2.29 Numerical Fluid Mechanics
Fall 2011 — Lecture 24

REVIEW Lecture 23:

* Grid Generation

— Unstructured grid generation
* Delaunay Triangulation
« Advancing Front method

A

 Finite Volume on Complex geometries

e

— Computation of convective fluxes: Image by MIT OpenCourseWare.
» For mid-point rule: F, = [ pg (V.M)dS ~ 1,8, = (pgV.0),S, = 4, =, p, (S U, +S. V,)
— Computation of diffusive fluxes: mid-point rule for complex geometries often used

- Either use shape function ¢ (x, y), with mid-point rule: F' ~(kV#.i).S, =k,| SJ % +S/ %
« Or compute derivatives at CV centers first, then interpolate to cell faces. Option i?\clude either:

L9 jgfdv/dv - 3 st fav

P aXi p cv i 4 ¢ faces

— Gauss Theorem: o9
OX.

— Deferred-correction approach:  F? = k.S, % +k.S, [V_¢|e]0]d (n-i.)
E-'p —
where [V_ﬂe]om is interpolated from[V_¢|P]01d ,e.g. Sf

— Comments on 3D !

_ Y s /ﬂv

P 4 ¢ faces
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2.29 Numerical Fluid Mechanics
Fall 2011 — Lecture 24

REVIEW Lecture 23, Cont’d:

aL+V(,ov V)=-Vp+ uVV+ p§

- Solution of the Navier-Stokes Equations . _,
— Discretization of the convective and viscous terms

. . . - 2 ~ 2 ou;
— Discretization of the pressure term P=p-—pgr+usVu (p&-pYXE, +§u§‘ei)
i

— Conservation principles L—r)éi.ﬁds
« Momentum and Mass

 Ener )
Yoo

P v ” (V.7)dA - j pv dA+jCS(§.\7).ﬁdA+jCV(—§:vv va+pgv)dv

av=-[ p

CS

— Choice of Variable Arrangement on the Grid
» Collocated and Staggered

— Calculation of the Pressure
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TODAY (Lecture 24).
Numerical Methods for the Navier-Stokes Equations

« Solution of the Navier-Stokes Equations
— Discretization of the convective and viscous terms
— Discretization of the pressure term
— Conservation principles
— Choice of Variable Arrangement on the Grid
— Calculation of the Pressure

— Pressure Correction Methods
« A Simple Explicit Scheme

* A Simple Implicit Scheme
— Nonlinear solvers, Linearized solvers and ADI solvers

* Implicit Pressure Correction Schemes for steady problems
— QOuter and Inner iterations

* Projection Methods
— Non-Incremental and Incremental Schemes

* Fractional Step Methods:
— Example using Crank-Nicholson
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References and Reading Assignments

« Chapter 7 on “Incompressible Navier-Stokes equations”
of “J. H. Ferziger and M. Peric, Computational Methods
for Fluid Dynamics. Springer, NY, 3" edition, 2002”

« Chapter 11 on “Incompressible Navier-Stokes Equations”
of T. Cebeci, J. P. Shao, F. Kafyeke and E. Laurendeau,
Computational Fluid Dynamics for Engineers. Springer,
2005.

* Chapter 17 on “Incompressible Viscous Flows” of
Fletcher, Computational Techniques for Fluid Dynamics.
Springer, 2003.
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Conservation Principles for NS: Cont'd
o Kinetic Energy Conservation
. Derlvatlon of Kinetic energy equation

— Take dot product of momentum equation with velocity
— Integrate over a control volume CV or full volume of domain of interest

— This gives

o W - - = = S VT4 DV 4 g T
p CvadV =— CS,L)T(V.n)dA—J'CS p V.i dA+.fCS(g.v).n dA+ICV (—g W+ pV.V+ pod. v)d

where ¢&; =7; + pJ; is the viscous component of the stress tensor

— Here, the three RHS terms in the volume integral are zero if the flow is inviscid
(term 1 = dissipation), incompressible (term 2) and there are no body forces (term 3)

— Other terms are surface terms and kinetic energy is conserved in this sense: =
discretization on CV should ideally lead to no contribution over the volume

« Some observations

— Guaranteeing global conservation of the discrefe kinetic energy is not automatic
since the kinetic energy equation is a consequence of the momentum equation.

