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REVIEW Lecture 23: 
• Grid Generation 

– Unstructured grid generation 
• Delaunay Triangulation 
• Advancing Front method 

• Finite Volume on Complex geometries 
– Computation of convective fluxes:  

• For mid-point rule: 

– Computation of diffusive fluxes: mid-point rule for complex geometries often used 
• Either use shape function  (x, y), with mid-point rule: 

• Or compute derivatives at CV centers first, then interpolate to cell faces. Option include either: 

– Gauss Theorem: 
 

– Deferred-correctio

 

– Comments on 3D 

n approach: 
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REVIEW Lecture 23, Cont’d: 

• Solution of the Navier-Stokes Equations 
– Discretization of the convective and viscous terms 

– Discretization of the pressure term 

– Conservation principles 
• Momentum and Mass  

• Energy  

 

– Choice of Variable Arrangement on the Grid 
• Collocated  and Staggered 

– Calculation of the Pressure 

2.29 Numerical Fluid Mechanics 

 Fall 2011 – Lecture 24 
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TODAY (Lecture 24):  

Numerical Methods for the Navier-Stokes Equations 

• Solution of the Navier-Stokes Equations 
– Discretization of the convective and viscous terms 
– Discretization of the pressure term 
– Conservation principles 
– Choice of Variable Arrangement on the Grid 
– Calculation of the Pressure 
– Pressure Correction Methods 

• A Simple Explicit Scheme 
• A Simple Implicit Scheme 

– Nonlinear solvers, Linearized solvers and ADI solvers 

• Implicit Pressure Correction Schemes for steady problems 
– Outer and Inner iterations 

• Projection Methods 
– Non-Incremental and Incremental Schemes 

• Fractional Step Methods:  
– Example using Crank-Nicholson 
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References and Reading Assignments 

• Chapter 7 on “Incompressible Navier-Stokes equations” 
of “J. H. Ferziger and M. Peric, Computational Methods 
for Fluid Dynamics. Springer, NY, 3rd edition, 2002” 

• Chapter 11 on “Incompressible Navier-Stokes Equations” 
of T. Cebeci, J. P. Shao, F. Kafyeke and E. Laurendeau, 
Computational Fluid Dynamics for Engineers. Springer, 
2005. 

• Chapter 17 on “Incompressible Viscous Flows” of 
Fletcher, Computational Techniques for Fluid Dynamics. 
Springer, 2003. 
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• Derivation of Kinetic energy equation 

– Take dot product of momentum equation with velocity 

– Integrate over a control volume CV or full volume of domain of interest  

– This gives 

 

 

where                       is the viscous component of the stress tensor 

– Here, the three RHS terms in the volume integral are zero if the flow is inviscid 

(term 1 = dissipation), incompressible (term 2) and there are no body forces (term 3) 

– Other terms are surface terms and kinetic energy is conserved in this sense:  

discretization on CV should ideally lead to no contribution over the volume 

• Some observations 

– Guaranteeing global conservation of the discrete kinetic energy is not automatic 

since the kinetic energy equation is a consequence of the momentum equation. 

– Discrete momentum and kinetic energy conservations cannot be enforced 

separately: the latter should be a consequence of the former 

Conservation Principles for NS: Cont’d 
Kinetic Energy Conservation 
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• Some observations, Cont’d 

– If a numerical method is (kinetic) energy conservative, it guarantees that 
the total  (kinetic) energy in the domain does not grow with time (if the 
energy fluxes at boundaries are null/bounded)  

• This ensures that the velocity at every point in the domain is bounded: 
important stability property 

– Since kinetic energy conservation is a consequence of momentum 
conservation, global discrete kinetic energy conservation must be a 
consequence of the discretized momentum equations 

• It is thus a property of the discretization method and it is not guaranteed 

• One way to ensure it is to impose that the discretization of the pressure 
gradient and divergence of velocity are “compatible”, i.e. lead to discrete 
energy conservation directly 

– A Poisson equation is often used to compute pressure 

• It is obtained from the divergence of momentum equations, which contains the 
pressure gradient (see next) 

• Divergence and gradient operators must be such that mass conservation is 
satisfied (especially for incompressible flows), and ideally also kinetic energy 

Conservation Principles for NS, Cont’d 
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Conservation Principles for NS, Cont’d 

• Some observations, Cont’d 

– Time-differencing method can destroy the energy conservation 

property (and mass conservation for incompressible fluid) 

