2.29 Numerical Fluid Mechanics

= Fall 2011 — Lecture 23
REVIEW Lectures 22:

« Complex Geometries

e Grid Generation

— Basic concepts and structured grids
» Stretched grids
« Algebraic methods

» General coordinate transformation
 Differential equation methods
» Conformal mapping methods

— Unstructured grid generation
« Delaunay Triangulation
« Advancing Front method
* Finite Volume on Complex geometries
— Computation of convective fluxes
— Computation of diffusive fluxes
— Comments on 3D
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TODAY (Lecture 23):
Grid Generation (end), FV on Complex Geometries

and Solution to the Navier-Stokes Equations
» Grid Generation

— Basic concepts and structured grids

» Algebraic methods (stretched grids), General coordinate transformation, Differential
equation methods, Conformal mapping methods

— Unstructured grid generation
« Delaunay Triangulation
« Advancing Front method

* Finite Volume on Complex geometries
— Computation of convective fluxes
— Computation of diffusive fluxes
— Comments on 3D
« Solution of the Navier-Stokes Equations
— Discretization of the convective and viscous terms
— Discretization of the pressure term
— Conservation principles
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References and Reading Assignments

« Chapter 8 on “Complex Geometries” and Chapter 7 on
“Incompressible Navier-Stokes equations” of “J. H. Ferziger and
M. Peric, Compultational Methods for Fluid Dynamics. Springer,
NY, 3 edition, 2002”

« Chapter 9 on “Grid Generation” and Chapter 11 on
“Incompressible Navier-Stokes Equations” of T. Cebeci, J. P.
Shao, F. Kafyeke and E. Laurendeau, Computational Fluid
Dynamics for Engineers. Springer, 2005.

e Chapter 13 on “Grid Generation” and Chapter 17 on
“Incompressible Viscous Flows” of Fletcher, Computational
Techniques for Fluid Dynamics. Springer, 2003.

* Ref on Grid Generation only:

— Thompson, J.F., Warsi Z.U.A. and C.W. Mastin, “Numerical Grid
Generation, Foundations and Applications”, North Holland, 1985
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Grid Generation: Unstructured Gr

5
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» Generating unstructured grid is
complicated but now relatively
automated in “classic” cases
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* Involves succession of smoothing
techniques that attempt to align
elements with boundaries of physical _
domain R e
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* Decompose domain into blocks to de-
couple the problems
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» Need to define point positions and RS
connections ‘
H . Fig. 9.16. 2D Unstructured grid for Navier-Stokes computations of a multi-ele airfoi
* MOSt pOPU|ar algorlthms generated with the hybrid advanc‘ijng frori Delauenayomzth:d(Z)fsMa\a/‘rrir;)list [g] ment airioll
—_ De|aunay Triangu|ation Method © Springer. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.
— Advancing Front Method (— Structured grids: simpler grid and straightforward

treatment of algebraic system, but mesh generation

» Two schools of thought: structured vs. constraints on complex geometries

i ?
unstructured, what is best for CFD" < — Unstructured grids: generated faster on complex

domains, easier mesh refinements, but data storage
¢ and solution of algebraic system more complex
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*Delaunay Triangulation (DT)
—Use a simple criterion to connect points to
form conforming, non-intersecting elements
—Maximizes minimum angle in each triangle
—Not unique
—Task of point generation is done
independently of connection generation
* Based on Dirichlet’s domain
decomposition into a set of packed
convex regions:

—For a given set of points P, the space is
subdivided into regions in such a way that
each region is the space closer to P than to
any other point = Dirichlet tessellation

Note: at the end,
points P are at
summits of triangles

Image by MIT OpenCourseWare.

