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Abstract
Early signs of patient deterioration have been documented in the medical literature.
Recognition of such signs offers the possibility of treatment with sufficient lead time
to prevent irreversible organ damage and death. Pediatric hospitals currently utilize
simple, human evaluated rubrics called early warning scores to detect early signs of
patient deterioration. These scores comprise subjective (patient behavior, clinician's
impression) and objective (vital signs) components to assess patient health and are
computed intermittently by the nursing staff. At Boston Children's Hospital (BCH),
early warning scores are evaluated at least every four hours for each patient.

Many hospitals monitor inpatients continuously to alert caregivers to changes in
physiological status. At BCH, each hospital bed is equipped with a bedside monitor
that continuously collects and archives vital sign data, such as heart rate, respiration
rate, and arterial oxygen saturation. Continuous access to these physiological variables
allows for the definition of a continuously evaluated early warning score on a reduced
rubric.

This thesis quantitatively assesses the performance of BCH's current Children's Hos-
pital Early Warning Score (CHEWS). We also apply several standard machine learning
approaches to investigate the utility of automatically collected bedside monitoring trend
data for prediction of patient deterioration. Our results suggest that CHEWS offers
at least a 6-hour warning with sensitivity 0.78 and specificity 0.90 but only with a
prohibitively large uncertainty (48 hours) surrounding the time of transfer. Perfor-
mance using only standard bedside trend data is no better than chance; improvement
may require exploiting additional intra-beat features of monitored waveforms. The full
CHEWS appears to capture significant clinical features that are not present in the
monitoring data used in this study.

Thesis Supervisor: Thomas Heldt
Title: Principal Research Scientist

Thesis Supervisor: George C. Verghese
Title: Henry Ellis Warren Professor

Professor of Electrical and Biomedical Engineering

3



4



Acknowledgments

This thesis is the product of contributions from many individuals, each of whom has
been crucial to shaping its final form. Each has earned my gratitude and deserves
recognition.

Thomas Heldt, my primary research supervisor, for his patience, support, and guidance.

George Verghese, for pushing me to never compromise on clarity and his eye for detail.

BCH collaborators, especially Drs. Monica Kleinman and Paul Hickey, Christine Dube,
Justine Bode, and Rachel Dabek, for their clinical perspective and responsiveness to
my questions.

Steve Kogon, Dan Rabideau, Jenn Watson, and the Lincoln Scholars committee, for
encouraging and enabling intellectual growth.

The Computational Physiology and Clinical Inference group, especially Sho Chaudhuri
and Becky Asher, for productive discussions and proof reading.

Parents and family members, for their support, confidence, and unconditional love
throughout this thesis and my life.

Mary, Queen of Saints, for interceding before God in order that I may have been granted
the grace of perseverance to see this thesis through to its conclusion, and God, for
granting that grace.

This work is sponsored by AFLCMC/PZE under Air Force Contract FA8721-05-C-0002. Opinions,
interpretations, conclusions and recommendations are those of the authors and are not necessarily
endorsed by the United States Government. This work has also been sponsored in part by the Children's
Hospital Anesthesia Foundation, Boston Children's Hospital.

5



6



Contents

Abstract 3

Acknowledgments 5

List of Figures 11

List of Tables 13

1 Pediatric Early Warning Scores 15
1.1 Project Background and Problem Statement ................ 16

1.1.1 Medical Need ............................. 16
1.1.2 Early Warning Scores . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1.3 Multivariate Bedside Data . . . . . . . . . . . . . . . . . . . . . . 19
1.1.4 Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.1.5 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Vital Signs and Research Database 27
2.1 BCH-MIT Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Thesis-Specific Data . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 Vital Signs: A Closer Look . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Heart Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Respiration Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.3 Blood Oxygenation . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.4 Blood Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.5 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Physiological Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Physiology of Cardiopulmonary Decompensation . . . . . . . . . . . . . 42

2.4.1 Respiratory Distress and Failure . . . . . . . . . . . . . . . . . . 43
2.4.2 Sepsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 General Observations on Feature Rubrics . . . . . . . . . . . . . . . . . 45

7



8 CONTENTS

3 Data Exploration
3.1 Transfer Population . . . . . . . .
3.2 Transfer Reason and Call Type
3.3 CHEWS Distribution vs. Time
3.4 CHEWS Transition Probabilities
3.5 CHEWS Underscoring . . . . . . .
3.6 Measurement Frequency . . . . . .
3.7 Vital Sign Trajectories . . . . . . .
3.8 Bisected Changes Over Time . . .
3.9 Human Classification Performance
3.10 Data Exploration Summary . . . .

4 Classification and Prediction
4.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Decision Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2.1 MAP Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . .
4.2.3 Decision Rule Complexity . . . . . . . . . . . . . . . . . . . . .

4.3 CHEWS and rCHEWS Classification . . . . . . . . . . . . . . . . . .
4.3.1 MAP Classification . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2 SVM Classification . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.3 rCHEWS Classification Method . . . . . . . . . . . . . . . . . .
4.3.4 Classification Results . . . . . . . . . . . . . . . . . . . . . . . .

4.4 The Prediction Problem . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.1 Data Window, Uncertainty Window, and Observation Window
4.4.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.3 The ROC with UW and WT . . . . . . . . . . . . . . . . . . .
4.4.4 ROC Calculation . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.5 ROC Discussion . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.6 Understanding Published Results with UW and WT . . . . . .

4.5 CHEWS and rCHEWS Prediction . . . . . . . . . . . . . . . . . . . .
4.5.1 SVM Training for Prediction . . . . . . . . . . . . . . . . . . .
4.5.2 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.3 Prediction Results . . . . . . . . . . . . . . . . . . . . . . . . .

4.6 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Modified rCHEWS
5.1 BCH Age-Normalized Trend Data
5.2 Resampling and SVM Retraining
5.3 The Misclassified Misfits . . . . . .
5.4 Using Age . . . . . . . . . . . . . .
5.5 Custom Features . . . . . . . . . .

49
49
52
54
56
58
61
62
64
70
73

75
76
77
78
80
84
85
86
87
87
88
90
91
94
98

100
104
108
113
113
114
115
117

119
119
124
127
128
128

8 CONTENTS



CONTENTS 9

6 Conclusion and Future Work 133

A Classification Self Test 139

Bibliography 166



CONTENTS10



List of Figures

1.1 Typical bedside monitoring data. . . . . . . . . . . . . . . . . . . . . . . 21

2.1 BCH Children's Hospital Early Warning Score algorithm. . . . . . . . . 31
BCH normal vital sign ranges. . . . . . . . . . . .
Standard ECG features. . . . . . . . . . . . . . . .
ECG with the derived heart rate. . . . . . . . . . .
Oxygen hemoglobin disassociation curve. . . . . . .
Arterial blood pressure waveform .. . . . . . . . . .
Windkessel model of the heart. . . . . . . . . . . .
Respiration rate from plethysmogram. . . . . . . .

Study population gender comparison. . . . . . . . .
BCH control population by age over 12 months..
BCH transfer population by age over 12 months.
Control and transfer male to female ratios by age.
Transfer reason vs. call type . . . . . . . . . . . . .
Transfer patient mean time until transfer after first
Control: mean score vs. time . . . . . . . . . . . .
Transfer: mean score vs. time . . . . . . . . . . . .
Control: score distributions vs. time . . . . . . . .
Transfer: score distributions vs. time . . . . . . . .
Control: selected score distributions vs time . . . .
Transfer: selected score distributions vs. time . . .
Mean CHEWS and +/ - 1 standard deviation for
patients. . . . . . . . . . . . . . . . . . . . . . . . .
Transition probability: control patients. . . . . . .
Transition probability: transfer patients. . . . . . .
Control: CHEWS score evaluation frequency . . .
Transfer: CHEWS score evaluation frequency . . .
Decompensating transfer patient. . . . . . . . . . .
Stable control patient. . . . . . . . . . . . . . . . .

. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .
threshold crossing.

control and transfer

2.2

2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

3.14
3.15
3.16
3.17
3.18
3.19

32
35
35
37
39
40
42

50
51
52
53
54
55
57
57
57
57
58
58

59
60
60
62
62
63
65

11



12 LIST OF FIGURES

3.20
3.21
3.22
3.23
3.24
3.25
3.26

4.1
4.2
4.3
4.4
4.5
4.6

Unstable control patient . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Heart rate changes over time. . . . . . . . . . . . . . . . . . . . . . . . . 67
Respiration rate changes over time. . . . . . . . . . . . . . . . . . . . . . 68
SpO2 changes over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Self test performance by evaluator. . . . . . . . . . . . . . . . . . . . . . 71
Self test performance by patient. . . . . . . . . . . . . . . . . . . . . . . 71
Justification key words . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Decision rule examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
SVM rule example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
SVM quadratic kernel example. . . . . . . . . . . . . . . . . . . . . . . . 83
Notional simple and complex decision rules. . . . . . . . . . . . . . . . . 84
WT and UW relative to threshold crossing. . . . . . . . . . . . . . . . . 92
Observation window with non-zero warning time. . . . . . . . . . . . . . 93

4.7 Different threshold-crossing time-points with the same sensitivity. . . . .
4.8 Different threshold-crossing time-points with the same sensitivity, WT=0.
4.9 Generic ROC heat map. . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.10 Examples of correct detection of need to transfer. . . . . . . . . . . . . .
4.11 Relationship of small and large UW with specificity for ROCv2. . . . . .
4.12 Algorithm sensitivity comparison under ROCv2. . . . . . . . . . . . . .
4.13 ROCv2 heat map for OW=24 hours. . . . . . . . . . . . . . . . . . . . .
4.14 ROCv2 heat map for OW=48 hours. . . . . . . . . . . . . . . . . . . . .

