
  

2.29 Numerical Fluid Mechanics
	
Fall 2011 – Lecture 3
	

REVIEW Lectures 1-2 
• Approximation and round-off errors 

x̂a  x̂ – Absolute and relative errors: E a  x̂ a  x̂ , a  x̂a 

x̂ • n  x̂Iterative schemes and stop criterion:    n1
a 

x̂ s
1 n

• For n digits:  n
s  10 

2 

– Number representations 
• Floating-Point representation: x = m be 

– Quantizing errors and their consequences 
– Arithmetic operations (e.g. radd.m) 
– Errors of arithmetic/numerical operations 

• Large number of addition/subtractions, large 
– Recursion algorithms (Heron, Horner’s sch

• Order of computations matter 
• Round-off error growth and (in)-stability 

& small numbers, inner products, etc 
eme, Bessel functions, etc):
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2.29 Numerical Fluid Mechanics
	
Fall 2011 – Lecture 3: Outline
	

• Truncation Errors, Taylor Series and Error Analysis 
– Taylor series: x2		 x 3 xn

f ( ix 1 )  f ( ix )  x f '( ix )  f ''( ix )  f '''(x )  ...  
2!	 3! i	 n! 

x n1


R  ( 1 ( )
  
n  f	 n )

n 1! 
– Use of Taylor Series to derive finite difference schemes (first-ord

scheme and forward, backward and centered differences)
	
– General error propagation formulas and error estimation, with ex

Consider  y  f ( 1x , x 2 , x 3 ,..., x n ). I  f i '	 s are magnitudes of errors o  n x i 's, wh

•  ( 1,f x ..., xThe Differential Formula: 
n 

n ) y   i

nf (x )  Ri n

er Euler 


amples 
at is the error on y ?

xii1 

 f 
2 

• The Standard Error (statistical formula):		
n 

2E(s y) �	    i 
i1  xi  

– Error cancellation (e.g. subtraction of errors of the same sign) 
x f '( ) – Condition number:		 K p  

x
 

f ( ) 
x 
• Well-conditioned problems vs. well-conditioned algorithms Reference: Chapra and Canale, 
• Numerical stability		 Chaps 3, 4 and 5 
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Numerical Fluid Mechanics: 

Lectures 3 and 4 Outline
	

• Condition Numbers 
Reference: Chapra and Canale, 

• Roots of nonlinear equations		 Chaps 3, 4 and 5 
– Bracketing Methods 

• Example: Heron’s formula 
• Bisection 
• False Position 

– “Open” Methods 
•		 Open-point Iteration (General method or Picard Iteration)
	

– Examples 
 	
– Convergence Criteria 
– Order of Convergence 

• Newton-Raphson 
– Convergence speed and examples 

•		 Secant Method
	
– Examples 
 	
– Convergence and efficiency 

• Extension of Newton-Raphson to systems of nonlinear equations 
– Roots of Polynomial (all real/complex roots) 

• Open methods (applications of the above for complex numbers) 
• Special Methods (e.g. Muller’s and Bairstow’s methods) 
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Truncation Errors, 
Taylor Series and Error Analysis 

Taylor Series: 
•		 Provides a mean to predict a function at one point in terms of 

its values and derivatives at another point (in the form of a 
polynomial) 

•		 Hence, any smooth functions can be approximated by a 
polynomial 

•		 Taylor Series (Mean for integrals theorems): 
2 3	 nx x	 x nf (x )  f (x )    x f  '(x )  f ''(x )  f '''(x )  ...  f (x )  Ri1 i i i i	 i n2! 3!	 n! 

n1x ( 1)  Rn	  f n ( ) 
n  1! 

•		 = constant + line + parabola + etc 
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Derivation of General “Differential” Error Propagation Formula
	

Recall: 

Univariate Case 
f 1( )ix   f ( )ix x f    '( )ix  

2 

2! 
x f ''( )ix  

3 

3! 
x f '''( )ix ...   

