

2.29 Numerical Fluid MechanicsFall 2011 – Lecture 9

REVIEW Lecture 8:

- Direct Methods for solving linear algebraic equations
	- Gauss Elimination
		- Algorithm
			- Forward Elimination/Reduction to Upper Triangular System
			- Back-Substitution
			- Number of Operations: $O(n^3)$
		- Numerical implementation and stability
			- Partial Pivoting, Equilibration, Full pivoting
			- Well suited for dense matrices,
			- Issues: round-off, cost, does not vectorize/parallelize well
		- Special cases (complex systems, nonlinear systems, Gauss-Jordan)
		- Multiple right hand sides
			- Computation count: $O(n^3 + pn^2) + O(pn^2)$ $\qquad \left($ or $O(pn^3 + pn^2) + O(pn^2)\right)$

2.29 Numerical Fluid MechanicsFall 2011 – Lecture 9

REVIEW Lecture 8, Cont.:

• Direct Methods for solving linear algebraic equations

- LU decomposition/factorization
	- Separates time-consuming elimination for **A** from that for b / **B**

$$
\overline{A} = \overline{L} \cdot \overline{U} \longrightarrow \frac{\overline{\overline{L}}\vec{y}}{\overline{\overline{U}}\vec{x}} = \vec{b}
$$

- $a_{ij} = \sum_{k=1}^{\min(k,j)} m_{ik} a_{kj}^{(k)}$ • Derivation, assuming no pivoting needed:
- Number of Ops: Same as for Gauss Elimination
- Pivoting: Use pivot element vector
- Variations: Doolittle and Crout decompositions, Matrix Inverse
- Error Analysis for Linear Systems
	- Matrix norms
	- Condition Number for Perturbed RHS and LHS:
- Special Matrices: Intro

 $\min(i,j)$

LU Decomposition / Factorization via Gauss Elimination, assuming no pivoting needed

TODAY (Lecture 9): Systems of Linear Equations III

• Direct Methods

- Gauss Elimination
- LU decomposition/factorization
- Error Analysis for Linear Systems
- Special Matrices: LU Decompositions
	- Tri-diagonal systems: Thomas Algorithm
	- General Banded Matrices
		- Algorithm, Pivoting and Modes of storage
		- Sparse and Banded Matrices
	- Symmetric, positive-definite Matrices
		- Definitions and Properties, Choleski Decomposition

• Iterative Methods

- Jacobi's method,
- Gauss-Seidel iteration
- Convergence

Reading Assignment

- Chapter 11 of "Chapra and Canale, Numerical Methods for Engineers, 2006."
	- Any chapter on "Solving linear systems of equations" in CFD references provided. For example: chapter 5 of "J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, NY, 3rd edition, 2002"

Special Matrices

- Certain Matrices have particular structures that can be exploited, i.e.
	- Reduce number of ops and memory needs
- Banded Matrices:
	- Square Matrix that has all elements equal to zero, excepted for a band around the main diagonal.
	- Frequent in engineering and differential equations:
		- Tri-diagonal Matrices
		- Wider bands for higher-order schemes
	- Gauss Elimination or LU decomposition inefficient because, if pivoting is not necessary, all elements outside of the band remain zero (but direct GE/LU would manipulate them anyway)

• Symmetric Matrices

- Iterative Methods:
	- Employ Initial guesses, than iterate to refine solution
	- Can be subject to round-off errors

Special Matrices: Tri-diagonal Systems Example

Forced Vibration of a String Example of a travelling pluse:

Consider the case of a Harmonic excitation

 $f(x,t) = -f(x) \cos(\omega t)$

Applying Newton's law leads to the wave equation: With separation of variables, one obtains the equation for modal amplitudes, see eqn. (1) below:

2

Differential Equation for the amplitude: $\frac{d^2y}{dx^2} + k^2y = f(x)$ (1)

