
  

 

2.29 Numerical Fluid Mechanics
	
Fall 2011 – Lecture 9
	

REVIEW Lecture 8: 
• Direct Methods for solving linear algebraic equations 
– Gauss Elimination 
• Algorithm 

– Forward Elimination/Reduction to Upper Triangular System 
– Back-Substitution 
– Number of Operations: O(n3) 

• Numerical implementation and stability 
– Partial Pivoting, Equilibration, Full pivoting 
– Well suited for dense matrices, 
– Issues: round-off, cost, does not vectorize/parallelize well 

• Special cases (complex systems, nonlinear systems, Gauss-Jordan) 
• Multiple right hand sides 

3 2 2 3 2 2O n  O pn  )– Computation count: (  pn  )  O  pn  ( ) or O pn  (  pn  )  ( 
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2.29 Numerical Fluid Mechanics
	
Fall 2011 – Lecture 9
	

REVIEW Lecture 8, Cont.: 
• Direct Methods for solving linear algebraic equations
	
– LU decomposition/factorization 
• Separates time-consuming elimination for A from that for b / B 

• Derivation, assuming no pivoting needed: 
• Number of Ops: Same as for Gauss Elimination 
• Pivoting: Use pivot element vector 
• Variations: Doolittle and Crout decompositions, Matrix Inverse  

– Error Analysis for Linear Systems 
• Matrix norms 
• Condition Number for Perturbed RHS and LHS: 

– Special Matrices: Intro 
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LU Decomposition / Factorization
	
via Gauss Elimination, assuming no pivoting needed
	

Sum stops at diagonalResult seems to be a ‘Matrix product’: 
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TODAY (Lecture 9): Systems of Linear Equations III 
• Direct Methods 
– Gauss Elimination 
– LU decomposition/factorization 
– Error Analysis for Linear Systems 
– Special Matrices: LU Decompositions 
• Tri-diagonal systems: Thomas Algorithm 
• General Banded Matrices 

– Algorithm, Pivoting and Modes of storage 
– Sparse and Banded Matrices 

• Symmetric, positive-definite Matrices 
– Definitions and Properties, Choleski Decomposition 

• Iterative Methods 
– Jacobi’s method, 
– Gauss-Seidel iteration 
– Convergence 
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Reading Assignment
	

• Chapter 11 of “Chapra and Canale, Numerical Methods for 
Engineers, 2006.” 
– Any chapter on “Solving linear systems of equations” in CFD 
references provided. For example: chapter 5 of “J. H. Ferziger and M. 
Peric, Computational Methods for Fluid Dynamics. Springer, NY, 3rd 
edition, 2002” 
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Special Matrices
	
• Certain Matrices have particular structures that can be exploited, i.e. 
– Reduce number of ops and memory needs 

• Banded Matrices: 
– Square Matrix that has all elements equal to zero, excepted for a band around 
the main diagonal. 
– Frequent in engineering and differential equations: 
• Tri-diagonal Matrices 
• Wider bands for higher-order schemes 

– Gauss Elimination or LU decomposition inefficient because, if pivoting is not 
necessary, all elements outside of the band remain zero (but direct GE/LU 
would manipulate them anyway) 

• Symmetric Matrices 
• Iterative Methods: 
– Employ Initial guesses, than iterate to refine solution 
– Can be subject to round-off errors 
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Special Matrices: 

Tri-diagonal Systems Example
	

Forced Vibration of a String Example of a travelling pluse: 
f(x,t) 

x i Y(x,t) 

Consider the case of a Harmonic excitation 

f(x,t) =- f(x) cos(t) 

2Applying Newton’s law leads to the wave equation: Y  c Y   f ( , )  x t  tt xx 
With separation of variables, one obtains the  

Y x t  ( )  ( , )   ( )  t  y x  equation for modal amplitudes, see eqn. (1) below: 

Differential Equation for the amplitude: (1) 

Boundary Conditions: 
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Special Matrices: Tri-diagonal Systems
	