— Discrete momentum and kinetic energy conservations cannot be enforced

separately: the latter should be a consequence of the former
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Conservation Principles for NS, Cont'd

« Some observations, Cont'd

— If a numerical method is (kinetic) energy conservative, it guarantees that
the total (kinetic) energy in the domain does not grow with time (if the
energy fluxes at boundaries are null/bounded)

» This ensures that the velocity at every point in the domain is bounded:
important stability property

— Since kinetic energy conservation is a consequence of momentum
conservation, global discrete kinetic energy conservation must be a
consequence of the discretized momentum equations

* It is thus a property of the discretization method and it is not guaranteed

* One way to ensure it is to impose that the discretization of the pressure
gradient and divergence of velocity are “compatible’, i.e. lead to discrete
enerqy conservation directly

— A Poisson equation is often used to compute pressure

* |t is obtained from the divergence of momentum equations, which contains the
pressure gradient (see next)

* Divergence and gradient operators must be such that mass conservation is
satisfied (especially for incompressible flows), and ideally also kinetic enerqgy
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Conservation Principles for NS, Cont'd

e Some observations, Cont’d

— Time-differencing method can destroy the energy conservation
property (and mass conservation for incompressible fluid)

« |deally, it should be automatically satisfied by the numerical scheme
« Example: Crank-Nickolson

n+1 u )

— If one takes the scalar product of this equation with u™"? , which in C-N is
approximated by, n+1/2 = (U™ +u")/2

the result is the change of the kinetic energy equation
2 n+1 2 \N
pPAV [V [V where v’ =u U (summation implied)
At 2 2

» With proper choices for the other terms, the C-N scheme is energy
conservative
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Parabolic PDE: Implicit Schemes e ectre™
Leads to a system of equations to be solved at each time-step

Simple implicit method

B-C: Unconditionally stable, | | |

1st order accurate in time, ‘ X ‘ e * Evaluates RHS at

time t+1 instead of
time t (for explicit

2nd order in space

tl
‘ ‘ scheme)

Xi-1 Xj Xi+1

>< Grid point involved in time difference

Grid point involved in space difference
Crank-Nicolson method
nEjJncondltlonaIIy sftab_le, | >|< | (1 . Time: centered FD. but
2 orc(ljer accurate in time, A {4172 evaluated at mid-point
2nd order in space 1
P ¢ t'

| | - 2nd derivative in space
Xi-1 Xi Xi+1 determined at mid-point
by averaging at t and t+1

>< Grid point involved in time difference

Grid point involved in space difference

Image by MIT OpenCourseWare. After Chapra, S., and R. Canale.
Numerical Methods for Engineers. McGraw-Hill, 2005.
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Conservation Principles for NS, Cont'd

« Some observations, Cont'd

— Since momentum and kinetic energy (and mass cons.) are not
independent, satisfying all of them is not direct: trial and error in deriving
schemes that are conservatives

— Kinetic energy conservation is particularly important in unsteady flows
(e.g. weather, ocean, turbulence, etc)

» Less important for steady flows

— Kinetic energy is not the only quantity whose discrete conservation is
desirable (and not automatic)

* Angular momentum is another one

» Important for flows in rotating machinery, internal combustion engines and
any other devices that exhibit strong rotations/swirl

— If numerical schemes do not conserve these “important” quantities,
numerical simulation is likely to get into trouble, even for stable schemes
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Choice of Variable Arrangement on the Grid

« Because the Navier-Stokes equations are coupled equations
for vector fields, several variants of the arrangement of the
computational points/nodes are possible

« Collocated arrangement

— Obvious choice: store all the variables at the same grid points and use
the same grid points or CVs for all variables: Collocated grid

Q

W

\
I
O
o
|
<|>ow
|

O O O O
Q=0 Q- Q

Collocated arrangement of velocity components and pressure
on FD and FV grids.

— Advantages Image by MIT OpenCourseWare.
» All (geometric) coefficients evaluated at the same points
» Easy to apply to multigrid procedures (collocated refinements of the grid)
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Choice of Variable Arrangement on the Grid

Collocated arrangement: Disadvantages

— Was out of favor and not used much until the 1980s because of:
» Occurrence of oscillations in the pressure
« Difficulties with pressure-velocity coupling

— However, when non-orthogonal grids started to be used over complex
geometries, the situation changed
* This is because the non-collocated (staggered) approach on non-

orthogonal grids is based on grid-oriented components of the (velocity)
vectors and tensors.

