2.29 Numerical Fluid Mechanics
Fall 2011 — Lecture 26

REVIEW Lecture 25:

« Solution of the Navier-Stokes Equations

— Pressure Correction Methods: i) Solve momentum for a known pressure leading to
new velocity, then; ii) Solve Poisson to obtain a corrected pressure and iii) Correct velocity,
go to i) for next time-step.

» A Simple Explicit and Implicit Schemes
— Nonlinear solvers, Linearized solvers and ADI solvers

 Implicit Pressure Correction Schemes for steady problems: iterate using
— Quter iterations:

m-1 m m m .
A u” =b"} LA require A% u” =b”, P g O g o O[O 8 (A“fm u’ —b’”m*)
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— Inner iterations:

A"’* ! _bm 8p

Yo,
* Projection Methods: Non-Incremental and Incremental Schemes
Fractional Step Methods: (e
— Fractional step Methods: wh=u'+(C,+D,+P)At = |u =u +D. At
« Example using Crank-Nicholson U=y P AL

— Streamfunction-Vorticity Methods: Scheme and boundary conditions
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TODAY (Lecture 26):
Navier-Stokes Equations and Intro to Finite Elements

. Solutlon of the Navier-Stokes Equations
— Pressure Correction / Projection Methods

— Fractional Step Methods

— Streamfunction-Vorticity Methods: scheme and boundary conditions
— Atrtificial Compressibility Methods: scheme definitions and example

— Boundary Conditions: Wall/'Symmetry and Open boundary conditions

* Finite Element Methods

— Introduction
— Method of Weighted Residuals: Galerkin, Subdomain and Collocation

— General Approach to Finite Elements:
» Steps in setting-up and solving the discrete FE system

» Galerkin Examples in 1D and 2D
— Computational Galerkin Methods for PDE: general case

» Variations of MWR: summary
» Finite Elements and their basis functions on local coordinates (1D and 2D)

» Unstructured grids: |soparametr|c and triangular elements
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« Chapter 7 on “Incompressible Navier-Stokes equations”
of “J. H. Ferziger and M. Peric, Computational Methods
for Fluid Dynamics. Springer, NY, 3™ edition, 2002”

« Chapter 11 on “Incompressible Navier-Stokes Equations”
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Artificial Compressibility Methods

. Compressible flow is of great importance (e.g. aerodynamics

and turbine engine design)

 Many methods have been developed (e.g. MacCormack,

Beam-Warming, etc)

« Can they be used for incompressible flows?

* Main difference between incompressible and compressible NS
Is the mathematical character of the equations

— Incompressible egns: no time derivative in the continuity eqn: V.v =0

* They have a mixed parabolic-elliptic character in time-space

— Compressible eqns: there is a time-derivative in the continuity equation:

* They have a hyperbolic character:

» Allow pressure/sound waves

op _
—+ V. =0
Py (PV)

* How to use methods for compressible flows in incompressible flows?
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?}g\\ArtificiaI Compressibility Methods, Cont'd

» Most straightforward: Append a time derivative to the continuity equation
— Since density is constant, adding a time-rate-of-change for p not possible
— Use pressure instead (linked to p via an eqgn. of state in the general case):

1op dpu,
B ot ox

« where pis an artificial compressibility parameter (dimension of velocity?)

* Its value is key to the performance of such methods:
— The larger/smaller g is, the more/less incompressible the scheme is

— Large p makes the equation stiff (not well conditioned for time-integration)

» Methods most useful for solving steady flow problem (at convergence: a—pzo)
or inner-iterations in dual-time schemes. o

— To solve this new problem, many methods can be used, especially
« All the time-marching schemes (R-K, multi-steps, etc) that we have seen
 Finite differences or finite volumes in space

 Alternating direction method is attractive: one spatial direction at a time
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| Artificial Compressibility Methods, Cont'd

« Connecting these methods with the previous ones:

— Consider the intermediate velocity field (pu,")"*! obtained from solving
momentum with the old pressure

*

— It does not satisfy the incompressible continuity equation: J (p;i*)m = (Z)
xi

» There remains an erroneous time rate of change of mass flux

= method needs to correct for it

« Example of an artificial compressibility scheme

— Instead of explicit in time, let’s use implicit Euler (larger time steps)

n+l n n+l
p —-P + 5(10”1) =0
B At OX,

— Issue: velocity field at n+1 is not known

— One can linearize about the old (intermediate) state and transform the
above equation into a Poisson equation for the pressure or pressure
correction!