5.1 BCH age-normalized AUC pt HR . . . . . . . . . . . . . . . . . . . . . .
5.2 BCH age-normalized AUC pt RR . . . . . . . . . . . . . . . . . . . . . .
5.3 BCH age-normalized respiration rate: overlap . . . . . . . . . . . . . . .
5.4 BCH age-normalized heart rate and respiration rate used jointly for pre-

diction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5 BCH age-normalized heart rate and respiration rate with resampling used

jointly for classification . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6 Heart rate and respiration as vital signs, Gaussian normalized values,

age is used as a feature. . . . . . . . . . . . . . . . . . . . . . . . . . . .

95
97
99

103
105
107
110
112

121
121
122

124

125

129

12 LIST OF FIGURES



List of Tables

1.1 Example pediatric early warning score (PEWS) rubric. . . . . . . . . . . 18

2.1 BCH mapping from age group name to age bracket in years. . . . . . . . 33

3.1 CHEWS underscoring phenomenon . . . . . . . . . . . . . . . . . . . . . 61

4.1 MAP and SVM classification with WT=O hours. . . . . . . . . . . . . . 89

4.2 MAP and SVM classification with WT=6 hours. . . . . . . . . . . . . . 89

4.3 Selected ROC Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 ROC performance from literature as well as ROCv2 results ("mimic")

using BCH CHEWS scores. . . . . . . . . . . . . . . . . . . . . . . . . .111

4.5 CHEWS prediction summary . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6 rCHEWS prediction summary . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1 Custom Feature Classification Performance via SVM . . . . . . . . . . . 131

13



14 LIST OF TABLES



Chapter 1

Pediatric Early Warning Scores

Patients admitted to the regular hospital ward or floor for observation or treatment

commonly have a small number of physiological signals monitored continuously as part

of their care. While the vast majority of these patients improve, a small subset might ex-

perience adverse events that necessitate transfer of the patient to a higher level of care,

usually an intensive care unit (ICU). The question then naturally arises whether the

transfer could have been predicted and consequently prevented, or carried out sooner.

To help in the identification of patients at risk of acute physiological deterioration, clini-

cians have developed early warning scores that summarize, in a single number, the state

of various organ systems. While useful, these scores still rely on intermittent human

assessment of each patient. This thesis (i) quantitatively assesses the performance of a

pediatric early warning score in use at a collaborating hospital, and (ii) investigates to

what extent the continuously recorded physiological signals can be fused to aid in the

automatic identification of the patient at risk of transfer to the ICU.

Section 1.1 describes the context and goals for this thesis. Section 1.2 outlines

the thesis's contributions, and Section 1.3 describes the organization of the remaining

chapters.

15



16 CHAPTER 1. PEDIATRIC EARLY WARNING SCORES

0 1.1 Project Background and Problem Statement

To motivate this thesis and provide context for its contributions, Section 1.1.1 discusses

the current medical need for early warning scores, and Section 1.1.2 reviews the current

literature. Sections 1.1.3 and 1.1.4 summarize the data available for automatic trans-

fer prediction and how that data can be processed. Section 1.1.5 defines the specific

problem addressed by this thesis.

* 1.1.1 Medical Need

Physiological decompensation is a state in which the body can no longer maintain home-

ostasis [1]. It can result from a variety of circumstances, such as strenuous exercise or

disease progression. Studies have shown that decompensation or adverse events due to

disease progression are associated with lower survival [2]. However, such decompensa-

tion might be predicted. For example, early signs of cardiac arrest [3] or the need for

transfer to the ICU have been reported [4-6]. Such prediction can enable more timely

and effective clinical intervention.

A study by McQuillan et al. observed that 39% of ward patients requiring transfer

to the ICU were transferred late, and that suboptimal care definitely contributed to

increased morbidity and mortality in 32.5% of the transfer patients [5]. Similar trends

were identified in another study [4]. Therefore, if a patient is going to enter a decompen-

satory state, it would be best if the patient did so while in the ICU, where appropriate

support and a higher level of care are immediately available. McQuillan et al. also

observed that some transfers could have been prevented completely if appropriate ac-

tion had been taken ahead of the transfer [5]. This is of note because among patients

transferred from the wards to the ICU, the emergency department, the operating room,

or the recovery room, patients transferred from the wards were most likely to die [7].

Though it is important to transfer patients in a timely manner to the ICU if nec-
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essary, it may be even better to anticipate or identify a decompensatory event with

sufficient lead time so its occurrence can be averted altogether. This is because ICUs

themselves can be dangerous environments, perhaps because of the complexity and in-

vasiveness of the interventions. Between 11.9% and 19% of patients in a pediatric ICU

(PICU) have been shown to develop infections, especially of the blood stream [8,9]. A

survey of 220 ICUs across twenty-nine nations found significant ICU errors at a rate

of 38.8 events per 100 patient days. These errors included incorrect or inappropriate

medication, equipment failures, and inappropriate monitor alarm silencing [10]. Turn-

ing off alarms stems from alarm fatigue due to the abundance and frequency of monitor

alarms. Vendors have erred on the side of high sensitivity at the cost of low specificity,

which is borne out by less than 1% of alarms resulting in a change in patient care [11].

A further need for early identification of impending decompensation is to prevent

irreversible end-organ damage. Nguyen et al. have concluded that "[t]he care provided

during the [emergency department] stay for critically ill patients significantly impacts

the progression of organ failure and mortality. Although this period is brief compared

with the total length of hospitalization, physiologic determinants of outcome may be

established before ICU admission" [12]. Early goal-directed therapy (EGDT) has also

been advocated, especially for sepsis management, by Rivers et al.. They showed a

decrease of in-hospital mortality for patients with severe sepsis and septic shock when

EGDT was implemented [13].

0 1.1.2 Early Warning Scores

Because adverse events do have warning signatures, investigators have promoted clinical

decision making aids, called Early Warning Scores (EWS), to ensure care keeps pace

with patient condition [14]. The scores are a quantitative method for monitoring a

patient's condition and appropriately escalating care if conditions worsen. They are an



Table 1.1: Pediatric early warning score (PEWS) rubric from Royal Alexandra Chil-
dren's Hospital, Brighton, UK [15].

System Subscore 0 1 2 3
Behavior Playing/ appro- Sleeping Irritable Lethargic or con-

priate fused. Reduced re-
sponse to pain.

Cardiovascular Pink or capillary Pale or capillary re- Grey or capillary Grey and mottled
refill 1-2 seconds fill 3 seconds refill 4 seconds. or capillary refill 5

Tachycardia of 20 seconds or above.
above normal rate Tachycardia of 30

above normal rate
or bradycardia

Respiratory Within normal >10 above normal >20 above normal 5 below normal
parameters, no parameters, using parameters, recess- parameters with
recession or accessory muscles, ing tracheal tug, sternal recession,
tracheal tug 30+% FiO2 or 4+ 40+% FiO2 or 6+ tracheal tug or

L/min L/min grunting, 50+%
FiO2 or 8+ L/min

Score 2 extras for 1/4 hourly nebulisers or persistent vomiting following surgery

example of high-level information fusion.

Pediatric early warning scores (PEWS) are a relatively recent invention and can

vary in complexity [15, 16]. Like EWS rubrics, PEWS evaluate the patient in three

categories: cardiovascular health, respiratory health, and neurological health. The

information feeding into the categories includes vital signs such as heart rate, blood

pressure, oxygenation, respiratory rate, and temperature, as well as an assessment of

behavior and alertness. Fundamentally, PEWS and EWS are the same, with the only

significant difference being the age-adapted ranges of normal vital signs. Deviations of

the vital signs from normative values are scored based on severity, and category scores

are summed to create a total score. The total score determines a particular action,

such as continued four-hour assessment, increased frequency of assessment, evaluation

for transfer, or immediate transfer to the PICU [17]. An example of a PEWS rubric is

shown in Table 1.1.

