

2.29 Numerical Fluid Mechanics Fall 2011 – Lecture 24

REVIEW Lecture 23:

- Grid Generation
	- Unstructured grid generation
		- Delaunay Triangulation
		- Advancing Front method
- Finite Volume on Complex geometries
	- Computation of convective fluxes:
- For mid-point rule: **fluxes:**
 $\rho \phi (\vec{v}.\vec{n}) dS \approx f_e S_e = (\rho \phi \vec{v}.\vec{n})_e S_e = \phi_e \dot{m}_e = \phi_e \rho_e (S_e^x u_e + S_e^y v_e)$ $\frac{x}{a} u_{s} + S_{s}^{y}$ **ective fluxes:** Imadelling $F_e = \int_{S_e} \rho \phi (\vec{v}.\vec{n}) dS \approx f_e S_e = (\rho \phi \vec{v}.\vec{n})_e S_e = \phi_e \dot{m}_e = \phi_e \rho_e (S_e^x u_e + S_e^y v_e)$
	- Computation of diffusive fluxes: mid-point rule for complex geometries often used geometries often used
 $(\phi.\vec{n})_e S_e = k_e \left[S_e^x \frac{\partial \phi}{\partial n} \Big| + S_e^y \frac{\partial \phi}{\partial n} \Big| \right]$
- Fortputation of unitative nuxes. This point rule for complex geometries often a
• Either use shape function $\phi(x, y)$, with mid-point rule: $F_e^d \approx (k \nabla \phi \vec{n})_e S_e = k_e \left(S_e^x \frac{\partial \phi}{\partial x} \right) + S_e^y$ *F*^{*d*} \approx $(k \nabla \phi . \vec{n})$ _{*e*} $S_e = k_e \left(S_e^x \frac{\partial \phi}{\partial r} \right) + S_e$ $\frac{\phi}{x}\bigg|_{e} + S_{e}^{y} \frac{\partial \phi}{\partial y}$ plex geometries often used
 $\approx (k \nabla \phi . \vec{n})_e S_e = k_e \left(S_e^x \frac{\partial \phi}{\partial x} \bigg|_e + S_e^y \frac{\partial \phi}{\partial y} \bigg|_e \right)$
	- *e e*

\n- Or compute derivatives at CV centers first, then interpolate to cell faces. Option include either:\n
	\n- Gauss Theorem:
	\n- $$
	\frac{\partial \phi}{\partial x_i}\Big|_P \approx \frac{\partial \phi}{\partial x_i}\Big|_P = \int_{CV} \frac{\partial \phi}{\partial x_i} dV \Big| dV = \sum_{4c \text{ faces}} \phi_c S_c^{x_i} / dV
	$$
	\n- Deferred-correction approach:
	\n- $F_e^d \approx k_e S_e \frac{\phi_E - \phi_P}{|\mathbf{r}_E - \mathbf{r}_P|} + k_e S_e \Big[\nabla \phi\Big|_e \Big]^{old} (\mathbf{n} - \mathbf{i}_{\xi})$
	\n- where $\Big[\nabla \phi\Big|_e \Big]^{old}$ is interpolated from $\Big[\nabla \phi\Big|_P \Big]^{old}$, e.g. $\frac{\partial \phi}{\partial x_i}\Big|_P = \sum_{4c \text{ faces}} \phi_c S_c^{x_i} / dV$
	\n\n
\n

– Comments on 3D

se

e

ne

η

iη iξ

N

n

n n

P

n

x

O_{SE}

E

n

ξ

W

i

sw

nw

w

NW

y

j

S n

S

2.29 Numerical Fluid Mechanics Fall 2011 – Lecture 24

REVIEW Lecture 23, Cont'd:

- Solution of the Navier-Stokes Equations
	- Discretization of the convective and viscous terms - Discretization of the convective and viscous terms
- Discretization of the pressure term $\qquad \tilde{p}=p-\rho \textbf{g}.\textbf{r}+\mu \frac{2}{3}\nabla.\textbf{u} \quad (p\ \vec{e}_i-\rho g_i x_i\vec{e}_i+\frac{2}{3}\mu \frac{\partial u_j}{\partial x_i}\vec{e}_i)$ $rac{2}{3}\nabla \cdot \mathbf{u}$ $(p \vec{e}_i - \rho g_i x_i \vec{e}_i + \frac{2}{3}\mu \frac{\partial u_j}{\partial x_j} \vec{e}_i)$ *p* = $p - \rho$ **g.r** + $\mu \frac{2}{3} \nabla$ **.u** $(p \vec{e}_i - \rho g_i x_i \vec{e}_i + \frac{2}{3} \mu \frac{\partial u_j}{\partial x_i} \vec{e}_i)$ **cous terms**
= $p - \rho \mathbf{g}.\mathbf{r} + \mu \frac{2}{3} \nabla \cdot \mathbf{u}$ ($p \vec{e}_i - \rho g_i x_i \vec{e}_i + \frac{2}{3} \mu \frac{\partial u_j}{\partial x_i}$
	-
	- Conservation principles
		- Momentum and Mass
		- Energy

principles
\n
$$
\int_{S} -\tilde{p} \, \vec{e}_{i} \cdot \vec{n} dS
$$
\nand Mass
\n
$$
\frac{\partial}{\partial t} \int_{CV} \rho \frac{\|\vec{v}\|^{2}}{2} dV = -\int_{CS} \rho \frac{\|\vec{v}\|^{2}}{2} (\vec{v} \cdot \vec{n}) dA - \int_{CS} p \, \vec{v} \cdot \vec{n} dA + \int_{CS} (\vec{\vec{e}} \cdot \vec{v}) \cdot \vec{n} dA + \int_{CV} \left(-\vec{\vec{e}} \cdot \nabla \vec{v} + p \nabla \cdot \vec{v} + \rho \vec{g} \cdot \vec{v}\right) dV
$$

