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2.29 Numerical Fluid Mechanics 

 Fall 2011 – Lecture 27 

REVIEW Lecture 26: 

• Solution of the Navier-Stokes Equations 
– Pressure Correction and Projection Methods (review) 

– Fractional Step Methods (Example using Crank-Nicholson) 

– Streamfunction-Vorticity Methods: scheme and boundary conditions 

– Artificial Compressibility Methods:  

• Scheme definitions and example 

– Boundary Conditions:  

• Wall/Symmetry and Open boundary conditions 

• Finite Element Methods 

– Introduction 

– Method of Weighted Residuals: Galerkin, Subdomain and Collocation 

– General Approach to Finite Elements:  

• Steps in setting-up and solving the discrete FE system 

• Galerkin Examples in 1D and 2D 
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Project Presentations: Schedule 

15 minutes each, including questions 

Notes: 

i) “Project” Office Hours As needed 

       

ii) Need Draft Titles by Monday Dec 12 

iii) Reports latest at noon on Tue Dec 20 

• 4 to 25 pages of text, single space, 12ft 

• 1 to 10 pages of figures 
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TODAY (Lecture 27):  

Finite Elements and Intro to Turbulent Flows 

Finite Element Methods 

– Introduction, Method of Weighted Residuals: Galerkin, Subdomain and Collocation 

– General Approach to Finite Elements:  

• Steps in setting-up and solving the discrete FE system 

• Galerkin Examples in 1D and 2D 

– Computational Galerkin Methods for PDE: general case 

• Variations of MWR: summary   

• Isoparametric finite elements and basis functions on local coordinates (1D, 2D, triangular) 

Turbulent  Flows and their Numerical Modeling 

– Properties of Turbulent Flows 

• Stirring and Mixing 

• Energy Cascade and Scales 

• Turbulent Wavenumber Spectrum and Scales 

– Numerical Methods for Turbulent  Flows: Classification 

Note: special recitation today on (Hybrid-) Discontinuous Galerkin Methods 
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References and Reading Assignments 

• Chapter 31 on “Finite Elements” of “Chapra and Canale, Numerical 
Methods for Engineers, 2006.” 

• Lapidus and Pinder, 1982: Numerical solutions of PDEs in Science and 
Engineering. 

• Chapter 5 on “Weighted Residuals Methods” of Fletcher, Computational 
Techniques for Fluid Dynamics. Springer, 2003. 

 

• Chapter 9 on “Turbulent Flows” of “J. H. Ferziger and M. Peric, 
Computational Methods for Fluid Dynamics. Springer, NY, 3rd edition, 2002” 

• Chapter 3 on “Turbulence and its Modelling” of H. Versteeg, W. 
Malalasekra, An Introduction to Computational Fluid Dynamics: The Finite 
Volume Method.  Prentice Hall, Second Edition. 

• Chapter 4 of “I. M. Cohen and P. K. Kundu. Fluid Mechanics. Academic 
Press, Fourth Edition, 2008” 

• Chapter 3 on “Turbulence Models” of T. Cebeci, J. P. Shao, F. Kafyeke and 
E. Laurendeau, Computational Fluid Dynamics for Engineers. Springer, 
2005. 
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General Approach to Finite Elements

1. Discretization: divide domain into “finite elements”  

– Define nodes (vertex of elements) and nodal lines/planes 

2. Set-up Element equations 
n

i. Choose appropriate basis functions  i (x): u x( ) ai i ( )x
 i1

• 1D Example with Lagrange’s polynomials: Interpolating functions Ni (x) 
 

ii. Evaluate coefficients of these basis functions by approximating 

the solution in an optimal way  

• This develops the equations governing the element’s dynamics 

• Two main approaches: Method of Weighted Residuals (MWR) or Variational Approach 

    Result: relationships between the unknown coefficients ai so as to satisfy the PDE in 
an optimal approximate way 

( ) ( )( ) ( )u x a x( ) ( )( ) ( )u x a x( ) ( )u x a x( ) ( )( ) ( )u x a x( ) ( )( ) ( )u x a x( ) ( )( ) ( )( ) ( )( ) ( )u x a x( ) ( )( ) ( )u x a x( ) ( )

x x x xu a a 2 1 0  x u N ( )x  u N  

 1 1 1 2 2( )x where N1( )x   and N x
x x 2( ) 

