n

t
n n

t

f t dt  


   

PFJL Lecture 21, 2 Numerical Fluid Mechanics 2.29

TODAY (Lecture 21): End of Time-Marching

Methods, Grid Generation and Complex Geometries

• Time-Marching Methods and ODEs – IVPs: End
– Multistep/Multipoint Methods
– Implicit Nonlinear systems
– Deferred-correction Approach

• Complex Geometries
– Different types of grids
– Choice of variable arrangements

• Grid Generation
– Basic concepts and structured grids

• Stretched grids
• Algebraic methods
• General coordinate transformation
• Differential equation methods
• Conformal mapping methods

– Unstructured grid generation
• Delaunay Triangulation
• Advancing Front method

PFJL Lecture 21, 3 Numerical Fluid Mechanics 2.29

References and Reading Assignments

• Chapters 25 and 26 of “Chapra and Canale, Numerical Methods
for Engineers, 2010/2006.”

• Chapter 6 (end) and Chapter 8 on “Complex Geometries” of “J.
H. Ferziger and M. Peric, Computational Methods for Fluid
Dynamics. Springer, NY, 3rd edition, 2002”

• Chapter 6 (end) on “Time-Marching Methods for ODE’s” of “H.
Lomax, T. H. Pulliam, D.W. Zingg, Fundamentals of
Computational Fluid Dynamics (Scientific Computation).
Springer, 2003”

• Chapter 9 on “Grid Generation” of T. Cebeci, J. P. Shao, F.
Kafyeke and E. Laurendeau, Computational Fluid Dynamics for
Engineers. Springer, 2005.

• Ref on Grid Generation only:

– Thompson, J.F., Warsi Z.U.A. and C.W. Mastin, “Numerical Grid
Generation, Foundations and Applications”, North Holland, 1985

PFJL Lecture 21, 4 Numerical Fluid Mechanics 2.29

Multistep/Multipoint Methods

• Additional points are at time steps at which data has already

been computed

• Adams Methods: fitting a (Lagrange) polynomial to the

derivatives at a number of points in time

– Explicit in time (up to tn): Adams-Bashforth methods

– Implicit in time (up to tn+1): Adams-Moulton methods

– Coefficients βk’s can be estimated by Taylor Tables:

• Fit Taylor series so as to cancel higher-order terms

1 (,)
n

n n k
k k

k n K

f t t   

 

  

1
1 (,)

n
n n k

k k
k n K

f t t   




 

  

PFJL Lecture 21, 5 Numerical Fluid Mechanics 2.29

Example: Taylor Table for the

Adams-Moulton 3-steps (4 time-nodes) Method

1
1 1 1 2

1 1 0 1 1 2 2

dDenoting , , ' (,) and ' (,) , one obtains for 2 :

(,) (,) (,) (,) (,)

n
n n

n n n k n n n n
k n k n n n n

k K

uh t u u f t u u f t u K
dt

u u f t u t h f t u f t u f t u f t u



        

     

 

      

        

Taylor Table:

• The first row (Taylor

series) + the last 5
rows (Taylor series for
each term) must sum
to zero

• This can be satisfied
up to the 5th column
(4th order term)

• Hence, the AM method
with 4-time levels is 4th
order accurate

1 0 1 2solving for the ' 9 / 24, 19 / 24, 5/ 24 and 1/ 24k s          

PFJL Lecture 21, 6 Numerical Fluid Mechanics 2.29

Example of Adams Methods for

Time-Integration

(Adams-Bashforth, with ABn meaning nth order AB)

(Adams-Moulton, with AMn meaning nth order AM)

PFJL Lecture 21, 7
Numerical Fluid Mechanics

2.29

Practical Time-Integration Methods for CFD

• High-resolution CFD requires large discrete state vector sizes to store the spatial

information

• This means that up to two times (one on each side of the current time step) have

often been utilized (3 time-nodes):

• Rewriting this equations in a way such that differences wrt. the Euler’s method are

easily seen, one obtains (θ = 0 for explicit schemes):