2.29

Grid Generation: Unstructured Grids

This geometrical construction is known as the
Dirichlet tessellation

The tessellation of a closed domain results in
a set of non-overlapping convex regions called
Voronoi regions/polygons

The sides of the polygon around P is made of
segments bisectors of lines joining P to its
neighbors: if all pair of points with a common
segment are joined by straight lines, the result
is a Delaunay Triangulation

Each vortex of a Voronoi diagram is the
circumcenter of the triangle formed by the
three points of a Delaunay triangle

Criterion: the circumcircle can not contain any
other point than these three points

(a) Satisfies the criterion (b) Does not

Numerical Fluid Mechanics

Image by MIT OpenCourseWare.
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') Grid Generation: Unstructured Grids
Advancing Front Method

In this method, the tetrahedras are built progressively, inward from the
boundary

An active front is maintained where new tetrahedra are formed

For each triangle on the edge of the front, an ideal location for a new
third node is computed

Requires intersection checks to ensure trianales don'’t overlap

Fig. 9.20. Advancing Front technique for unstructured grid generation.

© Springer. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

In 3D, the Delaunay Triangulation is preferred (faster)

2.29
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Finite Volumes on Complex geometries

* FD method (classic):

— Use structured-grid transformation (either algebraic-transfinite, general,
differential or conformal mapping)

— Solve transformed equations on simple orthogonal computational domain

 FV method:

— Starts from conservation egns. in integral form on CV

d

[ P9V + j P (ViNdA = —jcsé¢.ﬁdA + ZJCVS¢dV

h'd
Advective (convectlve) ﬂuxes Other transports (diffusion, etc)

~
Sum of sources and
sinks terms (reactions, etc)

— We have seen principles of FV discretization
« Convective/diffusive fluxes, from 1st - 2"d order to higher order discretizations
» These principles are independent of grid specifics, but,
« Several new features arise with non-orthogonal or arbitrary unstructured grids
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2\ Expressing fluxes at the surface based on cell-averaged (nodal)
) values: Summary of Two Approaches and Boundary Conditions

. éet-up of surface/volume integrals: 2 approaches (do things in opposite order)

1. (i) Evaluate integrals using classic rules (symbolic evaluation); (ii) Then, to obtain
the unknown symbolic values, interpolate based on cell-averaged (nodal) values

O F, =] f,dd = F,=G(4,) -
J.Se i = F,=F (#'s) Similar for other jntegrals:
(ii) g, =H (4') =H (4,'5) (S,=[ 5,4V, D= pgdV’,etc

2. (i) Select shape of solution within CV (piecewise approximation); (ii) impose
volume constraints to express coefficients in terms of nodal values; and (iii) then
integrate. (this approach was used in the examples).

)¢, (x)=J (%)

Gi) [ ¢, (x) = gzp — ¢a,- (x)= ¢$P (x) _ Similar for higher dimensions:
V{ | (= E=E(9) Hx,)=J , (x,p); et
(i) F, = | f, dA b, (Xpyp) =y et

 Boundary conditions:

(From lecture 19)
— Directly imposed for convective fluxes

— One-side differences for diffusive fluxes
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(summary from Lecture 18)

Approx. of Surface/Volume Integrals:

Classic symbolic formulas B TR N
- Surface Integrals  F, =] f, a4 Yo I e
- 2D prObIemS (1 D Surface Integrals) Notation used for a Cartesian 2D and 3D grid.
Image by MIT OpenCourseWare.

« Midpoint rule (29 order): k= _'Sef¢ dA= 1.8, = f.S.+O(&*) = [.8,

f¢ dAzSe (ﬁe;fve)_i_O(Ayz)

 Trapezoid rule (2" order): r, =..Se

 Simpson’s rule (4t order): F,= _.Sef¢ dA= S, (u +4é2 t /) +0(AYY)
— 3D problems (2D surface integrals)

« Midpoint rule (2" order): F = L;f¢ dA~S.f.  +O(A?,AZ%)

« Higher order more complicated to implement in 3D

_ ]
* Volume Integrals: $,=|,s. 4. ®=—[ pgav

—2D/3D problems, Midpoint rule (2" order): S,=| s,dV =5,V ~s,V

Ax A
—y[16sp +4s +4s +4s +4ds,+s ,+5  +S,, +an]

— 2D, bi-quadratic (4'" order, Cartesian): 5=
PFJL Lecture 23, 9
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FV: Approximation of convective fluxes
| PP (V.i)dS

'
Advective (convective) fluxes

« For complex geometries, one often uses the midpoint rule for
the approximation of surface and volume integrals

« Consider first the mass flux: g=1: f,,=pvi

— Again, we consider one face only: east side of a 2D CV (same approach
applies to other faces and to any CV shapes).