Boundary Conditions:
$$
y(0) = 0
$$
, $y(L) = 0$

Special Matrices: Tri-diagonal Systems

Forced Vibration of a String

Harmonic excitation

$$
f(x,t) = f(x) \cos(\omega t)
$$

Differential Equation:

$$
\frac{d^2y}{dx^2} + k^2y = f(x) \quad (1)
$$

Boundary Conditions:

$$
y(0) = 0 \; , \; y(L) = 0
$$

Finite Difference

$$
\frac{d^2y}{dx^2}\Big|_{x_i} \approx \frac{y_{i-1} - 2y_i + y_{i+1}}{h^2} + O(h^2)
$$

Discrete Difference Equations

$$
y_{i-1} + ((kh)^2 - 2) y_i - y_{i+1} = f(x_i)h^2
$$

Matrix Form:

$$
(kh)^2 - 2 \t 1
$$

1 $(kh)^2 - 2 \t 1$
1 $(kh)^2 - 2$
1 $(kh)^2 - 2$
1 $(kh)^2 - 2$
1 $(fh)^2 - 2$

Tridiagonal Matrix

If *kh* < 1 *or kh* > $\sqrt{3}$ symmetric, negative or positive definite: No pivoting needed

Note: for 0 < kh <1 Negative definite => Write: $A'=-A$ and $\overline{y}'=-\overline{y}'$ to render matrix positive definite

Special Matrices: Tri-diagonal Systems

Special Matrices: Tri-diagonal Systems Thomas Algorithm

By identification with the general LU decomposition, $a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik} a_{ki}^{(k)}$, $m_{ik} = a_{ik}^{(k)}/a_{kk}^{(k)}$

one obtains,

1. Factorization/Decomposition

$$
\frac{1}{b}
$$

$$
\beta_k = \frac{b_k}{\alpha_{k-1}}, \ \alpha_k = a_k - \beta_k c_{k-1}, \ k = 2, 3, \dots n
$$

2. Forward Substitution

$$
y_1 = f_1
$$
, $y_i = f_i - \beta_i y_{i-1}$, $i = 2, 3, ... n$

i 3. Back Substitution $x_n = \frac{y_n}{\alpha_n}$, $x_i = \frac{y_i - c_i x_{i+1}}{\alpha}$, $i = n-1,... 1$

Number of Operations: Thomas Algorithm

LU Factorization: 3*(n-1) operations Forward substitution: 2*(n-1) operations

Back substitution: 3*(n-1)+1 operations Total: $8*(n-1) \sim O(n)$ operations

Special Matrices: General, Banded Matrix

 p super-diagonals *q* sub-diagonals $w = p + q + 1$ bandwidth General Banded Matrix $(p \neq q)$

$$
\begin{cases}\nj > i + p \\
i > j + q\n\end{cases}\n a_{ij} = 0
$$

Banded Symmetric Matrix $(p = q = b)$

$$
a_{ij} = a_{ji}, |i - j| \le b
$$

 $a_{ij} = a_{ji} = 0, |i - j| > b$

 $w = 2 b + 1$ is called the bandwidth *b* is the half-bandwidth

Special Matrices: General, Banded Matrix

LU Decomposition via Gaussian Elimination If **No Pivoting**: the zeros are preserved

Special Matrices: General, Banded Matrix

LU Decomposition via Gaussian Elimination With **Partial Pivoting** (by rows):

Consider pivoting the 2 rows as below:

Then, the bandwidth of L remains unchanged,

$$
m_{ij} = 0 \quad \text{if} \quad j > i \quad \text{or} \quad i > j + q
$$

but the bandwidth of U becomes as that of A

$$
u_{ij} = 0 \quad \text{if} \quad i > j \quad \text{or} \quad j > i + p + q
$$

 $w = p + q + 1$ bandwidth

13

Special Matrices: General, Banded Matrix **Compact Storage**

Special Matrices: Sparse and Banded Matrix **'Skyline' Systems (typically for symmetric matrices)**

Skyline storage applicable when no pivoting is needed, e.g. for banded, symmetric, and positive definite matrices: FEM and FD methods. Skyline solvers are usually based on Cholesky factorization (which preserves the skyline)

Special Matrices: Symmetric (Positive-Definite) Matrix

Symmetric Coefficient Matrices:

• If no pivoting, the matrix remains symmetric after Gauss Elimination/LU decompositions