PEWS have become widely implemented and show signs of success. A retrospective

study found that 85.5% of patients transferred to the PICU showed a critical score at

18 CHAPTER 1. PEDIATRIC EARLY WARNING SCORES
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a median time of 11 hours and 36 minutes before transfer [18]. Duncan used a twenty-

feature PEWS card specifically for identifying children in danger of cardiopulmonary

arrest [161. The rubric identified such children one hour prior to an event with a

sensitivity of 78% and specificity of 95%. These lead times offer strong promise for

the utility of PEWS. However, a recent PEWS review paper argues that there exists a

shortage of rigorous validation for many of the proposed algorithms. Furthermore, the

authors argue that clincially useful tools must be simple, with low inter- and intra-user

variability [17]. Nonetheless, several studies have found that aggressive care for at-

risk pediatric patients, identified through some mixture of physiological indicators, can

positively impact patients by reducing respiratory and cardiac code (i.e., emergency)

rates and mortality on the general ward [19-21], and ICU mortality [22].

Various hospitals have either directly adopted PEWS algorithms published in the

literature or adopted them with variations. These include Children's Hospital of Denver,

Children's Hospital of Orange County, and Boston Children's Hospital (BCH). The

BCH early warning score (CHEWS score) is especially relevant to this thesis because

of the MIT-BCH collaboration that supports this research.

E 1.1.3 Multivariate Bedside Data

Prior to the early 1900s, bedside monitoring consisted of taking a patient's temperature

and heart rate at regular intervals [23]. Gradually, the importance of charting these

measurements over time as well as adding a quantifiable blood pressure measurement to

the list became recognized. Today, the common vital signs are heart rate, temperature,

blood pressure, respiration rate, and arterial oxygen saturation, many of which are

monitored continuously in the hospital setting.

Bedside monitors aid in quantifying and tracking patient condition. They are preva-

lent on the general floor, in the ICU, and in the operating room. A multitude of devices
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that measure vital signs are plugged into the bedside monitor. In addition to tem-

perature and blood pressure sensors, the electrocardiogram (ECG) and pulse oximeter

are routinely employed. On the wards, the continuously-monitored vital signs that are

most frequently available are heart rate, respiration rate, and arterial oxygen satura-

tion. Temperature and blood pressure are assessed periodically, approximately every

four hours.

The ECG is a voltage-versus-time waveform that characterizes the electrical activity

of the heart, and is commonly used to calculate the heart rate. The respiration rate can

also be derived from the ECG leads through measurements of the associated variation

in transthoracic impedance, or through analysis of the ECG waveform itself, because

the waveform is modulated by respiration [24].

The pulse oximeter primarily measures the relative amount of oxygen bound to

hemoglobin, to determine arterial blood oxygenation (SpO 2 ). The spectroscopy under-

lying the pulse oximeter's function requires measuring the change in blood volume at

the site of interest, for example a finger, which creates the pulse plethysmogram (PPG)

waveform. This waveform can also be used to derive pulse rate and respiration rate [25].

Through the integration of the bedside monitors to a central server, the data from

a dozen to two-dozen patient monitors is streamed to a central nursing station for

continuous observation. The logged waveforms become part of the patient's medical

record for review by clinicians.

Example vital sign data from a nine-year-old male patient and associated CHEWS

scores are shown in Figure 1.1. (Chapter 2 discusses interpreting the data in this figure

with respect to the prediction problem.) Data is referenced to the call time at time 0

in all subplots. Call time is the time at which the decision for transfer from the general

ward to the ICU is made (magenta line). The first subplot shows the CHEWS score as

documented by BCH clinicians and color coded by severity. A CHEWS score between
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Figure 1.1: Patient HH579. CHEWS scores and vital signs of a nine-year-old male
patient on the general floor. Units for the subplots are respectively: arbitrary units,
beats per minute, breaths per minute, oxygen hemoglobin saturation percentage, and
millimeters mercury.
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zero and two (green) denotes a stable patient; a score of three (yellow) or four (orange)

indicates a patient who warrants either increased monitoring or possible evaluation for

transfer to the ICU. A score greater than or equal to five (red) demands immediate

transfer to the ICU. The other four subplots show the trends of heart rate, respiration

rate, blood oxygenation, and intermittent blood pressure measurements. Data colored

blue come from a general ward monitor, and data colored green (not shown in Figure

1.1) come from an ICU monitor. Data colored blue may persist after the call time

because the patient was not transferred immediately to the ICU. Each blood pressure

measurement has three values: the top and bottom triangles represent the systolic

and diastolic pressure, and the circle represents the mean. Thin horizontal black lines

represent the upper and lower ranges of normal physiological values for the patient's age

and gender, as specified by BCH. For blood pressure in particular, the solid black lines

represent the normal systolic range, and the dashed black lines represent the normal

diastolic range.

0 1.1.4 Sensor Fusion

Bedside monitoring produces plentiful and diverse data, providing an ideal opportunity

for sensor fusion of this data to characterize the patient. Sensor fusion is a process in

which information from multiple sources is merged in order to infer characteristics of

the object of interest. Sensor fusion can yield improved parameter estimation through

the use of redundant measurements. Furthermore, it can offer a more complete picture

as some sensors can provide information about the object of interest that others cannot

provide. However, some of the advantages of sensor fusion may also be among its

weak points. It is possible to corrupt "good data" with "bad data", and to formulate

erroneous conclusions unless the combining framework is systematic and robust [26].

An architecture for sensor fusion involves several levels of processing raw data into
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actionable intelligence. Lower-level processing may analyze the raw signals separately

to detect bad data, extract relevant features, or make simple logic-based decisions.

Low-level features include general linear trends or abrupt departures from previous

history. High-level processing considers the data jointly to extract features and to

make decisions. Joint feature extraction or decision making is the first form of sensor

fusion. A fusion step may use physical models that relate two or more processes to

derive features, or it may look at the numerical behavior of the data such as the cross-

correlation between the two processes. Both individual and joint features and decisions

may then be combined at the highest level of processing to determine decisions through

neural networks, Bayesian inference, or Dempster-Schafer theory, for example [26].

0 1.1.5 Problem Statement

Unfortunately, the benefits from a data-centric environment that leverages sensor fusion

have not been fully realized on the general ward. The monitors themselves may at most

trigger an alarm if a particular vital sign crosses a simple threshold [27,28]. The many

signal feeds at the central nursing station can be overwhelming to the one or two

nurses trying to convert the stream of raw data into clinically actionable decisions. In

practice, clinicians may only use five-minute windows of the data in addition to their

own qualitative observations when they stop to check on the patient.

This scenario highlights several problems. First, despite continuous, real-time mon-

itoring of the patient, the data is only used when clinical staff are physically present to

assess the patient. The data that is used therefore only comprises a small snapshot of

the total. For a stable patient at BCH, CHEWS assessments are done approximately

every four hours. Therefore, much data may never be utilized. Such infrequent hu-

man monitoring may have been a significant cause of why an Australian study failed

to find benefit in adult EWS in reducing unexpected death, cardiopulmonary arrests,



and unplanned ICU admissions [29].

Second, there is little or no interaction among the alarm algorithms for different

vital signs. For example, if a blood pressure reading drops to zero, an alarm might

trigger even though the patient's ECG shows a normal heart beat.

Third, pediatric early warning score algorithms rely in part on subjective assess-

ment of patient health, for example skin tone, so significant inter- and intra-clinician

variability is possible. Last, some algorithms simply rely on deviations from normality,

where normality is defined by an average over a group of patients. These algorithms

offer little insight into a patient's specific physiological condition and could be based on

derived parameters that have little if any obvious connection to a patient's health [30],

making concrete intervention by the clinical staff difficult.

This thesis explores two questions. First, what is the utility of the current BCH

CHEWS score? Second, to what extent can continuously acquired and streamed phys-

iologic data from the patient's bedside be used to improve predictions of the need for

escalation of care and transfer of the patient to the ICU? The second question focuses on

the standard, continuously monitored vital signs of heart rate, respiratory rate, blood

oxygenation, and intermittently measured blood pressure. We seek to understand what

lead times might be achieved such that the medical staff can take preventative action,

so the patient does not need to be transferred to the ICU, or is transferred in a timely

manner.

0 1.2 Thesis Contributions

This thesis makes three contributions. First, this thesis provides a thorough investi-

gation of the BCH CHEWS score for monitoring patient health. Second, this thesis

introduces a rigorous, clinically meaningful prediction metric that is lacking in the pe-

diatric EWS literature. Third, this thesis uses this metric to benchmark the CHEWS
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predictive ability and the predictive ability of the stand-alone bedside monitoring data.

0 1.3 Thesis Organization

Chapter 2 continues discussing the basics of the relevant physiological variables avail-

able for analysis, and introduces the data set under investigation. Chapter 3 describes

data mining results and lays out performance benchmarks for subsequent algorithms.

