
PFJL  Lecture 28,    1 Numerical Fluid Mechanics 2.29 

REVIEW Lecture 27: 

• Finite Element (FE) Methods 
– Method of Weighted Residuals: Galerkin, Subdomain and Collocation 
– General Approach to FEs, Set-up and Examples 
– Computational Galerkin Methods for PDE: general case 

• Variations of MWR: summary   

• Isoparametric finite elements and basis functions on local coordinates (1D, 2D, triangular) 

• Turbulent  Flows and their Numerical Modeling 
– Properties of Turbulent Flows 

• Stirring and Mixing 

• Energy Cascade and Scales 

• Turbulent Wavenumber Spectrum and Scales 

– Numerical Methods for Turbulent  Flows: Classification 
– Direct Numerical Simulations (DNS) for Turbulent Flows 
– Reynolds-averaged Navier-Stokes (RANS) 

2.29 Numerical Fluid Mechanics 
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Project Presentations: Schedule 

15 minutes each, including questions 

Notes: 

i) “Project” Office Hours As needed 

       

ii) Need Draft Titles by Monday Dec 12 

iii) Reports latest at noon on Tue Dec 20 

• 4 to 25 pages of text, single space, 12ft 

• 1 to 10 pages of figures 



PFJL  Lecture 28,    3 Numerical Fluid Mechanics 2.29 

References and Reading Assignments 

• Chapter 9 on “Turbulent Flows” of “J. H. Ferziger and M. 
Peric, Computational Methods for Fluid Dynamics. 
Springer, NY, 3rd edition, 2002” 

• Chapter 3 on “Turbulence and its Modelling” of H. 
Versteeg, W. Malalasekra, An Introduction to 
Computational Fluid Dynamics: The Finite Volume 
Method.  Prentice Hall, Second Edition. 

• Chapter 4 of “I. M. Cohen and P. K. Kundu. Fluid 
Mechanics. Academic Press, Fourth Edition, 2008” 

• Chapter 3 on “Turbulence Models” of T. Cebeci, J. P. 
Shao, F. Kafyeke and E. Laurendeau, Computational 
Fluid Dynamics for Engineers. Springer, 2005. 
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Energy Cascade and Scales 

British meteorologist Richarson’s famous quote: 

Dimensional Analyses and Scales (Tennekes and Lumley, 1972, 1976) 

• Largest eddy scales: L, T, U = Distance/Time over which fluctuations are correlated 

and U = large eddy velocity  (usually all three are very close to these of mean flow) 

• Viscous scales:  , τ, uv = viscous length (Kolmogorov scale), time and velocity 

scales 

Hypothesis: rate of turbulent energy production ≈ rate of viscous dissipation 

 Length-scale ratio:  

 Time-scale ratio: 

 Velocity-scale ratio:  

“Big whorls have little whorls,  

Which feed on their velocity,  

And little whorls have lesser whorls,  

And so on to viscosity”.  

3/4/ ~ (Re ) ReL LL O UL 

1/2/ ~ (Re )LT O

1/4/ ~ (Re )v LU u O

ReL= largest eddy Re 
       ~ Remean to 0.01 Remean 

η (Kolmogorov microscale)

Image by MIT OpenCourseWare.
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Turbulent Wavenumber Spectrum and Scales 

• Turbulent Kinetic Energy Spectrum S(K): 

• In the inertial sub-range, Kolmogorov argued by 

dimensional analysis that  

 

 

 

• Turbulent energy dissipation 
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Numerical Methods for Turbulent  Flows 

Primary approach (used to be) is experimental 

Numerical Methods classified into methods based on: 

1) Correlations: useful mostly for 1D problems, e.g.: 

– Moody chart or friction factor relations for turbulent pipe flows,            

Nusselt number for heat transfer as a function of Re and Pr, etc. 

2) Integral equations: 

– Integrate PDEs (NS eqns.) in one or more spatial coordinates 

– Solve using ODE schemes (time-marching) 

3) Averaged equations  

– Averaged over time or over an (hypothetical) ensemble of realizations 

– Often decompositions into mean and fluctuations:  

– Require closure models and lead to a set of PDEs, the Reynolds-

averaged Navier-Stokes (RANS) eqns.  (“One-point closure”  methods) 
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Numerical Methods for Turbulent  Flows 

Numerical Methods classification, Cont’d: 

4) Large-Eddy Simulations (LES)  

– Solves for the largest scales of motions of the flow 

– Only approximates or parameterizes the small scale motions 

– Compromise between RANS and DNS 

5) Direct Numerical Simulations (DNS) 

– Solves for all scales of motions of the turbulent flow (full Navier-

Stokes) 

 

• The methods 1) to 5) make less and less approximations, but 

computational time increases from 1) to 5). 