~ Mid-point rule for mass flux: 7, =|_f,, dS=7.S, = f.5,+O0(A*) ~(pV.ii),5,

— The unit normal vector to face “¢” and its surface S,
aredefinedas: ns =5"i+S’ j=(y. -y )i—(x, —x.)]

where S, =/(5)* +(S?)’

— Hence, mass flux is:

>
>
[

x m, =(pV.1),S, = p, V..(S; 1+5, ) = p, (S, u,+S5; v,)

Image by MIT OpenCourseWare.
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* The mass flux for the mid-point rule:

FV: Approximation of convective fluxes, Cont'd
Mass Flux

m,=p, (S, u,+S. v,)

 What’s the difference between the Cartesian and non-

orthogonal grid cases?

— In non-orthogonal case, normal to surface has components in

all directions

— All velocity components thus contribute to the flux (each
component is multiplied by the projection of S, onto the

corresponding axis)

ik

Image by MIT OpenCourseWare.
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FV: Approximation of convective fluxes, Cont'd

/)

« Mass flux for mid-point rule: |, =p, (S u,+S.v,)

 Convective flux for any transported ¢

— Is usually computed after the mass flux. Using the mid-point rule:
F,=[ pp (i) dS=[S,=(pgiii),S, = dsm,

where ¢, = value ¢ at center of cell face

How to obtain ¢,?, use either:

A linear interpolation between two nodes on either side of face (also 2nd
order) = becomes trapezoidal rule

» Fit ¢ to a polynomial in the vicinity of the face (piecewise shape function)

— Considerations for unstructured grid:

« Best compromise among accuracy, generality and simplicity is usually:
Linear interpolation and mid-point rule

* Indeed: facilitates use of local grid refinement, which can be used to achieve
higher accuracy at lower cost than higher-order schemes. However, higher-
order FE or compact FD are now being used/developed
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FV: Approximation of diffusive fluxes
jCSkV¢.ﬁ ds

Diffusive Fluxes

* For complex geometries, we can still use the midpoint rule

» Mid-point rule gives: F'=|[ kVgidS=7s, =15, +O0(A%) = (kVi),S,

« Here, gradient can be expressed in terms of global Cartesian
coordinates (x, y) or local orthogonal coordinates (x, ?)
. 0¢

op. O¢ o¢
— " V = = —t
In 2D: 4 8xl+6yj on nr Ot

— There are many ways to approximate the derivative
normal to the cell face or the gradient vector at the

cell center

— As always, two main approaches:
« Approximate surface integral, then interpolate

mage by MIT Opencoursetare. « Specify shape function, constraints, then integrate

ik

e
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FV: Approximation of diffusive fluxes, Cont’d

1) If shape function ¢ (x, y) is used, with mid-point rule, this gives:
0f
Sy

_r — X %
° oy J‘kelzse ox, |

— Can be evaluated and relatively easy to implement explicitly

F! ~(kV i), S, =k, [S: @ .
ox

e

—Implicitly can be harder for high-order shape fct ¢ (x, y) (more cell involved)

2) Another way is to compute derivatives at CV centers first, then
interpolate to cell faces (2 steps as for computing ¢, from ¢,)

i) One can use averages + Gauss Theorem locally

 Derivative at center = average derivative over cell

of szdV/de%

ox|p, g, 0x ox

»
» Gauss theorem for ¢ /ox (similar for y derivative):

5 j%dlf:jgﬁi.ndsz > 4
CS

cv 4faces ¢

i1

—y

Image by MIT OpenCourseWare.
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FV: Approximation of diffusive fluxes, Cont’d