1 1 1
1 1 0 1 1(,) (,) (,)n n n n n

n n nu u h f t u f t u f t u    

  
     

1 1 1 1
1 1(1) (1 2) (,) (1) (,) (,)n n n n n n

n n nu u u h f t u f t u f t u         

 
              

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Implementation of Implicit Time-Marching Methods:

Nonlinear Systems and Larger dimensions

• Consider the nonlinear system (discrete in space):

• For an explicit method in time, solution is straightforward

– For explicit Euler:

– More general, e.g. AB:

• For an implicit method

– For Implicit Euler:

– More general:

=> a nontrivial scheme is needed to obtain

2.29 Numerical Fluid Mechanics PFJL Lecture 21, 8

0 0(,) ; with ()d t t
dt

 
Φ B Φ Φ Φ

1 (,) tn n n nt   Φ Φ B Φ

1 1(, ,..., ,) tn n n n K nt   Φ F Φ Φ Φ

1nΦ

1 1 1 1

1 1 1 1

(, , ,..., ,) t or
(, , ,..., ,) 0 ; with t

n n n n n K n

n n n n K n n

t
t

    

    

 

   

Φ F Φ Φ Φ Φ
F Φ Φ Φ Φ F F Φ1 1 1 1(, , ,..., ,) 0 ; with tn n n n K n n1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with t1 1 1 1    1 1 1 1n n n n K n n    n n n n K n n1 1 1 1n n n n K n n1 1 1 1    1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with t    (, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with t1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1    1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 11 1 1 1n n n n K n n1 1 1 1    1 1 1 1n n n n K n n1 1 1 1   1 1 1 1n n n n K n n1 1 1 1    1 1 1 1n n n n K n n1 1 1 11 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1    1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1   1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1    1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1F Φ Φ Φ Φ F F Φ

n n n n K n n
Φ Φ Φ Φ F F Φ

n n n n K n n1 1 1 1n n n n K n n1 1 1 1    1 1 1 1n n n n K n n1 1 1 1
Φ Φ Φ Φ F F Φ

1 1 1 1n n n n K n n1 1 1 1    1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with tΦ Φ Φ Φ F F Φ(, , ,..., ,) 0 ; with t(, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with tΦ Φ Φ Φ F F Φ(, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with t(, , ,..., ,) 0 ; with tΦ Φ Φ Φ F F Φ(, , ,..., ,) 0 ; with t(, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with tΦ Φ Φ Φ F F Φ(, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with t(, , ,..., ,) 0 ; with tt(, , ,..., ,) 0 ; with tΦ Φ Φ Φ F F Φ(, , ,..., ,) 0 ; with tt(, , ,..., ,) 0 ; with t(, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with tt(, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with tΦ Φ Φ Φ F F Φ(, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with tt(, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with t(, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with t    (, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with tΦ Φ Φ Φ F F Φ(, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with t    (, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with t1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1    1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1
Φ Φ Φ Φ F F Φ

1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1    1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 11 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1t1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1    1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1t1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1
Φ Φ Φ Φ F F Φ

1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1t1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1    1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1t1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1   Φ Φ Φ Φ F F Φ   (, , ,..., ,) 0 ; with t   (, , ,..., ,) 0 ; with tΦ Φ Φ Φ F F Φ(, , ,..., ,) 0 ; with t   (, , ,..., ,) 0 ; with tn n n n K n n   n n n n K n n
Φ Φ Φ Φ F F Φ

n n n n K n n   n n n n K n n(, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with t   (, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with tΦ Φ Φ Φ F F Φ(, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with t   (, , ,..., ,) 0 ; with tn n n n K n n(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1    1 1 1 1n n n n K n n1 1 1 1   1 1 1 1n n n n K n n1 1 1 1    1 1 1 1n n n n K n n1 1 1 1
Φ Φ Φ Φ F F Φ

