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REVIEW Lecture 25: 

• Solution of the Navier-Stokes Equations 

– Pressure Correction Methods: i) Solve momentum for a known pressure leading to 
new velocity, then; ii) Solve Poisson to obtain a corrected pressure and iii) Correct velocity, 
go to i) for next time-step. 

• A Simple Explicit and Implicit Schemes 

– Nonlinear solvers, Linearized solvers and ADI solvers 

• Implicit Pressure Correction Schemes for steady problems: iterate using 

– Outer iterations: 

 

– Inner iterations: 

 

• Projection Methods: Non-Incremental and Incremental Schemes 
 

– Fractional Step Methods:  

• Example using Crank-Nicholson 
 

– Streamfunction-Vorticity Methods: Scheme and boundary conditions 
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TODAY (Lecture 26):  

Navier-Stokes Equations and Intro to Finite Elements 

• Solution of the Navier-Stokes Equations 

– Pressure Correction / Projection Methods 

– Fractional Step Methods  

– Streamfunction-Vorticity Methods: scheme and boundary conditions 

– Artificial Compressibility Methods: scheme definitions and example 

– Boundary Conditions: Wall/Symmetry and Open boundary conditions 

• Finite Element Methods 

– Introduction 

– Method of Weighted Residuals: Galerkin, Subdomain and Collocation 

– General Approach to Finite Elements:  

• Steps in setting-up and solving the discrete FE system 

• Galerkin Examples in 1D and 2D 

– Computational Galerkin Methods for PDE: general case 

• Variations of MWR: summary   

• Finite Elements and their basis functions on local coordinates (1D and 2D) 

• Unstructured grids: isoparametric and triangular elements 
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References and Reading Assignments 

• Chapter 7 on “Incompressible Navier-Stokes equations” 
of “J. H. Ferziger and M. Peric, Computational Methods 
for Fluid Dynamics. Springer, NY, 3rd edition, 2002” 

• Chapter 11 on “Incompressible Navier-Stokes Equations” 
of T. Cebeci, J. P. Shao, F. Kafyeke and E. Laurendeau, 
Computational Fluid Dynamics for Engineers. Springer, 
2005. 

• Chapter 17 on “Incompressible Viscous Flows” of 
Fletcher, Computational Techniques for Fluid Dynamics. 
Springer, 2003. 

 

• Chapters 31 on “Finite Elements” of “Chapra and Canale, 
Numerical Methods for Engineers, 2006.” 



Artificial Compressibility Methods  

• Compressible flow is of great importance (e.g. aerodynamics 

and turbine engine design) 

• Many methods have been developed (e.g. MacCormack, 

Beam-Warming, etc) 

• Can they be used for incompressible flows? 

• Main difference between incompressible and compressible NS 

is the mathematical character of the equations 

– Incompressible eqns: no time derivative in the continuity eqn: 

• They have a mixed parabolic-elliptic character in time-space 

– Compressible eqns: there is a time-derivative in the continuity equation:  
 

• They have a hyperbolic character: 

• Allow pressure/sound waves 

• How to use methods for compressible flows in incompressible flows? 
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Artificial Compressibility Methods, Cont’d  

• Most straightforward: Append a time derivative to the continuity equation 

– Since density is constant, adding a time-rate-of-change for ρ not possible 

– Use pressure instead (linked to ρ via an eqn. of state in the general case): 

 

 

• where β is an artificial compressibility parameter (dimension of velocity2) 

• Its value is key to the performance of such methods: 

– The larger/smaller β is, the more/less incompressible the scheme is 

– Large β makes the equation stiff (not well conditioned for time-integration) 

• Methods most useful for solving steady flow problem (at convergence:          ) 

or inner-iterations in dual-time schemes. 

– To solve this new problem, many methods can be used, especially 

• All the time-marching schemes (R-K, multi-steps, etc) that we have seen 

• Finite differences or finite volumes in space 

• Alternating direction method is attractive: one spatial direction at a time 
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Artificial Compressibility Methods, Cont’d  

• Connecting these methods with the previous ones: 

– Consider the intermediate velocity field (ρui
*

 )
n+1 obtained from solving 

momentum with the old pressure 

– It does not satisfy the incompressible continuity equation: 

• There remains an erroneous time rate of change of mass flux  

   ⇒ method needs to correct for it 

• Example of an artificial compressibility scheme 

– Instead of explicit in time, let’s use implicit Euler (larger time steps) 

 
 

– Issue: velocity field at n+1 is not known 

– One can linearize about the old (intermediate) state and transform the 

above equation into a Poisson equation for the pressure or pressure 

correction! 
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Artificial Compressibility Methods:  

Example Scheme, Cont’d  

• First, expand unknown velocity using Taylor series in pressure 

derivatives 
 

– Inserting (ρui )
n+1 in the continuity equation leads an equation for pn+1 

 

 

– Then, take the divergence and derive a Poisson-like equation for pn+1 

• One could have also used directly: 

 

 

– Then, still take divergence and derive Poisson-like equation 

• Ideal value of β is problem dependent 

– The larger the β, the more incompressible. Lowest values of β can be computed 

by requiring that pressure waves propagate much faster than the flow velocity or 

vorticity speeds 
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Numerical Boundary Conditions for N-S eqns. 

