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Fall 2011 — Lecture 22

« End of Time-Marching Methods: higher-order methods

— Runge-Kutta Methods
+ Additional points are between ¢, and ¢,

— Multistep/Multipoint Methods: Adams Methods
 Additional points are at past time steps

— Practical CFD Methods
— Implicit Nonlinear systems
— Deferred-correction Approach

« Complex Geometries

— Different types of grids
— Choice of variable arrangements
* Velocity vectors: Cartesian or Grid-oriented
« Staggered or Collocated variables
 Grid Generation

— Basic concepts and structured grids
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TODAY (Lecture 22):
. Grid Generation and Intro to FV Complex Geometries

« Complex Geometries

 Grid Generation
— Basic concepts and structured grids
» Stretched grids
» Algebraic methods (strecthed grids)
» General coordinate transformation
 Differential equation methods
« Conformal mapping methods
— Unstructured grid generation
* Delaunay Triangulation
« Advancing Front method
* Finite Volume on Complex geometries
— Computation of convective fluxes
— Computation of diffusive fluxes
— Comments on 3D

« Solution of the Navier-Stokes Equations
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References and Reading Assignments

Chapter 8 on “Complex Geometries” of “J. H. Ferziger and M.
Peric, Computational Methods for Fluid Dynamics. Springer,
NY, 3 edition, 2002”

Chapter 9 on “Grid Generation” of T. Cebeci, J. P. Shao, F.
Kafyeke and E. Laurendeau, Computational Fluid Dynamics for
Engineers. Springer, 2005.

Ref on Grid Generation only:

— Thompson, J.F., Warsi Z.U.A. and C.W. Mastin, “Numerical Grid
Generation, Foundations and Applications”, North Holland, 1985
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Classes of Grid Generation

. An arrangement of discrete set of grid points or cells needs to be generated
for the numerical solution of PDEs (fluid conservation equations)

— Finite volume methods:
» Can be applied to uniform and non-uniform grids

— Finite difference methods:

» Require a coordinate transformation to map the irregular grid in the spatial domain to a
regular one in the computational domain

« Difficult to do this in complex 3D spatial geometries

» So far, only used with structured grid (could be used with unstructured grids with
polynomials ¢ defining the shape of ¢ around a grid point)

« Three major classes of grid generation: i) algebraic methods, ii) differential
equation methods and iii) conformal mapping methods

« Grid generation and solving PDE can be independent
— A numerical (flow) solver can in principle be developed independently of the grid

— A grid generator then gives the metrics (weights) and the one-to-one
correspondence between the spatial-grid and computational-grid
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Grid Generation:
Basic Concepts for Structured Grids

« Structured Grids (includes curvilinear or non-orthogonal grids)
— Often utilized with FD schemes
— Methods based on coordinate transformations
« Consider irregular shaped physical domain (x, y) in Cartesian coordinates

and determine its mapping to the computational domain in the (&, #)
Cartesian coordinates

n
— Increase ¢ or # monotonically in W @ )

(1,3)
physical domain along “curved lines” D c

— Coordinate lines of the same family A A
do not cross (1,1 - (1) RN

T T T T

— Lines of different family don’t cross X o 1 2 3 &
more than once
Image by MIT OpenCourseWare.

- Physical grid refined where Iarge A simply-connected irregular shape in the physical plane is mapped
errors are expected as a rectangle in the computational plane.

— Mapped (computational) region has a rectangular shape:
» Coordinates (&, ) can vary from 1 to (I, J), with mesh sizes taken equal to 1

— Boundaries are mapped to boundaries
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Grid Generation:
Basic Concepts for Structured Grids, Cont’'d

 The example just shown was the mapping of an irregular,

simply connected, region into a rectangle.
» Other configurations are of course possible

A

15]_ F E

4 -

3. D C

24

14
A B
I

F A B

T T T T T >
0 1 2 3 4 5 &

— For example, a L-shape domain
can be mapped into: "
_&mono_tonically : D
— aregular L-shape el
“\A ______
y A
F E
. D
— or into a rectangular shape
A
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Grid Generation for Structured Grids:
Stretched Grids

Consider a viscous flow solution on a given body, where the velocity varies
rapidly near the surface of the body (Boundary Layer)

For efficient computation, a finer grid near the body and coarser grid away
from the body is effective (aims to maintain constant accuracy)