1 1 1 1n n n n K n n1 1 1 1    1 1 1 1n n n n K n n1 1 1 1   1 1 1 1n n n n K n n1 1 1 1    1 1 1 1n n n n K n n1 1 1 11 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1    1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1   1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1    1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1
Φ Φ Φ Φ F F Φ

1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1    1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1   1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1    1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1n n n n K n n1 1 1 1(, , ,..., ,) 0 ; with t1 1 1 1

1 1 1(,) tn n n nt    Φ Φ B Φ

Implementation of Implicit Time-Marching Methods:

Larger dimensions and Nonlinear systems

• Two main options for an implicit method, either:

1. Linearize the RHS at tn :

• Taylor Series:

 where

• Hence, the linearized system (for the frequent case of system not explicitly

function of t):

2. Use an iteration scheme at each time step, e.g. fixed point iteration (direct),

Newton-Raphson or secant method

• Newton-Raphson:

n• Iteration often rapidly convergent since initial guess to start iteration at t close
n+1to unknown solution at t

2.29 Numerical Fluid Mechanics PFJL Lecture 21, 9

2 n+1(,) = (,) () () () for t t
n

n n n n n nt t t t O t t
t


       



BB Φ B Φ J Φ Φ

; i.e. [] (Jacobian Matrix)
n

n n i
i j

j

 
 
 

B BJ J
Φ Φ

() + ()n n n nd d
dt dt

     
Φ ΦB Φ J Φ B Φ J Φ

1

1 1 1 1
1 1 1

1 () (,)
'()

n n n n
r r r r r rn

r r

x x f x t
f x



   

  

 
      

 
 

FΦ Φ F Φ
Φ

1

1 1 1 11 1 1 1   1 1 1 11 1 1 1n n n n1 1 1 1   1 1 1 1n n n n1 1 1 11 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1   1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1
  
  1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1   1 1 1 1 1 1 1 1   1 1 1 11 1 1 1   1 1 1 1 1 1 1 1   1 1 1 11 1 1 1n n n n1 1 1 1   1 1 1 1n n n n1 1 1 1 1 1 1 1n n n n1 1 1 1   1 1 1 1n n n n1 1 1 11 1 1 1n n n n1 1 1 1   1 1 1 1n n n n1 1 1 1 1 1 1 1n n n n1 1 1 1   1 1 1 1n n n n1 1 1 11 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1   1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1 1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1   1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 11 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1   1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1 1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1   1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1
 
 
  
 
  F 
 

F
 1 1 1 1 1 1 1 1F1 1 1 1 1 1 1 11 1 1 1   1 1 1 1 1 1 1 1   1 1 1 1F1 1 1 1   1 1 1 1 1 1 1 1   1 1 1 11 1 1 1n n n n1 1 1 1   1 1 1 1n n n n1 1 1 1 1 1 1 1n n n n1 1 1 1   1 1 1 1n n n n1 1 1 1F1 1 1 1n n n n1 1 1 1   1 1 1 1n n n n1 1 1 1 1 1 1 1n n n n1 1 1 1   1 1 1 1n n n n1 1 1 11 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1   1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1 1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1   1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1F1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1   1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1 1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1   1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1
 
 
 F 
 
 

1 1 1 1() (,)1 1 1 1() (,)1 1 1 1() (,)n n n n() (,)() (,)x x f x t() (,)() (,)n n n n() (,)x x f x t() (,)n n n n() (,)1 1 1 1   1 1 1 11 1 1 1() (,)1 1 1 1   1 1 1 1() (,)1 1 1 11 1 1 1n n n n1 1 1 1   1 1 1 1n n n n1 1 1 11 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1   1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 11 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1   1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1() (,)x x f x t() (,)Φ Φ F Φ() (,)x x f x t() (,)() (,)n n n n() (,)x x f x t() (,)n n n n() (,)Φ Φ F Φ() (,)n n n n() (,)x x f x t() (,)n n n n() (,)1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1   1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1
Φ Φ F Φ