2 1 x x2 1

• With this choice, we obtain for example the 2nd order CDS and 

Trapezoidal rule: d u u 2

2 1u x u ua  
 1    and  u dx 1 2 (x2 1 x )

 dx x2 1 x x1
2

0 1 1 1 2 2 1 2u a a x u N x u N x x x0 1 1 1 2 2 1 2u a a x u N x u N x x x0 1 1 1 2 2 1 2u a a x u N x u N x x x     u a a x u N x u N x x x0 1 1 1 2 2 1 2u a a x u N x u N x x x0 1 1 1 2 2 1 2     0 1 1 1 2 2 1 2u a a x u N x u N x x x0 1 1 1 2 2 1 2

d u u u u u2 1 1 2d u u u u u2 1 1 2a u dx x x2 1 1 2a u dx x x2 1 1 2d u u u u ua u dx x xd u u u u u2 1 1 2d u u u u u2 1 1 2a u dx x x2 1 1 2d u u u u u2 1 1 22 1 1 2  and  ( )2 1 1 2a u dx x x2 1 1 2  and  ( )2 1 1 22 1 1 2  and  ( )2 1 1 2d u u u u u2 1 1 2  and  ( )2 1 1 2a u dx x x2 1 1 2  and  ( )2 1 1 2d u u u u u2 1 1 2  and  ( )2 1 1 2
1 2 1  and  ( )1 2 11 2 1  and  ( )1 2 121 2 1  and  ( )1 2 1  and  ( )a u dx x x  and  ( )1 2 1  and  ( )1 2 1a u dx x x1 2 1  and  ( )1 2 1

d u u u u u d u u u u u2 1 1 2d u u u u u2 1 1 2 2 1 1 2d u u u u u2 1 1 22 1 1 2d u u u u u2 1 1 2a u dx x x2 1 1 2d u u u u u2 1 1 2 2 1 1 2d u u u u u2 1 1 2a u dx x x2 1 1 2d u u u u u2 1 1 22 1 1 2  and  ( )2 1 1 2d u u u u u2 1 1 2  and  ( )2 1 1 2a u dx x x2 1 1 2  and  ( )2 1 1 2d u u u u u2 1 1 2  and  ( )2 1 1 2 2 1 1 2  and  ( )2 1 1 2d u u u u u2 1 1 2  and  ( )2 1 1 2a u dx x x2 1 1 2  and  ( )2 1 1 2d u u u u u2 1 1 2  and  ( )2 1 1 2  and  ( )a u dx x x  and  ( )     and  ( )a u dx x x  and  ( )  and  ( )a u dx x x  and  ( )     and  ( )a u dx x x  and  ( )2 1 1 2  and  ( )2 1 1 2a u dx x x2 1 1 2  and  ( )2 1 1 2   2 1 1 2  and  ( )2 1 1 2a u dx x x2 1 1 2  and  ( )2 1 1 2

Image by MIT OpenCourseWare.

Node 1 Node 2

(i)

u1

u2

u

(ii)

N1
1

(iii)

x2x1

1N2

(iv)

(i) A line element

(ii) The shape function or linear 
     approximation of the line element

(iii) and (iv) Corresponding interpolation 
      functions.
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General Approach to Finite Elements, Cont’d 

2. Set-up Element equations, Cont’d 

– Mathematically, combining i. and ii. gives the element equations: a set of (often 

linear) algebraic equations for a given element e: 

 

   where Ke is the element property matrix (stiffness matrix in solids), ue the vector 

of unknowns at the nodes and fe the vector of external forcing 

3. Assembly: 

– After the individual element equations are derived, they must be assembled: i.e. 

impose continuity constraints for contiguous elements 

– This leas to: 

   where K is the assemblage property or coefficient matrix, u and f the vector of 

unknowns at the nodes and fe the vector of external forcing 

4. Boundary Conditions: Modify “ K u = f ” to account for BCs 

5. Solution: use LU, banded, iterative, gradient or other methods 

6. Post-processing: compute secondary variables, errors, plot, etc 

e e eK u f

K u f
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Galerkin’s Method: Simple Example 

Differential Equation 

Boundary Conditions 

i. Basis (Shape) 

Functions: 

Power Series Boundary Condition 

Note: this is 

equivalent 

to imposing 

the BC on 

the full sum 

1. Discretization:  
Generic N (here 3) equidistant points along x 

2. Element equations: 

Exact solution: y=exp(x) 

In this simple example, a single element is 

chosen to cover the whole domain  the 

element/mass matrix is the full one (K=Ke) 
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Remainder: 

Galerkin  set remainder orthogonal to each shape function: 

which then leads to the Algebraic Equations: 