- Choice of Variable Arrangement on the Grid
	- Collocated and Staggered
- Calculation of the Pressure

$$
\frac{\partial \rho \vec{v}}{\partial t} + \nabla \cdot (\rho \vec{v} \ \vec{v}) = -\nabla p + \mu \nabla^2 \vec{v} + \rho \vec{g}
$$

$$
\nabla \cdot \vec{v} = 0
$$

 $\int_S -\tilde{p} \ \vec{e}_i \cdot \vec{n} dS$

 $\vec{e}_i - \rho g_i x_i \vec{e}_i + \frac{2}{3} \mu \frac{\partial u_j}{\partial x_j} \vec{e}_i$

u

 ∂

TODAY (Lecture 24): Numerical Methods for the Navier-Stokes Equations

- Solution of the Navier-Stokes Equations
	- Discretization of the convective and viscous terms
	- Discretization of the pressure term
	- Conservation principles
	- Choice of Variable Arrangement on the Grid
	- Calculation of the Pressure
	- Pressure Correction Methods
		- A Simple Explicit Scheme
		- A Simple Implicit Scheme
			- Nonlinear solvers, Linearized solvers and ADI solvers
		- Implicit Pressure Correction Schemes for steady problems
			- Outer and Inner iterations
		- Projection Methods
			- Non-Incremental and Incremental Schemes
		- Fractional Step Methods:
			- Example using Crank-Nicholson

References and Reading Assignments

- Chapter 7 on "Incompressible Navier-Stokes equations" of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, 3rd edition, 2002"
- Chapter 11 on "Incompressible Navier-Stokes Equations" of T. Cebeci, J. P. Shao, F. Kafyeke and E. Laurendeau, Computational Fluid Dynamics for Engineers. Springer, 2005.
- Chapter 17 on "Incompressible Viscous Flows" of Fletcher, Computational Techniques for Fluid Dynamics. Springer, 2003.

Conservation Principles for NS: Cont'd Kinetic Energy Conservation

- Derivation of Kinetic energy equation
	- Take dot product of momentum equation with velocity
	- Integrate over a control volume CV or full volume of domain of interest
	- This gives

Substituting the values of the expression:

\n—Take dot product of momentum equation with velocity

\n—Integrate over a control volume CV or full volume of domain of interest

\n—This gives

\n
$$
\frac{\partial}{\partial t} \int_{CV} \rho \frac{\|\vec{v}\|^2}{2} dV = -\int_{CS} \rho \frac{\|\vec{v}\|^2}{2} (\vec{v}.\vec{n}) dA - \int_{CS} p \, \vec{v}.\vec{n} \, dA + \int_{CS} (\vec{\vec{e}}.\vec{v}).\vec{n} \, dA + \int_{CV} \left(-\vec{\vec{e}}:\nabla \vec{v} + p \, \nabla.\vec{v} + p \, \vec{g}.\vec{v}\right) dV
$$
\nwhere $S = \tau + p\delta$, is the viscous component of the stress tensor.

where $\varepsilon_{ij} = \tau_{ij} + p \delta_{ij}$ is the viscous component of the stress tensor

- Here, the three RHS terms in the volume integral are zero if the flow is inviscid (term 1 = dissipation), incompressible (term 2) and there are no body forces (term 3)
- Other terms are surface terms and kinetic energy is conserved in this sense: \Rightarrow discretization on CV should ideally lead to no contribution over the volume
- Some observations
	- Guaranteeing global conservation of the *discrete* kinetic energy is not automatic since the kinetic energy equation is a consequence of the momentum equation.
	- Discrete momentum and kinetic energy conservations cannot be enforced separately: the latter should be a consequence of the former

2.29 Numerical Fluid Mechanics PFJL Lecture 24, 5

Conservation Principles for NS, Cont'd

- Some observations, Cont'd
	- If a numerical method is (kinetic) energy conservative, it guarantees that the total (kinetic) energy in the domain does not grow with time (if the energy fluxes at boundaries are null/bounded)
		- This ensures that the velocity at every point in the domain is bounded: important stability property
	- Since kinetic energy conservation is a consequence of momentum conservation, global discrete kinetic energy conservation must be a consequence of the discretized momentum equations
		- It is thus a property of the discretization method and it is not guaranteed
		- One way to ensure it is to impose that the discretization of the pressure gradient and divergence of velocity are "compatible", i.e. lead to discrete energy conservation directly
	- A Poisson equation is often used to compute pressure
		- It is obtained from the divergence of momentum equations, which contains the pressure gradient (see next)
		- Divergence and gradient operators must be such that mass conservation is satisfied (especially for incompressible flows), and ideally also kinetic energy

Conservation Principles for NS, Cont'd

- Some observations, Cont'd
	- Time-differencing method can destroy the energy conservation property (and mass conservation for incompressible fluid)
		- Ideally, it should be automatically satisfied by the numerical scheme
		- Example: Crank-Nickolson
			- Time derivatives are approximated by: $\frac{\rho \Delta V}{\Delta t}(u_i^{n+1} u_i^n)$ *V* u_i^{n+1} – u_i *t* $\rho \Delta V$ _{(x^{n+1})} \overline{a} Δ
			- $-$ If one takes the scalar product of this equation with $u_i^{n+1/2}$, which in C-N is approximated by, u_i^{n+1} $u_i^{n+1/2} = (u_i^{n+1} + u_i^n)/2$

the result is the change of the kinetic energy equation

$$
u_i = (u_i + u_i) / 2
$$

is the change of the kinetic energy equation

$$
\frac{\rho \Delta V}{\Delta t} \left[\left(\frac{v^2}{2} \right)^{n+1} - \left(\frac{v^2}{2} \right)^n \right]
$$
 where $v^2 = u_i u_i$ (summation implied)