1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1   1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 11 1 1 11 1 1 1   1 1 1 11 1 1 1n n n n1 1 1 1   1 1 1 1n n n n1 1 1 11 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1   1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1x x f x t1 1 1 1() (,)1 1 1 1n n n n1 1 1 1() (,)1 1 1 1

PFJL Lecture 21, 10 Numerical Fluid Mechanics 2.29

Deferred-Correction Approaches

• Size of computational molecule affects both storage

requirements and effort needed to solve the algebraic system

at each time-step

– Usually, we wish to keep only the nearest neighbors of the center

node P in the LHS of equations (leads to tri-diagonal matrix or

something close to it) ⇒ easier to solve linear/nonlinear system

– But, approximations that produce such molecules are often not

accurate enough

• Way around this issue?

– Leave only the terms containing the nearest neighbors in the LHS and

bring all other more-remote terms to the RHS

• This requires that these terms be evaluated with previous or old values,

which may lead to divergence of the iterative scheme

• Better approach?

PFJL Lecture 21, 11 Numerical Fluid Mechanics 2.29

Deferred-Correction Approaches, Cont’d

• Better Approach

– Compute the terms that are approximated with a high-order approximation

explicitly and put them in the RHS

– Take a simpler approximation to these terms (that give a small

computational molecule). Insert it twice in the equation, with a + and - sign

– One of these two simpler approximation, keep it in the LHS of the

equations (with unknown variables values, e.g. implicit/new). Move the

other to the RHS (e.g. computing it explicitly using existing/old values)

– The RHS now contains the difference between two explicit approximations

of the same term, and is likely to be small 

• Likely no convergence problems to an iteration scheme (Jacobi, GS, SOR, etc)

or gradient descent (CG, etc)

– Once the iteration converges, the low order approximation terms (one

explicit, the other implicit) drop out and the solution corresponds to the

higher-order approximation

•  Using H & L for high & low orders:
oldH L H L      A x b A x b A x A x

PFJL Lecture 21, 12 Numerical Fluid Mechanics 2.29

Deferred-Correction Approaches, Cont’d

• This approach can be very powerful and general

– Used when treating higher-order approximations, non-orthogonal

grids, corrections needed to avoid oscillation effects, etc

– Since RHS can be viewed as a correction  called deferred-

correction

– Note: both L&H terms could be implicit in time (use L&H implicit

starter to get first values and then most recent old values in bracket

during iterations)

• Explicit for H (high-order) term, implicit for L (low-order) term

• Implicit for both L and H terms

old

implicit explicit implicit
H L H L      A x b A x b A x A x

old

implicit implicit implicit
H L H L      A x b A x b A x A x

PFJL Lecture 21, 13 Numerical Fluid Mechanics 2.29

Deferred-Correction Approaches, Cont’d

• Example 1: FD methods with High-order Pade’ schemes

– One can use the PDE itself to express implicit Pade’ time derivative

as a function of  n+1 (see homework 6)

– Or, use deferred-correction (within an iteration scheme of index r):
• In time:

• In space:

• The complete 2nd order CDS would be used on the LHS. The RHS would be

the bracket term: the difference between the Pade’ scheme and the “old” CDS.

When the CDS becomes as accurate as Pade’, this term in the bracket is zero

• Note: Forward/Backward DS could have been used instead of CDS, e.g. in

time,

1nt




 
 
 

1 1 Pade'
1 1 1 1

2 2

rr r
n n n n

n nt t t t
     

 

   
         

        
          

1 1 Pade'
1 1 1 1

2 2

rr r
i i i i

i ix x x x
     

 

   
         

        
          

1 1 Pade'
1 1

1 1

rr r
n n n n

n nt t t t
     

 

 

 

         
        

          

PFJL Lecture 21, 14 Numerical Fluid Mechanics 2.29

Deferred-Correction Approaches, Cont’d

• Example 2 with FV methods: Higher-order Flux approximations

– Higher-order flux approximations are computed with “old values” and a

lower order approximation is used with “new values” (implicitly) in the

linear system solver:

 where Fe is the flux. The Low order approximation can be UDS or CDS.