• Conservation PDEs are solved as for laminar flows: major challenge 

is the much wider range of scales (of motions, heat transfer, etc) 
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Direct Numerical Simulations (DNS) 

 for Turbulent Flows 

• Most accurate approach  

– Solve NS with no averaging or approximation other than numerical 

discretizations whose errors can be estimated/controlled 

• Simplest conceptually, all is resolved: 

– Size of domain must be at least a few times the distance L over which 

fluctuations are correlated (L= largest eddy scale) 

– Resolution must capture all kinetic energy dissipation, i.e. grid size 

must be smaller than viscous scale, the Kolmogorov scale,  

– For homogenous isotropic turbulence, uniform grid is fine, hence 

number of grid points (DOFs) in each direction is (Tennekes and 

Lumley, 1976): 
 

– In 3D, total cost (if time-step scales as grid size):  

• CPU and RAM limit size of problem: 

3/4/ ~ (Re ) ReL LL O UL 

3~ (Re )LO

Re ~ (100,000)L O
1 Peta-FLOP ~ O(hours) for 
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Direct Numerical Simulations (DNS) 

 for Turbulent Flows: Numerics 

• DNS likely gives more information that many engineers need 

(closer to experimental data) 

• But, it can be used for turbulence studies, e.g. coherent 

structures dynamics and other fundamental research 

– Allow to construct better RANS models or even correlation models 

• Numerical Methods for DNS 

– All NS solvers we have seen useful 

– Small time-steps required for bounded errors:  

– Explicit methods are fine in simple geometries 

(stability satisfied due to small time-step needed for 

accuracy) 

– Implicit methods near boundaries or complex 

geometries (larger derivatives in viscous terms 

normal to the walls can lead to numerical instabilities 

⇒ treated implicitly) 
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Direct Numerical Simulations (DNS) 

 for Turbulent Flows: Numerics, Cont’d 

• Time-marching methods commonly used 

– Explicit 2nd to 4th order accurate (Runge-Kutta, Adams-Bashforth, 

Leapfrog): R-K’s often more accurate for same cost 

•  For same order of accuracy, R-K’s allow larger time-steps for same accuracy 

– Crank-Nicolson often used for implicit schemes 

• Must be conservative, including kinetic energy 

• Spatial discretization schemes should have low dissipation 

– Upwind schemes often too diffusive: error larger than molecular diffusion! 

– High-order finite difference 

– Spectral methods (use Fourier series to estimate derivatives)  

• Mainly useful for simple geometries (FFT) 

• Use spectral elements instead (Patera, Karnadiakis, etc) 

– (Discontinous)-Galerkin Methods (FE schemes) 
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Direct Numerical Simulations (DNS) 

 for Turbulent Flows: Numerics, Cont’d 
• Challenges:  

– Storage for states at all intermediate time steps (⇒ R-K’s of low storage) 

– Total discretization error and turbulence spectrum 

• Total error: both order of discretization and values of derivatives (spectrum) 

     Measure of total error: integrate over whole turbulent spectrum  

– Difficult to measure accuracy due to (unstable) nature of turbulent flow 

• Due to predictability limit of turbulence 

• Hence, statistical properties of two solutions are often compared 

– Simplest measure: turbulent spectrum 

– Generating initial conditions: as much art as science 

• Initial conditions remembered over significant “eddy-turnover” time 

• Data assimilation, smoothing schemes to obtain ICs 

– Generating boundary conditions 

• Periodic for simple problems, Radiating/Sponge conditions for realistic cases 
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Example: Spatial Decay of Turbulence 

Created by an Oscillating Boundary 

Briggs et al (1996) 

– Grid oscillations creates 

turbulence near the wall 

– Decays in intensity away 

from the wall by “turbulent 

diffusion”: stirring+mixing  

– Use spectral method, 

periodic, 3rd order R-K 

– Results used to test 

turbulence “closure” models 

• Don’t work well because not 

derived for that “type” of 

turbulence 

Note: DNS have at times found out when laboratory set-up was not proper 

© Springer. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see http://ocw.mit.edu/fairuse. Source:  Ferziger, J., and 
M. Peric. Computational Methods for Fluid Dynamics. 3rd ed. Springer, 2001. 
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Reynolds-averaged Navier-Stokes (RANS) 