Proof: Show that if $a_{ij}^{(k)} = a_{ji}^{(k)}$ then $a_{ij}^{(k+1)} = a_{ji}^{(k+1)}$ using:

 $a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik} a_{ki}^{(k)}, \ \ m_{ik} = a_{ik}^{(k)}/a_{kk}^{(k)}$

• Gauss Elimination symmetric (use only the upper triangular portion of **A**):

$$
a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik} a_{kj}^{(k)}
$$

$$
m_{ik} = \frac{a_{ki}^{(k)}}{a_{kk}^{(k)}}, \qquad i = k+1, k+2, ..., n \qquad j = i, i+1, ..., n
$$

• About half the total number of ops than full GE

Special Matrices: Symmetric, Positive Definite Matrix

1. Sylvester Criterion:

A symmetric matrix is Positive Definite if and only if: $det(\mathbf{A}_k) > 0$ for $k=1,2,...,n$, where \mathbf{A}_k is matrix of *k* first lines/columns

Symmetric Positive Definite matrices frequent in engineering

2. For a symmetric positive definite A, one thus has the following properties

a) The maximum elements of **A** are on the main diagonal

b) For a Symmetric, Positive Definite **A**: No pivoting needed

c) The elimination is stable: $\left|a_{ii}^{(k+1)}\right| \leq 2\left|a_{ii}^{(k)}\right|$ To show this, use $a_{kj}^2 \leq a_{kk}a_{jj}$ in $m_{ik} = \frac{a_{ki}^{(k)}}{(k)}$, $i = k + 1, k + 2, ..., n$ $j = i, i + 1, ..., n$ $a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik} a_{kj}^{(k)}$ $a_{\scriptscriptstyle kk}^{\scriptscriptstyle (k)}$,

2.29 Numerical Fluid Mechanics PFJL Lecture 9, 17

17

Special Matrices: Symmetric, Positive Definite Matrix

The general GE
$$
\begin{cases} a_{ij}^{(k+1)} = a_{ij}^{(k)} - m_{ik} a_{kj}^{(k)} & a_{ij} = \sum_{k=1}^{\min(i,j)} m_{ik} a_{kj}^{(k)} \\ m_{ik} = \frac{a_{ki}^{(k)}}{a_{kk}^{(k)}}, \quad i = k+1, k+2, ..., n \quad j = i, i+1, ..., n \end{cases}
$$
 becomes:
$$
\overline{\overline{\mathbf{A}}} = \overline{\overline{\mathbf{L}} \mathbf{U}} = \overline{\overline{\mathbf{U}}}^{\dagger} \overline{\overline{\mathbf{U}}}
$$

$$
\textbf{Choleski Factorization} \qquad \qquad \overline{\overline{\mathbf{U}}}^{\dagger} = [m_{ij}]
$$

 \overline{a}

where

$$
m_{kk} = (a_{kk} - \sum_{\ell=1}^{k-1} m_{k\ell} \overline{m}_{k\ell})^{1/2}
$$

\n
$$
m_{ik} = \frac{a_{ik} - \sum_{\ell=1}^{k-1} m_{i\ell} \overline{m}_{k\ell}}{m_{kk}}, i = k+1,...n
$$

\n
$$
k = 1,...n
$$

\nNo pivoting needed

Complex Conjugate and Transpose

Linear Systems of Equations: Iterative Methods

Sparse (large) Full-bandwidth Systems (frequent in practice)

Iterative Methods are then efficient

Analogous to iterative methods obtained for roots of equations, i.e. Open Methods: Fixed-point, Newton-Raphson, Secant

Example of Iteration equation

$$
\mathbf{A} \mathbf{x} = \mathbf{b} \implies \mathbf{A} \mathbf{x} - \mathbf{b} = 0
$$

$$
\mathbf{x} = \mathbf{x} + \mathbf{A} \mathbf{x} - \mathbf{b} \implies
$$

$$
\mathbf{x}^{k+1} = \mathbf{x}^k + \mathbf{A} \mathbf{x}^k - \mathbf{b} = (\mathbf{A} + \mathbf{I}) \mathbf{x}^k - \mathbf{b}
$$