Chapter 4 introduces a prediction metric and compares current BCH CHEWS perfor-

mance with an automated version of the BCH CHEWS algorithm on a reduced data set.

Chapter 5 proposes and evaluates several modifications to the BCH CHEWS algorithm

that exploit bedside monitoring data. Chapter 6 closes with a summary of this work

and discusses future directions for pediatric physiological monitoring research.
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Chapter 2

Vital Signs and Research Database

This thesis was done in collaboration with Boston Children's Hospital (BCH), which

provided the vital signs from a subset of all patients treated over the last three years.

This chapter will describe physiological models that underly these vital signs, the phys-

iology captured by them, and their pathophysiological changes present under cardiopul-

monary decompensation.

Section 2.1 begins with an overview of the BCH-MIT collaboration and continues

with a description of the thesis data set. Section 2.2 describes in detail the vital signs

available for decision making. Section 2.3 introduces several physiological models and

parameters which are referenced in later chapters. Section 2.4 describes the mechanics

of cardiopulmonary decompensation from respiratory distress and sepsis, which are two

common causes for transfer to the ICU. Section 2.5 concludes this chapter with general

observations on current early warning score (EWS) rubrics.

* 2.1 BCH-MIT Collaboration

In January 2010, a project began that laid the groundwork for the use of continuously

monitored general ward data for improving early warning systems. It was a collabora-

tion between the Department of Anesthesia, Critical Care, and Pain Medicine at Boston

Children's Hospital (BCH) and the Computational Physiology and Clinical Inference

(CPCI) group at MIT's Research Laboratory of Electronics. BCH is a tertiary care

27
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facility that has over 300 patient beds and specializes in treating children and even

some adults if their primary condition is from childhood or development.

BCH offers an ideal opportunity for exploring the utility of long-term, frequently

sampled vital signs because all of the patient beds are equipped with bedside monitors

(Philips Healthcare), and the data from all bedside monitors are archived for retrospec-

tive analysis. These monitors sample and digitally archive various patient vital signs

as part of standard care. Specifically, the monitors usually collect three types of data:

waveform data, trend data, and alarm data.

Waveform data include electrocardiogram (ECG) and pulse plethysmogram (PPG)

signals sampled at 125 Hz. The waveform data are processed into trend data by Philips's

algorithms. Trend data include the heart rate (HR) and respiratory rate (RR). Both

are derived from the ECG and are output once per minute and possibly averaged over a

longer duration. The blood oxygen saturation (SpO 2 ) and pulse rate are derived from

the PPG. In the regular hospital rooms, blood pressure is measured intermittently,

usually on the order of once every several hours, by an arm cuff using the oscillometric

method. Alarm data consist of the alarms generated by Philips' algorithms. These

alarms are typically based on simple threshold crossings of the waveform or trend data.

For example, if heart rate crosses a pre-set upper bound, an alarm for tachycardia may

sound.

0 2.1.1 Thesis-Specific Data

The Philips data is logged and time-synchronized in a proprietary Philips format called

the Research Data Export (RDE) format. To convert the RDE data into a format for

algorithm development, Philips supplies a data viewer with data export capabilities.

Furthermore, a converter was developed at MIT that reformats RDE data into waveform

database (WFDB) format [24]. WFDB is an open-source format used for over twenty
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years by universities around the world as a way of interacting with a large database

of physiological signals, PhysioNet, which is hosted by MIT [24]. Using an additional

converter from PhysioNet, the WFDB data was converted to a Matlab file format to

allow algorithm development on the Matlab computing software (Version 2011b) [31].

In addition to de-identified patient RDE data, clinical researchers also provide rele-

vant patient meta-data such as the patient's age, gender, height, weight, clinical notes,

call time, and Children's Hospital Early Warning Score (CHEWS). CHEWS is the BCH

early warning score. The call time is the time at which the decision for transfer from

the general ward to the ICU is made. The call time is an essential piece of clinical data

because it acts as the fiduciary marker against which any predictive algorithm will need

to be evaluated.

Because this thesis concerns data from real patients, a plan for data use, handling,

and storage needed to be approved by the Institutional Review Boards at BCH and MIT

to ensure that patient safety and patient health information were properly protected.

De-identification of the patient data was accomplished at BCH. Data storage of de-

identified data for patients is on MIT campus computers, though original copies of

patient records also remain stored on BCH servers. Data for this project dates back to

August 2010, when previous CPCI group members worked through initial data logistics

and format conversion.

The required thesis data concerns two groups of patients: those patients on the

general ward who are ultimately transferred to the ICU (the 'transfer' patients), and

those patients who are not transferred (the 'control' patients). Each month, about 30-

40 transfers from the general floor to the ICU occur at BCH, so potentially this many

patients could be added to the project data base each month.

Unfortunately, this potential pool of hundreds of patients per year is not realized.

The potential pool is shrunk by several factors. The first and most common reason is
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the quality of the recorded data itself. The core trend data set (HR, RR, SpO 2 , and

blood pressure) is already an impoverished data set of physiological indicators, so if

one or more of these channels is missing, the data record is critically reduced. Also,

some patients have less than ten hours of data. We excluded them because we hoped to

predict six hours ahead of the transfer which would mean we would have less than four

hours of data with which to do the prediction. Poor data quality accounts for over 50%

of the patient data sets that are unusable. The second reason is a lack of a call date

and time. Because the call time is the fiduciary marker, algorithm performance cannot

be assessed without it. Call time is missing in approximately 17% of the patients,

irrespective of whether the data quality is acceptable. Finally, we limited our study

to patients <18 years of age, so older transfer patients were excluded. However, older

patients represented only a small fraction of all transfers.

With data collected over October 2010 to March 2012, approximately 50 transfer

patients and 50 control patients have good trend data and the required meta data for

analysis. However, certain investigations only require the meta data itself, and that

allows analysis of a larger set of over 200 transfer patients and 200 control patients.

BCH also provided their CHEWS scoring algorithm pictured in Figure 2.1. The

CHEWS algorithm was an essential piece of knowledge because it provided a starting

point for automated algorithms and an opportunity to benchmark algorithms that only

operate on a subset of the vital-sign data. A significant challenge with pediatric early

warning score systems is the age dependence of normal vital signs. Application of the

CHEWS rubric as well as other published pediatric scores hinges upon an auxiliary table

that lists age-appropriate normal values. BCH provided their table, which is reproduced

in Figure 2.2. Table 2.1 lists the age ranges associated with each age category.

The normal vital sign ranges were determined from a literature survey by BCH.

The ranges are similar to those used in other pediatric early warning scores. The



Children's Hospital Boston

Children's Hospital Early Warning Score
0 1 2 3 Score

Behavior/Neuro * Playing/sleeping * Sleepy, somnolent when not * Irritable, difficult to console * Lethargic, confused, floppy
appropriately disturbed * Increase in patient baseline seizure * Reduced response to pain

* Alert at patient activity * Prolonged or frequent seizures
baseline * Pupils asymmetric or sluggish

Cardiovascular * Skin tone * Pale * Grey * Grey and mottled
appropriate for * Capillary refill 3-4 seconds * Capillary refill 4-5 seconds * Capillary refill >5 seconds
patient * Mild* tachycardia * Moderate* tachycardia * Severe* tachycardia

* Capillary refill * Intermittent ectopy or * New onset bradycardia
5 2 seconds irregular heart rhythm (not * New onset/increase in ectopy,

new) irregular heart rhythm or heart block
Respiratory * Within normal ' Mild* tachypnea/ * Moderate* tachypnea * Severe* tachypnea

parameters * Mild increased WOB (flaring, * Moderate increased WOB (flaring, * RR below normal for age*
* No retractions retracting) retracting, grunting, use of * Severe increased WOB (i.e. head

* Up to 40% supplemental accessory muscles) bobbing, paradoxical breathing)
oxygen via mask * 40-60 % oxygen via mask * >60 % oxygen via mask

* Up to IL NC > patient * 1-2 L NC > patient baseline need * > 2 L NC > patient baseline need
baseline need * Nebs q 1-2 hr * Nebs q 30 minutes - I hr

* Mild* desaturation (< 5 below * Moderate* desaturation (< 10 below * Severe* desaturaon (<15 below

Reiry Ran d O 10% 4 for age 25% + for age 5% 9 for age
Toddler and Older 210% + for age 225% + for age 50% + for age

Desaturation from patient baseline 02 saturation All ages 5 points 10 points 15 points

E-g irg- Rd> Rd

C Children's Hospital, Boston, 2011

Figure 2.1: The BCH Children's Hospital Early Warning Score algorithm, reproduced with permission.