Galerkin’s Method: Simple Example, Cont’d 

N=3; 
d=zeros(N,1); 
m=zeros(N,N); exp_eq.m 
for k=1:N 
    d(k)=1/k; 
    for j=1:N 
        m(k,j) = j/(j+k-1)-1/(j+k); 
    end 
end 
a=inv(m)*d; 
y=ones(1,n); 
for k=1:N 
    y=y+a(k)*x.^k 
end 

d yR y
dx

 
d yR yd yR yd yR yR y

ii. Optimal coefficients with MWR: set weighted residuals (remainder) to zero 

j 

1

0

( , ) ,f g f g f g dx  Denoting inner products as: 
 

leads to: 1( , ) 0, 1,...,kR x k N  
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Galerkin’s Method Simple Example, Cont’d  

L2 Error: 

N=3; 

d=zeros(N,1); 

m=zeros(N,N); 

for k=1:N 

    d(k)=1/k; 

    for j=1:N 

        m(k,j) = j/(j+k-1)-1/(j+k); 

    end 

end 

a=inv(m)*d; 

y=ones(1,n); 

for k=1:N 

    y=y+a(k)*x.^k 

end 

exp_eq.m 

For 5. Solution: 

3 - 4. Assembly and boundary conditions: 
Already done (element fills whole domain) 
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Comparisons with other 

Weighted Residual Methods 

Least Squares 

Galerkin 

Subdomain Method 

Collocation 
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Comparison of approximate solutions of dy/dx - y = 0 

Least 
squares x Galerkin Subdomain Collocation Taylor 

series 
Optimal

L2,d 
Exact 

0 

0.4 

0.2 

0.6 

0.8 

1.0 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

1.2219 1.2220 1.2223 1.2194 1.2213 1.2220 1.2214 

1.4912 1.4913 1.4917 1.4869 1.4907 1.4915 1.4918 

2.7183 2.7183 2.7187 2.7143 2.6667 2.7183 2.7183 

2.2260 2.2259 2.2265 2.2206 2.2053 2.2263 2.2255 

1.8214 1.8214 1.8220 1.8160 1.8160 1.8219 1.8221 

0.00105 0.00103 0.00127 0.0094 0.0512 0.00101ya - y 2,d 

Comparisons with other 

Weighted Residual Methods 
Comparison of coefficients for approximate

solution of dy/dx - y = 0 

Coefficient 
Scheme a1 a2 a3 

Least squares 1.0131 0.4255 0.2797 
Galerkin 1.0141 0.4225 0.2817 
Subdomain 1.0156 0.4219 0.2813 
Collocation 1.0000 0.4286 0.2857 
Taylor series 1.0000 0.5000 0.1667 
Optimal L2,d 1.0138 0.4264 0.2781 

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.
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Galerkin’s Method in 2 Dimensions 

y 

x 

n(x,y2) 

n(x,y1) 

n(x1,y) n(x2,y) 

Differential Equation 

Boundary Conditions 

Test Function Solution (uo satisifies BC) 

Remainder 

Inner Product: 

Galerkin’s Method 

j 

j 
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Galerkin’s method: 2D Example 

Fully-developed Laminar Viscous Flow in Duct 

y 

x 
1 -1 

1 

-1 

Poisson’s Equation, Non-dimensional: 

Steady, Very Viscous Fluid Flow in Duct 

Shape/Test Functions 

Shape/Test functions satisfy boundary conditions 

4 BCs: No-slip (zero flow) at the walls 
Again: element fills the whole 

domain in this example 
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Galerkin’s Method: Viscous Flow in Duct, Cont’d 

Remainder: 

Inner product: 

Analytical Integration: 

Galerkin Solution: 

Flow Rate: 

x=[-1:h:1]'; 

y=[-1:h:1]; 

n=length(x); m=length(y); w=zeros(n,m); 

Nt=5;  

for j=1:n 

 xx(:,j)=x; yy(j,:)=y; 

end 

for i=1:2:Nt 

    for j=1:2:Nt 

        w=w+(8/pi^2)^2* 

          (-1)^((i+j)/2-1)/(i*j*(i^2+j^2)) 

          *cos(i*pi/2*xx).*cos(j*pi/2*yy); 

    end 

end 

 

 

duct_galerkin.m 

Nt=5 3 terms in 

each direction 
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Computational Galerkin Methods: 

General Case 
Differential Equation: 

Inner problem 
•  Boundary conditions satisfied exactly 

•  Finite Element Method 

•  Spectral Methods 

 