• Many science and engineering applications focus on averages 

• RANS models: based on ideas of Osborne Reynolds 

– All “unsteadiness” regarded as part of turbulence and averaged out 

– By averaging, nonlinear terms in NS eqns. lead to new product terms 

that must be modeled 

• Separation into mean and fluctuations 

– Moving time-average: 
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–

Ensemble average: 
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Reynolds-averaged Navier-Stokes (RANS) 

• Variance, r.m.s. and higher-moments: 

 

 

 

 
 

• Correlations: 

– In time: 

– In space: 

 

• Turbulent kinetic energy: 

– Note: some arbitrariness in the decomposition  

              and in the definition that “fluctuations = turbulence” 
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Reynolds-averaged Navier-Stokes (RANS) 

• Continuity and Momentum Equations, incompressible: 

 

 
 

– Applying either the ensemble or time-averages to these equations 

leads to the RANS eqns. 

– In both cases, averaging any linear term in conservation equation 

gives the identical term, but for the average quantity 

• Average the equations, inserting the decomposition: 

– the time and space derivatives commute with the averaging operator 
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Reynolds-averaged Navier-Stokes (RANS) 

• Averaged continuity and momentum equations: 

 

 

 

 

where 
 

• For a scalar conservation equation 

– e.g. for                mean internal energy 

– Terms that are products of fluctuations remain: 

• Reynolds stresses: 

• Turbulent scalar flux:  

– Equations are thus not closed (more unknown variables than equations) 

• Closure requires specifying                              in terms of the mean quantities and/or 

their derivatives (any Taylor series decomposition of mean quantities) 
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Reynolds Stresses 

• Total stress acting on mean flow: 

 

  

  

– If turbulent fluctuations are isotropic: 

• Off diagonal elements of      cancel 

• Diagonal elements equal: 

– Average of product of fluctuations not zero 

• Consider mean shear flow:  

• If parcel is going up (v’>0 ), it slows down 

neighbors, hence u’<0  (opposite for v’<0) 

• Hence:                                 (acts as turb. “diffus.”) 
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Simplest Turbulence Closure Model 

• Eddy Viscosity and Eddy Diffusivity Models 

– Effect of turbulence is to increase stirring/mixing on the mean-fields, 

hence increase effective viscosity or effective diffusivity 

– Hence,  “Eddy-viscosity”  Model     and    “Eddy-diffusivity” Model 

 

 

• Last term in Reynolds stress is required to ensure correct results for the 

sum of normal stresses:  

 

 

• The use of scalar               assumption of isotropic turbulence, which is 

often inaccurate 
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Turbulence Closures: Mixing-Length Models 

– Mixing length models attempt to vary unknown μt  as a function of position 

– Main parameters available: turbulent kinetic energy k  [m2/s2] or velocity u*, 
large eddy length scale L  

                             => Dimensional analysis: 

– Observations and assumptions: 

• Most k is contained in largest eddies of mixing-length L 

• Largest eddies interact most with mean flow 

 
 

– Hence,                    . This is Prandtl’s “mixing length model. 
 

• For a plate flow, Prandtl assumed: 
 

– Mixing-length turbulent Reynolds stress:  

– Mixing length model can also be used for scalars: 

 
2*

*

/ 2

t

k u

C u L 





2
*

2( , , , )i i
i

j j

u uu f u
x x
 

 
 

Re *in 2D, mostly     ( )xy
u uu v u f c L
y y

 
 

       
 

2
t

uL
y

 





Re 2
xy

u uu v L
y y

  
 

   
 

2
t

uu L
y y


  

 
  

 

*
*

1   ln const.u uL y u y y
y u

 



     



C 
dimensionless constant 



PFJL  Lecture 28,    20 Numerical Fluid Mechanics 2.29 

• In simple 2D flows, mixing-length models agree well with data 

• In these flows, mixing length L proportional to physical size (D, etc) 

• Here are some examples: 

   

 

 

 

 

 

 

 
 

 

 

• But, in general turbulence, more than one space and time scale! 