• With proper choices for the other terms, the C-N scheme is energy conservative

Parabolic PDE: Implicit Schemes (review Lecture 17)

Leads to a system of equations to be solved at each time-step

B-C: Unconditionally stable, 1st order accurate in time, 2nd order in space

Unconditionally stable, 2nd order accurate in time, 2nd order in space

Image by MIT OpenCourseWare. After Chapra, S., and R. Canale. *Numerical Methods for Engineers*. McGraw-Hill, 2005.

• Evaluates RHS at time *t*+1 instead of time *t* (for explicit scheme)

- Time: centered FD, but evaluated at mid-point
- 2nd derivative in space determined at mid-point by averaging at *t* and *t*+1

Conservation Principles for NS, Cont'd

- Some observations, Cont'd
	- Since momentum and kinetic energy (and mass cons.) are not independent, satisfying all of them is not direct: trial and error in deriving schemes that are conservatives
	- Kinetic energy conservation is particularly important in unsteady flows (e.g. weather, ocean, turbulence, etc)
		- Less important for steady flows
	- Kinetic energy is not the only quantity whose discrete conservation is desirable (and not automatic)
		- Angular momentum is another one
		- Important for flows in rotating machinery, internal combustion engines and any other devices that exhibit strong rotations/swirl
	- If numerical schemes do not conserve these "important" quantities, numerical simulation is likely to get into trouble, even for stable schemes

- Because the Navier-Stokes equations are coupled equations for vector fields, several variants of the arrangement of the computational points/nodes are possible
- Collocated arrangement
	- Obvious choice: store all the variables at the same grid points and use the same grid points or CVs for all variables: Collocated grid

- Advantages:
- Image by MIT OpenCourseWare.
- All (geometric) coefficients evaluated at the same points
- Easy to apply to multigrid procedures (collocated refinements of the grid)

Choice of Variable Arrangement on the Grid

- Collocated arrangement: Disadvantages
	- Was out of favor and not used much until the 1980s because of:
		- Occurrence of oscillations in the pressure
		- Difficulties with pressure-velocity coupling
	- However, when non-orthogonal grids started to be used over complex geometries, the situation changed
		- This is because the non-collocated (staggered) approach on nonorthogonal grids is based on grid-oriented components of the (velocity) vectors and tensors.
		- This implies using curvature terms, which are more difficult to treat numerically and can create non-conservative errors
		- Hence, collocated grids became more popular

Image by MIT OpenCourseWare.

Choice of Variable Arrangement on the Grid

- Staggered arrangements
	- No need for all variables to share the same grid
	- "Staggered" arrangements can be advantageous (couples *p* and *v*)
- For example, consider the Cartesian coordinates
	- –Advantages of staggered grids
		- Several terms that require interpolatio n in collocated grids can be evaluated (to 2nd order) without interpolation
		- This applies to the pressure term (located at CV centers) and the diffusion term (first derivative needed at CS centers), when obtained by central differences
		- Can be shown to directly conserve kine tic energy
	- 2.29 CLC **CONFIDENT CONTROL** RUN Numerical Fluid Mechanics **PFJL Lecture 24, 12** • Man y variations: partially staggered, etc

Fully and partially staggered arrangements of velocity components and pressure.

(b) x-momentum, and (c) y-momentum

Image by MIT OpenCourseWare.

Choice of Variable Arrangement on the Grid

- Staggered arrangements:
	- Example with Cartesian coordinates, Cont'd
		- Terms can be evaluated (to $2nd$ order) without interpolation
		- This applies to the pressure term (normal at center of CS). For example, along *x* direction:
			- Each p value on the bnd of the velocity grid is conveniently at the center the "scalar" grid:

$$
-\int_{S_e} p \ln dS \approx -p_e S_e + p_w S_w
$$

• Diffusion term (first derivative at CS) obtained by central differences.

Calculation of the Pressure

- The Navier-Stokes equations do not have an independent equation for pressure
	- But pressure gradient contributes to each of the three momentum equations
	- For incompressible fluids, mass conservation becomes a kinematic constraint on the velocity field: we then have no dynamic equations for both density and pressure
	- For compressible fluids, mass conservation is a dynamic equation for density
		- Pressure can then be computed from density using an equation of state
		- For incompressible flows (or low Mach numbers), density is not a state variable, hence can't be solved for
- For incompressible flows:
	- Momentum equations lead to the velocities \Rightarrow
	- Continuity equation should lead to the pressure, but it does not contain pressure! How can *p* be estimated?