• Ideally, it should be automatically satisfied by the numerical scheme 

• Example: Crank-Nickolson 

– Time derivatives are approximated by: 

– If one takes the scalar product of this equation with           , which in C-N is 

approximated by, 

    the result is the change of the kinetic energy equation  

 

 

• With proper choices for the other terms, the C-N scheme is energy 

conservative 
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Parabolic PDE: Implicit Schemes (review Lecture 17) 

Leads to a system of equations to be solved at each time-step 

B-C:  Unconditionally stable, 
1st order accurate in time, 

2nd order in space 

Unconditionally stable, 
2nd order accurate in time, 

2nd order in space 

• Time: centered FD, but 
evaluated at mid-point 
 

• 2nd derivative in space 
determined at mid-point 
by averaging at t and t+1 

• Evaluates RHS at 
time t+1 instead of 
time t (for explicit 
scheme) 

tl+1

tl

xi xi+1xi-1

tl+1/2

tl+1

tl

xi xi+1xi-1

Grid point involved in space difference

Grid point involved in time difference

Grid point involved in space difference

Grid point involved in time difference

Simple implicit method 

Crank-Nicolson method 

Image by MIT OpenCourseWare. After Chapra, S., and R. Canale. 
Numerical Methods for Engineers. McGraw-Hill, 2005.
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Conservation Principles for NS, Cont’d 

• Some observations, Cont’d 

– Since momentum and kinetic energy (and mass cons.) are not 

independent, satisfying all of them is not direct: trial and error in deriving 

schemes that are conservatives 

– Kinetic energy conservation is particularly important in unsteady flows 

(e.g. weather, ocean, turbulence, etc) 

• Less important for steady flows 

– Kinetic energy is not the only quantity whose discrete conservation is 

desirable (and not automatic) 

• Angular momentum is another one 

• Important for flows in rotating machinery, internal combustion engines and 

any other devices that exhibit strong rotations/swirl 

– If numerical schemes do not conserve these “important” quantities, 

numerical simulation is likely to get into trouble, even for stable schemes 
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Choice of Variable Arrangement on the Grid 

• Because the Navier-Stokes equations are coupled equations 

for vector fields, several variants of the arrangement of the 

computational points/nodes are possible 

• Collocated arrangement 

– Obvious choice: store all the variables at the same grid points and use 

the same grid points or CVs for all variables: Collocated grid 

 

 

 

 

– Advantages:  

• All (geometric) coefficients evaluated at the same points 

• Easy to apply to multigrid procedures (collocated refinements of the grid) 
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Collocated arrangement of velocity components and pressure 
on FD and FV grids.
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Choice of Variable Arrangement on the Grid 

• Collocated arrangement: Disadvantages 

– Was out of favor and not used much until the 1980s because of: 

• Occurrence of oscillations in the pressure 

• Difficulties with pressure-velocity coupling 

– However, when non-orthogonal grids started to be used over complex 

geometries, the situation changed 

• This is because the non-collocated (staggered) approach on non-

orthogonal grids is based on grid-oriented components of the (velocity) 

vectors and tensors.  

• This implies using 
curvature terms, which are 
more difficult to treat 
numerically and can create
non-conservative errors 

• Hence, collocated grids 
became more popular 

 

Velocities Pressure

(I) (II) (III)

Image by MIT OpenCourseWare.



Fully and partially staggered arrangements of velocity components 
and pressure.
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Choice of Variable Arrangement on the Grid 

• Staggered arrangements 

– No need for all variables to share the same grid 

– “Staggered” arrangements can be advantageous (couples p and v) 

• For example, consider the Cartesian coordinates 

–Advantages of staggered grids 
• Several terms that require interpolatio

in collocated grids can be evaluated 
(to 2nd order) without interpolation 

• This applies to the pressure term 
(located at CV centers) and the 
diffusion term (first derivative needed 
at CS centers), when obtained by 
central differences 

• Can be shown to directly conserve 
kine

• Man
etc 

tic energy 

y variations: partially staggered, 

n 

Image by MIT OpenCourseWare.
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Choice of Variable Arrangement on the Grid 

• Staggered arrangements:  

– Example with Cartesian coordinates, Cont’d 

• Terms can be evaluated (to 2nd order) without interpolation 

• This applies to the pressure term (normal at center of CS). For example, along x 
direction: 
• Each p value on the bnd of the velocity grid is conveniently at the center the “scalar” grid:  

 
  

• Diffusion term (first derivative at CS) obtained by central differences. 

