
  

   

2.29 Numerical Fluid Mechanics
	
Fall 2011 – Lecture 4
	

REVIEW Lecture 3 
• Truncation Errors, Taylor Series and Error Analysis 

2	 3 nx	 x x n– Taylor series: f (x )  f (x )  x f '(x )  f ''(x )  f '''(x )  ...  f (x )  Ri1 i i i i	 i n2!	 3! n! 
n1
x ( 1) 
  n Rn  f ( )

n 1! 
– Use of Taylor Series to derive finite difference schemes (first-order Euler 
scheme and forward, backward and centered differences) 
– General error propagation formulas and error estimation, with examples 

Consider  y	  f (x , x , x ,..., x ). If  's are magnitudes of errors on x 's, what is the error on y ?1 2 3 n i	 i 

f x( 1,..., xn )• The Differential Formula:  y   
n 

 ixii1 

 f 
2 

• The Standard Error (statistical formula):		
n 

2E(s y) �	    i 
i1  xi  

– Error cancellation (e.g. subtraction of errors of the same sign) 
x f '( ) x– Condition number:		 K p 
 

f ( ) 
x 
• Well-conditioned problems vs. well-conditioned algorithms Reference: Chapra and Canale, 
• Numerical stability		 Chaps 3, 4 and 5 
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2.29 Numerical Fluid Mechanics
	
Fall 2011 – Lecture 4
	

REVIEW Lecture 3 

• Roots of nonlinear equations 
– Bracketing Methods: 

n n1x̂ r  x̂r   s• Systematically reduce width of bracket, track error for convergence: a x̂n
r 

• Bisection: Successive division of bracket in half 
n1 n1f x 	  )– determine next interval based on sign of: ( 1 ) (  f xmid-point  

 x0  
–		Number of Iterations: n  log 2  
 

 , 
Ea d  

• False-Position (Regula Falsi): As Bisection, excepted that next xr is the “linearized zero”, 
i.e. approximate function with straight line using its values at end points, and find its zero: 

( ) (  x  x )f xU L Uxr  xU  
f ( )   f (xL xU )– “Open” Methods: 

• Systematic “Trial and Error” schemes, don’t require a bracket 

• Computationally efficient, don’t always converge 
 ( )    or  x  g x  n1 n• Fixed Point Iteration (General Method or Picard Iteration): 

x  x  h x  ( ) ( )  xfn1 n n n 
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Numerical Fluid Mechanics: Lecture 4 Outline
	

• Roots of nonlinear equations 
Reference: Chapra and Canale, 

– Bracketing Methods		 Chaps 3, 4 and 5 
• Example: Heron’s formula 
• Bisection 
• False Position 

– “Open” Methods 
• Open-point Iteration (General method or Picard Iteration) 

– Examples  
– Convergence Criteria 
– Order of Convergence 

• Newton-Raphson 
– Convergence speed and examples 

•		 Secant Method
	
– Examples 
 	
– Convergence and efficiency 

• Extension of Newton-Raphson to systems of nonlinear equations 
– Roots of Polynomial (all real/complex roots) 

• Open methods (applications of the above for complex numbers) 
• Special Methods (e.g. Muller’s and Bairstow’s methods) 
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Convergence 

Open Methods (Fixed Point Iteration)
	
Convergence Theorem
 

Hypothesis:
y g(x) satisifies the following Lipschitz condition: 

There exist a k such that if 

then 

x 

Then, one obtains the following Convergence Criterion:
 

Applying this inequality successively to xn-1, xn-2, etc:
 

Numerical Fluid Mechanics PFJL  Lecture 4,  2.29 4 

4



  

Open Methods (Fixed Point Iteration) 
Corollary Convergence Theorem 

If the derivative of g(x) exists, then 
the Mean-value Theorem gives: 

Hence, a Sufficient Condition for Convergence 

If 

x 

y 

x 

y 

Convergent 

Divergent 

> 

x 

x x 

x01 

10 

y=x 

y=x 

y=g(x) 

y=g(x) 
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Open Methods (Fixed Point Iteration)
	

Rewrite 

Convergence, for example in the 0<x<2 interval? 

Converges more rapidly for small 

For 0 2x     

Ps: this means starting in smaller 
interval than 0<x<2 (smaller x’s) 

n=10;
g=1.0;
C=-0.21;

sq(1)=g; cube.m
for i=2:n 
sq(i)= sq(i-1) + C*(sq(i-1)^3 -a);
end 
hold off 
f=plot([0 n],[a^(1./3.) a^(1/3.)],'b')
set(f,'LineWidth',2);
hold on 
f=plot(sq,'r')
set(f,'LineWidth',2);
f=plot( (sq-a^(1./3.))/(a^(1./3.)),'g')
set(f,'LineWidth',2);
legend('Exact','Iteration','Error');
f=title(['a = ' num2str(a) ', C = ' num2str(C)])
set(f,'FontSize',16);
grid on 

Example: Cube root 
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Open Methods (Fixed Point Iteration)
	
Converging, but how close: What is the error of the estimate? 