Calculation of the Pressure

• Navier-Stokes, incompressible: 2 $(\rho \vec{v} \ \vec{v}) = -\nabla$ ∂t
 $\vec{v} = 0$ *v* $\vec{v} \ \vec{v}$) = $-\nabla p + \mu \nabla^2 \vec{v} + \rho \vec{g}$ *t* ρ $\rho \vec{v} \ \vec{v}$) = $-\nabla p + \mu \nabla^2 \vec{v} + \rho \vec{g}$ ∂ + ∇ . $(\rho \vec{v} \ \vec{v}) = -\nabla p + \mu \nabla^2 \vec{v} + \rho \vec{g}$ ∂t
 $\nabla \cdot \vec{v} = 0$

 $\nabla \vec{v} = 0$

- Combine the two conservation eqns to obtain an equation for *p*
	- Since the cons. of mass has a divergence form, take the divergence of the by conservation eqns to obtain an equation for p
 α of mass has a divergence form, take the divergence of the

	uation, using cons. of mass:

	viscosity and density:
 $\frac{p}{\alpha} = -\nabla \cdot \frac{\partial \rho \vec{v}}{\partial t} - \nabla \cdot (\nabla \cdot (\rho \vec{v$
		- For constant viscosity and density:

momentum equation, using cons. of mass:
\n• For constant viscosity and density:
\n
$$
\nabla \cdot \nabla p = \nabla^2 p = -\nabla \cdot \frac{\partial \rho \vec{v}}{\partial t} - \nabla \cdot (\nabla \cdot (\rho \vec{v} \ \vec{v})) + \nabla \cdot (\mu \nabla^2 \vec{v}) + \nabla \cdot (\rho \vec{g}) = -\nabla \cdot (\nabla \cdot (\rho \vec{v} \ \vec{v}))
$$

– This pressure equation is elliptic (Poisson eqn. once velocity is known)

• It can be solved by methods we have seen earlier for elliptic equations

$$
\frac{\partial}{\partial x_i} \left(\frac{\partial p}{\partial x_i} \right) = -\frac{\partial}{\partial x_i} \left(\frac{\partial (p u_i u_j)}{\partial x_j} \right)
$$

– Important Notes

- Terms inside divergence (derivatives of momentum terms) must be approximated in a form consistent with those of momentum equations. Divergence is that of cons. of mass.
- Laplacian operator comes from divergence of cons. of mass and gradient in momentum equations: consistency must be maintained, i.e. divergence and gradient operators in the Laplacian should be those of the cons. of mass and of the momentum eqns., respectively
- Best to derive pressure equation from discretized momentum/continuity equations

Pressure-correction Methods

- First solve the momentum equations to obtain the velocity field for a known pressure
- Then solve the Poisson equation to obtain an updated/corrected pressure field
- Another way: modify the continuity equation so that it becomes hyperbolic (even though it is elliptic)
	- Artificial Compressibility Methods
- Notes:
	- The general pressure-correction method is independent of the discretization chosen for the spatial derivatives \Rightarrow in theory any discretization can be used
	- We keep density in the equations (flows are assumed incompressible, but small density variations are considered)

A Simple Explicit Time Advancing Scheme

- Simple method to illustrate how the numerical Poisson equation for the pressure is constructed and the role it plays in enforcing continuity
- Specifics of spatial derivative scheme not important, hence, we look at the equation discretized in space, but not in time.

For all the equation is the following:\n
$$
\frac{\delta}{\delta x_i}
$$
\nfor the $\frac{\delta}{\delta x_i}$ to denote spatial derivatives. This gives:\n $\text{Note: } p = p_{\text{real}} - \rho g_i x_i$ \n $\frac{\partial \rho u_i}{\partial t} = -\frac{\partial (\rho u_i u_j)}{\partial x_j} - \frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} \implies \frac{\partial \rho u_i}{\partial t} = -\frac{\delta (\rho u_i u_j)}{\delta x_j} - \frac{\delta p}{\delta x_i} + \frac{\delta \tau_{ij}}{\delta x_j} = H_i - \frac{\delta p}{\delta x_i}$ \n

– Simplest approach: Forward Euler for time integration, which gives:

$$
(\rho u_i)^{n+1} - (\rho u_i)^n = \Delta t \left(H_i^n - \frac{\delta p^n}{\delta x_i} \right)
$$

• In general, the new velocity field we obtain at time *n*+1 does not satisfy the continuity equation: *n* $^{+}$

$$
\frac{\delta\big(\rho u_i\big)^{n+1}}{\delta x_i}=0
$$

A Simple Explicit Time Advancing Scheme

- How can we enforce continuity at *n*+1?
-

• Take the numerical divergence of the NS equations:
\n
$$
(\rho u_i)^{n+1} - (\rho u_i)^n = \Delta t \left(H_i^n - \frac{\delta p^n}{\delta x_i} \right) \Rightarrow \left[\frac{\delta (\rho u_i)^{n+1}}{\delta x_i} - \frac{\delta (\rho u_i)^n}{\delta x_i} = \Delta t \left[\frac{\delta}{\delta x_i} \left(H_i^n - \frac{\delta p^n}{\delta x_i} \right) \right] \right]
$$

- The first term is the divergence of the new velocity field, which we want to be zero
- Second term is zero if continuity was enforced at time step *n*
- Third term can be zero or not
- All together, we obtain:

$$
\frac{\delta}{\delta x_i} \left(\frac{\delta p^n}{\delta x_i} \right) = \frac{\delta H_i^n}{\delta x_i}
$$

- Note that this includes the divergence operator from the continuity eqn. (outside) and the pressure gradient from the momentum equation (inside)
- Pressure gradient could be explicit (*n*) or implicit (*n*+1)

A Simple Explicit Time Advancing Scheme: Summary of the Algorithm

- \bullet Start with velocity at time t_n which is divergence free
- Compute RHS of pressure equation at time *tⁿ*
- Solve the Poisson equation for the pressure at time *tⁿ*
- Compute the velocity field at the new time step using the momentum equation: It will be divergence free
- Continue to next time step