Possible coordinate transformation: a scaling “q =log (v)” < “y = exp(y)”

c=Xx
+(1—vy/h +1
ln[A(y)] where A(y):ﬁ (1=y/h) and B:ﬂ—
n=l-———= p—1-y/h) p—1
In B
. yh nh
The parameter f (1 <f <) is the ARRER 1
stretching parameter. As S gets close to 1, Jr i -’——
more grid points are clustered to the wall i T T
in the physical domain. B e
o v i ) O
. . ——— —
* Inverse transformation is needed to ( )" b
map SOIUtionS baCk from 5, ;7 domain: F.‘ig. l9.;1. One-dimensional stretching transformation. (a) Physical plane, (b) computa-
x=¢ =
© Springer. All rights reserved. This content is excluded from our Creative
y (ﬂ + 1) _ (ﬂ _ I)Bl—ﬂ Commons license. For more information, see http://ocw.mit.edu/fairuse.
ho 1+ B
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Grid Generation for Structured Grids:
Stretched Grids, Cont'd

« How do the conservation equations change?

 Consider the continuity equation for steady state flow in physical (x, y) space:

opu N opv _0
Oox oy

V.(p¥)=0 =

* In the computational plane, this equation becomes (chain rule)

opu 8,0u o0& Gpu on
o 0 ox | on @
X & Ox n x>:%§+8punx 8,0v§ +@77y=0
opu apv 65 opv On o0& on o0& on
oy  0¢ 8y on oy |
 For our stretching transformation, one obtains:
2/ 1

= 1, = O’ ju— O, =
o=l =0 =0 = B B Ay

» Therefore, the continuity equation becomes:
opu N opv

o&  on
— This equation can be solved on a uniform grid (slightly more complicated eqn.

system), and the solution mapped back to the physical domain using the inverse
PFJL Lecture 22,
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Grid Generation for Structured Grids:

Algebraic Methods
. Algebralc Method = Generalization of stretching method (2 & 3D)

 Consider fitting a diverging nozzle: ]
— Let’'s assume a nozzle defined by: y=x* 1<x<2 D
* Now, choose a curvilinear system: ’
X A B ¢
— Define the transformation:
nA
E C 1
_ ST [ e T
G
0 A B .
— Metrics of the transformation: = = :
Image by MIT OpenCourseWare
for the continuity eqgn.
opu opu opv opv 2n 1
oe 6.+ on n.+ oc S, + on n,=0, where & =1, ¢ =0, nx=—?, ny=?
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Grid Generation for Structured Grids:
Algebraic Methods: Transfinite Interpolation

« Multi-directional interpolation (Transfinite Interpolation)

—To generate algebraic grids within more complex domains or around more
complex configurations, multi-directional interpolations can be used

» They consist of a suite of unidirectional interpolations

 Unidirectional Interpolations (1D curve)

—The Cartesian coordinate vector of each point on a curve r(x,y) is obtained
as an interpolation between points that lie on the boundary curves

—How to interpolate? the regulars:

« Lagrange Polynomials: match function values /Nz
r
z l—l v
r(i)= ZL @Hr, with L (i)= I | - =0 i

J=0,j=k lk j

« Hermite Polynomials: match both function and 15t derivative values

n m
—_ . _ . — . -1 r
r(l)_zak(l) rk+zbk(l)r k 1
k=1 k=1 i,=0
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x:: Grid Generation for Structured Grids:
7 Algebraic Methods: Transfinite Interpolation, Cont'd

 Unidirectional Interpolations (1D curve), Cont’'d

—Lagrange and Hermite Polynomials fit a single polynomial from one
boundary to the next => for long boundaries, oscillations may occur

— Alternative, use set of lower order polynomials to form a piece-wise
continuous interpolation:

« Spline interpolation (match as many derivatives as possible at interior point
junctions), Tension-spline (more localized curvature) and B-splines (allows local
modification of the interpolation)

— Use interpolation functions that are not polynomials, usually “stretching
functions”: exp, tanh, sinh, etc

» Multi-directional or Transfinite Interpolation
— Extends 1D results to 2D or 3D by
successive applications of 1D interpolations

—For example, i then ;.

i,=1
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Grid Generation for Structured Grids:
;)“'Algebralc Methods: Transfinite Interpolation, Cont'd

» Multi-directional or Transfinite Interpolation, Cont’d

—In 2D, the transfinite interpolation can be implemented as follows

Interpolate position vectors r in i-direction => leads to points f,=[1;(r) and i-lines