Boundary problem 
•  PDE satisfied exactly 

•  Boundary Element Method 

•  Panel Method 

•  Spectral Methods 

Mixed Problem 

Residuals 

• PDE: 

• ICs: 

• BCs: 

Global Test Function: 

Time Marching: 

Weighted Residuals 
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 Different forms of the  

Methods of Weighted Residuals: Summary 
Inner Product 

Subdomain Method: 

Collocation Method: 

Least Squares Method: 

Galerkin: 

Method of Moments: 

Discrete Form 

( ) 0
kt V

R d dt   x x

( ) 0kR x

1,2,...,k n

In the least-square method, the coefficients are 

adjusted so as to minimize the integral of the residuals. 

It amounts to the continuous form of regression. 
 

( ) ( ) 0
ki t V

R R d dt
a

 
 

 
 
  x x x

In Galerkin, weight functions are basis functions: they sum to 

one at any position in the element. In many cases, Galerkin’s 

method yields the same result as variational methods 



How to obtain solution for Nodal Unknowns? 

Modal Basis vs. Interpolating (Nodal) Basis functions 

2.29 Numerical Fluid Mechanics PFJL  Lecture 27,    17 

2 Dimensions 

1 Dimension 

 

N

 u( ,x y) u j jN ( ,x y)
j1

N

 u( ,x y) ak k ( ,x y)
k1

N

 u j ak k ( ,x yj j )
k1

1 u  Φ a  a Φ u

N  N

 u( ,x y)   Φ1 u j k ( ,x y)
kj

k j1 1 

N N

 u 
 j k Φ1  ( ,x y)

kj 
j1 1 k 

N

 N j ( ,x y)   Φ1  k ( ,x y)
kj

k1

( , ) ( , )u x y u N x y( , ) ( , )u x y u N x y( , ) ( , )u x y u N x y u x y u N x y( , ) ( , )u x y u N x y( , ) ( , ) ( , ) ( , )u x y u N x y( , ) ( , )( , ) ( , )( , ) ( , )( , ) ( , )u x y u N x y( , ) ( , )( , ) ( , )u x y u N x y( , ) ( , )

( , ) ( , )u x y a x y( , ) ( , )u x y a x y( , ) ( , ) ( , ) ( , ) ( , ) ( , )u x y a x y u x y a x y( , ) ( , )u x y a x y( , ) ( , ) ( , ) ( , )u x y a x y( , ) ( , )( , ) ( , )( , ) ( , )( , ) ( , )u x y a x y( , ) ( , )( , ) ( , )u x y a x y( , ) ( , )

( , ) ( , )u x y u x y( , ) ( , )u x y u x y( , ) ( , ) ( , ) ( , ) ( , ) ( , )u x y u x y u x y u x y( , ) ( , )u x y u x y( , ) ( , ) ( , ) ( , )u x y u x y( , ) ( , ) ( , ) ( , ) ( , ) ( , )( , ) ( , )u x y u x y( , ) ( , ) ( , ) ( , )u x y u x y( , ) ( , )



PFJL  Lecture 27,    18 Numerical Fluid Mechanics 2.29 

Complex Boundaries 

Isoparametric Elements 

Isoparametric mapping at a boundary 

A 

B 

B 
C 

D 4 

4 

3 

3 

2 2 

1 

1 

X 

Y 

� = −1 � = 1 

� = 1 

� = −1 

� 

� 

Image by MIT OpenCourseWare.



PFJL  Lecture 27,    19 Numerical Fluid Mechanics 2.29 

Finite Elements 

1-dimensional Elements 

Interpolation (Nodal) Functions 

Trial Function Solution 

4 

N2 = 
x - x1 
x2 - x1 

N2 = 
x - x3 
x2 - x3 

N2 = 
x - x3 
x2 - x3 

N2 = 
x - x1 
x2 - x1 

N3 = 
x - x2 
x3 - x2 

N3 = 
x - x4 
x3 - x4 

N3 = 
x - x2 
x3 - x2 

N3 = 
x - x4 
x3 - x4 

(a) 

(b) 

Element A Element B Element C 

Element B 

u 

uu 
ua 

ua 
ua 

ua 

x1 x2 x3 x4x 

ua2 ua3 

N(x) 

1.0 

x 
x1 x2 x3 x4 

u = � Nj(x)uj 
N 

j = 1 
~ 

Interpolation Functions 

Trial Function Solution 

Image by MIT OpenCourseWare.
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Finite Elements 

1-dimensional Elements 

Quadratic Interpolation Functions 

4 

  Element  BElement  A 

One-dimensional quadratic shape functions 

N(x) 

N2 
N3 N4 

x2x1 x3 x4 x5 

1.0 

0 

x 

Image by MIT OpenCourseWare.
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Finite Elements in 1D:  

Nodal Basis Functions in the Local Coordinate System 

Please see pp. 63-65 in Lapidus, L., and G. Pinder. Numerical 

Solution of Partial Differential Equations in Science and Engineering. 