Mixing Length Models: What is         ? ( )mL
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Turbulence Closures: k - ε Models 

• Mixing-length = “zero-equation” Model 

• One might find a PDE to compute                                 as a function 

of k and other turbulent quantities 

– Turbulence model requires at least a length scale and a velocity scale, 

hence two PDEs? 

• Kinetic energy equations (incompressible flows) 

– Define                                             ,                      and   
 

– Mean KE: Take mean mom. eqn., multiply by     to obtain:  
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Turbulence Closures: k - ε Models, Cont’d 

• Turbulent kinetic energy equation 

– Obtain momentum eqn. for the turbulent velocity  

– Define the fluctuating strain rate: 

– Multiply by      (sum) and average to obtain the eqn. for 

 

 

 

 

• This equation is similar than that of K, but with prime quantities 

• Last term is now opposite in sign: is the rate of shear production of k : 
 

• Next to last term = rate of viscous dissipation of k : 
 

• These two terms often of the same order (this is how Kolmogorov microscale is defined) 

– e.g. consider steady state turbulence over any volume 

– If Boussinesq fluid, the two KE eqns. contain buoyant loss/production terms 
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Turbulence Closures: k - ε Models, Cont’d 

• Parameterizations for the standard k equation: 
 

– For incompressible flows, the viscous transport term is:   
 

– The other two turbulent energy transport terms are thus modeled using: 

 

 

• This is analogous to an “eddy-diffusion of a scalar” model, recall: 

• In some models, eddy-diffusions are tensors 

– The production term: using again an eddy diffusion model for the Rey. Stresses 

 

 

– All together, we have all “unknown” terms for the k equation parameterized, 

as long as                  the rate of viscous dissipation of k is known:  
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Turbulence Closures: k - ε Models, Cont’d 

• The standard k - ε model equations (Launder and Spalding, 1974) 

– They are several choices for                                      the standard popular 

one is based on the “equilibrium turbulent flows” hypothesis: 

• In “equilibrium turbulent flows”, ε the rate of viscous dissipation of k is in 

balance with Pk  the rate of production of k   (i.e. the energy cascades):  

 

 

• Recall the scalings: 

• This gives the length scale and the turbulent viscosity scalings:  

 
 

– As a result, one can obtain an equation for ε (with a lot of assumptions): 

 

 

where                   and                     are constants.  The production and destruction terms 

of ε are assumed proportional to those of k   (the ratios  ε / k  and  ε2 / k  are for dimensions) 
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Turbulence Closures: k - ε Models, Cont’d 

• The standard k - ε model (RANS) equations are thus: 

 

 

 

 

 

 

• The Reynolds stresses are obtained from: 

• The most commonly used values for the constants are: 

 

• Two new PDEs are relatively simple to implement (same form as NS) 

– But, time-scales for k - ε are much shorter than for the mean flow 

• Other k – ε models: Spalart-Allmaras ν – L, Wilcox or Menter k - ω, anisotropic k –ε’s, 

etc 
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Turbulence Closures: k - ε Models, Cont’d 

• Numerics for standard k - ε models 

– Since time-scales for k - ε are much shorter than for the mean flow, 

their equations are treated separately 

• Mean-flow NS outer iteration first performed using old k - ε  

• Strongly non-linear equations for k - ε are then integrated (outer-iteration) 

with smaller time-step and under-relaxation 

– Smaller space scales requires finer-grids near walls for k – ε eqns 

• Otherwise, too low resolution leads to wiggles and negative k - ε  

• If grids are the same, need to use schemes that reduce oscillations 

• Boundary conditions for k - ε models 

– Similar than for other scalar eqns., excepted at solid walls 

• Inlet:  k, ε given   (from data or from literature) 

• Outlet or symmetry axis:  normal derivatives set to zero  (or other OBCs) 

• Free stream:  k, ε given or zero-derivatives 

• Solid walls:  depends on Re 
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mbining, one obtains:                           and one can match: 

   without resolving the viscous sub-layer  

• For more details, including low-Re cases, see references 

Turbulence Closures: k - ε Models, Cont’d 

• Solid-walls boundary conditions for k - ε models, Cont’d 

– No-slip BC would be standard:  

• Hence, appropriate for to set k = 0 at the wall 

• But, dissipation not zero at the wall  → use :  

– At high-Reynolds numbers: 
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k – ε right at the wall by using an 

analytical shape “wall function”: 

• At high-Re, in logarithmic layer :  
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Turbulence Closures: k - ε Models, Cont’d 

• Example: Flow around an engine Valve (Lilek et al, 1991) 

– k – ε model, 2D axi-symmetric 

– Boundary-fitted, structured grid 

– 2nd order CDS, 3-grids refinement 

– BCs: wall functions at the walls 

– Physics: separation at valve throat 

– Comparisons with data not bad 

– Such CFD study can reduce number 

of experiments/tests required 

Please also see figures 9.13 and 9.14 from Figs 9.13 and 9.14 from Ferziger, J., and M. Peric. 
Computational Methods for Fluid Dynamics. 3rd ed. Springer, 2001. 