— Hence, the gradient at the CV center with respect to x; is obtained by
summing the products of each ¢ _ with the projection of its cell surface
onto a plane normal to x;, and then dividing the sum by the CV volume

o9| .04

ox,|, Ox;|,

_ jde dv= "> ¢Cij/dV

ol % axi 4 ¢ faces

— For ¢_we can use the approximation for the convective fluxes

— We can then interpolate to obtain the gradient at the centers of cell faces

— For Cartesian grids and linear interpolation, one retrieves centered FD

ii) Cell-center gradients can also be approximated to 2"

order assuming a linear variation of ¢ locally:

D —Pp = V¢‘P. (r; =)
» There are as many such equations as there are neighbors to

the cell centered at P = need for least-square inversions
(only n derivatives in nD)

* Issues with this approximation are oscillatory solutions and

jA

—y

large computational stencils for implicit schemes = use

deferred-correction approach
2.29 Numerical Fluid Mechanics PFJL Lecture 23, 15
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) FV: Approximation of diffusive fluxes, Cont'd

|||) Deferred-Correction Approach:

— ldea behind deferred-correction is to identify possible options and combine
them to reduce costs and eliminate un-desired behavior. Some options:

— If we work in local coordinates (n, £): F’ = (kV$.i),S, =k,S, 99

on|,
— If grid was close to orthogonal Cartesian, using CDS: 225 ~ 2? ~ ‘fE :f”‘ Q)
— If interpolate the gradient at the cell center: P OO L=y 1 b0 (2)
on|, 0&|, 2r,-r,| 2|, -,

« Oscillatory solutions do not contribute to this third higher-
order choice, but gradients at cell faces would still be large
=> oscillations do occur:

¢W ¢E
U Oee
O O W O e 0 0
ww w P E EE

Image by MIT OpenCourseWare.

x + The obvious solution: 22 z[(Dimpﬁcit]’“Jr [yt — 1yt T

ik

s

on
fmage by MIT Opencoursetiare: wijll oscillate = Need to find other options/solution
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FV: Approximation of diffusive fluxes, Cont'd

i) Deferred-Correction Approach, Cont'd (Muzaferija, 1994):

— If line connecting nodes P and E is nearly orthogonal to cell face,

derivative w.r.t n can be approximated with derivative w.r.t £ (as before):
N, o9 o9 Gy — ¢

. nd F'~kS —| ~kS —| ~kS L

— approximation close to 2"? order f, =k, anl, = ael T T

— If grid is not orthogonal, the deferred correction term should contain the

difference between the gradients in the » and ¢ directions =

old
Fi ks, 2 vis |2 -2
0¢ . 05|,

on
. : o
« where the first term is computed as: k.S, o =k,S,

e ¢E - ¢P

rE_rP‘

« Bracket term interpolated from cell center greeldients
(themselves obtained from Gauss theorem)

og ”vég ::Eiﬂ.n and Qé-ﬂuéé
on ¢ og|, 0g

e

~y

. ~ i
14 e ¢
., oOn

e

-y

— ——— —old
Image by MIT OpenCourseWare. @ Hence P;d ~ keSe ¢E—¢P‘ + keSe |:V¢ j| (n — |§)
r.—r, ¢
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Y FV: Approximation of diffusive fluxes, Cont'd

Y /4

1)) Deferred-Correction Approach, Cont’'d (Muzaferija, 1994):

— In the formula: _ —
F;d zkeS'e fE—fP‘_i_keSe |:V¢L:| Id(n_lé:)
E_'p

« The deferred correction term is (close to) zero when grid (close to) orthogonal,
i.e. nand ¢ directions are the same (close to each other).