! 

nx 
n 
 f ( )n 

ix  nR 

nR  
1 

1! 

nx 
n 

 

 
f ( 1)  ( )n   1( )nO x  

Hence, y � f  1( )if x    ( )if x  

x f  '( )ix  
2 

2! 
x f ''( )ix  

3 

3! 
x f '''( )ix ...   

! 

nx 
n 
 f ( )n 

ix  nR 

For x �  1, f x  f      '( )ix  2( )O x � x  f   '( )ix 

xThus, for an error on x equal to Δx such that �  � 1  , we have an error on y equal to : 

 y  y  f x f  '(xi )  x '( i )f x    f x'( i ) 

Multivariate case 
n f x( 1,..., xn )y  f (x , x , x ,..., x ) For xi �  1,  y  1 2 3 n  ixii1 

Derivation done in class on the board 

Numerical Fluid Mechanics PFJL  Lecture 3,  2.29 5 

5



  

Absolute Errors 

Function of one variable 

General Error Propagation Formula 

? 

General Error Propagation Formula
 
(The Differential Formula)
 

For this large plotted ∆x, 
second derivative 
not negligible 

y~f ’(x)x 

x = x - x  

x x 
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Error Propagation Example with Differential Approach:
 
Multiplications
 

Error Propagation Formula Multiplication 

=> 
=> 

=> 

=> Relative Errors Add for Multiplication 

εr 
y εr 

i 

Another example, more general case: 

εr 
y εr 

i 
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Statistical Error Propagation Estimate: 

Error Expectations and the “Standard Error”
 

Example: Addition
 

a. Chopping 

Error Expectation 
(on average, half the interval is chopped) 

b. Rounding 
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Statistical Error Propagation Estimate: 

Error Expectations and the “Standard Error”
 

y y x  ( , x , x ,..., x )
 1 2 3 n 

Standard Error 
(assuming Gaussian errors on xi , 
compute error standard deviation on y) 

Example: Addition 

2 

n 

Standard Error is a more accurate measure of expected errors: 
It is likely that the error will be of that magnitude. 

However, the general error propagation formula is an upper bound 
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Error Propagation: Error Cancellation 
(occurs when errors of the same sign are substracted)
 

Example: Consider this function of one variable 

Gen. error (max): 

Stand. Error : Error cancellation 

2 

2 

Direct error 
(single y term): 

Define: 

For 2 terms (z1 and z2): 

error if 4 digits 
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The Condition Number
	
•		 The condition of a mathematical problem relates to its 

sensitivity to changes in its input values 
•		 A computation is numerically unstable if the 

uncertainty of the input values are magnified by the 
numerical method 

•		 Considering x and f(x), the condition number is the 
ratio of the relative error in f(x) to that in x. 

( )x	  x ' x x  )•		 Using first-order Taylor series f f ( )   f (  )(  x 

f ( )x  f ( )  f (  )(  x ' x x  x )
•		 Relative error in f(x): f x( )  ( )  f x 

(x  x )•		 Relative error in x: 
x 

•		 Condition Nb = Ratio of relative errors: 
'( ) 

( )p 
x f xK 

f x 
 
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Error Propagation
 
Condition Number: another derivation and an example
 

y = f(x) 

x x y y 

x x  (1  ) y  y (1   )
 
 ( )   f x(  ) (1 
  f x   ) 

Problem ill-conditioned 

Error cancellation example 

Problem Condition Number 

Well-conditioned problem 

-0.5 10-4 

0.2 10-4 
With first-order 
Taylor series  
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Error Propagation
 
Problem vs. Algorithm Condition Numbers
 

a. Problem Condition Number 
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K is the algorithm condition number, 
which may be much larger than KP due 
to digitized number representation. 

