2.29 Numerical Fluid Mechanics

Fall 2011 — Lecture 5
REVIEW Lecture 4
* Roots of nonlinear equations: “Open” Methods

— Fixed-point Iteration (General method or Picard lteration), with examples
* |teration rule: x,,=8(x) or x_ ,=x —h(x)f(x,)

» Error estimates, Convergence Criteria: g'(x)\ <k<l, xel

— Order of Convergence p: lim £l — ¢ (for Fixed-Point, usually linear, p ~ 1)
P

n—»0 p

n

— Newton-Raphson |

« Examples and Issues Kot =X — 7(x) f(x,)
* Quadratic Convergence (p=2)

— Secant Method Fix) = ACH ACHY)
« Examples no Tl

« Convergence (p=1.62) and efficiency

— Extension of Newton-Raphson to systems of nonlinear egns. (slower conver.)
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Secant Method: Order of convergence

&

Absolute Error €n=12Tp — T

€n+l = Tn+1—T° = F@+ en) (@ + en1) = f(2°+ en-1)(2° + €n) —x°

f(:L-c + En) - f(me + en—l)

Using Taylor Series, up to 2" order
Convergence Order/Exponent

N 1 f”(.’l’.'e)
Absolute Error €1 = 316 ey By definition: N
€n = A(mr) Egl_l = €p-1 = (Zen) = B(we)erlz/m
€n+1 €n—1 € [ "(z¢ e
LS () e Then:

i ~ i
Relative Error 1.7 = 1.1z 2f () . o 1/m oy T+lm
En+l1 = C(xl)fnen—l = D(:E})Enfn = D(x#)ﬁn

1 1
= 1+E=m¢m=§(1+\/3)z1.62

Error improvement for each function call

Secant Method €, =~ .92

.2
Newton-Raphson €., = ¢,
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Fluid flow modeling: the Navier-Stokes
equations and their approximations
Today’s Lecture

» References :

— Chapter 1 of “J. H. Ferziger and M. Peric, Computational Methods
for Fluid Dynamics. Springer, New York, third edition, 2002.”

— Chapter 4 of “I. M. Cohen and P. K. Kundu. Fluid Mechanics.
Academic Press, Fourth Edition, 2008”

— Chapter 4 in “F. M. White, Fluid Mechanics. McGraw-Hill Companies
Inc., Sixth Edition”

« Fortoday’s lecture, any of the chapters above suffice
— Note each provide a somewhat different prospective
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Conservation Laws

» Conservation laws can be derived either using a

— Control Mass approach (CM)

» Considers a fixed mass (useful for solids) and its extensive properties (mass,
momentum and energy)

— Control Volume approach (CV)
« CV is a certain spatial region of the flow, possibly moving with fluid parcels/system
* Its surfaces are control surfaces (CS)

— Each approach leads to a class of numerical methods

» For an extensive property, the conservation law “relates the rate of change
of the property in the CM to externally determined effects on this property”

» To derive local differential equations, assumption of continuum is made

— Knudsen number (mean free path over length-scale, /L <0.01)
« => Sufficiently “well behaved” continuous functions
* Non-continuum flows: space shuttle in reentry, low-pressure processing

— Note CFD is also used for Newton’s law applied to each constituent molecules
(simple, but computational cost often growths as N2 or more)
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Macroscopic Properties

« Continuum hypothesis allows to define macroscopic fluid properties

* Density ( p ): mass of material per unit volume [kg/m’]
— If the density is independent of pressure, the fluid is said incompressible
— A measure of the flow compressibility is the Mach number:

e Ma=Y where o _» (If Ma<0.3, variations of p can be assumed to be negligible)

. a op|,
— Typical values:

o Water:a =7,400m/s;  Air: a = 300 m/s
 Viscosity ( 4 ): measure of the resistance of the fluid to deformation under stress [Pa.s]
— A solid sustains external shear stresses: intermolecular forces balance the stress

— A fluid does not: the deformation increases with time
« |f the deformation increase is linear with the stress, the fluid is said Newtonian
— Typical values of dynamic viscosity:
o Air:u=18x107 kg/ms; Water: u =10 kg/ms;, SAE Oil (car): u = 240 10 3 kg/ms

» The ratio of the inertial (nonlinear) forces to the viscous force is measured by the
Reynolds number: R pUL UL
c = =

Y7, 14
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Observed Influence of the Reynolds Number