* It makes the computation of derivatives simple (amounts to sums of neighbor

values), recall that: old

[V—qﬁ\e}md interpolated from [V_ﬂﬂ}

the latter given by e.g. 2¢ = > ¢Cij/dV

P 4 ¢ faces

i

* Prevents oscillations since based on sums of ¢, with
positive coefficients

ik

* We remained in Cartesian coordinates (no need to
X transform coordinates, we just need to know the normals
Image by MIT OpenCourseware. & surfaces), which is handy for complex turbulent models

e
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— Line P-E does not always pass
through the cell center

= need some updates in that case

» otherwise, scheme is of lower order
(e.g. approximation is not second
order anymore)

— Schemes can be extended to 3D
grids but some updates can also be
needed

» For example, cell faces are not
always planar in 3D

— Block-structured grids and nested
grids also need special treatment

* For example, matching at
boundaries (usually interpolation and

averaging)

2.29 Numerical Fluid Mechanics

Some comments on FV on complex geometries

Block-Interface

—
Block B 4 Re
R L
— I+
n ;.
Re*=—7 = el Block A

k-1
7 [
\ Re” |
°

A Cell-face center
O Cell vertex
@® Cell center

The interface between two blocks with

non-matching grids.

A Ny

o
=)
()

\

0
4 n T~
°

E

T

Collocated arrangement of velocity components
and pressure on FD and FV grids.

1 ™~

Cell volume and surface vectors for
arbitrary control volumes.

Image by MIT OpenCourseWare.
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Integral Conservation Law for a scalar ¢

d d -
{EJ‘CM,OWZV :} i p¢dV+j 06 (V. n)dA = —j g,idA  + ZJCVM dv
Advectlve ﬂuxes Other transports (dlfﬁlSlOH etc) g
(‘convective” fhuxes) fi‘ﬁﬁ?s‘iiii‘;réii?ﬁﬁns, ctc)
///p,CD \‘7\ Applying the Gauss Theorem, for any arbitrary CV gives:
// \%‘ @p¢
C\;\\ E/ > ——+V.(pgv) =-V. q¢+s
fixed %
N -
S o ll q¢
AN ! For a common diffusive flux model (Fick’s law, Fourier’s law):
) -
qs = —kV ¢

Conservative form ,0¢
_ + V. V.(kV @)+
of the PDE ot (pgv) = V. (kV) %

2.29 Numerical Fluid Mechanics PFJL Lecture 23,
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(from Lecture 6)

Strong-Conservative form
of the Navier-Stokes Equations (¢ = v)

d . e . <. ~
Cons. of Momentum: EJ-CV ovdV + ICSpv(v.n)dA = JCS —p ndA+ jcsr.ndA + ICV pngj
S F
Applying the G Th ives: — — = o
pplying the Gauss Theorem gives CV( Vp+V.7 +pg)dV

——— For any arbitrary CV gives: apv +V.(pV V)=-Vp+V.T 7+ oX
,//P,CD ‘—;\\ o

’ 1

/ \\‘ With Newtonian fluid + incompressible + constant p:

\
CV, | -
fixed > % :/_' Momentum: agl +V.(pv V) =-Vp+ 1V + pg

N q {
N ] ¢ ) -
\ . / Mass: Vv=0
\ =

Equations are said to be in “strong conservative form” if all terms have the form of the divergence
of a vector or a tensor. For the it Cartesian component, in the general Newtonian fluid case:

With Newtonian fluid only: %+V.(pv. V)=V.|-pé +ul — ou, al __gluale + pg.XE
Ot ’ Ox, Ox, %73 Ox s
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"4 Solution of the Navier-Stokes Equations

. In/the FD and FV schemes, we dealt with the discretization of the generic
conservation equation dps

ot

* These results apply to the momentum and continuity equations (the NS
equations), e.g. for incompressible flows, constant viscosity
apv
ot
Vv=0
* Terms that are discretized similarly

— Unsteady and advection terms: they have the same form for ¢ scalar than for ¢g=v

HV.(pP) =Y. q, +5,

+V.(pV ¥)=-Vp+ uVv + pg

» Terms that are discretized differently
— Momentum (vector) diffusive fluxes need to be treated in a bit more details