• Convergence and stability properties are close to those of the Low order implicit

term since the bracket is often small compared to this implicit term

• In addition, since bracket term is small, the iteration in the algebraic equation

solver can converge to the accuracy of higher-order scheme

• Additional numerical effort is explicit with “old values” and thus much smaller

than the full implicit treatment of the higher-order terms

– A factor can be used to produce a mixture of pure low and pure high order.

This can be used to remove undesired properties, e.g. oscillations of high-

order schemes

oldL H L
e e e eF F F F    

old
(1)L H L

e e e eF F F F       

PFJL Lecture 21, 15 Numerical Fluid Mechanics 2.29

Grid Generation and Complex Geometries:

Introduction
• Many flows in engineering and science involve complex geometries

• This requires some modifications of the algorithms:

– Ultimately, properties of the numerical solver depend on the:

• Choice of the grid

• Vector/tensor components (e.g. Cartesian or not)

• Arrangement of the variables on the grid

• Different types of grids:

– Structured grids: families of grid lines such that members of the same family do

not cross each other and cross each member of other families only once

– Advantages: simpler to program, neighbor connectivity, resultant algebraic

system has a regular structure => efficient solvers

– Disadvantages: can be used only for simple geometries, difficult to control the

distribution of grid points on the domain (e.g. concentrate in specific areas)

– Three types (names derived from the shape of the grid):

• H-grid: a grid which can map into a rectangle

• O-grid: one of the coordinate lines wraps around or is “endless”. One introduces an
artificial cut at which the grid numbering jumps

• C-grid: points on portions of one grid line coincide (used for body with sharp edges)

PFJL Lecture 21, 16 Numerical Fluid Mechanics 2.29

Grid Generation and

Complex Geometries:

Structured Grids

• Example: create a grid for the flow
over a heat exchanger tube bank
(only part of it is shown)

• Stepwise 2D Cartesian grid

– Number of points non constant or
use masks

– Steps at boundary introduce errors

• vs. non-orthogonal, structured grid

H-Type grids

© Prentice Hall. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

PFJL Lecture 21, 17 Numerical Fluid Mechanics 2.29

Grid Generation and

Complex Geometries:

Block-Structured Grids

• Grids for which there is one or
more level subdivisions of the
solution domain

– Can match at interfaces or not

– Can overlap or not

• Block structured grids with
overlapping blocks are sometimes
called “composite” or “Chimera”
grids

– Interpolation used from one grid to
the other

– Useful for moving bodies (one
block attached to it and the other is
a stagnant grid)

• Special case: Embedded or Nested
grids, which can use different
dynamics at different scales

Grid with 3 Blocks, with an O-Type grid
(for coordinates around the cylinder)

Grid with 5 blocks, including H-Type and C-Type,
and non-matching interface:

“composite” or Chimera” Grid

Grids © Springer. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

PFJL Lecture 21, 18 Numerical Fluid Mechanics 2.29

Grid Generation and

Complex Geometries:

Other examples of

Block-structured Grids

Cartesian grid for NACA 0012 aerofoil. Inset shows cut cells near aerofoil surface. Courtesy of Andreas Haselbacher. Figure 1.7 in
"A grid-transparent numerical method for compressible viscous flows on mixed unstructured grids." © Andreas Haselbacher, 1999.