CHEWS Heart Rate and Respiratory
Rate Reference Tool 0

Heart Rates for Children and Adults

Age Nonnal Heart Norml Heart
Rates when Rats When
Awake (permin) W lepng (per Win)

Neonate (full-term) 100-180 176 184 200 80-160 176 184 200
Infant (6 mo) 100-160 176 184 200 75-160 176 184 200
Toddler 80-110 121 137 165 60-90 99 112 135
Pro-School 70-110 121 137 165 60-90 99 112 135
School-Age 65-110 121 137 165 60-90 99 112 135
Adolescent 60-90 99 112 135 50-90 99 112 135
Adult 55-90 99 112 135 50-90 99 112 135

Respiratory Rates for Children and Adults

Age Nonal Respiratry Rat
(per minute)

Neonate (full-term) 30-60 66 69 75
Infant (6 mo) 30-60 66 69 75
Toddler 24-40 44 50 60
Pre-School 22-34 37 42 51
School-Age 18-30 33 37 45
Adolescent 12-16 117 20 124
Adult 12-16 17 20 24

Respiratory Rate and Heart Rate Infant | 10% + for age > 15% + for age 25% $for age
Toddler and Older 10% + for age 25% $ for age 50% +forage

Desaturation from patient's baseline 02 saturation All ages 5 points 10 points 15 points

@Children's Hospital, Boston, 2012 All rights reserved 9 Publication Date 09/02/10
Page 1 of I

Figure 2.2: The normal vital sign ranges associated with the BCH CHEWS, reproduced with permission.
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Table 2.1: BCH mapping from age group name to age bracket in years.

Age Category Lower Bound [yrs] Upper Bound [yrs]
Neonate 0 0.82
Infant 0.82 2
Toddler 2 4
Pre-School 4 6
School-Age 6 12
Adolescent 12 18

interaction of the age-based vital signs and the CHEWS score can lead to substantial

scoring swings if ranges are strictly followed. For example, if a toddler's heart rate

is 79 bpm (below normal by one bpm) he automatically rates a CHEWS of 3 in the

cardiovascular category. However, if his birthday the next day places him in the pre-

school category, suddenly his CHEWS score is 0; he is perfectly healthy. The question

naturally arises if there are not data driven ranges that could better classify patients.

0 2.2 Vital Signs: A Closer Look

This section provides a closer exposition of common vital signs used in clinical moni-

toring. In particular, we present the underlying measurement modalities for acquisition

of physiologic waveforms from which the vital sign trend data are derived. We also

provide some physiological background for why monitoring HR, RR, and SpO 2 might

allow us to determine which patients are at risk of decompensation.

0 2.2.1 Heart Rate

The heart rate, HR, can be derived from the ECG waveform. The ECG is a time series

of the heart's electrical activity. A single heartbeat contains a sequence of electrical

signatures that are labeled chronologically as P, Q, R, S, and T as shown in Figure 2.3.

The P wave is the depolarization of the atria. The QRS complex is the depolarization

of the ventricles. The atria repolarize during this time, but the signature is buried by
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the large-amplitude ventricular depolarization. The T wave is the repolarization of the

ventricles.

Because the R peak is prominent, it is commonly used as the temporal marker for

calculating heart rate. The time between two R-R peaks is the R-R interval. The

reciprocal of the R-R interval is the instantaneous HR. The HR signal is held between

R-R intervals, as shown in Figure 2.4.

Heart rate is thus the beating frequency of the heart; it is one of several effectors

that can change to maintain a constant blood pressure. A constant blood pressure level

is necessary for proper perfusion of the body. The autonomic feedback control loop that

maintains constant blood pressure is called the baroreflex [32]. If blood pressure falls,

the baroreflex triggers an increase in heart rate, and total peripheral resistance, among

other responses, and if blood pressure rises, the baroreflex triggers a decrease in these.

Therefore, heart rate deviations from normal may indicate a compensatory response

because of challenges to blood pressure. For example, if stroke volume is reduced, heart

rate must increase to compensate for what otherwise would be a decrease in cardiac

output and a concomitant decrease in blood pressure in the absence of changes in

peripheral resistance [32].

There is significant research that links reduced variability in instantaneous HR with

decreased autonomic function and poor patient outcome [35]. The variability may be

measured at the beat-to-beat level via an analysis of R-R intervals [35] but also on the

minute level [36].

M 2.2.2 Respiration Rate

Respiration rate, RR, is the frequency of the inspiratory/expiratory cycle. In our data,

a high-frequency current is injected across the ECG leads in order to measure the

impedance change of the chest with time, as chest volume changes cyclically. The
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Figure 2.3: The standard features of an ECG trace with normal values [33].
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Figure 2.4: An ECG with heart rate derived as the reciprocal of the interval between
R peaks [34].
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injected signal frequency is outside the ECG frequency band. From the respiratory

waveform, a Philips monitor derives the respiratory rate and displays the respiratory

rate as a vital-sign trend, possibly averaged over several breaths.

Respiration rate is a controlled variable that is primarily sensitive to the partial

pressure of arterial carbon dioxide, PaCO2. Only if the partial pressure of arterial

oxygen, PaO2 , drops significantly will oxygen chemoreceptors drive breathing. The

alveolar ventilation equation quantifies how RR and PaCO2 are inversely related, and

PaCO2 is related to blood pH through the Henderson-Hasselbalch equation [32]. A

serious respiratory rate indicator is if the respiratory rate falls below normal. While

that might be a pH-compensatory response, it might also mean that the patient has

become tired and can no longer maintain the breathing rate necessary for his oxygen

demands.

M 2.2.3 Blood Oxygenation

Blood oxygenation is the average percentage of oxygen bound to hemoglobin relative

to its maximum (of four oxygen atoms per hemoglobin molecule). It is measured non-

invasively through a pulse oximeter instead of a direct blood gas measurement, so the

value is labeled SpO 2 instead of SaO2 , which has been the traditional designation of

blood oxygenation by direct arterial sampling. However, SpO 2 generally is a valid

surrogate for SaO2 for specific applications, and it is the most widely used physiological

measurement in clinical practice.

While SpO 2 is frequently monitored because it is so accessible, it presents a number

of practical difficulties for predictive use. Because of the sigmoidal shape of the relation-

ship between oxygen saturation and arterial partial pressure of oxygen, PaO2 (Figure

2.5), the PaO2 can actually be substantially reduced before there is a significant drop

in SpO2.
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Figure 2.5: Sigmoidal oxygen hemoglobin disassociation curve causes relative indepen-
dence of SpO 2 at moderate to high levels of arterial partial pressure of oxygen [37].

Even more unhelpful from the diagnostic perspective is how SpO 2 can be a mislead-

ing indicator of respiratory health if the fraction of inspired oxygen is unknown. For

example, a patient might have an oxygen saturation of greater than 98% only because

he is breathing 100% oxygen. This patient's respiratory system would be significantly

compromised compared to a patient with the same oxygenation levels, but breathing

room air.

CHEWS scores as well as other rubrics take into account both the absolute SpO 2

value and the amount of inspired oxygen support. Unfortunately, the latter information

is not available from the bedside monitors. A normal SpO 2 value may only exist because

of oxygen therapy whose presence is unknown to us. Therefore, the SpO 2 trend data

may overestimate a patient's health. On the other hand, acute or chronic declines or

sustained depressions of SpO 2 or intermittent desaturations are strong indicators of

respiratory distress.
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U 2.2.4 Blood Pressure

Blood pressure (BP) is the force per area exerted by blood on the vessel wall. It changes

with location in the body and as a function of time. In our data set, arterial BP is

collected every four hours via an automated arm cuff that uses the oscillometric method

to automatically detect systolic, mean, and diastolic pressures. More generally, arterial

blood pressure is a waveform that varies characteristically over the course of a cardiac

cycle (Figure 2.6). The systolic pressure, Ps, is the peak pressure obtained during the

cardiac cycle. The diastolic value, Pd, is the minimum pressure during the cardiac cycle.

Their difference, termed pulse pressure, is roughly proportional to stroke volume and

therefore a surrogate for it. Systolic and diastolic values can be used to approximate

the mean blood pressure using the 1/3 P + 2/3 Pd rule.

Blood pressure is a controlled variable. Therefore, the body will use effectors such

as the heart rate, venous tone, total peripheral resistance, cardiac contractility, and

fluid retention to maintain sufficient blood pressure to perfuse all organs. A low blood

pressure has more severe immediate consequences than a high blood pressure because

blood pressure is the driving force for organ perfusion. If blood pressure is high, local

arteriolar resistance may be increased to reduce local blood flow. However, if blood

pressure is too low, compensatory mechanisms might become exhausted. If perfusion

is inadequate, the organ can suffer acute and sometimes irreversible damage [32]. Con-

sequently, an acute decrease in mean BP is dangerous in itself. It also is an indicator

because that the body is no longer able to hold it at a normal level [32].