 $\left\{\begin{array}{c} \Rightarrow \text{ $p_{\textnormal{s}}$: \mathbf{B} and \mathbf{c} could be}\ \text{function of k (non-stationary) \quad $\mathbf{A}^{-1}\mathbf{b}=\mathbf{B}\mathbf{A}^{-1}\,\mathbf{b}+\mathbf{C}\mathbf{b}$} \end{array} \right\} \quad \Rightarrow$

General Stationary Iteration Formula

$$
\mathbf{x}^{k+1} = \mathbf{B} \mathbf{x}^k + \mathbf{c} \qquad k = 0, 1, 2, \dots
$$

Compatibility condition for **Ax** = **b** to be the solution:

$$
\begin{array}{ll}\n\text{ps: } \mathbf{B} \text{ and } \mathbf{c} \text{ could be} \\
\text{function of } k \text{ (non-stationary)} & \mathbf{A}^{-1} \mathbf{b} = \mathbf{B} \mathbf{A}^{-1} \mathbf{b} + \mathbf{C} \mathbf{b}\n\end{array}
$$

$$
(\mathbf{I} - \mathbf{B})\mathbf{A}^{-1} = \mathbf{C} \text{ or } \mathbf{B} = \mathbf{I} - \mathbf{C}\mathbf{A}
$$

Linear Systems of Equations: Iterative Methods **Convergence**

Convergence Convergence Analysis

$$
\|\overline{\mathbf{x}}^{(k+1)} - \overline{\mathbf{x}}\| \to 0 \text{ for } k \to \infty
$$

Iteration – Matrix form

$$
\overline{\mathbf{x}}^{(k+1)} = \overline{\mathbf{B}} \overline{\mathbf{x}}^{(k)} + \overline{\mathbf{c}}, k = 0, \dots
$$

$$
\overline{\mathbf{x}}^{(k+1)} = \overline{\overline{\mathbf{B}}}\overline{\mathbf{x}}^{(k)} + \overline{\mathbf{c}}
$$

$$
\overline{\mathbf{x}} = \overline{\overline{\mathbf{B}}}\overline{\mathbf{x}} + \overline{\mathbf{c}}
$$

$$
\Rightarrow \overline{\mathbf{x}}^{(k+1)} - \overline{\mathbf{x}} = \overline{\overline{\mathbf{B}}} (\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}})
$$

$$
= \overline{\overline{\mathbf{B}}} \cdot \overline{\overline{\mathbf{B}}} (\overline{\mathbf{x}}^{(k-1)} - \overline{\mathbf{x}})
$$

$$
= \overline{\overline{\mathbf{B}}}^{k+1} \left(\overline{\mathbf{x}}^{(0)} - \overline{\mathbf{x}} \right)
$$

$$
\left\|\overline{\mathbf{x}}^{(k+1)} - \overline{\mathbf{x}}\right\| \le \left\|\overline{\overline{\mathbf{B}}}^{k+1}\right\| \left\|\overline{\mathbf{x}}^{(0)} - \overline{\mathbf{x}}\right\| \le \left\|\overline{\overline{\mathbf{B}}}\right\|^{k+1} \left\|\overline{\mathbf{x}}^{(0)} - \overline{\mathbf{x}}\right\|
$$

Sufficient Condition for Convergence:

$$
\left\| \overline{\overline{\mathbf{B}}} \right\| < 1
$$

||B||<1 for a chosen matrix norm Infinite norm often used in practice

$$
||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|
$$

$$
||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^n |a_{ij}|
$$

$$
||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}
$$

$$
||A||_2 = \sqrt{\lambda_{\max}(A^*A)}
$$

"Maximum Column Sum"

"Maximum Row Sum"

"The Frobenius norm" (also called Euclidean norm)", which for matrices differs from:

"The l-2 norm" (also called spectral norm)

Linear Systems of Equations: Iterative Methods Convergence: Necessary and Sufficient Condition

Convergence Convergence Analysis

$$
\left\|\overline{\mathbf{x}}^{(k+1)} - \overline{\mathbf{x}}\right\| \to 0 \text{ for } k \to \infty
$$