Forced Vibration of a String 
Finite Difference 

Y(x,t)x i 

f(x,t) 

Harmonic excitation 

f(x,t) = f(x) cos(t) 

Differential Equation: 

Boundary Conditions: 

(1) 

+ 

y 

Discrete Difference Equations 

Matrix Form: 

Tridiagonal Matrix 

+ O(h2) 

If    symmetric, negative or positive definite: No pivoting needed kh  1 or kh  3 

Note: for 0< kh <1 Negative definite => Write: A’=-A and y '   y ' to render matrix positive definite 
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Special Matrices: Tri-diagonal Systems
	

General Tri-diagonal Systems:  Bandwidth of 3 

Three steps for LU scheme: 

1. Decomposition (GE): 

2. Forward substitution 

3. Backward substitution 

LU Decomposition 
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i 

Special Matrices: Tri-diagonal Systems
	
Thomas Algorithm
	

By identification with the general LU decomposition, 

one obtains, 

1. Factorization/Decomposition 

2. Forward Substitution 

3. Back Substitution 

Number of Operations: Thomas Algorithm 
LU Factorization: 3*(n-1) operations 
Forward substitution: 2*(n-1) operations 
Back substitution: 3*(n-1)+1 operations 
Total: 8*(n-1) ~ O(n) operations 
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Special Matrices:
	
General, Banded Matrix
	

p 
General Banded Matrix (p ≠ q) 

q 

Banded Symmetric Matrix (p = q = b) 

w = 2 b + 1 is called the bandwidth 
b is the half-bandwidth 

0 

0 

p super-diagonals 
q sub-diagonals 
w = p + q + 1 bandwidth 
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Special Matrices:
	
General, Banded Matrix
	

LU Decomposition via Gaussian Elimination 
If No Pivoting: the zeros are preserved 

0 

0 
q 

0 

0 

p 

= = 

i 

j 

i 

j 

( )i (i1)  (i1)  u  a  a  m aij ij ij i i , 1 i1,  j( )ja 
m  ij  0

 if 
j  i    or i  j  q uij  0       if i  j    or j  i  pij ( )ja jj 
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Special Matrices:
	
General, Banded Matrix
	

LU Decomposition via Gaussian Elimination 
With Partial Pivoting (by rows): 

Consider pivoting the 2 rows as below: 

0 

0 

q 

= 

q 

pq 

w 

p 

Then, the bandwidth of L remains unchanged, 

mij  0  if j  i    or i  j  q 

but the bandwidth of U becomes as that of A 

uij  0  if i  j    or j  i  p  q 

w = p + q +1 bandwidth 

2.29 Numerical Fluid Mechanics PFJL  Lecture 9,  13 

13



  

Special Matrices:
	
General, Banded Matrix
	

Compact Storage 

Needed forDiagonal (length n) 

0 

0 

q 

q 

p p 

0 

0 

q 

i i 

Pivoting only 

n – q –1 

j j’=j – i+ q 

Matrix size: n2 Matrix size: n (p+2q+1) 

2.29 Numerical Fluid Mechanics PFJL  Lecture 9,  14 

14



  

Special Matrices:
	
Sparse and Banded Matrix
	

‘Skyline’ Systems 

(typically for symmetric matrices) 

….. 

….. 

….. 

‘Skyline’ 

Storage 

Pointers 1 4 9 11 16 20 
0 

0 

Skyline storage applicable when no pivoting is needed, e.g. for banded, 
symmetric, and positive definite matrices: FEM and FD methods. Skyline solvers 
are usually based on Cholesky factorization (which preserves the skyline) 
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Special Matrices:
	
Symmetric (Positive-Definite) Matrix
	

Symmetric Coefficient Matrices: 
• If no pivoting, the matrix remains symmetric after Gauss Elimination/LU decompositions 

( )k ( )  ( 1)   ( 1)  k k kProof: Show that if  a  a then a  a using:ij ji ij ji 

• Gauss Elimination symmetric (use only the upper triangular portion of A): 