» This implies using n
curvature terms, which are ’
more difficult to treat [ " |
numerically and can create
non-conservative errors (1)

* Hence, collocated grids ® Velocities  — Pressure
became more pOpUIar Image by MIT OpenCourseWare.
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Choice of Variable Arrangement on the Grid

N/

7,
S
Z

. Siaggered arrangements
—No need for all variables to share the same grid

—“Staggered” arrangements can be advantageous (couples p and v)

* For example, consider the Cartesian coordinates

—Advantages of staggered grids ‘ #
» Several terms that require interpolation + ) ) R T O I X
in collocated grids can be evaluated ? o | o ° ‘ # o = 0 o
(to 2" order) without interpolation ol o | - | ot
O—O—f>—O—F>— o o— L 5 1

» This applies to the pressure term

Fully and partially staggered arrangements of velocity components

(located at CV centers) and the and pressure.
diffusion term (first derivative needed o y N
» (o] ON (o] o] o (o] O, o]
at CS centers), when obtained by P 1 O
central differences Hor Bl | Y owfe E B
vin sw_Is se| v sw_|s se S
» Can be shown to directly conserve ° T o_ﬁ*x_ 0 o Fod | oo 4o
kinetic energy @) ) ©
] . ] Control volumes for a staggered grid for (a) mass conservation and scalar quantities,
« Many variations: partially staggered, (b) x-mormentum, and (c) y-momentum
Image by MIT OpenCourseWare.
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Choice of Variable Arrangement on the Grid

. Siaggered arrangements:
—Example with Cartesian coordinates, Cont'd

« Terms can be evaluated (to 2"9 order) without interpolation
» This applies to the pressure term (normal at center of CS). For example, along x

direction:
« Each p value on the bnd of the velocity grid is conveniently at the center the “scalar” grid:

—j pindS=-p.S, +p,S,

Se
« Diffusion term (first derivative at CS) om y central differences.

For example: "
o oN o Moo o o o
w |w 4P e E
2 6“ 2 UE - UP Vi nw in ne \ nw ne
— - ~ ~“E P _
(Txx )e - IU6X RLU X —x P R wX _ |PA E . s s se .
€ E p Vi1 sw__Is se Ay sw_|s se S
AX s
o % o o o o o o
X X; Xi.g X; Xit1 Xi-1 X;

(@) (b) ()

Control volumes for a staggered grid for (a) mass conservation and scalar quantities,
(b) x-momentum, and (c) y-momentum

Image by MIT OpenCourseWare.
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Calculation of the Pressure

? The Navier-Stokes equations do not have an independent
equation for pressure

— But pressure gradient contributes to each of the three momentum
equations

— For incompressible fluids, mass conservation becomes a kinematic
constraint on the velocity field: we then have no dynamic equations for
both density and pressure

— For compressible fluids, mass conservation is a dynamic equation for
density

» Pressure can then be computed from density using an equation of state

» For incompressible flows (or low Mach numbers), density is not a state
variable, hence can’t be solved for

« For incompressible flows:
— Momentum equations lead to the velocities =

— Continuity equation should lead to the pressure, but it does not
contain pressure! How can p be estimated?
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Calculation of the Pressure

~ — ap\_/, o . )
+ Navier-Stokes, incompressible: 5 +V-(PV V) ==VP+uVV+0g

V=0
« Combine the two conservation eqns to obtain an equation for p

— Since the cons. of mass has a divergence form, take the divergence of the
momentum equation, using cons. of mass:

» For constant viscosity and density:

N\
&

V.Vp=V’p= —V.% —V.(V.(pV V) + V.( ,uV2\7)+ V.(p3)=-V.(V.(pV V))

— This pressure equation is elliptic (Poisson eqn. once velocity is known)
|t can be solved by methods we have seen earlier for elliptic equations

o (op)__ o [o(puu,)
OX; | OX, OX. OX;

« Terms inside divergence (derivatives of momentum terms) must be approximated in a
form consistent with those of momentum equations. Divergence is that of cons. of mass.

» Laplacian operator comes from divergence of cons. of mass and gradient in momentum
equations: consistency must be maintained, i.e. divergence and gradient operators in the
Laplacian should be those of the cons. of mass and of the momentum eqns., respectively

» Best to derive pressure equation from discretized momentum/continuity equations

— Important Notes
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2.29

Pressure-correction Methods

First solve the momentum equations to obtain the velocity
field for a known pressure

Then solve the Poisson equation to obtain an
updated/corrected pressure field

Another way: modify the continuity equation so that it
becomes hyperbolic (even though it is elliptic)
— Artificial Compressibility Methods

Notes:

— The general pressure-correction method is independent of the
discretization chosen for the spatial derivatives = in theory any
discretization can be used

— We keep density in the equations (flows are assumed
incompressible, but small density variations are considered)

Numerical Fluid Mechanics PFJL Lecture 24,
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' A Simple Explicit Time Advancing Scheme