Iteration – Matrix form

$$
\overline{\mathbf{x}}^{(k+1)} = \overline{\mathbf{B}} \overline{\mathbf{x}}^{(k)} + \overline{\mathbf{c}}, k = 0, \dots
$$

$$
\overline{\mathbf{x}}^{(k+1)} = \overline{\overline{\mathbf{B}}}\overline{\mathbf{x}}^{(k)} + \overline{\mathbf{c}}
$$

$$
\overline{\mathbf{x}} = \overline{\overline{\mathbf{B}}}\overline{\mathbf{x}} + \overline{\mathbf{c}}
$$

$$
\Rightarrow \overline{\mathbf{x}}^{(k+1)} - \overline{\mathbf{x}} = \overline{\overline{\mathbf{B}}} (\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}})
$$

$$
= \overline{\overline{\mathbf{B}}} \cdot \overline{\overline{\mathbf{B}}} (\overline{\mathbf{x}}^{(k-1)} - \overline{\mathbf{x}})
$$

$$
= B \left(\overline{\mathbf{x}}^{(0)} - \overline{\mathbf{x}} \right)
$$

 $=k+1$ (a)

$$
\left|\overline{\mathbf{x}}^{(k+1)}-\overline{\mathbf{x}}\right\|\leq\left\|\overline{\overline{\mathbf{B}}^{k+1}}\right\|\left\|\overline{\mathbf{x}}^{(0)}-\overline{\mathbf{x}}\right\|\leq\left\|\overline{\overline{\mathbf{B}}}\right\|^{k+1}\left\|\overline{\mathbf{x}}^{(0)}-\overline{\mathbf{x}}\right\|
$$

Necessary and Sufficient Condition for Convergence:

Spectral radius of **B** is smaller than one: (proof: use eigendecomposition of **^B**) (This ensures || **B**||<1) 1... () max 1, where eigenvalue() *i i n ⁱ n n* **BB** 2.29 Numerical Fluid Mechanics PFJL Lecture 9, 22

Linear Systems of Equations: Iterative Methods Error Estimation and Stop Criterion

Express error as a function of latest increment:

$$
\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}} = \overline{\overline{\mathbf{B}}} (\overline{\mathbf{x}}^{(k-1)} - \overline{\mathbf{x}}) \qquad \pm \overline{\overline{\mathbf{B}}} \overline{\mathbf{x}}^{(k)}
$$

$$
= -\overline{\overline{\mathbf{B}}} (\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}}^{(k-1)}) + \overline{\overline{\mathbf{B}}} (\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}})
$$

$$
\Rightarrow \quad \left\| \overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}} \right\| \leq \; \left\| \overline{\overline{\mathbf{B}}} \right\| \left\| \overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}}^{(k-1)} \right\| + \left\| \overline{\overline{\mathbf{B}}} \right\| \left\| \overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}} \right\|
$$

$$
\left\|\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}}\right\| \le \frac{\left\|\overline{\overline{\mathbf{B}}}\right\|}{1 - \left\|\overline{\overline{\mathbf{B}}}\right\|} \left\|\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}}^{(k-1)}\right\|
$$

$$
\left\|\overline{\overline{\mathbf{B}}}\right\| < 1/2 \Rightarrow \left\|\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}}\right\| \le \left\|\overline{\mathbf{x}}^{(k)} - \overline{\mathbf{x}}^{(k-1)}\right\|
$$

If we define β = ||B|| <1, it is only if β <= 0.5 that it is adequate to stop the iteration when the last relative error is smaller than the tolerance (if not, actual errors can be larger)

Linear Systems of Equations: Iterative Methods General Case and Stop Criteria

• General Formula

$$
Ax_e = b
$$

$$
x_{i+1} = B_i x_i + C_i b
$$
 $i = 1, 2,$

• Numerical convergence stops:

$$
i \le n_{\max}
$$

\n
$$
||x_i - x_{i-1}|| \le \varepsilon
$$

\n
$$
||r_i - r_{i-1}|| \le \varepsilon, \text{ where } r_i = Ax_i - b
$$

\n
$$
||r_i|| \le \varepsilon
$$

2.29 Numerical Fluid Mechanics Fall 2011

For information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>.