One challenge associated with the arterial pressure measurement in our work is how

to interpret two, near-simultaneous readings that are significantly different. Addition-

ally, blood pressure in our study is taken only approximately every four hours, and

sometimes even less frequently, thus limiting our ability to leverage this important vital

sign for early detection of acute physiological decompensation.
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Figure 2.6: Arterial blood pressure waveform with typical adult values for systolic and
diastolic pressures [38]

0 2.2.5 Temperature

Temperature is not available electronically from BCH, and it is included in only some

published early warning score rubrics. In children, it has been found that temperature

independently increases heart rate by 10 beats per minute (bpm) for each increase of

1 degree Celsius [39]. An elevated heart rate may therefore be a surrogate marker,

though a non-specific one, for an elevated temperature. An elevated temperature is a

key indicator for systemic inflammatory response syndrome (a precursor to sepsis) [40].

* 2.3 Physiological Models

In addition to leveraging trend data features, we hope to exploit known relationships

among organ systems to aid meaningful data fusion. One method includes using estab-

lished physiological models. As an example, the Windkessel model is a simple model

for the systemic circulation. It is shown in the form of an electrical circuit analog in

Figure 2.7.

The heart is modeled as a current source that generates impulses at the frequency of

cardiac contraction. The impulse area is the stroke volume (SV), which is the amount

of blood ejected from the left ventricle per beat. The average volume of blood pumped
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Figure 2.7: Windkessel model of heart (current source), arterial compliance, Ca, and
resistive peripheral vasculature, R. Cardiac stroke volume is represented by SV.

by the heart per unit time is the cardiac output (CO) and is equal to the stroke volume

times the heart rate (HR):

CO=SV-HR (2.1)

The blood enters the systemic circulation, which can be modeled as a capacitor or

compliance in parallel with a resistor. The compliance represents the storage ability

of the arteries. The resistor represents the resistance of the arterioles and capillaries.

Stroke volume in this impulsive model is equal to arterial capacitance (Ca) times the

pulse pressure (PP), where the pulse pressure is the systolic pressure, Ps, minus the

preceding diastolic pressure, Pd:

SV = Ca - PP = Ca - (Ps - Pd). (2.2)

The physiological analog of Ohm's law states that pressure is equal to blood flow

times resistance. Assuming steady state, which ensures no average flow through the

compliance, we can now write

P=CO-R. (2.3)

Combining the above relationships yields several useful results. For example, though

40 CHAPTER 2. VITAL SIGNS AND RESEARCH DATABASE



Sec. 2.3. Physiological Models 41

Ca is unknown, a quantity proportional to SV and therefore CO can be estimated, which

in turn can be used to estimate a quantity proportional to total peripheral resistance,

TPR or R [33]:

CO=CA-PP-HRocPP-HR (2.4)

and

MABP MABP
CO PP-HR

The mean arterial blood pressure (MABP) is computed approximately from a blood

pressure cuff measurement as

1 2
MABP = -P9 + -P. (2.6)

3 3

Cardiac output (CO) reflects in part how well the heart is working as a pump, and

TPR reflects the state of the patient's vasculature. For example, constricted arterioles

substantially increase TPR because arterial resistance scales inversely with the fourth

power of vessel radius [32].

One manifestation of the coupling between the respiratory system and the cardio-

vascular system is the modulation of the pulse pressure waveform at the respiration

rate. During inspiration, the pulse pressure decreases, and during expiration, the pulse

pressure increases. (When the increase is unusually high, this phenomenon is called pul-

sus paradoxus [41].) If the coupling is absent or changes substantially over a patient's

stay, then presumably a pathological stimulus has altered the cardiovascular system's

response to breathing. Furthermore, the relative change in amplitude of the modulation

may suggest possible clinical treatments, because it has been shown that large ampli-

tude modulation correlates with hypovolemia in ventilated patients [42]. Unfortunately,
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Figure 2.8: Power spectral density of pulse plethysmogram after envelope detection
over one hour of data, estimated with Welch periodogram. Peak occurs at 16.5
events/minute. Philips respiratory rate trend data for this time is 16.3 breaths/min.

a continuous arterial pulse pressure reading is not available, as this requires an invasive

measurement of arterial blood pressure. However, the pulse plethysmogram provides

alternative access to the continuous pulse amplitude information. Using the PPG wave-

form, envelope detection, artifact removal, and basic spectral analysis, a distinct peak is

present in the example shown in Figure 2.8. This peak agrees well with the respiratory

rate from the respiratory rate trend data for this patient during this time period.

M 2.4 Physiology of Cardiopulmonary Decompensation

The two primary motivations for closely monitoring vital signs are to quickly identify

signs of cardiopulmonary decompensation and to evaluate response to treatment [43].

Early detection and treatment is crucial. While full recovery happens in 80% of patients

with respiratory failure, if the condition deteriorates to cardiac failure, recovery prob-

ability is drastically reduced to 9% [44]. The sharp change in prognosis highlights the
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presence of a physiological tipping point beyond which recovery is improbable. Unlike

in adults where cardiac arrest is primarily caused by ischemia to the heart, in chil-

dren cardiac arrest is generally secondary to respiratory failure and/or severe, adverse

metabolic changes such as those associated with sepsis [43]. Because respiratory distress

and sepsis are two primary reasons for transfer, a basic overview of their physiology

and trajectory to cardiopulmonary decompensation will be reviewed.

0 2.4.1 Respiratory Distress and Failure

Respiratory distress is any condition that entails an increased work of breathing, even

though oxygenation requirements may still be met [44]. By contrast, respiratory failure

is insufficient ventilation and delivery of oxygen to meet the body's needs. Respiratory

arrest is the absence of breathing [44]. While respiratory distress may not always

proceed to respiratory failure, both are precursors for cardiac arrest in children, and

therefore demand prompt treatment [44]. Additionally, respiratory distress is estimated

to contribute to approximately 50% of pediatric ICU admissions [45].

The anatomy and physiology of children makes children especially prone to respi-

ratory problems. Very young children have a disproportionately large tongue, smaller

airways, and a more cartilaginous chest compared to children above eight years old (at

age eight, the pediatric respiratory system is similar to an adult system, though it is

still smaller in scale). Young children also have fewer alveoli and surface area for gas

exchange than adults. Additionally, they have an oxygen demand per unit mass greater

than adults which leads to hypoxia in about half the time as adults upon cessation of

breathing. Upon cessation of breathing, a drop in oxygen saturation from 100% to

95% in infants takes less than two minutes, for toddlers it takes 2.5 minutes, and for

children greater than three it takes 4 minutes [46] (Recall from Figure 2.5 that a 5%

drop in saturation is associated with a very significant decrease in PaO2). Finally,
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the compensatory mechanism of rapid breathing may be counter-productive, because if

breathing is too rapid there is insufficient time for gas exchange to occur [44].

Early signs of respiratory distress or failure exist, but they can be non-specific or

hidden. Use of accessory muscles is a sign of increased work of breathing. Unfortunately,

the muscles are not optimally positioned for benefit in the young, and they tire eas-

ily [46]. Therefore, respiration rate may exhibit an oscillatory pattern that foreshadows

respiratory failure [44]. While increased respiratory rate may be a sign of respiratory

distress, it could also be compensation for metabolic acidosis, or an indicator for in-

creased temperature. Every one-degree increase in temperature can lead to an increase

in five breaths per minute in respiratory rate [44]. While a SpO 2 greater than 93%

may indicate adequate oxygenation, it may obscure the additional underlying effort put

forth to maintain that level [44].

M 2.4.2 Sepsis

Sepsis is another pathology that can ultimately lead to cardiopulmonary failure. Sepsis

is actually a spectrum of conditions. The pre-sepsis condition is called severe inflam-

matory response syndrome (SIRS). When SIRS is diagnosed in conjunction with an

infection, the condition is called sepsis. Sepsis with non-cardiac organ failure is severe

sepsis, and sepsis with cardiac failure is septic shock. Severe sepsis affects 42,000 chil-

dren each year in the US and results in about 4,000 deaths annually. It is especially

prevalent in children less than one year of age [47].

Despite intensive study, sepsis is still poorly understood. While its detrimental ef-

fects were initially thought to be due to overcompensation of the immune system, more

recent research suggests there is a strong component of immune suppression [48]. Ther-

apy generally uses antibiotics and aims for cardiopulmonary stability by maintaining

adequate oxygen and fluid levels to avoid respiratory distress and hypotension [47]. A
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number of adult studies have shown the efficacy of early goal-directed therapy that ag-

gressively treats patients to keep vital signs stable [13,49,50]. Therefore, early detection

of sepsis is crucial for favorable outcomes.

Unfortunately, sepsis detection is difficult because it presents with non-specific

symptoms. These include hypoxia, tachycardia, tachypnea, fever (> 38.50 C) or hy-

pothermia (< 36' C). Detection is especially challenging in children because adults

show a progressive decline in health while children appear fine until a sudden, severe

decompensation [47].