• At a wall, the no-slip boundary condition applies: 

– Velocity at the wall is the wall velocity (Dirichlet) 

– In some cases, the tangential velocity stays constant along the wall (only 

for fully-developed), which by continuity, implies no normal viscous stress: 

 

 

 

 

– For the shear stress: 

• At a symmetry plane, it is the opposite: 

– Shear stress is null: 

– Normal stress is non-zero: 
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Numerical Boundary Conditions for N-S eqns, Cont’d 

• Wall/Symmetry Pressure BCs for the Momentum equations 

– For the momentum equations with staggered grids, the pressure is not 

required at boundaries (pressure is computed in the interior in the middle 

of the CV or FD cell) 

– With collocated arrangements, values at the boundary for p are needed. 

They can be extrapolated from the interior (may require grid refinement) 

• Wall/Symmetry Pressure BCs for the Poisson equation 

– When the mass flux (velocity) is specified at a boundary, this means that: 

• Correction to the mass flux (velocity) at the boundary is also zero 

• This should be implemented in the continuity equation: zero normal-velocity-

correction  often means gradient of the pressure-correction at the boundary is 

then also zero 

 (take the dot product of the 

velocity correction equation 

with the normal at the bnd) 
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Numerical BCs for N-S eqns:  

Outflow/Outlet Conditions 
• Outlet often most problematic since information is advected from the interior 

to the (open) boundary 

• If velocity is extrapolated to the far-away boundary,                                , 

– It may need to be corrected so as to ensure that the mass flux is conserved 
(same as the flux at the inlet) 

– These corrected BC velocities are then kept fixed for the next iteration. This 
implies no corrections to the mass flux BC, thus a von Neuman condition for the 
pressure correction (note that p itself is linear along the flow if fully developed). 

– The new interior velocity is then extrapolated to the boundary, etc. 

– To avoid singularities for p (von Neuman at all boundaries for p), one needs to 
specify p at a one point to be fixed  (or impose a fixed mean p) 

• If flow is not fully developed: 

• If the pressure difference between the inlet and outlet is specified, then the 
velocities at these boundaries can not be specified.  

– They have to be computed so that the pressure loss is the specified value 

– Can be done again by extrapolation of the boundary velocities from the interior: 
these extrapolated velocities can be corrected to keep a constant mass flux. 

• Much research in OBC in ocean modeling 
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FINITE ELEMENT METHODS: Introduction 

• Finite Difference Methods: based on a discretization of the differential form 
of the conservation equations 

– Solution domain divided in a grid of discrete points or nodes 

– PDE replaced by finite-divided differences = “point-wise” approximation 

– Harder to apply to complex geometries 

• Finite Volume Methods: based on a discretization of the integral forms of the 
conservation equations: 

– Grid generation: divide domain into set of discrete control volumes (CVs) 

– Discretize integral equation 

– Solve the resultant discrete volume/flux equations 

• Finite Element Methods: based on reformulation of PDEs into minimization 
problem, pre-assuming piecewise shape of solution over finite elements 

– Grid generation: divide the domain into simply shaped regions or “elements” 

– Develop approximate solution of the PDE for each of these elements 

– Link together or assemble these individual element solutions, ensuring some 
continuity at inter-element boundaries => PDE is satisfied in piecewise fashion 



Line element

One-dimensional Nodal line Node

Quadrilateral 
element

Triangular 
element

Two-dimensional

Hexahedron 
element

Three-dimensional

Nodal 
plane
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Finite Elements: Introduction, Cont’d 

• Originally based on the Direct Stiffness Method (Navier in 1826) and 
Rayleigh-Ritz, and further developed in its current form in the 1950’s 
(Turner and others) 

• Can replace somewhat “ad-hoc” integrations of FV with more rigorous 
minimization principles 

• Originally more difficulties with convection-dominated (fluid) problems, 
applied to solids with diffusion-dominated properties 

Comparison of FD and FE grids 

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons 

Examples of Finite elements  

license. For more information, see http://ocw.mit.edu/fairuse. 