A Simple *Implicit* Time Advancing Scheme

- Some additional difficulties arise when an implicit method is used to solve the (incompressible) NS equations
- To illustrate, let's first try the simplest: backward/implicit Euler
- Recall: $\frac{\partial \rho u_i}{\partial t} = \frac{\delta(\rho u_i u_j)}{\rho} \frac{\delta p_i}{\rho} + \frac{\delta \tau_i}{\rho} H \frac{\delta p}{\rho}$ try the simplest: backw
 $\frac{\delta(\rho u_i u_j)}{\delta x_j} - \frac{\delta p}{\delta x_i} + \frac{\delta \tau_{ij}}{\delta x_j} = H_i - \frac{\delta p}{\delta x_i}$ t try the simplest: backw

<u> $u_i = -\frac{\delta(\rho u_i u_j)}{2} - \frac{\delta p}{2} + \frac{\delta \tau_{ij}}{2} = H_i - \frac{\delta p}{2}$ </u> St try trie Simplest. Dackwa
 $\frac{\partial u_i}{\partial t} = -\frac{\delta(\rho u_i u_j)}{\delta x_i} - \frac{\delta p}{\delta x_i} + \frac{\delta \tau_{ij}}{\delta x_i} = H_i - \frac{\delta p}{\delta x_i}$

– Recall:

– Implicit Euler: |(

$$
\frac{\partial \rho u_i}{\partial t} = -\frac{\delta(\rho u_i u_j)}{\delta x_j} - \frac{\delta p}{\delta x_i} + \frac{\delta \tau_{ij}}{\delta x_j} = H_i - \frac{\delta p}{\delta x_i}
$$
\n
$$
(\rho u_i)^{n+1} - (\rho u_i)^n = \Delta t \left(H_i^{n+1} - \frac{\delta p}{\delta x_i} \right) = \Delta t \left(-\frac{\delta(\rho u_i u_j)^{n+1}}{\delta x_j} + \frac{\delta \tau_{ij}^{n+1}}{\delta x_j} - \frac{\delta p}{\delta x_i} \right)
$$

- Difficulties (specifics for incompressible case)
	- 1) Set numerical divergence of velocity field at new time-step to be zero
		- Take divergence of momentum, assume velocity is divergent at time *tⁿ* and) Set numerical divergence of velocity field at new time-step to be zero

		• Take divergence of momentum, assume velocity is divergent at time *t_n* and

		demand zero divergence at *t_{n+1}*. This leads to:
 $\frac{\delta(\rho u_i)^{n+$ ergence of velocity field at new time-step to be zero
of momentum, assume velocity is divergent at time t_n and
ergence at t_{n+1} . This leads to:
 $\left[\frac{\delta}{\delta x}\left(H_i^{n+1}-\frac{\delta p}{\delta x}^{n+1}\right)\right] \Rightarrow \left[\frac{\delta}{\delta x}\left(\frac{\delta p}{\delta x}^{n+1}\right)\right]$

demand zero divergence at *tn+1.* This leads to: *i i ⁿ i j ij* ¹ 1 1 1 1 () *n n n n n n u u p p u u* 1 *i ⁱ ⁱ ⁱ ⁱ i i ⁱ ^j ^j t H x x x x x x x x x*

- Problem: The RHS can not be computed until velocities are known at t_{n+1} (and these velocities can not be computed until p^{n+1} is available)
- Result: Poisson and momentum equations have to be solved simultaneously

A Simple Implicit Time Advancing Scheme, Cont'd

2) Even if p^{n+1} known, a large system of nonlinear momentum equations must be solved for the velocity field:
 $(\rho u_i)^{n+1} - (\rho u_i)^n = \Delta t \left(-\frac{\delta (\rho u_i u_j)^{n+1}}{\delta x_i} + \frac{\delta \tau_{ij}}{\delta x_i}^n - \frac{\delta p}{\delta x_i} \right)$ elocity field:
 $\left(-\frac{\delta(\rho u_i u_j)^{n+1}}{2}+\frac{\delta \tau_{ij}}{2}^{n+1}-\frac{\delta p}{2}^{n+1}\right)$

\n
$$
\text{ved for the velocity field:}
$$
\n

\n\n $\left(\rho u_i\right)^{n+1} - \left(\rho u_i\right)^n = \Delta t \left(-\frac{\delta \left(\rho u_i u_j\right)^{n+1}}{\delta x_j} + \frac{\delta \tau_{ij}}{\delta x_j}^{n+1} - \frac{\delta p}{\delta x_i}^{n+1} \right)$ \n

\n\n olution: \n

Three approaches for solution:

- First approach: nonlinear solvers
	- Use velocities at t_n for initial guess of u_i^{n+1} (or use explicit first guess) and then employ a nonlinear solver (Fixed-point, Newton-Raphson or Secant methods) at each time step
	-

• Nonlinear solver is applied to the nonlinear algebraic equations
\n
$$
(\rho u_i)^{n+1} - (\rho u_i)^n = \Delta t \left(-\frac{\delta (\rho u_i u_j)^{n+1}}{\delta x_j} + \frac{\delta \tau_{ij}}{\delta x_j}^{n+1} - \frac{\delta p^{n+1}}{\delta x_i} \right)
$$
\n
$$
\frac{\delta}{\delta x_i} \left(\frac{\delta p^{n+1}}{\delta x_i} \right) = \frac{\delta}{\delta x_i} \left(-\frac{\delta (\rho u_i u_j)^{n+1}}{\delta x_j} + \frac{\delta \tau_{ij}}{\delta x_j}^{n+1} \right)
$$

– Second approach: linearize the equations about the result at *tⁿ*

$$
u_i^{n+1} = u_i^n + \Delta u_i \implies
$$

\n
$$
u_i^{n+1} u_j^{n+1} = u_i^n u_j^n + u_i^n \Delta u_j + u_j^n \Delta u_i + \Delta u_i \Delta u_j
$$