   For example: 
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Calculation of the Pressure 

• The Navier-Stokes equations do not have an independent 
equation for pressure 

– But pressure gradient contributes to each of the three momentum 
equations 

– For incompressible fluids, mass conservation becomes a kinematic 
constraint on the velocity field: we then have no dynamic equations for 
both density and pressure 

– For compressible fluids, mass conservation is a dynamic equation for 
density 

• Pressure can then be computed from density using an equation of state 

• For incompressible flows (or low Mach numbers), density is not a state 
variable, hence can’t be solved for 

• For incompressible flows:  

– Momentum equations lead to the velocities  

– Continuity equation should lead to the pressure, but it does not 
contain pressure! How can p be estimated? 
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Calculation of the Pressure 

• Navier-Stokes, incompressible: 
 

• Combine the two conservation eqns to obtain an equation for p  

– Since the cons. of mass has a divergence form, take the divergence of the 
momentum equation, using cons. of mass: 

• For constant viscosity and density: 

 
 

– This pressure equation is elliptic (Poisson eqn. once velocity is known) 

• It can be solved by methods we have seen earlier for elliptic equations 

 

 

– Important Notes 

• Terms inside divergence (derivatives of momentum terms) must be approximated in a 
form consistent with those of momentum equations. Divergence is that of cons. of mass. 

• Laplacian operator comes from divergence of cons. of mass and gradient in momentum 
equations: consistency must be maintained, i.e. divergence and gradient operators in the 
Laplacian should be those of the cons. of mass and of the momentum eqns., respectively  

• Best to derive pressure equation from discretized momentum/continuity equations 
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Pressure-correction Methods 

• First solve the momentum equations to obtain the velocity 

field for a known pressure 

• Then solve the Poisson equation to obtain an 

updated/corrected pressure field 

• Another way: modify the continuity equation so that it 

becomes hyperbolic (even though it is elliptic) 

– Artificial Compressibility Methods 

• Notes:  

– The general pressure-correction method is independent of the 

discretization chosen for the spatial derivatives  in theory any 

discretization can be used 

– We keep density in the equations (flows are assumed 

incompressible, but small density variations are considered) 
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A Simple Explicit Time Advancing Scheme 

• Simple method to illustrate how the numerical Poisson 

equation for the pressure is constructed and the role it plays in 

enforcing continuity 

• Specifics of spatial derivative scheme not important, hence, we 

look at the equation discretized in space, but not in time.  

– Use           to denote spatial derivatives. This gives: 

 

 

– Simplest approach: Forward Euler for time integration, which gives: 

 
 

• In general, the new velocity field we obtain at time n+1 does not satisfy the 

continuity equation: 
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• How can we enforce continuity at n+1? 

• Take the numerical divergence of the NS equations: 

 
 

– The first term is the divergence of the new velocity field, which we want to 
be zero 

– Second term is zero if continuity was enforced at time step n 

– Third term can be zero or not 

• All together, we obtain: 
 

– Note that this includes the divergence operator from the continuity eqn. 
(outside) and the pressure gradient from the momentum equation (inside)  

– Pressure gradient could be explicit (n) or implicit (n+1) 

A Simple Explicit Time Advancing Scheme 
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• Start with velocity at time tn which is divergence free 

• Compute RHS of pressure equation at time tn 

• Solve the Poisson equation for the pressure at time tn  

• Compute the velocity field at the new time step using the 
momentum equation: It will be divergence free 

• Continue to next time step 
 

A Simple Explicit Time Advancing Scheme: 

Summary of the Algorithm 
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• Some additional difficulties arise when an implicit method is 
used to solve the (incompressible) NS equations 

• To illustrate, let’s first try the simplest: backward/implicit Euler 

– Recall: 
 

– Implicit Euler: 
 

• Difficulties (specifics for incompressible case) 

1) Set numerical divergence of velocity field at new time-step to be zero 

• Take divergence of momentum, assume velocity is divergent at time tn and 
demand zero divergence at tn+1. This leads to: 

 

 

• Problem: The RHS can not be computed until velocities are known at tn+1  (and 
these velocities can not be computed until pn+1 is available) 

• Result: Poisson and momentum equations have to be solved simultaneously 

A Simple Implicit Time Advancing Scheme 
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 2) Even if pn+1 known, a large system of nonlinear momentum 

equations must be solved for the velocity field: 