40 < Re < 200
Laminar Separated
\_ﬁ Periodic
0(105) < Re
Turbulent Separation (a) (d)
Chaotic A’_
— c\:_‘jcf;L \K@_ 5 < Re < 40
v:: \//—> (== Laminar Separated
Steady
(b) (e)

200 < Re < O(105) M ‘/\> Re < &
Laminar Separation/ —» — — Creeping Flow/
Turbulent \/’ Lubrication
Wake Periodic \_/\/ Theory (Laminar

(c) (f) Attached Steady)

Image by MIT OpenCourseWare.
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Conservation of Mass and Momentum
fora CM

« Conservation of Mass

— Mass is neither created nor destroyed in the flows of our
engineering interests:

dM .,
dt

=0

« Conservation of Momentum (Newton’s second law)

— Rate of change of momentum can be modified by the action
of forces

d(M V), =
= > F
a oz
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Conservation Laws (Principles/Relations)

fora CV
Mass conservation iy
(summation form): TCV = r, =Y m,,
(integral form): 3 j paV + jp(;r-;l)d/l =0
dt cVv CS
(differential form): ‘Z_p +V.(ov)=0
t

Momentum conservation

d . . - ~ e
(integral form): P ICV pvdV = JCS —PndA + J-CS TdA+ ICV pgd VJ — ICS pv(v . .n)dA

:ZF

&> F= jCS —PiidA + jCS TdA + LV p8dV = % jCV ovdV + jCS PV (V.7i)dA
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Conservation Laws (Principles/Relations)
fora CV

Energy conservation (First Law) ,
(integral form): J-p(u+—+g2]dV O W0 — Ip(k+?+g2)(w )dA

2 2
di;[/ :Q-_sthaﬁ—i_zmin(h—i_%_i_gzj _Zmout(h—i_v?—i_gzj
in in out

out

(summation form):

Second Law of Thermodynamics J o) . o
(integral form): 7 J psav = Z(?] + 8,0 = [ ps(ven)da
(summation form): d‘j{% = Z[%} + 8y, + D (rs), = (nis)

Angular momentum conservation g
(integral form): 2. T= chv p(Fxv)dV + ICS plF x V¥, .ii)dA

Bernoulli Equation (unsteady)

2.29 Numerical Fluid Mechanics PFJL Lecture 5,

9



Vector Operators

Vi = E i+ & j+ > k
. . _ A

Cartesian Coordinates (X, y, z) vei M P A
& & &

vy =LY, 2y, Ty
&’ 3 &

o rap &

od_t 1
Cylindrical Coordinates (r, ¢, z) o ra &

al//z?+—1§"[/é+ L v

Vy = .
or r o0 rsin@ Jop
: . - 1ar*4) 1 Asindy) 1 Ay
Spherical Coordinates (r, 6, ¢) Ved= = " Tone 8 rsnd o

2
sz/:izé{rz &/l}+ 3 1_ ﬁ(sinﬁﬁ‘//)+ 3 1 3 a g/
rea o] r”sinf o0 o0) r7sin” 0 0P
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Material Covered in class

Differential forms of conservation laws (Mass, RTT, Mom. & N-S)

« Material Derivative (substantial/total derivative)

« (Conservation of Mass
— Differential Approach

— Integral (volume) Approach

 Use of Gauss Theorem

— Incompressibility
* Reynolds Transport Theorem
« Conservation of Momentum (Cauchy’s Momentum equations)

* The Navier-Stokes equations
— Constitutive equations: Newtonian fluid

— Navier-stokes, compressible and incompressible
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Integral Conservation Law for a scalar ¢

d d -
{EICM,OWV =} — dp¢dV+j 06 (¥. n)dA = —j g,AdA  + chyf sgdV
?Sgrelsggtelvtluﬁsxes) Other transports (d1ffus1on etc) Ssl‘;lrll(ls(i g;zgr(creesagg gns, et;)
//’p,cp ‘7‘\ Applying the Gauss Theorem, for any arbitrary CV gives:
\
e e opé
C\;\\ ! 5 ——+V.(pgv)=-V. q¢+s
fixed l/:
S o ,' q¢
M R For a common diffusive flux model (Fick’s law, Fourier’s law):
| -

q,=—kV¢

Conservative form ,0¢
_ + V. V.(kV @)+
of the PDE ot (pgv) = V. (kV9) >
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Additional Handouts:
Derivation of Reynolds Transport Theorem

Handouts extracted from pp. 91-93 in Whitaker, S.
Elementary Heat Transfer Analysis. Pergamon Press,
1976. ISBN: 9780080189598
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