- We'd expect the last term to be of 2^{nd} order in Δt , it can thus be neglected (for example, it would be of same order than a C-N approximation in time).
- Hence, doing the same in the other tems, the (incompressible) momentum of same order than a C-N approximation in time).

me in the other tems, the (incompressible) momentum

oproximated by:
 $\frac{\delta(\rho u_i u_j)^n}{\delta x_i} - \frac{\delta(\rho u_i^n \Delta u_j)^n}{\delta x_i} - \frac{\delta(\rho \Delta u_i u_j^n)^n}{\delta x_i} + \frac{\delta \tau_{ij}}{\delta x_i} + \frac{\delta \Delta \tau_{ij}}{\delta x_i} - \frac{\delta p$ be of same order than a C-N approximation in time).

same in the other tems, the (incompressible) momentum

approximated by:
 $\left(-\frac{\delta(\rho u_i u_j)^n}{\delta x} - \frac{\delta(\rho u_i^n \Delta u_j)^n}{\delta x} - \frac{\delta(\rho \Delta u_i u_j^n)^n}{\delta x} + \frac{\delta \tau_{ij}}{\delta x} + \frac{\delta \Delta \tau_{ij}}{\delta x} - \$

Prove a chapter the last term to be of
$$
\Sigma
$$
 order in Σt , it can thus be neglected (to
\nexample, it would be of same order than a C-N approximation in time).

\nHence, doing the same in the other terms, the (incompressible) momentum
\nequations are then approximated by:

\n
$$
(\rho u_i)^{n+1} - (\rho u_i)^n = \rho \Delta u_i = \Delta t \left[-\frac{\delta (\rho u_i u_j)^n}{\delta x_j} - \frac{\delta (\rho u_i^n \Delta u_j)^n}{\delta x_j} - \frac{\delta (\rho \Delta u_i u_j^n)^n}{\delta x_j} + \frac{\delta \tau_{ij}}{\delta x_j} + \frac{\delta \Delta \tau_{ij}}{\delta x_j} - \frac{\delta p^n}{\delta x_i} - \frac{\delta \Delta p}{\delta x_i} \right]
$$
\nIn this linearization takes advantage of the fact that the nonlinear form is only

- This linearization takes advantage of the fact that the nonlinear term is only quadratic
- However, a large system still needs to be inverted. Direct solution is not recommended: use an iterative scheme
- A third interesting solution scheme: an Alternate Direction Implicit scheme

Parabolic PDEs: Two spatial dimensions ADI scheme (Two Half steps in time) (from Lecture 17)

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <http://ocw.mit.edu/fairuse>. Source: Chapra, S., and R. Canale. *Numerical Methods for Engineers*. McGraw-Hill, 2005.

1) From time *n* to *n*+1/2: Approx. of 2nd order *x* derivative explicit, *y* derivative
implicit. Hence, tri-diagonal matrix to be solved
 $\frac{T_{i,j}^{n+1/2} - T_{i,j}^n}{T_{i,j}^{n+1/2} - T_{i,j}^n} = c^2 \frac{T_{i-1,j}^n - 2T_{i,j}^n + T_{i+1,j}^$ implicit. Hence, tri-diagonal matrix to be solved
 $\boxed{T_{i,j}^{n+1/2}-T_{i,j}^n}$ $\boxed{T_{i,j}^{n+1/2}-T_{i,j}^n}$ $\boxed{2T_{i,j}^{n-1}\left\{2T_{i,j+1}^{n+1/2}-2T_{i,j+1}^{n+1/2}+T_{i,j+1}^{n+1/2}\right\}}$ $(\Delta x^2 + \Delta y^2)$ Approx. of 2nd order *x* derivative expli-

lonal matrix to be solved
 $\frac{-2T_{i,j}^n + T_{i+1,j}^n}{2} + c^2 \frac{T_{i,j-1}^{n+1/2} - 2T_{i,j}^{n+1/2} + T_{i,j+1}^{n+1/2}}{4\epsilon^2}$ (*C*

1 time *n* to *n*+1/2: Approx. of 2nd order *x* derivative explicit, *y* derivative
\ncit. Hence, tri-diagonal matrix to be solved

\n
$$
\frac{T_{i,j}^{n+1/2} - T_{i,j}^n}{\Delta t/2} = c^2 \frac{T_{i-1,j}^n - 2T_{i,j}^n + T_{i+1,j}^n}{\Delta x^2} + c^2 \frac{T_{i,j-1}^{n+1/2} - 2T_{i,j}^{n+1/2} + T_{i,j+1}^{n+1/2}}{\Delta y^2} \qquad (O(\Delta x^2 + \Delta y^2))
$$
\ntime *n* + 1/2, to *n*+1: Approximation of 2nd order *x* derivative implicit, *y*.