« Simple method to illustrate how the numerical Poisson
equation for the pressure is constructed and the role it plays in
enforcing continuity

» Specifics of spatial derivative scheme not important, hence, we

look at the equation discretized in space, but not in time.
5

— Use ~ to denote spatial derivatives. This gives:  Note: p=p., — pg.x
X.
! I |
8,0Ui__a(,0uiuj)_ap+afij — a,OUi__5(,0Uin)_5p+5Tij_\1’ _op
ot X, X OX, ot SX. Sx. Sx. ' O

J ! J J ! ]

— Simplest approach: Forward Euler for time integration, which gives:

Xi
* In general, the new velocity field we obtain at time n+1 does not satisfy the
continuity equation: -
5(pu;) 0
OX

(pu)™ = (pu)" = At [Hi” -t
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A Simple Explicit Time Advancing Scheme

* How can we enforce continuity at n+1?

 Take the numerical divergence of the NS equations:

(pu)"" = (pu,) :At[Hi“ _@”J | W™ _steu) _ {i(m _@nﬂ

5X. §Xi 5Xi é‘Xi 5Xi

— The first term is the divergence of the new velocity field, which we want to
be zero

— Second term is zero if continuity was enforced at time step n

— Third term can be zero or not

* All together, we obtain: 5 (6p") SH

— Note that this includes the divergence operator from the continuity eqn.
(outside) and the pressure gradient from the momentum equation (inside)

— Pressure gradient could be explicit (n) or implicit (n+1)
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19 A Simple Explicit Time Advancing Scheme:

Summary of the Algorithm

» Start with velocity at time t, which is divergence free
» Compute RHS of pressure equation at time t,
» Solve the Poisson equation for the pressure at time t,

« Compute the velocity field at the new time step using the
momentum equation: It will be divergence free

« Continue to next time step

2.29 Numerical Fluid Mechanics PFJL Lecture 24,
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A Simple Implicit Time Advancing Scheme

« Some additional difficulties arise when an implicit method is
used to solve the (incompressible) NS equations

* To illustrate, let’s first try the simplest: backward/implicit Euler

_ o(pu. u. o,
— Recall: Opy, __S(pUl) 5p 0% op
ot OX; ox,  OX, oX
_ . . . - i n+l1 5 uu. n+1 5 3 n+1 n+1
Implicit Euler: (pu)" =(pu,)" = At Hinﬂ_@ _ At _Slpuu)™ SnSp
OX oX; OX; OX

« Difficulties (specifics for incompressible case)

1) Set numerical divergence of velocity field at new time-step to be zero

« Take divergence of momentum, assume velocity is divergent at time t, and
demand zero divergence at t.,,. This leads to:

5(pui)n+l _5(pul)n :At |:i(H-n+l_@n+lJi| _ i[@m_lj 5 {_é(puluj)n+l+5z_” n+lJ

OX OX OX OX OX; \ OX B OX OX. §—xJ

J

* Problem: The RHS can not be computed until velocities are known at t_,, (and
these velocities can not be computed until p"*! is available)

« Result: Poisson and momentum equations have to be solved simultaneously

2.29 Numerical Fluid Mechanics PFJL Lecture 24, 20



A Simple Implicit Time Advancing Scheme, Cont'd

2) Even if p"*! known, a large system of nonlinear momentum
equations must be solved for the velocity field:

: S(puup™ o, sp™
) —(pu) =At| - =+ 1 -
(pu)™ = (pu) [ OX OX OX,

Three approaches for solution: | | |

— First approach: nonlinear solvers

« Use velocities at t, for initial guess of u;"*! (or use explicit first guess) and then
employ a nonlinear solver (Fixed-point, Newton-Raphson or Secant methods)

at each time step
* Nonlinear solver is applied to the nonlinear algebraic equations

- ] 5(,0 U u _)n+1 52_" n+1 5p n+1
u) —(pu) =At| - sy 1
(pu) = (pu) [ SX, SX, SX.
i @nﬂ B 5 _5(puluj)n+l+5fu n+1
OX: \ OX OX; oX; OX;
Numerical Fluid Mechanics PFJL Lecture 24, 21
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| A Simple Implicit Time Advancing Scheme, Cont'd

— Second approach: linearize the equations about the result at t;

u™ =u'+Au =

uin+1 u?+1 _ uin U? +uin Auj _|_u? Au; + Au; AUJ-

« We’d expect the last term to be of 2" order in At, it can thus be neglected (for
example, it would be of same order than a C-N approximation in time).

