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2.29 Numerical Fluid Mechanics 

 Fall 2011 – Lecture 22 

REVIEW Lecture 21: 

• End of Time-Marching Methods: higher-order methods 

– Runge-Kutta Methods  
• Additional points are between tn and tn+1 

– Multistep/Multipoint Methods: Adams Methods 
• Additional points are at past time steps  

– Practical CFD Methods 
– Implicit Nonlinear systems 
– Deferred-correction Approach 

• Complex Geometries 
– Different types of grids 
– Choice of variable arrangements 

• Velocity vectors: Cartesian or Grid-oriented 
• Staggered or Collocated variables 

• Grid Generation 
– Basic concepts and structured grids 
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TODAY (Lecture 22):  

Grid Generation and Intro to FV Complex Geometries 

• Complex Geometries 
• Grid Generation 

– Basic concepts and structured grids 
• Stretched grids 
• Algebraic methods (strecthed grids) 
• General coordinate transformation 
• Differential equation methods 
• Conformal mapping methods 

– Unstructured grid generation 
• Delaunay Triangulation 
• Advancing Front method 

• Finite Volume on Complex geometries 
– Computation of convective fluxes 
– Computation of diffusive fluxes 
– Comments on 3D 

• Solution of the Navier-Stokes Equations 



PFJL  Lecture 22,    3 Numerical Fluid Mechanics 2.29 

References and Reading Assignments 

• Chapter 8 on “Complex Geometries” of “J. H. Ferziger and M. 
Peric, Computational Methods for Fluid Dynamics. Springer, 
NY, 3rd edition, 2002” 

• Chapter 9 on “Grid Generation” of T. Cebeci, J. P. Shao, F. 
Kafyeke and E. Laurendeau, Computational Fluid Dynamics for 
Engineers. Springer, 2005. 

• Ref on Grid Generation only:  

– Thompson, J.F., Warsi Z.U.A. and C.W. Mastin, “Numerical Grid 
Generation, Foundations and Applications”, North Holland, 1985  
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Classes of Grid Generation 

• An arrangement of discrete set of grid points or cells needs to be generated 

for the numerical solution of PDEs (fluid conservation equations) 

– Finite volume methods:  

• Can be applied to uniform and non-uniform grids 

– Finite difference methods:  

• Require a coordinate transformation to map the irregular grid in the spatial domain to a 

regular one in the computational domain 

• Difficult to do this in complex 3D spatial geometries 

• So far, only used with structured grid (could be used with unstructured grids with 

polynomials  defining the shape of  around a grid point) 

• Three major classes of grid generation: i) algebraic methods, ii) differential 

equation methods and iii) conformal mapping methods 

• Grid generation and solving PDE can be independent 

– A numerical (flow) solver can in principle be developed independently of the grid 

– A grid generator then gives the metrics (weights) and the one-to-one 

correspondence between the spatial-grid and computational-grid 



Grid Generation:  

Basic Concepts for Structured Grids 

• Structured Grids (includes curvilinear or non-orthogonal grids) 

– Often utilized with FD schemes 

– Methods based on coordinate transformations 

• Consider irregular shaped physical domain ( ) in Cartesian coordinates 

and determine its mapping to the computational domain in the ( ) 

x, y
ξ, η

Cartesian coordinates 

– Inc rease ξ or η monotonically in 
phy sical domain along “curved lines” 

– Coordina te lines of the same family 
do not cross 
 

– Lines of different family don’t cross 
more  than once 
 – A simply-connected irregular shape in the physical plane is mapped 

err ors are expected as a rectangle in the computational plane.  

– Mapped (computational) region has a rectangular shape:  

• Coordinates (ξ, η) can vary from 1 to (I, J), with mesh sizes taken equal to 1 

– Boundaries are mapped to boundaries 
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Grid Generation:  

Basic Concepts for Structured Grids, Cont’d 

• The example just shown was the mapping of an irregular, 

simply connected, region into a rectangle. 

• Other configurations are of course possible 

 
– For example, a L-shape domain 

can be mapped into: 
 
– a regular L-shape 

 
 
 
 

– or into a rectangular shape 
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Grid Generation for Structured Grids: 

Stretched Grids 

• Consider a viscous flow solution on a given body, where the velocity varies 

rapidly near the surface of the body (Boundary Layer) 

• For efficient computation, a finer grid near the body and coarser grid away 

from the body is effective (aims to maintain constant accuracy) 

• Possible coordinate transformation: a scaling “η = log (y)” ↔ “y = exp(η)” 

   The parameter β  (1 < β < ∞) is the 
stretching parameter. As β gets close to 1, 
more grid points are clustered to the wall 
in the physical domain. 