 

Three approaches for solution: 

– First approach: nonlinear solvers 

• Use velocities at tn for initial guess of ui 
n+1  (or use explicit first guess) and then 

employ a nonlinear solver (Fixed-point, Newton-Raphson or Secant methods) 

at each time step 

• Nonlinear solver is applied to the nonlinear algebraic equations 

A Simple Implicit Time Advancing Scheme, Cont’d 
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– Second approach: linearize the equations about the result at tn 

 

 

• We’d expect the last term to be of 2nd order in Δt, it can thus be neglected (for 

example, it would be of same order than a C-N approximation in time).  

• Hence, doing the same in the other tems, the (incompressible) momentum 

equations are then approximated by: 

 

 

• This linearization takes advantage of the fact that the nonlinear term is only 

quadratic 

• However, a large system still needs to be inverted. Direct solution is not 

recommended: use an iterative scheme 

– A third interesting solution scheme: an Alternate Direction Implicit scheme 

A Simple Implicit Time Advancing Scheme, Cont’d 
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Parabolic PDEs: Two spatial dimensions 

ADI scheme (Two Half steps in time) 

1) From time n  to n+1/2: Approx. of 2nd order x derivative explicit, y derivative 

implicit. Hence, tri-diagonal matrix to be solved  

 

2) From time n+1/2  to n+1: Approximation of 2nd order x derivative implicit, y 

derivative explicit 

 
1/ 2 1/ 2 1/ 2 1/ 2

, , 1, , 1, , 1 , , 12 2 2 2
2 2

2 2
( )

/ 2

n n n n n n n n

i j i j i j i j i j i j i j i jT T T T T T T T
c c O x y

t x y

   

       
    

  

 
1 1/ 2 1 1 1 1/ 2 1/ 2 1/ 2

, , 1, , 1, , 1 , , 12 2 2 2
2 2

2 2
( )

/ 2

n n n n n n n n

i j i j i j i j i j i j i j i jT T T T T T T T
c c O x y

t x y

       

       
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(from Lecture 17) 
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Parabolic PDEs: Two spatial dimensions 

ADI scheme (Two Half steps in time) 

 T n1/ 2 1/ 2 1/ 2r n n n n n

i, j1  2(1 r)Ti, j  rTi, j1  rTi1, j  2(1 r)Ti, j  rTi1, j

 

For Δx= y

1) From time n  to n+1/2: 

 

2) From time n+1/2  to n+1:

Δ : 

n1 2(1 ) n1 n1 n1/ 2 2(1 ) n1/ 2 n1/ 2rTi1, j   r Ti, j  rTi1, j  rTi, j1   r Ti, j  rTi, j1

(from Lecture 17) 

i=2i=1

j=3

j=2

j=1

i=3 i=2i=1 i=3

First direction Second directiony

x
The ADI method applied along the y direction and x direction. 
This method only yields tridiagonal equations if applied along 
the implicit dimension.

Image by MIT OpenCourseWare. After Chapra, S., and R. Canale.
Numerical Methods for Engineers. McGraw-Hill, 2005.
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• Alternate Direction Implicit method 

– Split the NS momentum equations into a series of 1D problems, each 

which is block tri-diagonal. Then, either: 

– ADI nonlinear: iterate for the nonlinear terms, or, 

– ADI with a local linearization: 

• Δp can first be set to zero to obtain a new velocity ui
* which does not satisfy 

continuity: 

 

• Solve a Poisson equation for the pressure correction. Taking the divergence of: 

 

 

 

gives: 

 

• Finally, update the velocity: 

A Simple Implicit Time Advancing Scheme, Cont’d 
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Methods for solving (steady) NS problems: 

Implicit Pressure-Correction Methods 

• Previous implicit approach based on linearization most useful for 

unsteady problems 

– It is not accurate for large (time) steps (because the linearization would 

then lead to a large error)  

– Should not be used for steady problems 

• Steady problems are often solved with an implicit method (with 

pseudo-time), but with large time steps (no need to reproduce 

the pseudo-time history) 

– The aim is to rapidly converge to the steady solution 

• Many steady-state solvers are based on variations of the implicit 

schemes just discussed 

– They use a pressure (or pressure-correction) equation to enforce 

continuity at each “pseudo-time” steps, also called “outer iteration” 
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