1st ed. Wiley-Interscience, 1982. [See the selection using Google 

Books preview] 

http://books.google.com/books?id=cpP_K9wK_dIC&pg=PA63&lpg=PA63
http://books.google.com/books?id=cpP_K9wK_dIC&pg=PA63&lpg=PA63
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Finite Elements 

2-dimensional Elements 

Quadratic Interpolation (Nodal) Functions 

Linear Interpolation (Nodal) Functions 

- 

B 

4 3 

2 1 

ξ = −1 ξ = 1 

η = 1 

η = −1 

η 

ξ 

Image by MIT OpenCourseWare.

Bilinear shape function on a rectangular grid 

Image by MIT OpenCourseWare.
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Two-Dimensional Finite Elements 

Example: Flow in Duct, Bilinear Basis functions 

Algebraic Equations for center nodes 

Integration by Parts 

Finite Element Solution 

dx= dx 

(for center nodes) 

y 2 
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Finite Elements in 2D:  

Nodal Basis Functions in the Local Coordinate System 

© Wiley-Interscience. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. 

http://ocw.mit.edu/fairuse


PFJL  Lecture 27,    25 Numerical Fluid Mechanics 2.29 

Finite Elements in 2D:  

Nodal Basis Functions in the Local Coordinate System 

Please see table 2.7a, “Basis Functions Formulated Using Quadratic, 

Cubic, and Hermitian Cubic Polynomials,” in Lapidus, L., and G. 

Pinder. Numerical Solution of Partial Differential Equations in 

Science and Engineering. 1st ed. Wiley-Interscience, 1982. 
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( , ) ( , ) ( , ) ( , )

u(x, y)  a0  a1,1 x  a1,2 y

u1(x, y)  a0  a1,1 x1  a1,2 y1  1 x1 y1   a0 u1 

u2(x, y)  a0  a1,1 x2  a 
1,2 y 

2 1 x2 y     
  2 a  u

   1,1  2 
u3(x, y)  a0  a1,1 x3  a 

1,2 y 3 1 x3 y  3  a1,2 u3       

u x y u N x y u N x y u N x y 1 1  2 2  3 3

1N1(x, y)  (x2 y3  x3 y2 )  ( y2  y3) x  (x3  x2 ) y
2AT

1N2(x, y)  (x3 y1  x1y3)  ( y3  y1) x  (x1  x
2 3) y

AT

1N3(x, y)  (x1y2  x2 y1)  ( y
2A 1  y2 ) x  (x2  x1) y

T

Finite Elements 

2-dimensional Triangular Elements 

Triangular Coordinates 
 

Linear Polynomial Modal Basis Functions: 

Nodal Basis (Interpolating) Functions: 

A linear approximation function (i) and 
its interpolation functions (ii)-(iv).

N1

y

x

1

0
0

(ii)

u1

u2u3

u

y

x

(i)

N2

y

x

1
0

0

(iii)

N3

y

x
1

0

0

(iv)

Image by MIT OpenCourseWare.
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Turbulent  Flows and their Numerical Modeling 

• Most real flows are turbulent (at some time and space scales) 

• Properties of turbulent flows 

– Highly unsteady: velocity at a point appears random 

– Three-dimensional in space: instantaneous field fluctuates rapidly, in all 

three dimensions (even if time-averaged or space-averaged field is 2D) 

      Some Definitions 

• Ensemble averages: “average of a 

collection of experiments performed 

under identical conditions” 

• Stationary process: “statistics 

independent of time” 

• For a stationary process, time and 

ensemble averages are equal  
Three turbulent velocity realizations 

in an atmospheric BL in the morning 

(Kundu and Cohen, 2008) 

© Academic Press. All rights reserved. This content is excluded 
from our Creative Commons license. For more information, 
see http://ocw.mit.edu/fairuse. 
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Turbulent  Flows and their Numerical Modeling 

• Properties of turbulent flows, Cont’d 

– Highly nonlinear (e.g. high Re) 

– High vorticity: vortex stretching is one of  the main mechanisms to maintain 

or increase the intensity of turbulence 

– High stirring: turbulence increases rate at which conserved quantities are 

stirred 

• Stirring: advection process by which conserved quantities of different values are 

brought in contact (swirl, folding, etc) 

• Mixing: irreversible molecular diffusion (dissipative process). Mixing increases if 

stirring is large (because stirring leads to large 2nd and higher spatial derivatives). 