Solution: 
• Higher precision 
• Rewrite algorithm 

A 

Well-conditioned Algorithm 

0.5 10-4 

0.5 10-4 

1.0 
0.5 10-2 

b. Algorithm (4 Significant Digits) Condition Number 

Algorithm Condition Number 

2 

(base 10) 
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Roots of Nonlinear Equations
	

• Finding roots of equations (x | f (x) = 0) ubiquitous in engineering 
problems, including numerical fluid dynamics applications 
– In general: finding roots of functions (implicit in unknown parameters/roots) 
– Fluid Application Examples 

• Implicit integration schemes 
• Stationary points in fluid equations, stability characterizations, etc
	

• Fluid dynamical system properties 
• Fluid engineering system design 

• Most realistic root finding problems require numerical methods
	

• Two types of root problems/methods: 
1.Determine the real roots of algebraic/transcendental equations (these 

methods usually need some sort of prior knowledge on a root location) 
2.Determine all real and complex roots of polynomials (all roots at once) 
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Roots of Nonlinear Equations
	

• Bracketing Methods 
– Bracket root, systematically reduce width of bracket, track error for 

convergence 
– Methods: Bisection and False-Position (Regula Falsi) 

• “Open” Methods 
– Systematic “Trial and Error” schemes, don’t require a bracket (can start 

from a single value) 
– Computationally efficient, but don’t always converge 
– Methods: Open-point Iteration (General method or Picard Iteration), 

Newton-Raphson, Secant Method 
– Extension of Newton-Raphson to systems of nonlinear equations 

• Roots of Polynomials (all real/complex roots) 
– Open methods (applications of the above for complex numbers) 
– Special Methods (e.g. Muller’s and Bairstow’s methods) 
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Bracketing Methods: Graphical Approach 
A function typically changes sign at the vicinity of the root  “bracket” the root 
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f(x) f(x) f(x)f(x)

f(x) f(x)

x

xt

xt

xt

xt xt

xa

xa

xa

xa xaxt xa

x

xx x x

(i) (i)(ii) (ii)

(iii) (iv)

These graphs show general ways in which roots may occur 
on a bounded interval. In (i) and (ii), if the function is 
positive at both boundaries, there will be either an even 
number of roots or no roots; in the other two graphs, if the 
function has opposite signs at the boundary points, there 
will be an odd number of roots within the interval.            

These graphs show some exceptions to the general cases 
illustrated on the left. In (i), a multiple root occurs where 
the function is tangential to the x axis. There are an even 
number of intersections for the interval. In (ii) is depicted 
a discontinuous function with an even number of roots 
and end points of opposite signs. Finding the roots in 
such cases requires special strategies.

Image by MIT OpenCourseWare.



  

          

     

  
  
  
  
  
  

Roots of Nonlinear Equations: Bracketing Methods
	

a=2;
n=6; heron.m 
g=2;

% Number of Digits

dig=5;


sq(1)=g;

for i=2:n
 
sq(i)= 0.5*radd(sq(i-1),a/sq(i-1),dig);
end 
' i value ' 
[ [1:n]' sq']
hold off 
plot([0 n],[sqrt(a) sqrt(a)],'b')
hold on 
plot(sq,'r')
plot(a./sq,'r-.')
plot((sq-sqrt(a))/sqrt(a),'g')
legend('sqrt','xn','s/xn','Relative Err')
grid on

If 

If i value 

1.0000 2.0000 
2.0000 1.5000 
3.0000 1.4167 
4.0000 1.4143 
5.0000 1.4143 
6.0000 1.4143 

Example – Square root 

Heron’s Principle 

Guess root 

Mean is better guess 

Iteration Formula 

( ) / 2 

( ) / 2 
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Roots of Nonlinear Equations: Bracketing Methods
	

Bisection
	
Incremental search method defined as: 

“Keep dividing in two the interval within which at least one root lies”
 

Algorithm 

x 

f(x) 

n = n+1 

yes 

no 
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Roots of Nonlinear Equations: Bracketing Methods
	