2) From time $n+1/2$ to $n+1$: Approximation of 2^{nd} order x derivative implicit, y
derivative explicit
 $\frac{T_{i,j}^{n+1} - T_{i,j}^{n+1/2}}{\Delta t/2} = c^2 \frac{T_{i-1,j}^{n+1} - 2T_{i,j}^{n+1} + T_{i+1,j}^{n+1}}{\Delta x^2} + c^2 \frac{T_{i,j-1}^{n+1/2} - 2T_{i,j}^{n+1/$ derivative explicit explicit
 $\frac{1}{1-T_{i,j}^{n+1/2}}$ $\frac{T_{i-1,j}^{n+1}-2T_{i,j}^{n+1}+T_{i+1,j}^{n+1}}{2T_{i,j-1}^{n+1/2}-2T_{i,j}^{n+1/2}+T_{i,j+1}^{n+1/2}}$ e implicit, y $(\Delta x^2 + \Delta y^2)$ to *n*+1: Approximation of 2nd order *x* derivative implic
 $c^2 \frac{T_{i-1,j}^{n+1} - 2T_{i,j}^{n+1} + T_{i+1,j}^{n+1}}{\Delta x^2} + c^2 \frac{T_{i,j-1}^{n+1/2} - 2T_{i,j}^{n+1/2} + T_{i,j+1}^{n+1/2}}{\Delta y^2}$ (*O*($\Delta x^2 + \Delta y$ e explicit
 $T_i^{n+1} - T_i^{n+1/2}$, $T_{i-1,i}^{n+1} - 2T_{i,i}^{n+1} + T_{i+1,i}^{n+1}$, $T_{i,i-1}^{n+1/2} - 2T_{i,i}^{n+1/2} + T_{i,i+1}^{n+1/2}$: Approximation of 2nd order x derivativ
 $\frac{-2T_{i,j}^{n+1} + T_{i+1,j}^{n+1}}{2} + c^2 \frac{T_{i,j-1}^{n+1/2} - 2T_{i,j}^{n+1/2} + T_{i,j+1}^{n+1/2}}{4^2}$ (*C* to *n*+1: Approximation of 2nd order *x* derivative implicit, *y*
it
= $c^2 \frac{T_{i-1,j}^{n+1} - 2T_{i,j}^{n+1} + T_{i+1,j}^{n+1}}{\Delta x^2} + c^2 \frac{T_{i,j-1}^{n+1/2} - 2T_{i,j}^{n+1/2} + T_{i,j+1}^{n+1/2}}{\Delta y^2}$ ($O(\Delta x^2 + \Delta y^2)$)

$$
\frac{T_{i,j}^{n+1} - T_{i,j}^{n+1/2}}{\Delta t/2} = c^2 \frac{T_{i-1,j}^{n+1} - 2T_{i,j}^{n+1} + T_{i+1,j}^{n+1}}{\Delta x^2} + c^2 \frac{T_{i,j-1}^{n+1/2} - 2T_{i,j}^{n+1/2} + T_{i,j+1}^{n+1/2}}{\Delta y^2} \qquad (O(\Delta x^2 + \Delta y^2))
$$

 $\left(O(\Delta x^2 + \Delta y^2)\right)$

Parabolic PDEs: Two spatial dimensions ADI scheme (Two Half steps in time) (from Lecture 17)

For
$$
\Delta x = \Delta y
$$
:

1) From time *n* to $n+1/2$:

г

2) From time $n+1/2$ to $n+1$:

$$
-rT_{i,j-1}^{n+1/2} + 2(1+r)T_{i,j}^{n+1/2} - rT_{i,j+1}^{n+1/2} = rT_{i-1,j}^{n} + 2(1-r)T_{i,j}^{n} + rT_{i+1,j}^{n}
$$

$$
-rT_{i-1,j}^{n+1} + 2(1+r)T_{i,j}^{n+1} - rT_{i+1,j}^{n+1} = rT_{i,j-1}^{n+1/2} + 2(1-r)T_{i,j}^{n+1/2} + rT_{i,j+1}^{n+1/2}
$$

A Simple Implicit Time Advancing Scheme, Cont'd

- Alternate Direction Implicit method
	- Split the NS momentum equations into a series of 1D problems, each which is block tri-diagonal. Then, either:
	- ADI nonlinear: iterate for the nonlinear terms, or,
	- ADI with a local linearization:
		- Δ*p* can first be set to zero to obtain a new velocity *uⁱ ** which does not satisfy continuity: * () nearization:
 $\frac{\partial^2 f}{\partial x^2} = \Delta t \left[-\frac{\delta (\rho u_i u_j)^n}{\delta x} - \frac{\delta (\rho u_i^n \Delta u_j)^n}{\delta x} - \frac{\delta (\rho \Delta u_i u_j^n)^n}{\delta x} + \frac{\delta \tau_{ij}}{\delta x} + \frac{\delta \Delta \tau_{ij}}{\delta x} - \frac{\delta \rho^n}{\delta x} \right]$ $\binom{n}{i}^{n+1} - (\rho u_i)$ $\frac{f_j(u_j)^n}{j} - \frac{\delta(\rho u_i^n \Delta u_j)^n}{\delta x_j} - \frac{\delta(\rho \Delta u_i u_j^n)}{\delta x_j} + \frac{\delta \tau_{ij}}{\delta x_j} + \frac{\delta \Delta \tau_{ij}}{\delta x_j} - \frac{\delta p_i}{\delta x_i}$ a new velocity u_i^* which does not satisfy
 $\frac{u_i u_j^n}{r} - \frac{\delta (\rho u_i^n \Delta u_j)^n}{r} - \frac{\delta (\rho \Delta u_i u_j^n)^n}{r} + \frac{\delta \tau_{ij}}{r} + \frac{\delta \Delta \tau_{ij}}{r} - \frac{\delta \rho}{r}$ $\frac{u}{u_i}$ set to zero to
 $u_i^* \big)^{n+1} - (\rho u_i)^n = \Delta t$ a new velocity u_i^* which does not satisfy
 $\frac{u_i u_j^n}{x_j} - \frac{\delta (\rho u_i^n \Delta u_j)^n}{\delta x_j} - \frac{\delta (\rho \Delta u_i u_j^n)^n}{\delta x_j} + \frac{\delta \tau_{ij}}{\delta x_j} + \frac{\delta \Delta \tau_{ij}}{\delta x_j} - \frac{\delta \rho}{\delta x_j}$ ain a new velocity u_i^* which does not satisfy
 $\frac{\delta(\rho u_i u_j)^n}{\delta(\rho u_i u_j)^n} - \frac{\delta(\rho u_i^n \Delta u_j)^n}{\delta(\rho u_i u_j)^n} - \frac{\delta(\rho \Delta u_i u_j^n)^n}{\delta(\rho u_i u_j)^n} + \frac{\delta \tau_{ij}}{\delta(\rho u_i u_j)^n} - \frac{\delta(\rho u_i u_j)^n}{\delta(\rho u_i u_j)^n}$ e set to zero to obta $\rho u_i^* \bigg)^{n+1} - (\rho u_i)^n = \Delta t \left(-\frac{\delta}{2} \right)$ a new velocity u_i^* which does not satisfy
 $\frac{\partial u_i u_j}{\partial x_j} - \frac{\delta (\rho u_i^n \Delta u_j)}{\delta x_j} - \frac{\delta (\rho \Delta u_i u_j^n)}{\delta x_j} + \frac{\delta \tau_{ij}}{\delta x_j} + \frac{\delta \Delta \tau_{ij}}{\delta x_j} - \frac{\delta p^n}{\delta x_i}$ $^{+}$:

		bbtain a new velocity u_i^* which does not satisfy
 $\left(-\frac{\delta(\rho u_i u_j)^n}{\delta u_j} - \frac{\delta(\rho u_i^n \Delta u_j)^n}{\delta u_j} - \frac{\delta(\rho \Delta u_i u_j^n)^n}{\delta u_j} + \frac{\delta \tau_i^n}{\delta u_j} + \frac{\delta \Delta \tau_i}{\delta u_j} - \frac{\delta p^n}{\delta u_j} \right)$ to zero to obtain a new velocity u_i^* which does not satisfy
 $-(\rho u_i)^n = \Delta t \left[-\frac{\delta (\rho u_i u_j)^n}{\delta x_j} - \frac{\delta (\rho u_i^n \Delta u_j)^n}{\delta x_j} - \frac{\delta (\rho \Delta u_i u_j^n)^n}{\delta x_j} + \frac{\delta \tau_{ij}}{\delta x_j} + \frac{\delta \Delta \tau_{ij}}{\delta x_j} - \frac{\delta \rho^n}{\delta x_i} \right]$
		- •Solve a Poisson equation for the pressure correction. Taking the divergence of:

\n- − ADI nonlinear: iterate for the nonlinear terms, or,
\n- − ADI with a local linearization:
\n- − Δ*p* can first be set to zero to obtain a new velocity
$$
u_i^*
$$
 which does not satisfy continuity:
\n- \n
$$
\left[(\rho u_i^*)^{n+1} - (\rho u_i)^n = \Delta t \left(-\frac{\delta (\rho u_i u_j)^n}{\delta x_j} - \frac{\delta (\rho u_i^n \Delta u_j)^n}{\delta x_j} - \frac{\delta (\rho \Delta u_i u_j^n)}{\delta x_j} + \frac{\delta \tau_i^n}{\delta x_j} + \frac{\delta \Delta \tau_i}{\delta x_j} - \frac{\delta \rho^n}{\delta x_i} \right) \right]
$$
\n
\n- − Solve a Poisson equation for the pressure correction. Taking the divergence of:
\n- \n
$$
\left[(\rho u_i)^{n+1} - (\rho u_i)^n = \Delta t \left(-\frac{\delta (\rho u_i u_j)^n}{\delta x_j} - \frac{\delta (\rho u_i^n \Delta u_j)^n}{\delta x_j} - \frac{\delta (\rho \Delta u_i u_j^n)^n}{\delta x_j} + \frac{\delta \tau_i^n}{\delta x_j} + \frac{\delta \Delta \tau_i}{\delta x_j} - \frac{\delta \rho^n}{\delta x_i} - \frac{\delta \Delta p}{\delta x_i} \right) \right]
$$
\n
$$
\Rightarrow (\rho u_i)^{n+1} = (\rho u_i^*)^{n+1} - \Delta t \frac{\delta \Delta p}{\delta x_i}
$$
\ngives:

\n
$$
\frac{\delta}{\delta x_i} \left(\frac{\delta \Delta p}{\delta x_i} \right) = \frac{\delta (\rho u_i^*)^{n+1}}{\delta x_i}
$$
\n• Finally, update the velocity:

\n
$$
\left[(\rho u_i)^{n+1} = (\rho u_i^*)^{n+1} - \Delta t \frac{\delta \Delta p}{\delta x_i} \right]
$$
\n• PFL Lecture 24, 25

\n• PFL Lecture 24, 25

Methods for solving (steady) NS problems: Implicit Pressure-Correction Methods

- Previous implicit approach based on linearization most useful for unsteady problems
	- It is not accurate for large (time) steps (because the linearization would then lead to a large error)
	- Should not be used for steady problems
- Steady problems are often solved with an implicit method (with pseudo-time), but with large time steps (no need to reproduce the pseudo-time history)
	- The aim is to rapidly converge to the steady solution
- Many steady-state solvers are based on variations of the implicit schemes just discussed
	- They use a pressure (or pressure-correction) equation to enforce continuity at each "pseudo-time" steps, also called "outer iteration"

2.29 Numerical Fluid Mechanics Fall 2011

For information about citing these materials or our Terms of Use, visit:<http://ocw.mit.edu/terms>.