2.29 Numerical Fluid Mechanics PFJL Lecture 26,



Artificial Compressibility Methods:
Example Scheme, Cont’'d

* First, expand unknown velocity using Taylor series in pressure

. . " Comit 5 .* n+l .
derivatives () ~ (1) { (g,t’)} (o )

— Inserting (pu;)"*! in the continuity equation leads an equation for p"*!

ntl  _n 5 il 5 u.* n+l - i
YT {(P%) {—(p ’)} (p 1—19)}0

*n+l

(p""=p")

p At ox, op
— Then, take the divergence and derive a Poisson-like equation for p**/

- n+l

* One could have also used directly:

- | S(ou” Sp" Sp”
(pui) lz(pui) 1_|_ M ( p _op )

5[ 5p] 5x,  Ox,
ox,

— Then, still take divergence and derive Poisson-like equation

* |[deal value of S is problem dependent

— The larger the g, the more incompressible. Lowest values of 5 can be computed
by requiring that pressure waves propagate much faster than the flow velocity or
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Numerical Boundary Conditions for N-S eqns.

3

* At a wall, the no-slip boundary condition applies:

—Velocity at the wall is the wall velocity (Dirichlet)

—In some cases, the tangential velocity stays constant along the wall (only
for fully-developed), which by continuity, implies no normal viscous stress:

y | y
a_u = O @ = O W W EP é E
Oox wall ay wall . - © // ’ v ~u
By | o < o |
= Tyy = 2,ua_ =0 wall Near-boundary CV Symmetry plane
Y lwal On the boundary conditions at a wall and a symmetry plane
a Image by MIT OpenCourseWare.
shear u U, —u
—For the shear stress: £ =| 7, dS=| u—dS=us S —~L—S
s st 0Oy Yp— Vs
* At a symmetry plane, it is the opposite:
. 0
—Shear stressis null: 7z, =u=| =0 = F" =0
sym

— Normal stress is non-zero:

aV normal
Tyy:Zﬂa =0 = F; =ISS
sym

ov V,—V
T dS=| 2u—dS~2u, S, +—=
” ISS oy S e =Y

2.29 Numerical Fluid Mechanics PFJL Lecture 26, 8



"'INumerical Boundary Conditions for N-S egns, Contd

* Wall/Symmetry Pressure BCs for the Momentum equations

— For the momentum equations with staggered grids, the pressure is not
required at boundaries (pressure is computed in the interior in the middle
of the CV or FD cell)

— With collocated arrangements, values at the boundary for p are needed.
They can be extrapolated from the interior (may require grid refinement)

« Wall/Symmetry Pressure BCs for the Poisson equation

—When the mass flux (velocity) is specified at a boundary, this means that:
» Correction to the mass flux (velocity) at the boundary is also zero

» This should be implemented in the continuity equation: zero normal-velocity-
correction = often means gradient of the pressure-correction at the boundary is

then also zero , ) o
w % % Eo
(take the dot product of the % T v -
VeIOCIty CorreCtlon equatlon Wall ) Nea —bounesxry Ccv ) Symmetry plane
Wlth the normal at the bnd) On the boundary conditions at a wall and a symmetry plane

Image by MIT OpenCourseWare.
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Numerical BCs for N-S eqgns:
Outflow/Outlet Conditions

-”Outlet often most problematic since information is advected from the interior
to the (open) boundary

« If velocity is extrapolated to the far-away boundary, 2 =0 ie, u,=u, |,

— It may need to be corrected so as to ensure that the mass flux is conserved
(same as the flux at the inlet)

— These corrected BC velocities are then kept fixed for the next iteration. This
implies no corrections to the mass flux BC, thus a von Neuman condition for the
pressure correction (note that pitself is linear along the flow if fully developed).