0 2.5 General Observations on Feature Rubrics

Many researchers have proposed rubrics to quantify a patient's health by a numeri-

cal score, as an aid to current treatment and/or prediction of the patient's course of

health [16,18,51,52]. Some rubrics predict mortality upon transfer to the ICU, proba-

bility of transfer from the floor to the ICU, probability of transfer from the emergency

department directly to the ICU, or probability of cardiac or respiratory arrest.

In all studies reviewed for this thesis, only the one by Sharek [20] considered change

in condition as an indicator of importance. Specifically, Sharek conducted a prospective

study at Lucile Packard Children's Hospital in California, in which a rapid-response

team was activated if any of the following criteria were met:

1. a staff member was concerned about the child;

2. acute change in heart rate;

3. acute change in respiration rate;

4. acute change in oxygen saturation;

5. acute change in blood pressure;

6. acute change in level of consciousness.
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Unfortunately, "acute" was not defined, which shows that even in attempts at quan-

titative, repeatable rubrics, subjectivity can still prevail in the analysis. Interestingly,

this study showed statistically significant improvement in patient outcome as measured

by a reduction in the number of code events outside the PICU and a reduction in

hospital-wide mortality.

Tibballs [19] has an annotation at the bottom of his rubric in which worsening

vital-sign trends should be observed and reported, but stops short of saying that such

deterioration is sufficient grounds for activation of the medical emergency team. The

other studies besides Sharek, including the Tibballs activation rubric, all focus only

on absolute values of vital signs. Generally those values are compared against age-

dependent norms for heart rate, respiration rate, oxygenation, and blood pressure, in

particular systolic blood pressure.

Normal vital sign ranges as well as the definitions of age brackets show moderate

variability among the rubrics, yet those norms significantly affect the contribution of

the vital signs to the complete score. Furthermore, the norms themselves, as well as

the the weight assigned to the score for deviations from normal, appear with little or no

quantitative justification. Brilli provides a sensitivity analysis for pairs of calling criteria

[21], but the best methodology in this regard is by Pollack [53], with the Pediatric Risk

of Mortality (PRISM) III score. The PRISM III score predicts pediatric mortality in

the ICU. The investigators performed a series of Monte Carlo simulations and logistic

regression calculations to determine the best normal ranges.

Existing algorithms are almost always memoryless, yet this is contrary to the avowed

practice of several BCH personnel and to physiological intuition. Clinicians baseline the

patient upon admission; even if the patient has an abnormal vital sign, clinicians do

not give this as high a concern as if the patient's vital sign changed from baseline. Mea-

surements are done infrequently, approximately every 4-5 hours at BCH. The assigned
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scores are based upon spot measurements of the vital signs, with no explicit depen-

dence upon what happened in the intervening time, even though the relevant data may

be archived by monitoring equipment. One study accounts for memory by incorporat-

ing the maximum deviation from normal over a past window when computing a score;

however, it does not look for trends or the duration of that maximum value [53].

Because the truth for predicting patient transfer when the patient has not coded is

based upon the judgment made by human personnel, any algorithm that seeks to mimic

human judgment as a precursor for improving upon human judgment should also take

into account trends in vital signs as well as acute changes in vital signs.

Armed with an understanding of the vital signs captured by the bedside monitoring

data as well as the physiology of cardiopulmonary decompensation, we can begin mining

the collected data for significant features in Chapter 3.
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Chapter 3

Data Exploration

Because this research project provides an investigation into the utility of automated

data collection, a significant effort went into exploring the acquired data for obvious and

interesting patterns. This chapter will summarize several explorations in the analysis

and trends of the data.

Sections 3.1 and 3.2 characterize the transfer patient population's meta-data. Sec-

tions 3.3 and 3.4 analyze the progression of CHEWS scores over time. Section 3.5

investigates a bias towards assigning lower CHEWS scores than are merited and Sec-

tion 3.6 analyzes the frequency of CHEWS evaluation. Section 3.7 focuses on the

evolution of vital-sign trends from up to 48 hours before transfer till the actual transfer

occurs. In Section 3.8, we explore how the vital signs compare in a particular window

of time with respect to a final window just prior to transfer. Section 3.9 describes a

small experiment in which humans were asked to classify patients as control or transfer.

Section 3.10 closes this exploratory chapter with a summary of preliminary findings.

* 3.1 Transfer Population

As part of the characterization of the patient cohort, we studied the age and gender

distributions of transfer patients. Figure 3.1 shows histograms based entirely on meta

data of transfer and control patients. The general control population and transfer

population are approximately 50/50 male and female. However, controls were selected
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Patients: 351, Total Male: 189, Pr(age < 4)= 0.56
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Figure 3.1: Study population gender comparison. The color is proportional to the

number of patients in each bin with red corresponding to more patients and blue to

fewer patients. Each bin counts patients that satisfy: lower age limit < patient's age <
upper age limit.

to match specific transfer patients with regard to several variables, including gender

and age, so similarity between the two populations is expected.

Nearly half of all transfer patients are less than 4 years old. Furthermore, males

less than 1 year old are represented twice as much as females less than one year old in

the transfer population. Remarkable as these observations are, the general population

of BCH patients may exhibit the same asymmetries. Consequently, these results only

describe the data set and may not allow any conclusion about a prior probability of

transfer based on age or gender.

To assess prior probability of transfer in general, and when conditioned on gender,

we received a census of all control patients admitted to BCH for the 2011 calendar
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Figure 3.2: BCH control population by age over 12 months.

year (patients admitted to the psychiatric ward and to the ICU were excluded). A

histogram broken down by age for control patients is shown in Figure 3.2. The transfer

plot is shown in Figure 3.3. We limited the maximum age to <18 years of age in order

to compare against all the transfers considered in our study. Unfortunately, our study

data is continuous starting in April 2011, so to compare a 12 month calendar year,

we perform our age histogram analysis from April 2011 through March 2012. From

the census data, we conclude that the prior probability of transfer to the ICU is only

1.6%. Consequently, any early warning system must have excellent specificity in order

to minimize total false alarms.

We observe that the estimated fraction of transfer patients less than four years

of age is 0.44, while in the general control population in Figure 3.2, the fraction of

patients less than four years of age is 0.38. Consequently, younger patients may be

more susceptible to transfer than older patients. We also see that the high probability

of transfer for males compared to females less than one year of age is not strictly a
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Figure 3.3: BCH transfer population by age over 12 months.

reflection of more males than females in the general population. Figure 3.4 compares

the male female ratio for the transfer population to the malefemale ratio in the control

population. Because the ratios are dissimilar in the youngest age bracket, it appears

that males may be at a higher risk of transfer than females.

0 3.2 Transfer Reason and Call Type

Every transfer patient at BCH has a call type and transfer reason. The call type is

the justification for activating the transfer team. The transfer reason is the clinical

justification for moving the patient to a higher level of care. We analyzed the joint

transfer reason and call type matrix to identify potentially common pathological causes

for transfer. If such subgroups existed, algorithms might leverage pathology specific fea-

tures for improved early warning. The joint histogram of transfer reason and call type

in Figure 3.5 shows that the most prevalent transfer reason is respiratory distress and

Transfer: Patient Count vs. Age
April 2011- March 2012
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Figure 3.4: Control and transfer male to female ratios by age.

the most prevalent call type is for evaluation. The need for more extensive monitoring

is the second most common transfer reason. By contrast, our initial expectation was

that sepsis would be the number-two transfer reason after respiratory distress. How-

ever, some patients transferred to allow more vigilant monitoring may actually have

had sepsis, though they may not have been diagnosed until after transfer. Re-visiting

the transfer reason would be necessary to accurately assess whether or not sepsis is a

major transfer reason. Nonetheless, this analysis suggests that the fraction of specific

pathological conditions, such as congestive heart failure (CHF) or hyperkalemia, is neg-

ligible compared to the non-specific but widely prevalent "respiratory distress" transfer

reason.
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Patient Type of Call and Transfer Reason
Patient Count: 289
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ICU 40

20
Eva

Resp distress Monitoring Shock/Sepsais Elevated cardiac enzymes CHF Hyperkalani 0
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Figure 3.5: Transfer reason vs. call type

0 3.3 CHEWS Distribution vs. Time

Figures 3.7 and 3.8 show the mean value (solid line) and quartiles (dotted lines) for the

CHEWS scores over time. For transfer patients, time 0 was the call time; for controls,

time 0 was the time of the last documented CHEWS score. All scores that fell within

the respective four-hour window were averaged. The number of scores in each four-hour

window is shown in the bottom subplot as a histogram.