* Hence, doing the same in the other tems, the (incompressible) momentum
equations are then approximated by:

5(pu uj)n _5(pui”AUj)n _5(,0Auiu;.‘)n +5rij” +5Arij B sp" _OAp

OX. OX. OX. OX. OX. OX. OX.

J J ] ] J ! !

(,Oui)n+1 _(pui)n = pAy; = At [_

» This linearization takes advantage of the fact that the nonlinear term is only
quadratic

 However, a large system still needs to be inverted. Direct solution is not
recommended: use an iterative scheme

— A third interesting solution scheme: an Alternate Direction Implicit scheme

2.29 Numerical Fluid Mechanics PFJL Lecture 24, 22



from Lecture 17)

Parabolic PDEs: Two spatial dimensions -
ADI| scheme (Two Half steps in time)

® Explicit
O Implicit

Ry Xi-1 X Xie
FIGURE 30.10 5 G R e S e
The two half-steps used in imple- g !
¥i-1

meniing fhe aliemating-direction o
implicit scheme for solving paro- "4
bolic equations in two spatial

dimensions.

(a) First half-step (b) Second half-step

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information,
see http://ocw.mit.edu/fairuse. Source: Chapra, S., and R. Canale. Numerical Methods for Engineers. McGraw-Hill, 2005.

1) From time n to n+1/2: Approx. of 2" order x derivative explicit, y derivative
implicit. Hence, tri-diagonal matrix to be solved

1/2 1/2 1/2 1/2

—c , i+1, ] +02 i,j+l (O(AX2 +Ay2))

At/2 AX® Ay?

2) From time n+1/2 to n+1: Approximation of 2" order x derivative implicit, y
derivative explicit

n+l1 n+1/2 n+l1 n+l1 n+1 n+1/2 n+1/2 n+1/2

i+1,]

=C -1, ] : +C

O(AX® + Ay®
At/2 AX® Ay’ ( ( y ))
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from Lecture 17)

Parabolic PDEs: Two spatial dimensions -
ADI| scheme (Two Half steps in time)

i=1 i=2 i=3 i=1 i=2 i=3
.k
J=3 [ ] o —— 0>
j=2 [ ] o o O
j=1 ® - "
Y | First direction Second direction
X

The ADI method applied along the y direction and x direction.
This method only yields tridiagonal equations if applied along
the implicit dimension.

Image by MIT OpenCourseWare. After Chapra, S., and R. Canale.

For Ax=Ay:

1) From time n to n+1/2:

2) From time n+1/2 to n+l1:

2.29

Numerical Methods for Engineers. McGraw-Hill, 2005.

i+1,]

+ rT n+1/2

i,j+l1
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2\ A Simple Implicit Time Advancing Scheme, Cont'd

Gy
 Alternate Direction Implicit method

— Split the NS momentum equations into a series of 1D problems, each
which is block tri-diagonal. Then, either:

— ADI nonlinear: iterate for the nonlinear terms, or,

— ADI with a local linearization:

« Ap can first be set to zero to obtain a new velocity u;” which does not satisfy

continuity: o : S(puu)” S(puAu)’ S(phuu' 87" SAr, sp"
(pui) —(pu;) =At | - —~ —~ + + -
oX; oX. OX. oX. OX.  OX

J J J J !

» Solve a Poisson equation for the pressure correction. Taking the divergence of:
n+ n o(pu. U, ! S(pu'Au. " S(pAu. U" " OT. " OAT. n
(,OUi) 1_(pui) ZAt . (p i J) _ (p i J) _ (p i J) + T'J i TlJ _5p _5Ap
OX; OX. OX. OX, OX.  OX  OX
_J

J J ] J

i
—

-
& (pu)” = (o) - P

OX
gives:| 2 [ 24P _ S(pu)™
0%\ OX oX,

n+l 5A
_ At 2P
OX
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* Finally, update the velocity: (pui)n+1 :(/Oui*)




Methods for solving (steady) NS problems:
Implicit Pressure-Correction Methods

* Previous implicit approach based on linearization most useful for
unsteady problems

— It is not accurate for large (time) steps (because the linearization would
then lead to a large error)

— Should not be used for steady problems
« Steady problems are often solved with an implicit method (with

pseudo-time), but with large time steps (no need to reproduce
the pseudo-time history)

— The aim is to rapidly converge to the steady solution

« Many steady-state solvers are based on variations of the implicit
schemes just discussed

— They use a pressure (or pressure-correction) equation to enforce
continuity at each “pseudo-time” steps, also called “outer iteration”
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