 

• Inverse transformation is needed to 
map solutions back from ξ, η domain: 
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Grid Generation for Structured Grids: 

Stretched Grids, Cont’d 

• How do the conservation equations change? 

• Consider the continuity equation for steady state flow in physical (x, y) space: 

 

• In the computational plane, this equation becomes (chain rule) 

 

 
 

• For our stretching transformation, one obtains: 

 

• Therefore, the continuity equation becomes: 

 

– This equation can be solved on a uniform grid (slightly more complicated eqn. 

system), and the solution mapped back to the physical domain using the inverse 

transform 
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Grid Generation for Structured Grids: 

Algebraic Methods 

• Algebraic Method = Generalization of stretching method (2 & 3D) 

• Consider fitting a diverging nozzle:

– Let’s assume a nozzle defined by: 

• Now, choose a curvilinear system:

– Define the transformation: 

 

  x

 

y
 

x2

 

– Metrics of the transformation: 

    for the continuity eqn.  
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Grid Generation for Structured Grids: 

Algebraic Methods: Transfinite Interpolation 

• Multi-directional interpolation (Transfinite Interpolation) 

– To generate algebraic grids within more complex domains or around more 

complex configurations, multi-directional interpolations can be used 

• They consist of a suite of unidirectional interpolations 

• Unidirectional Interpolations (1D curve) 

– The Cartesian coordinate vector of each point on a curve r(x,y) is obtained 

as an interpolation between points that lie on the boundary curves 

– How to interpolate?   the regulars: 

• Lagrange Polynomials: match function values     

 

• Hermite Polynomials:  match both function and 1st derivative values 
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Grid Generation for Structured Grids: 

Algebraic Methods: Transfinite Interpolation, Cont’d 

• Unidirectional Interpolations (1D curve), Cont’d 

– Lagrange and Hermite Polynomials fit a single polynomial from one 

boundary to the next => for long boundaries, oscillations may occur 

– Alternative, use set of lower order polynomials to form a piece-wise 

continuous interpolation: 

• Spline interpolation (match as many derivatives as possible at interior point 

junctions), Tension-spline (more localized curvature) and B-splines (allows local 

modification of the interpolation) 

– Use interpolation functions that are not polynomials, usually “stretching 

functions”: exp, tanh, sinh, etc 

• Multi-directional or Transfinite Interpolation 

– Extends 1D results to 2D or 3D by 

   successive applications of 1D interpolations 

– For example, i then j. 

r1 
 
i1=0 

r2 
 
i2=I 

r1 
 
i1=0 

r2 
 
i2=I 

j 



Grid Generation for Structured Grids: 

Algebraic Methods: Transfinite Interpolation, Cont’d 

• Multi-directional or Transfinite Interpolation, Cont’d 

– In 2D, the transfinite interpolation can be implemented as follows 

• Interpolate position vectors r in i-direction => leads to points f1=
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i(r) and i-lines 

• Evaluate the difference between r and this result on the j-lines that will be used 

in the j-interpolation (e.g. difference with curved i=0 and i=I):  r –f1 

• Interpolation of the discrepancy in the j-direction: f2 = j(r –f1)

• Addition of the results of this j-interpolation to the results of the i-interpolation:      

r (i, j)= f1 + f2   

r1 

i1=0

r2 

   i2=I

r1 

i1=0

r2 

i2=I
j 

• Of course, Lagrange, Hermite Polynomials, Spline and 
non-polynomial (stretching) functions can be used for 
transfinite interpolations 

• In 2D, inputs to program are 4 boundaries 
• Issues: Propagates discontinuities in the interior and 
grid lines can overlap in some situations 

• => needs to be refined by grid generator solving a PDE 
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Grid Generation for Structured Grids: 

Algebraic Methods: Transfinite Interpolation, Cont’d 

• Examples: 

© Springer. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.
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Grid Generation, structured Grids:  

General Coordinate transformation 

– For Cartesian vector components, one only needs to transform 

derivatives. One has: 

 

 

– In 2D, x = x (ξ,η) and  =  (ξ,η), this leads to: 
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Recall: the minor element mij corresponding to aij is the determinant of the submatrix that remains 
after the ith row and the jth column are deleted from A. The cofactor cij of aij is:   cij = (−1)i + j  mij 

• In general, coordinates are defined by a 
transformation:  xi = xi ( ξj )    (i and j = 1, 2, 3) 

• All transformations are characterized by 
their Jacobian determinant J. 
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Grid Generation  

Structured Grids: Coordinate transformation, Cont’d 

• How do the conservation equations transform?                                      

The generic conservation equation in Cartesian coordinates: 

 

 

• becomes: 

 

where: 

 

 

 