© Prentice Hall. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

PFJL Lecture 21, 19 Numerical Fluid Mechanics 2.29

Grid Generation and Complex Geometries:

Unstructured Grids

• For very complex geometries, most flexible grid is one for

which one can fit any physical domain: i.e. unstructured

• Can be used with any discretization scheme, but best

adapted to FV and FE methods

• Grid most often made of:

– Triangles or quadrilaterals in 2D

– Tetrahedra or hexahedra in 3D

• Advantages

– Unstructured grid can be made orthogonal if needed

– Aspect ratio easily controlled

– Grid may be easily refined

• Disadvantages:

– Irregularity of the data structure: nodes locations and

neighbor connections need to be specified explicitly

– The matrix to be solved is not regular anymore and the size

of the band needs to be controlled by node ordering

Triangular grid for three-element aerofoil. Courtesy
of Andreas Haselbacher. Used with permission. Figure
1.5 in "A grid-transparent numerical method for
compressible viscous flows on mixed unstructured
grids." © Andreas Haselbacher, 1999.

PFJL Lecture 21, 20 Numerical Fluid Mechanics 2.29

Unstructured Grids Examples:

Multi-element grids
• For FV methods, what matters is

the angle between the vector
normal to the cell surface and the
line connecting the CV centers 

– 2D equilateral triangles are
equivalent to a 2D orthogonal grid

• Cell topology is important:

– If cell faces parallel, remember that
certain terms in Taylor expansion
can cancel  higher accuracy

– They nearly cancel if topology close
to parallel

• Ratio of cells’ sizes should be
smooth

• Generation of triangles or
tetrahedra is easier and can be
automated, but lower accuracy

• Hence, more regular grid (prisms,
quadrilaterals or hexahedra) often
used near boundary where solution often vary rapidly

© Springer. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

PFJL Lecture 21, 21 Numerical Fluid Mechanics 2.29

Complex Geometries:

The choice of velocity (vector) components

• Cartesian (used in this course)

– With FD, one only needs to employ modified equations to take into

account of non-orthogonal coordinates (change of derivatives due to

change of spatial coordinates from Cartesian to non-orthogonal)

– In FV methods, normally, no need for coordinate transformations in the

PDEs: a local coordinate transformation can be used for the gradients

normal to the cell faces

• Grid-oriented:

– Non-conservative source terms appear in the equations (they account

for the re-distribution of momentum between the components)

– For example, in polar-cylindrical coordinates, in the momentum

equations:

• Apparent centrifugal force and apparent Coriolis force

PFJL Lecture 21, 22 Numerical Fluid Mechanics 2.29

Complex Geometries:

The choice of variable arrangement

• Staggered arrangements

– Improves coupling u ↔ p

– For Cartesian components

when grid lines change by

90 degrees, the velocity

component stored at the

cell face makes no

contribution to the mass

flux through that face

– Difficult to use Cartesian

components in these cases

– Hence, for non-orthogonal grids, grid-oriented velocity components often used

• Collocated arrangements (mostly used here)
– The simplest one: all variables share the same CV
– Requires more interpolation

Variable arrangements on a non-orthogonal grid. Illustrated are a staggered
arrangement with (i) contravarient velocity components and (ii) Cartesian velocity
components, and (iii) a colocated arrangement with Cartesian velocity
components.

Velocities Pressure

(I) (II) (III)

Image by MIT OpenCourseWare.

PFJL Lecture 21, 23 Numerical Fluid Mechanics 2.29

Classes of Grid Generation

• An arrangement of discrete set of grid points or cells needs to be generated

for the numerical solution of PDEs (fluid conservation equations)

– Finite volume methods:

• Can be applied to uniform and non-uniform grids

– Finite difference methods:

• Require a coordinate transformation to map the irregular grid in the spatial domain to a

regular one in the computational domain

• Difficult to do this in complex 3D spatial geometries

• So far, only used with structured grid (could be used with unstructured grids with

polynomials  defining the shape of  around a grid point)

• Three major classes of grid generation: i) algebraic methods, ii) differential

equation methods and iii) conformal mapping methods

• Grid generation and solving PDE can be independent

– A numerical (flow) solver can in principle be developed independently of the grid

– A grid generator then gives the metrics (weights) and the one-to-one

correspondence between the spatial-grid and computational-grid

MIT OpenCourseWare
http://ocw.mit.edu

2.29 Numerical Fluid Mechanics
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