Evaluate the difference between r and this result on the j-lines that will be’:used
in the j-interpolation (e.g. difference with curved =0 and i=I): r —f, ]

Interpolation of the discrepancy in the j-direction: f, = [,(r —f,)

Addition of the results of this j-interpolation to the results of the i- |nterpolat|on
r (@ j)=f+f ]

 Of course, Lagrange, Hermite Polynomials, Spline and
non-polynomial (stretching) functions can be used for
transfinite interpolations

*In 2D, inputs to program are 4 boundaries

* Issues: Propagates discontinuities in the interior and
grid lines can overlap in some situations

«=> needs to be refined by grid generator solving a PDE
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 Examples:

2.29

Grid Generation for Structured Grids:
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(c) (d)
Fig. 9.12. (a) C-grid around ellipse: Unidirectional Lagrange Interpolation, (b) C-grid
around ellipse: Unidirectional Hermite Interpolation, (c) C-grid around ellipse: Unidirec-

tional Lagrange Interpolation with Hyperbolic Tangent Spacing, (d) C-grid around ellipse:
Unidirectional Hermite Interpolation with Hyperbolic Tangent Spacing.

© Springer. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.
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Grid Generation, structured Grids:
General Coordinate transformation

* In general, coordinates are defined by a o ox  ox,
transformation: x;=x,(¢) (iandj=1,2,3) g 0g, ¢,
ox, | |ox, Ox, Ox,

- All transformations are characterized by  ~ =de{@§J‘ 0 O, O,
their Jacobian determinant J. Ox, Ox, Ox,
dg; Ogy 0G;

— For Cartesian vector components, one only needs to transform
derivatives. One has:

op _0p 05 _op p
o, 0, ox, O, J

Ox,

, where S’ represents the cofactor of (element Z, j of Jacobian matrix)

J

— In 2D, x=x (&) and ¢= ¢ (,n), this leads to:

8¢:8¢5§+8¢8f7:8¢ﬂ“+8¢ﬂ”:l(aqﬁ@y_ﬁwyj
ox o0Eox oOpmox O J on J  J\oEon Ondé

Recall: the minor element m,; corresponding to a; is the determinant of the submatrix that remains
after the i row and the j* column are deleted from A. The cofactor c; of a; is: ¢; = (=1)'"I m,
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Grid Generation
5Structured Grids: Coordinate transformation, Cont’d

« How do the conservation equations transform?
The generic conservation equation in Cartesian coordinates:

PO 5 (o) =V. (V) +5, © M+8£Lp¢vj— 9 |-
X

ot ot axj _S¢
» becomes:
J@+ 0 ppU, —— 09 ——B" ||=Js,
G ag
where:

U, =v, BY =v,BY +v, +v,” is proportional to the velocity component aligned with g :
< (normal to &, = const.)

B" = pYp" = gY g + P B + B B are coefficients, sum of products of cofactors 3’

» As a result, each 1st derivative term is replaced by a sum of three terms
which contains derivatives of the coordinates as coefficients

* Unusual features of conservation equations in non-orthogonal grids:

— Mixed derivatives appear in the diffusive terms and metrics coefficients appear

in the continuity eqn. _ _ _
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“Structured Grids: Coordinate transformation, Cont'd
Some Comments

« Coordinate transformation often presented only as a means

of converting a complicated non-orthogonal grid into a
simple, uniform Cartesian grid (the computational domain,
whose grid-spacing is arbitrary)

« However, simplification is only apparent:

— Yes, the computational grid is simpler than the original physical one

— But, the information about the complexity in the computational domain
is now in the metric coefficients of the transformed equations

* i.e. discretization of computational domain is now simple, but the
calculation of the Jacobian and other geometric information is not trivial
(the difficulty is hidden in the metric coefficients)

* As mentioned earlier, FD method can in principle be applied

to unstructured grids: specify a local shape function, differentiate and
write FD equations. Has not yet been done.
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Grid Generation for Structured Grids:
Differential Equation Methods

. Gfid transformation relations determined by a finite-difference
solution of PDEs

— For 2D problems, two elliptic (Poisson) PDEs are solved

— Can be done for any coordinate systems, but here we will use Cartesian
coordinates. The 2D transformation is then:

« From the physical domain (x, y) to the computational domain (&, 7)

« At physical boundaries, one of &, 5 is constant, the other is monotonically varying

« At interior points: 0’E 0

§+§:P(§,n)

2 2
om o

axz ﬁ - Q(é:’ 77)

where P(&,n) and O(&,n) are called the “control functions”
» Their selection allows to concentrate the &, i lines in specific regions
« If they are null, coordinates will tend to be equally spaced away from boundaries

« Boundary conditions: &,  specified on boundaries of physical domain
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Grid Generation for Structured Grids:
Differential Equation Methods, Cont’d

. Computatlons to generate the grid mapping are actually carried
out in the computational domain (&, ») itself !