Consider the 

Absolute error:
 

Hence, at iteration n: 

Note: Total compounded 
error due to round-off is 
bounded by 

εr-o / (1-k) 

Convergence condition: 

Fixed-Point Iteration Summary 

Absolute error: 

≤ 
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Order of Convergence for an Iterative Method
	

•		 The speed of convergence for an iterative method is often characterized 
by the so-called Order of Convergence 

•		 Consider a series x0, x1, … and the error en=xn – xe. If there exist a number 
p and a constant C≠0 such that 

en1lim p  C 
n en
 

then p is defined as the Order of Convergence or the Convergence 

exponent and C as the asymptotic constant
 

–	 p=1 linear convergence, 
–	 p=2 quadratic convergence, 
–	 p=3 cubic convergence, etc 

•	 Note: Error estimates can be utilized to accelerate the scheme (Aitken’s 
extrapolation, of order 2p-1, if the fixed-point iteration is of order p) 

	 e•	 Fixed-Point: often linear convergence, e  g '( ) n1	 n 
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“Open” Iterative Methods: Newton-Raphson
	

• So far, the iterative schemes to solve f(x)=0 can all be written as
 

( )   x  ( ) ( )  f xx  g x  h x  n1 n n n n 

• Newton-Raphson: one of the 

most widely used scheme
 

f(x)
• Extend the tangent from 

slope: f '(xn )current guess xn to find point 

where x axis is crossed: 


1 x xx  x  f ( )n1 n n'( n )f x  

( )  f x  )  f (x ) (  x  x )f x  ( '  0n1 n n n1 n 
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Newton-Raphson Method: 

Its derivation based on the local derivative and the rate of convergence
	

Non-linear Equation 

Newton-Raphson Iteration 

Fast Convergence 

Convergence Criteria 

x 

f(x)
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Newton-Raphson Method: Example
	
1
 x  x  f ( )x
n1 n n'( n )f x  

Example – Square Root 

a=26;
n=10;
g=1; 

sq(1)=g;
for i=2:n 
sq(i)= 0.5*(sq(i-1) + a/sq(i-1));
end 
hold off 
plot([0 n],[sqrt(a) sqrt(a)],'b')
hold on 
plot(sq,'r')
plot(a./sq,'r-.')
plot((sq-sqrt(a))/sqrt(a),'g')
grid on 

sqr.m 

Newton-Raphson 

Same as Heron’s formula 
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which is a good approximation if

Newton-Raphson Example: Its use for divisions
	

a=10;
n=10;
g=0.19;
sq(1)=g;

for i=2:n 
sq(i)=sq(i-1) - sq(i-1)*(a*sq(i-1) -1) ;
end 
hold off 
plot([0 n],[1/a 1/a],'b')
hold on 
plot(sq,'r')
plot((sq-1/a)*a,'g')
grid on
legend('Exact','Iteration',‘Rel Error');
title(['x = 1/' num2str(a)]) 

div.m 

Hence, Newton-Raphson for divisions:
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Quadratic Convergence 

Convergence Exponent/Order 

Newton-Raphson: Order of Convergence
	

Define: 

Taylor Expansion: 

Since g’(xe) = 0, truncating third 
order terms and higher, leads 
to a second order expansion: 

Relative Error:
 

f f f '' f '' f f ''' Note: ( ) x , g ' x    and    g ' x    f (...)g x     ( ) ' ( ) 
f ' f '2 f ' f '2 
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Newton-Raphson: 

Issues
	

a)	 Inflection points in the vicinity of the 
root, i.e. ''( ) f xe 0 

b)	 Iterations can oscillate around a local 
minima or maxima 

c) Near zero slope encountered d) Zero slope at the root 
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Roots of Nonlinear Equations:
	
Secant Method
	

f ( ) ,  f ' x1. In Newton-Raphson we have to evaluate 2 functions x ( )n n 

2. f ( ) may not be given in closed, analytical form, i.e. in CFD, it is xn 
often a result of a numerical algorithm 

f(x)Approximate Derivative: 

Secant Method Iteration: 

x
 

Only 1 function call per iteration! : f ( )xn 
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Secant Method: Order of convergence
	
Absolute Error 

Using Taylor Series, up to 2nd order 
Convergence Order/Exponent 

1+1/m 

Error improvement for each function call 

Newton-Raphson 

Secant Method 

Relative Error 

Absolute Error 

2 

By definition: 

Then: 

 
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Roots of Nonlinear Equations
	
Multiple Roots
	

p-order Root 

x 

f(x) 

Newton-Raphson 

=> 

Slower convergence the higher the order of the root 

Convergence 
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Roots of Nonlinear Equations
	
Bisection
	

Algorithm 

x 

f(x) 

n = n+1 

yes 

no Less efficient than Newton-Raphson and 
Secant methods, but often used to isolate 
interval with root and obtain approximate 
value. Then followed by N-R or Secant 
method for accurate root.  
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 Useful reference tables for this material: 

Tables PT2.3 on p.212 and PT2.4 on p. 214 in Chapra, S., and R. Canale. Numerical Methods 

for Engineers. 6th ed. McGraw-Hill Higher Education, 2009. ISBN: 9780073401065.
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