Image by MIT OpenCourseWare.

http://ocw.mit.edu/fairuse
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Finite Elements: Introduction, Cont’d 

• Classic example: Rayleigh-Ritz / Calculus of variations 

– Finding the solution of 

 

    is the same as finding u that minimizes 

 

– R-R approximation:  

• Expand unknown u into shape/trial functions 

    and find coefficients ai such that J(u) is minimized 

• Finite Elements:  

– As Rayleigh-Ritz but choose trial functions to be piecewise shape 

function defined over set of elements, with some continuity across 

elements  
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Finite Elements: Introduction, Cont’d 

Method of Weigthed Residuals 

• There are several avenues that lead to the same FE 

formulation 

– A conceptually simple, yet mathematically rigorous, approach is the 

Method of Weighted Residuals (MWR) 

– Two special cases of MWR: the Galerkin and Collocation Methods 

• In the MWR, the desired function u is replaced by a finite 

series approximation into shape/basis/interpolation functions: 

 

–  (x) chosen such they satisfy the boundary conditions of the problem i 

– But, they will not in general satisfy the PDE: 

     they lead to a residual: 

– The objective is to select the undetermined coefficients a so that this i 
residual is minimized in some sense 
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Finite Elements:  

Method of Weigthed Residuals, Cont’d 

– One possible choice is to set the integral of the residual to be zero. This 

only leads to one equation for n unknowns 

 Introduce the so-called weighting functions wi (x) i=1,2,…, n, and set the 

integral of each of the weighted residuals to zero to yield n independent 

equations: 
 

– In 3D, this becomes: 

 
 

• A variety of FE schemes arise from the definition of the 

weighting functions and of the choice of the shape functions 

– Galerkin: the weighting functions are chosen to be the shape functions 

– Subdomain method: the weighting function is chosen to be unity in the 

sub-region over which it is applied 

– Collocation Method: the weighting function is chosen to be a Dirac-delta 
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Finite Elements:  

Method of Weigthed Residuals, Cont’d 

• Galerkin: 

– Basis functions formally required to 

be complete set of functions 

– Can be seen as “residual forced to 

zero by being orthogonal to all basis 

functions” 

• Subdomain method:  

 

– Non-overlapping domains Vi often 

set to elements 

– Easy integration, but not as accurate 

• Collocation Method: 

( ) ( ) 0, 1,2,...,i
t V

R d dt i n    x x x

( ) 0, 1,2,...,

it V

R d dt i n   x x

( ) ( ) 0, 1,2,...,
ix

t V

R d dt i n    x x x

– Mathematically equivalent to say that each residual vanishes at each 

collocation points xi  Accuracy strongly depends on locations xi .  

– Requires no integration. 

© John Wiley & Sons. All rights reserved. This content
is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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1. Discretization: divide domain into “finite elements”  

– Define nodes (vertex of elements) and nodal lines/planes 

2. Set-up Element equations 

i. Choose appropriate basis functions  : i (x)
 

• 1D Example with Lagrange’s polynomials: Interpolating functions i N (x) 
 

• With this choice, we obtain for example the 2nd order CDS and 

Trapezoidal rule: 

 

ii. Evaluate coefficients of these basis functions by approximating 

the solution in an optimal way  

• This develops the equations governing the element’s dynamics 

General Approach to Finite Elements
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• Two main approaches: Method of Weighted Residuals (MWR) or Variational Approach 

    Result: relationships between the unknown coefficients ai so as to satisfy the PDE in 
an optimal approximate way 

Node 1 Node 2
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u1

u2

u

(ii)

N1
1

(iii)

x2x1

1N2

(iv)

(i) A line element

(ii) The shape function or linear 
     approximation of the line element

(iii) and (iv) Corresponding interpolation 
      functions.

Image by MIT OpenCourseWare.
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2. Set-up Element equations, Cont’d 

– Mathematically, combining i. and ii. gives the element equations: a set of (often 

linear) algebraic equations for a given element e: 

 

   where Ke is the element property matrix (stiffness matrix in solids), ue the vector 

of unknowns at the nodes and fe the vector of external forcing 

3. Assembly: 

– After the individual element equations are derived, they must be assembled: i.e. 

impose continuity constraints for contiguous elements 

– This leas to: 

   where K is the assemblage property or coefficient matrix, u and f the vector of 

unknowns at the nodes and fe the vector of external forcing 

4. Boundary Conditions: Modify “ K u = f ” to account for BCs 

5. Solution: use LU, banded, iterative, gradient or other methods 

6. Post-processing: compute secondary variables, errors, plot, etc 

General Approach to Finite Elements, Cont’d 

e e eK u f

K u f
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