• As a result, each 1st derivative term is replaced by a sum of three terms 

which contains derivatives of the coordinates as coefficients 

• Unusual features of conservation equations in non-orthogonal grids: 

– Mixed derivatives appear in the diffusive terms and metrics coefficients appear 

in the continuity eqn. 
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• Coordinate transformation often presented only as a means 

of converting a complicated non-orthogonal grid into a 

simple, uniform Cartesian grid (the computational domain, 

whose grid-spacing is arbitrary) 

• However, simplification is only apparent: 

– Yes, the computational grid is simpler than the original physical one 

– But, the information about the complexity in the computational domain 

is now in the metric coefficients of the transformed equations 

• i.e. discretization of computational domain is now simple, but the 

calculation of the Jacobian and other geometric information is not trivial 

(the difficulty is hidden in the metric coefficients) 

• As mentioned earlier, FD method can in principle be applied 

to unstructured grids: specify a local shape function, differentiate and 

write FD equations. Has not yet been done. 

Structured Grids: Coordinate transformation, Cont’d 

Some Comments 
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• Grid transformation relations determined by a finite-difference 

solution of PDEs 

– For 2D problems, two elliptic (Poisson) PDEs are solved 

– Can be done for any coordinate systems, but here we will use Cartesian 

coordinates. The 2D transformation is then: 

• From the physical domain (x, y) to the computational domain (ξ, η) 

• At physical boundaries, one of ξ, η is constant, the other is monotonically varying 

• At interior points: 

 

 

 

  where                              are called the “control functions” 

• Their selection allows to concentrate the ξ, η lines in specific regions 

• If they are null, coordinates will tend to be equally spaced away from boundaries 

• Boundary conditions: ξ, η specified on boundaries of physical domain 

Grid Generation for Structured Grids: 

Differential Equation Methods 
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• Computations to generate the grid mapping are actually carried 
out in the computational domain (ξ, η) itself ! 

–  don’t want to solve the elliptic problem in the complex physical domain! 

• Using the general rule, the elliptic problem is transformed into: 

 

 

 

   where  

– Boundary conditions are now the transformed values of the BCs in (x, y) 
domain: they are the values of the positions (x, y) of the grid points on the 
physical domain mapped to their locations in the computational domain 

– Equations can be solved by FD method to determine values of every grid 
point (x, y) in the interior of the physical domain 

• Method developed by Thomson et al, 1985 (see ref) 

Grid Generation for Structured Grids: 

Differential Equation Methods, Cont’d 
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Grid Generation for Structured Grids: 

Differential Equation Methods, Example 

© Springer. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse


PFJL  Lecture 22,    20 Numerical Fluid Mechanics 2.29 

Grid Generation for Structured Grids: 

Conformal Mapping Methods 

• Conformal mapping schemes are analytical or partially analytical (as 

opposed to differential equation methods) 

• Restricted to two dimensional flows (based on complex variables): useful for 

airfoils 

• Examples: 

 

 

 

 

 

– C-mesh: high density near leading edge of airfoil and good wake 

– O-mesh: high density near leading and trailing edge of airfoil 

– H-mesh: two sets of mesh lines similar to a Cartesian mesh, which is easiest to 

generate. Its mesh lines are often well aligned with streamlines 
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Commons license. For more information, see http://ocw.mit.edu/fairuse.

  

http://ocw.mit.edu/fairuse


PFJL  Lecture 22,    21 Numerical Fluid Mechanics 2.29 

Grid Generation for Structured Grids: 

Conformal Mapping Methods: Example 

• C-mesh example is generated by a parabolic mapping function  

• It is essentially a set of confocal, orthogonal parabolas wrapping around the 

airfoil 

• The mapping is defined by: 

 

 

• Inverse transformation: 

 

 

• Polar coordinates can be used for easier physical plane to computational 

plane transformation. 

• In conformal mapping, singular point is point where mapping fails (here, it is 

the origin) => move it to half the distance from the nose radius 
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© Springer. All rights reserved. This content is excluded from our Creative
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Grid Generation: Unstructured Grids 

• Generating unstructured grid is 

complicated but now relatively 

automated in “classic” cases 

• Involves succession of smoothing 

techniques that attempt to align 

elements with boundaries of physical 

domain 

• Decompose domain into blocks to de-

couple the problems 

• Need to define point positions and 

connections 

• Most popular algorithms: 

– Delaunay Triangulation Method 

– Advancing Front Method 

• Two schools of thought: structured vs.

unstructured, what is best for CFD? 

 

– Structured grids: simpler grid and straightforward 
treatment of algebraic system, but mesh generation 
constraints on complex geometries 

– Unstructured grids: generated faster on complex 
domains, easier mesh refinements, but data storage 
and solution of algebraic system more complex 
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