Bisection
	

Algorithm
 

n = n+1 

yes 

no 

% Root finding by bi-section
f=inline(' a*x -1','x','a');
a=2 
figure(1); clf; hold on
x=[0 1.5]; eps=1e-3;
err=max(abs(x(1)-x(2)),abs(f(x(1),a)-f(x(2),a)));
while (err>eps & f(x(1),a)*f(x(2),a) <= 0)

xo=x; x=[xo(1) 0.5*(xo(1)+xo(2))];
if ( f(x(1),a)*f(x(2),a) > 0 )

x=[0.5*(xo(1)+xo(2)) xo(2)]
end 
x 
err=max(abs(x(1)-x(2)),abs(f(x(1),a)-f(x(2),a)));
b=plot(x,f(x,a),'.b'); set(b,'MarkerSize',20);
grid on;

end 

bisect.m 

Stop criterion above based on x~0 and f(x)~0 
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Roots of Nonlinear Equations: Bracketing Methods
	

Bisection
	

• Stop criteria: when relative estimated error or relative 
added value is negligible: 

n n 1x̂ r  x̂ r   s a x̂ nr 

•		 Each successive iteration halves the maximum error, a 
general formula thus relates the error and the number of 
iterations: 

 x0  
n  log 2   

 , Ea d  

where x0  is an initial error and Ea d   the desired error , 
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Another Bracketing Method:
	
The False Position Method (Regula Falsi)
	

• Bisection is a brute force scheme 
– Somewhat inefficient approach 
–		Doesn’t account for magnitudes of f(xL) and f(xU) 

x U f x( ) x L  (  x U )
r  xU 

L f x  (( )  U f x ) • False Position		

f x  Uf x   (( )  f x )
 ( )  (f x )  L 

r U  ( rx 	 x U )  0 A graphical xU  xL depiction of the 
false position 

f x method, Regula
L ( )  (	 

 U f x ) Falsi. Shaded 


(x  x ) (x  x ) in green are the 

r L r U	 triangles used 


to derive the 

method.
 

x U f x( ) x L  (  x U )
r  xU  

f x  (( )  f x ) L U 
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f(xL)

f(xu)

xr

xL

xu x
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Comments on Bracketing Methods 

(Bisection and False Postion)
	

• Bisection and False Position: 
– Convergent methods, but one needs to minimize function evaluations 

•		 Error of False Position can decrease much faster than that of 
Bisection, but if the function is far from a straight line, False 
Position will be slow (one of the end point remains fixed) 

• Remedy: “Modified False Position” 
–		e.g. if end point remains fixed for a few iterations, reduce end-point 

function value at end point, e.g. divide interval by 2 

•		 One can not really generalize for Root Finding methods 
(results are function depend) 

•		 Always substitute estimate of root xr at the end to check how 
close estimate is to f(xr)=0 
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Roots of Nonlinear Equations: Open Methods
	
Fixed Point Iteration (General Method or Picard Iteration)
	

Example: Cube root 
% f(x) = x^3 - a = 0
% g(x) = x + C*(x^3 - a)
a=2; cube.m 
n=10;Non-linear Equation g=1.0;
C=-0.1;

sq(1)=g;
for i=2:n 
sq(i)= sq(i-1) + C*(sq(i-1)^3 -a);
end 
hold off 
plot([0 n],[a^(1./3.) a^(1/3.)],'b')
hold on 
plot(sq,'r')
plot( (sq-a^(1./3.))/(a^(1./3.)),'g')
grid on 
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Rewrite Problem 

Example 

Iteration 
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Roots of Nonlinear Equations: 

Bracketing vs. Open Methods in Graphics
	

A graphical depiction of the fundamental differences between the bracketing 
method (shown on the right) and the open methods (shown on the left). 
On the right, the root is constrained within the interval; on the left, 
a formula is used to project iteratively between xi and xi+1 and can 
diverge or converge rapidly. 
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f(x)

xl xu
x

xl xu

xl xu

xl xu

xl xu

f(x)

xi

xi+1 x

f(x)

xi

xi+1 x
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Open Methods (Fixed Point Iteration)
	
Stop-criteria
	

“Unrealistic” stop-criteria: continue while 

Realistic stop-criteria 

Machine 
Epsilon 

Use an “or” combination of the two criteria 

f(x)f(x) 
‘flat’ f(x) ‘steep’ f(x) 

x x 

Cannot require 
 

Cannot require 
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