— The new interior velocity is then extrapolated to the boundary, etc.

— To avoid singularities for p (von Neuman at all boundaries for p), one needs to

specify p at a one point to be fixed (or impose a fixed mean p)
2 2
« If flow is not fully developed: %;«so = P Lo o oeg T4ig o 22

n on on’ on’

« If the pressure difference between the inlet and outlet is specified, then the
velocities at these boundaries can not be specified.

— They have to be computed so that the pressure loss is the specified value

— Can be done again by extrapolation of the boundary velocities from the interior:
these extrapolated velocities can be corrected to keep a constant mass flux.

* Much research in OBC in ocean modeling
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FINITE ELEMENT METHODS: Introduction

* Finite Difference Methods: based on a discretization of the differential form
of the conservation equations

— Solution domain divided in a grid of discrete points or nodes

— PDE replaced by finite-divided differences = “point-wise” approximation
— Harder to apply to complex geometries

* Finite Volume Methods: based on a discretization of the integral forms of the
conservation equations:

— Grid generation: divide domain into set of discrete control volumes (CVs)
— Discretize integral equation
— Solve the resultant discrete volume/flux equations

* Finite Element Methods: based on reformulation of PDEs into minimization
problem, pre-assuming piecewise shape of solution over finite elements

— Grid generation: divide the domain into simply shaped regions or “elements”

— Develop approximate solution of the PDE for each of these elements

— Link together or assemble these individual element solutions, ensuring some
continuity at inter-element boundaries => PDE is satisfied in piecewise fashion
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) Finite Elements: Introduction, Cont'd

ériginally based on the Direct Stiffness Method (Navier in 1826) and
Rayleigh-Ritz, and further developed in its current form in the 1950’s
(Turner and others)

« Can replace somewhat “ad-hoc” integrations of FV with more rigorous
minimization principles

« Originally more difficulties with convection-dominated (fluid) problems,
applied to solids with diffusion-dominated properties

Comparison of FD and FE grids
io) A gasket with iregular geometry and nonhomogensous composition. {6) Such a system is very Examples of F”’“te elements

difficult to mode! with a finite-difference approach. This is due fo the fact that complicated approx-
imations are required at the boundaries of the system and cf the boundaries between regions of
differing composition. (¢} A finiteelement discretization is much better suited for such systems.
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Finite Elements: Introduction, Cont’d

« Classic example: Rayleigh-Ritz / Calculus of variations

O =—f on |0,

n?

— Finding the solution of

1 2
1(0
is the same as finding u that minimizes J(u) =_[ E(@—Zj —u f dx
0

— R-R approximation:

« Expand unknown u into shape/trial functions | u(x) = Z“i ¢,(x)
=1

and find coefficients a, such that J(x) is minimized

Finite Elements:

— As Rayleigh-Ritz but choose trial functions to be piecewise shape
function defined over set of elements, with some continuity across
elements

2.29 Numerical Fluid Mechanics PFJL Lecture 26, 13



Finite Elements: Introduction, Cont’d
Method of Weigthed Residuals

 There are several avenues that lead to the same FE
formulation

— A conceptually simple, yet mathematically rigorous, approach is the
Method of Weighted Residuals (MWR)

— Two special cases of MWR: the Galerkin and Collocation Methods

« Inthe MWR, the desired function u is replaced by a finite
series approximation into shape/basis/interpolation functions:

100 =Y a 4()

— ¢ (x) chosen such they satisfy the boundary conditions of the problem

— But, they will not in general satisfy the PDE: L(u)=f
= they lead to a residual: | L(ii(x))— f(x)=R(x)#0

— The objective is to select the undetermined coefficients a, so that this
residual is minimized in some sense
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Finite Elements:
Method of Weigthed Residuals, Cont'd