© Springer. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see http://ocw.mit.edu/fairuse. 

http://ocw.mit.edu/fairuse
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Reynolds-Stress Equation Models (RSMs) 

• Underlying assumption of “Eddy viscosity/diffusivity” models 

and of k - ε models is that of isotropic turbulence, which fails in 

many flows  

– Some have used anisotropic eddy-terms, but not common 

• Instead, one can directly solve transport equations for the 

Reynolds stresses themselves: 

– These are among the most complex RANS used today. Their equations 

can be derived from NS 

– For momentum, the six transport equations, one for each Reynolds 

stresses, contain: diffusion, pressure-strain and dissipation/production 

terms which are unknown 

• In these “2nd order models”, assumptions are made on these terms and 

resulting PDEs are solved, as well as an equation for ε 

• Extra 7 PDEs to be solved increase cost and mostly used for academic 

research (assumptions on unknown terms still being compared to data) 

   and   i j iu u u      
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Reynolds-Stress Equation Models (RSMs), Cont’d 

• Equations for 

 

 

 

 

where  

• The dissipation (as ε but now a tensor) is : 

• The 3rd order turbulence diffusions are: 

–  Simplest and most common 3rd order closures: 

• Isotropic dissipation:                                        → the ε PDE must be solved 

• Several models for pressure-strain used (attempt to make it more isotropic), 

see Launder et al) 

• The 3rd order turbulence diffusions: usually modeled using an eddy-flux model, 

but nonlinear models also used 

• Active research 
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Large Eddy Simulation (LES) 

• Turbulent Flows contain large range of time/space scales  

• However, larger-scale motions 

often much more energetic 

than small scale ones  

• Smaller scales often provide 

less transport 

→ simulation that treats larger eddies more accurately than 
smaller ones makes sense:  = LES:  

• Instead of time-averaging, LES uses spatial filtering to separate large 
and small eddies 

• Models smaller eddies as a “universal behavior” 

• 3D, time-dependent and expensive, but much less than DNS 
• Preferred method at very high Re or very complex geometry 

 

LES

DNS (B)

DNS LES

(A)

(A) The time dependence of a component of velocity at one point; (B) Representation of
 turbulent motion.

u

t

Image by MIT OpenCourseWare.
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Large Eddy Simulation (LES), Cont’d 

• Spatial Filtering of quantities 

– The larger-scale (the ones to be resolved) are essentially a local spatial 

average of the full field 

– For example, the filtered velocity is: 
 

    where                  is the filter kernel, a localization function of support/cutoff 

width Δ  

• Example of Filters: Gaussian, box, top-hat and spectral-cutoff (Fourier) filters 

• When NS, incompressible flows, constant density is averaged, 

one obtains 

 

 

– Continuity is linear, thus filtering does not change its shape 

– Simplifications occur if filter does not depend on positions:  
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Large Eddy Simulation (LES), Cont’d 

• LES sub-grid-scale stresses 

– It is important to note that 

– This quantity is hard to compute 

– One introduces the sub-grid-scale Reynolds Stresses, which is the 

difference between the two: 

 

• It represents the large scale momentum flux caused by the action of the 

small or unresolved scales (SG is somewhat is a misnomer) 

– Example of models:  

• Smagorinsky: it is an eddy viscosity model 

 

 

• Higher-order  SGS models 

• More advanced models (mixed models, dynamic models, deconvolution 

models, etc) 
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Examples (see Durbin and Medic, 2009) 

Please see figures 6.1, 6.2, 6.22, 6.23, 6.26, and 6.27 in Durbin, p. and G. Medic. Fluid Dynamics 

with a Computational Perspective. Vol. 10. Cambridge University Press, 2007.  See the figures now 
via Google Books Preview 

http://books.google.com/books?id=4clIj_YBD6MC&pg=PA212&lpg=PA212
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