• Turbulent diffusion: averaged effects of stirring modeled as “diffusion” 

– Characterized by “Coherent Structures” 

• CS are often spinning, i.e. eddies 

• Turbulence: wide range of eddies’ size, in 

general, wide range of scales  

Turbulent flow in a BL: Large eddy has the size of the BL thickness 

Instantaneous interfaceU8

δ

1~δ

Image by MIT OpenCourseWare.
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Stirring and Mixing 

Welander’s “scrapbook”.  

Welander P. Studies on the general development 

of motion in a two-dimensional ideal fluid. Tellus, 
7:141–156, 1955. 

• His numerical solution illustrates differential 

advection by a simple velocity field.  

• A checkerboard pattern is deformed by a 

numerical quasigeostrophic barotropic flow 

which models atmospheric flow at the 

500mb level. The initial streamline pattern 

is shown at the top. Shown below are 

deformed check board patterns at 6, 12, 24 

and 36 hours, respectively.  

• Notice that each square of the 

checkerboard maintains constant area as it 

deforms (conservation of volume). © Wiley. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see http://ocw.mit.edu/fairuse. 
Source: Fig. 2 from Welander, P. "Studies on the General Development 
of Motion in a Two-Dimensional, Ideal Fluid." Tellus 7, no. 2 (1955). 
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Energy Cascade and Scales 

British meteorologist Richarson’s famous quote: 

Dimensional Analyses and Scales (Tennekes and Lumley, 1972, 1976) 

• Largest eddy scales: L, T, U = Distance/Time over which fluctuations are correlated 

and U = large eddy velocity 

• Viscous scales:     viscous length (Kolmogorov scale), time and velocity 

scales 

, τ, u’ =

Hypothesis: rate of turbulent energy production ≈ rate of viscous dissipation 

 Length-scale ratio:  

 Time-scale ratio: 

 Velocity-scale ratio:  

“Big whorls have little whorls,  

Which feed on their velocity,  

And little whorls have lesser whorls,  

And so on to viscosity”.  

3/4/ ~ (Re ) Re 'L LL O u L 

1/2/ ~ (Re )LT O

1/4/ ' ~ (Re )LU u O

η (Kolmogorov microscale)

Image by MIT OpenCourseWare.
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Turbulent Wavenumber Spectrum and Scales 

• Turbulent Kinetic Energy Spectrum S(K): 

• In the inertial sub-range, Kolmogorov argued by 

dimensional analysis that  

 

 

 

• Turbulent energy dissipation 
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found to be universal for 
turbulent flows 
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• Komolgorov microscale:  

− Size of eddies depend on turb. 

dissipation ε and viscosity 

− Dimensional Analysis: 
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Numerical Methods for Turbulent  Flows 

Primary approach (used to be) is experimental 

Numerical Methods classified into methods based on: 

1) Correlations: useful mostly for 1D problems, e.g.: 

– Moody chart or friction factor relations for turbulent pipe flows,            

Nusselt number for heat transfer as a function of Re and Pr, etc. 

2) Integral equations: 

– Integrate PDEs (NS eqns.) in one or more spatial coordinates 

– Solve using ODE schemes (time-marching) 

3) Averaged equations  

– Averaged over time or over an (hypothetical) ensemble of realizations 

– Often decompositions into mean and fluctuations:  

– Leads to a set of PDEs, the Reynolds-averaged Navier-Stokes 

(RANS) equations  (“One-point closure”  methods) 

(Re, )
(Re,Pr, )

f f
Nu Ra








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Numerical Methods for Turbulent  Flows 

Numerical Methods classification, Cont’d: 

4) Large-Eddy Simulations (LES)  

– Solves for the largest scales of motions of the flow 

– Only Approximates or parameterizes the small scale motions 

– Compromise between RANS and DNS 

5) Direct Numerical Simulations (DNS) 

– Solves for all scales of motions of the turbulent flow (full Navier-

Stokes) 

 

• The methods 1-to-5 make less and less approximations, but 

computational time increases 

• Conservation PDEs are solved as for laminar flows: major challenge 

is the much wider range of scales (of motions, heat transfer, etc) 
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