— One possible choice is to set the integral of the residual to be zero. This
only leads to one equation for » unknowns

= Introduce the so-called weighting functions w, (x) i=1,2, ..., n, and set the
integral of each of the weighted residuals to zero to yield » independent

equations: L
_”R(x) wi(x)dxdt=0, i=12,..,n
t 0

— In 3D, this becomes:

”R(x) w(x)dxdi=0, i=12,..n

« A variety of FE schemes arise from the definition of the
weighting functions and of the choice of the shape functions

— Galerkin: the weighting functions are chosen to be the shape functions

— Subdomain method: the weighting function is chosen to be unity in the
sub-region over which it is applied

— Collocation Method: the weighting function is chosen to be a Dirac-delta
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Finite Elements:
Method of Weigthed Residuals, Cont'd

« Galerkin:  [[R®) g(x)dxdt=0, i=12,..,n W0
tV GALERKIN
— Basis functions formally required to bl 25 alien
be complete set of functions e e
— Can be seen as “residual forced to MO TSI weiating function
zero by being orthogonal to all basis aff N, B
H ” >3 \(\,/ u
functions e e

weighting function

« Subdomain method:
[[R(x)dxdt=0, i=12,...n

N COLLOCATION
N
N

tV, \(Vbosis function
. . R
— Non-overlapping domains V; often e ., et
Set tO e|ementS Figure 2.4. Schematic representation of the one-dimensional weighting functions for

the Galerkin, subdomain and collocation methods. (It is assumed here that the chapeau
function is used as a basis for all methods.)

— Easy integration, but not as accurate

© John Wiley & Sons. All rights reserved. This content
is excluded from our Creative Commons license. For

* Collocation Method: [[R(x) 5, (x)dxdr=0, i=12,...n  more mformation, sce tupst/ocm.miteduaruse.
tV

— Mathematically equivalent to say that each residual vanishes at each
collocation points x; = Accuracy strongly depends on locations ;.

— Requires no integration.
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1 [Siscretization: divide domain into “finite elements”

— Define nodes (vertex of elements) and nodal lines/planes

2. Set-up Element equations
i. Choose appropriate basis functions ¢, (x): i(x) = Zai @ (x)

i=1
« 1D Example with Lagrange’s polynomials: Interpolating functions ¥, (x)

u=a,+a, x=uN,(x)+u,N,(x) where N (x)= 277 and N,(x)= i
Xy =X Xy =X
« With this choice, we obtain for example the 2" order CDS and
Trapezoidal rule: Y — 2
P du_ g %% ang [fde =172 (x, )
dx X, — X, : 2

ii. Evaluate coefficients of these basis functions by approximating
the solution in an optimal way

» This develops the equations governing the element’s dynamics

General Approach to Finite Elements

Nogle 1 Nod_e 2

(1)
U u
\l\ Uy

(iv)

(i) A line element

(ii) The shape function or linear
approximation of the line element
(iii) and (iv) Corresponding interpolation

functions.

Image by MIT OpenCourseWare.

« Two main approaches: Method of Weighted Residuals (MWR) or Variational Approach

= Result: relationships between the unknown coefficients a; so as to satisfy the PDE in

an optimal approximate way
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2. Set-up Element equations, Cont’'d

— Mathematically, combining i. and ii. gives the element equations: a set of (often
linear) algebraic equations for a given element e:

K u, =1

where K, is the element property matrix (stiffness matrix in solids), u, the vector
of unknowns at the nodes and f, the vector of external forcing

3. Assembly:

— After the individual element equations are derived, they must be assembled: i.e.
impose continuity constraints for contiguous elements

— This leas to: Ku=1

where K is the assemblage property or coefficient matrix, u and f the vector of
unknowns at the nodes and f, the vector of external forcing

4. Boundary Conditions: Modify “ Ku =f” to account for BCs

5. Solution: use LU, banded, iterative, gradient or other methods

6. Post-processing: compute secondary variables, errors, plot, etc
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