— Pressure term has no analog in the generic conservation equation => needs
special attention. It can be regarded either as a

» source term (treated non-conservatively as a body force), or as,
 surface force (conservative treatment)

— Finally, main variable v is a vector = gives more freedom to the choice of grids
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Discretization of the
Convective and Viscous Terms

Ox
— Use any of the schemes (FD or FV) that we have seen (including
complex geometries)

. 0 u.
» Convective term: v.(oiv) and [ pi(v.i)ds opitt) [ ,oul.(\'i.ﬁ)dSJ

i andj r e .idS
S

y ]
8xj

e Viscous term: v.7 and CS%.ﬁdA (a_f

- : : : Ou. Ou,
— For a Newtonian Fluid and incompressible flows: 7; =ﬂLa—x’+a—x’
J i

» If uis constant, the viscous term is as in the general conservation eqn. for ¢

« If uvaries, its derivative needs to be evaluated

— For a Newtonian fluid and compressible flow:
ou.
« Additional terms need to be treated, e.g. %ya—ufé;
X
— Note that in non-Cartesian coordinate systems, new terms also arise that
behave as a “body force”, and can thus be treated explicitly or implicitly

* g —2,uu—£
r
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Discretization of the Pressure term

— For conservative NS schemes, gravity/body-force terms often included in

the “pressure” term, giving:

~ 2
p :p—pg.r+,u§V.u

. . 2 Ou,
(p € — pPg;xXe +_/u—jei)
3" oOx.

J

* “Pressure” then part of the stress tensor (shows up as divergence in NS eqgns.)

 Last term is null for incompressible flows

— In non-conservative NS forms, the pressure gradient is discretized

* FD schemes

— FD schemes seen earlier are directly applicable, but pressure can be
discretized on a different grid than the velocity grid (staggered grid)

e FV schemes

— Pressure usually treated a surface force (conservative form):

- For the u, equation: I—p é.7idS
S

« Again, schemes seen in previous lectures are applicable, but pressure nodes

can be on a different CV grid

— Pressure can also be treated non-conservatively: | —Vp.édV
» Discretization then introduces a global non-conservative error

2.29 Numerical Fluid Mechanics
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Conservation Principles for NS

* Momentum and Mass Conservation

— Momentum is conserved in any control volume in the sense that “it can
only change because of flow through the CV surfaces, forces acting on
these surfaces or volumetric body forces”

— This property is inherited in the CV formulation (if surface fluxes are
identical on both sides)

— Similar statements for Mass conservation

« Conservation of important secondary quantities, e.g. energy

— More complex issues

— In heat transfer, thermal energy equation can be solved after momentum
equation has been solved if properties don’t vary much with temperature T
=T is then a passive scalar, with one way coupling

— In incompressible, isothermal flows: kinetic energy is the significant energy

— In compressible flows: energy includes compressible terms

= two equations can be written, one for kinetic or internal energy and one

for the total energy
2.29 Numerical Fluid Mechanics PFJL Lecture 23, 25



Conservation Principles for NS: Cont’d
Kinetic Energy Conservation

 Derivation of Kinetic energy equation

— Take dot product of momentum equation with velocity
— Integrate over a control volume CV or full volume of domain of interest

— This gives

8t P Hv” p“v“ (v.n)dA— J pv dA+j (gv)ndA+J (?:V\7+pV.\7+p§.\7)dV

where ¢, =7, + pJ, is the viscous component of the stress tensor

— Here, the three RHS terms in the volume integral are zero if the flow is inviscid
(term 1 = dissipation), incompressible (term 2) and there are no body forces (term 3)

— Other terms are surface terms and kinetic energy is conserved in this sense: =
discretization on CV should ideally lead to no contribution over the volume

« Some observations

— Guaranteeing global conservation of the discrefe kinetic energy is not automatic
since the kinetic energy equation is a consequence of the momentum equation.
Discrete momentum and kinetic energy conservations cannot be enforced

separately.
2.29 Numerical Fluid Mechanics PFJL Lecture 23, 26
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