— don’t want to solve the elliptic problem in the complex physical domain!

 Using the general rule, the elliptic problem is transformed into:

2 2 2
a8§—2ﬂ8x+7/a)§+J2 8_x Q— =0
0¢ ocon ~ 0n 55 on
2 2 2
a2 =252 ay 22 PL 02 <0
o0& oéon  on 8§ on

: Ox
where a=x+y,; f=x.x+y.y,; v=x:+y:; J=x.y,—x,y. (with gi:%, etc)

— Boundary conditions are now the transformed values of the BCs in (x, y)
domain: they are the values of the positions (x, y) of the grid points on the
physical domain mapped to their locations in the computational domain

— Equations can be solved by FD method to determine values of every grid
point (x, y) in the interior of the physical domain

* Method developed by Thomson et al, 1985 (see ref)
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Grid Generation for Structured Grids:
Differential Equation Methods, Example
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Fig. 9.13. (a) Starting algebraic C-grid around an airfoil section; 70 x 30 grid points;
inner spacing AS; = 0.015¢, outer spacing AS; = 0.3c, (b) Elliptic C-grid obtained after
smoothing the algebraic grid of (a) by the solution of Poisson equations (50 iterations),
(c) Close-up of the C-grid showing the application of orthogonality conditions near the

leading edge region.
© Springer. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/fairuse.
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Grid Generation for Structured Grids:

Conformal Mapping Methods

« Conformal mapping schemes are analytical or partially analytical (as
opposed to differential equation methods)

» Restricted to two dimensional flows (based on complex variables): useful for
airfoils

1]
I
T

A AR : ] \ MR g I
[ ) Exa m p I eS : v ‘-‘:“ ““l“ s xm 4 "" 3 “ T

T
LTI LAY

(a) (b) (c)
Fig. 9.14. Three common grids for airfoils. (a) C-grid, (b) O-grid, and (c) H-grid.

© Springer. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

— C-mesh: high density near leading edge of airfoil and good wake

— O-mesh: high density near leading and trailing edge of airfoil

— H-mesh: two sets of mesh lines similar to a Cartesian mesh, which is easiest to
generate. Its mesh lines are often well aligned with streamlines
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Grid Generation for Structured Grids:

Conformal Mapping Methods: Example

« C-mesh example is generated by a parabolic mapping function

* |tis essentially a set of confocal, orthogonal parabolas wrapping around the
airfoil

* The mapping is defined by: 2x+iy) = (& +in)’

\\\\\\\\\\
\\\\\\\

' s
||||||
||||||
::::::

t

2x=E-n*; y=&n

\\\\\
||||||

* Inverse transformation: -

T
::::::

T 1
1111111

S > 1

© Springer. All rights reserved. This content is excluded from our Creative
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» Polar coordinates can be used for easier physical plane to computational
plane transformation.

* In conformal mapping, singular point is point where mapping fails (here, it is
the origin) => move it to half the distance from the nose radius
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» Generating unstructured grid is
complicated but now relatively
automated in “classic” cases

* Involves succession of smoothing
techniques that attempt to align
elements with boundaries of physical
domain

* Decompose domain into blocks to de-
couple the problems

» Need to define point positions and
connections

* Most popular algorithms:
— Delaunay Triangulation Method

— Advancing Front Method

» Two schools of thought: structured vs.
unstructured, what is best for CFD?

Grid Generation: Unstructured Gr
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Fig. 9.16. 2D Unstructured grid for Navier-Stokes computations of a multi-element airfoil
generated with the hybrid advancing front Delaunay method of Mavriplis [6].
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(- Structured grids: simpler grid and straightforward

treatment of algebraic system, but mesh generation
constraints on complex geometries

— Unstructured grids: generated faster on complex
domains, easier mesh refinements, but data storage

¢ and solution of algebraic system more complex
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