( 1)  k  ( )  k ( )  a  a  m a k 
ij ij ik kj 

( )k 

mik  
a
aki 

( ) , i  k 1, k  2,..., n j  i i, 1,..., nk
 
kk
 

• About half the total number of ops than full GE 
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Special Matrices:
	
Symmetric, Positive Definite Matrix
	

1. Sylvester Criterion: 
A symmetric matrix is Positive Definite if and only if: 
det(Ak) > 0 for k=1,2,…,n, where Ak is matrix of k first lines/columns 

Symmetric Positive Definite matrices frequent in engineering 

2. For a symmetric positive definite A, one thus has the following properties 

a) The maximum elements of A are on the main diagonal
 

b) For a Symmetric, Positive Definite A: No pivoting needed
 

( 1)  k  ( )  ka  2
 ac) The elimination is stable:          

. 

To show this, use  akj 
2  akk a jj inii ii 

( 1)  k  ( )  k ( )  a  a  m a k 
ij ij ik kj 

( )ka m  ki
k i  k  1, k  2,..., n j  i i,  1,..., nik a( ) , 

kk 
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Choleski Factorization 

where 

Special Matrices:
	
Symmetric, Positive Definite Matrix
	

( 1)  k  ( )  k ( )  a  a  m a k 
ij ij ik kj 

The general GE ( )ka mik  ki
k i  k  1, k  2,..., n j  i i  ,  1,..., n 

a( ) , 
kk 

becomes: 

No pivoting needed 

Complex Conjugate and Transpose 
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Linear Systems of Equations: Iterative Methods
	

x 
x 

x 

x x 

xx 

x x 
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0 

0 
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0 

0 
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0 0 

0 

0 

0 

0 

0 

0 

0 

Sparse (large) Full-bandwidth Systems (frequent in practice) 

Iterative Methods are then efficient 

Analogous to iterative methods obtained for roots of equations, 
i.e. Open Methods: Fixed-point, Newton-Raphson, Secant 

Example of Iteration equation 
A x   b  A x   b  0 
x x   A x   b  

1 ( )k k k k  b  x x  A  x  A  I  x  b  

General Stationary Iteration Formula 
1 0,1,2,... k k  ck x  B  x  

Compatibility condition for Ax=b to be the solution: 

Write c C b   ps: B and c could be  
1 1function of k (non-stationary) A b   B A  b   Cb   

1( )   or  I B  A   IC  B  C  A  
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Linear Systems of Equations: Iterative Methods
	
Convergence
	

Convergence Convergence Analysis
 

Iteration – Matrix form 

Sufficient Condition for Convergence: 
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||B||<1 for a chosen matrix norm
	
Infinite norm often used in practice
	

“Maximum Column Sum” 

“Maximum Row Sum” 

“The Frobenius norm” (also called Euclidean 
norm)”, which for matrices differs from: 

“The l-2 norm” (also called spectral norm) 
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Linear Systems of Equations: Iterative Methods
	
Convergence: Necessary and Sufficient Condition
	

Convergence Convergence Analysis 

Iteration – Matrix form 

 

Necessary and Sufficient Condition for Convergence: 

Spectral radius of B is smaller than one:
 
(proof: use eigendecomposition of B) (This ensures ||B||<1)
 

1...
( ) max 1, where eigenvalue( )i i ni 

n n 
     B B 
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Linear Systems of Equations: Iterative Methods
	
Error Estimation and Stop Criterion
	

Express error as a function of latest increment:
 

 

 

If we define  = ||B|| <1, it is only if  <= 0.5 that it is adequate to stop the iteration when 
the last relative error is smaller than the tolerance  (if not, actual errors can be larger) 
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Linear Systems of Equations: Iterative Methods 
General Case and Stop Criteria 

• General Formula 

Axe  b 

x  B x   C b  i   1,2,..... i1 i i i 

• Numerical convergence stops: 

i  nmax 

 xi  xi 1 

 , where ri  Axi  bri  ri 1 

 ri 
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