Figures 3.7 and 3.8 investigated at what point, if any, the average transfer CHEWS

score begins to deviate from the average control score. The point of deviation would be

a first estimate at predicting whether the patient's condition had deteriorated beyond

a control patient. As expected, the transfer patients' CHEWS scores ramp up very

quickly in the final four hours before transfer while the control scores stay relatively

flat. Furthermore, the control scores do not rise far beyond a CHEWS score of 2 while

the average transfer score climbs nearly to 4 in the final 10 hours before transfer. This

suggests that the decision score of 4 may be too conservative. The decision threshold
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Figure 3.6: Transfer patient mean time until transfer after first threshold crossing.

to take action could perhaps be lowered to 3 or some fraction greater than 2 because

transfer patients have begun to diverge from controls before a score of 4. If the threshold

were lowered to 3 (i.e., declare a transfer if the score is greater than or equal to 3), then

sensitivity is 0.83, specificity is 0.78, and the mean time from the first recorded score

greater than or equal to 3 is 19.5 hours. Figure 3.6 shows the approximate mean time

until transfer from the first instance of a score greater than or equal to the threshold.

Unfortunately, the clean deviation of the mean overstates the discriminating ability
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of the score. Figures 3.9 and 3.10 show a two dimensional version of Figures 3.7 and

3.8. The 2D versions show the empirical probability distribution for each four-hour

window. While there is still a clear migration of the most probable CHEWS scores

to higher values for transfer patients, significant variability in scoring is still obviously

present. The standard deviation of the mean score for both control and transfer patients

is shown in Figure 3.13.

Figures 3.11 and 3.12 are identical to Figures 3.9 and 3.10 but show the distributions

from a traditional hypothesis testing view point. The histogram in Figure 3.12 shows

the distribution of CHEWS scores from transfer patients for the two days prior to

transfer. For as much as 24 or more hours before transfer, the scores are clustered

around the 0 and 1 mark with heavy tails out to 4. However, as time approaches the

call time, t=O, the center of mass gradually shifts outward and the histogram begins

to flatten. By contrast, the mean of the distribution for control patients, stays around

the 1-2 range.

In summary, while a divergence of CHEWS scores between controls and transfers is

present at an aggregate level, significant variability exists between the two groups. The

overlap between the populations limits the success of setting a simple threshold.

* 3.4 CHEWS Transition Probabilities

A transition probability is the probability of changing to a particular state, given a

current state. In this section, we evaluated the CHEWS score transition probabilities.

The motivation was to explore trends in scoring and transfer values. In particular, we

were interested to find out whether there is a particular CHEWS score following which

there is a high probability for a patient's score to escalate to higher values.

Figures 3.14 and 3.15 show the transition probabilities for control and transfer

patients. The probability Pr(to = Yfrom = X) is the probability of being rated a
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Figure 3.10: Transfer: score distribu-
tions vs. time

score of Y given the score X at the previous evaluation point. Because the numbers in

the upper subplot define a conditional probability mass function, where the conditional

variable is the "from" score, each column sums to one. The maximum possible CHEWS

score is 11, and scores range from 0 to 11. The final row and column are "Tx" for

transfer. Probability mass in that cell means that after being assigned a "from" CHEWS

score, no additional scores were taken before the patient was transferred. The lower

mon ffil
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CHEWS: Probability of Score for Various Times

0.8

0.6

I.4,

0.2

0 2 12
Score

# Scores vs Time

300 -

a -0 -36 -U2 -23 -24 -20 -16 -12-84

Time [hr]

Figure 3.11: Control: score distribu-
tions at three time intervals [-48, -44],
[-24, -20], and [-4, 0] hours
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Figure 3.12: Transfer: score distribu-
tions at three time intervals [-48, -44],
[-24, -20], and [-4, 0] hours

subplot shows the number of scores used to estimate each column's distribution.

These results were generated using the meta data collected retrospectively from

nurse notes and are completely independent of the Philips RDE data. The bright

diagonal line for scores 0 to 4 means that the most likely score transition is a self

transition; the patient score does not change. Also, the decreasing number of events

from 0-0 to 4-4 along the diagonal show that the 0-0 state is more common than the

4-4 state. All else being equal, once a patient is in the four state, the patient is likely

to need transfer.

In conclusion, the transition matrix showed a tight clustering of transitions in low

scoring states for controls, while transfers tended to maintain their current state or

deteriorate. Controls with higher scores tended to improve while transfers deteriorated.

M 3.5 CHEWS Underscoring

We conducted a CHEWS underscoring analysis in which we benchmarked how well the

CHEWS rubric definitions were followed. At each point at which a CHEWS score was
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24 140/276
1.7 84/256 33%

41/276 15%

0.96 29/261 11%

2.28 108/276 39%
1.60 34/256 13%

Table 3.1: CHEWS underscoring phenomenon

taken, we retrospectively used the monitoring heart rate and respiratory rate data to

compute a reduced CHEWS (rCHEW) score. The rCHEWS used the BCH normal

vital sign limits and BCH rubric. We saw from Section 3.3 that CHEWS does have

some discriminating ability, and we sought to quantify the contribution of a subset of

the rubric data to the score.

Because the reduced CHEWS is a strict subset of the full CHEWS score, the

CHEWS score should always be at least as great as the reduced CHEWS score. If

the CHEWS score is less than the rCHEWS, we say that the patient has been under-

scored. Table 3.1 shows the results. While the magnitude of underscoring is about the

same for controls and transfers, controls are more frequently underscored than trans-

fers. The respiration rate contributes more to this bias than heart rate. This study

suggests that clinicians are selectively discounting high CHEWS merited by respiration

rate for control patients. Clinicians are focusing on other indicators that supersede the

quantitative scoring measures. This result does not bode well for the performance of

an automated system based only on moment-to-moment rCHEWS values.

0 3.6 Measurement Frequency

Figures 3.16 and 3.17 capture the frequency of CHEWS score evaluations. The poten-

tial prediction feature at stake is whether the frequency of measurements signals an
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Figure 3.17: Transfer: CHEWS score
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underlying staff concern. In the top panels, the abscissa shows the last given CHEWS

score and the ordinate shows the time until the next CHEWS score evaluation. These

scores were only considered for the period up to 48 hours prior to transfer.

For control and transfer patients, there does not appear to be any difference in

monitoring frequency when scores are less than 5. CHEWS scores are consistently

calculated every 4-5 hours. However, for transfer patients with scores greater than or

equal to 5 the interval between evaluations lessens.

0 3.7 Vital Sign Trajectories

The vital signs described in Chapter 2 are recorded for early detection of impending

cardiopulmonary decompensation. One feature this thesis seeks to leverage in classifying

patients and predicting transfer is whether or not significant trends are present in the

measured vital signs prior to transfer to the ICU.

For the case shown in Figure 3.18, heart rate shows a gradual, though distinct,

decline over the thirty-hour period prior to transfer. This decline would probably not be

noticed over a five-minute observation window. Furthermore, spot checks at any given

62

1
2

Lu
4h



HH579-t-M-9: EW Score vs Time

U)

CO
0)

-35 -30 -25 -20 -15 -10 -5 C

.0
1- -3 2 2 -5 -0 -

-0
10

.0

a) 40

30-

(I)

10

00

80

U)
: 120-
n 100-
- 80 - -. .

60- . I 

-35 -30 -25 -20 -15 -10 -5 0
Time [hr]

Figure 3.18: Vital signs and CHEWS score of a nine-year-old male patient on the general
floor. Units for the bottom four subplots are respectively: beats per minute, breaths
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moment will actually show that the heart rate is within normal bounds. However, the

declining heart rate could be a serious sign of patient decompensation. The subplots

also reveal a low respiratory rate for the patient age, which could have contributed to

the poor oxygenation. At time t = 0, the patient was transferred to the ICU.

In contrast, control patients are those who are not transferred to the ICU. Their

vital signs tend to exhibit an essentially steady trajectory, as seen for example, in Figure

3.19. They can also show some variation outside the age-adjusted bounds of normality.

Figure 3.20 also shows a control patient, yet the respiration rate frequently dips

below normal for the age of the patient and the SP0 2 shows numerous dips below 95%.

She also swings from slightly tachycardic to slightly bradycardic, and she even has a

CHEWS of 4 at one point. Despite these indicators, the patient is not transferred to

the ICU. These plots serve to illustrate that the classification of transfer and control

patients is not a trivial task that can be adjudicated on the basis of simple threshold

crossings.

0 3.8 Bisected Changes Over Time

When the heart rate and respiration rate for transfer patients are each plotted against

themselves over the course of a bisected window with regions [-24, -20] and [-4, 0] hours,

it is startling that essentially all patients lie on or close to the forty-five degree line.

This is seen in Figures 3.21 and 3.22, in which we have normalized heart rate and

respiratory rate to the BCH age-appropriate normal value. This means that for these

patients, their state (at least as evidence in heart rate and respiration) is not evolving

much with time: if they have a high heart rate or respiratory rate for the first time

block, then they will also have a similar high heart rate or respiratory rate right up

until transfer.

A second unexpected observation from these plots is the correlation of high nor-
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Figure 3.19: Control patient. Vital signs and CHEWS score of a one-year-old male
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Transfer: heart rate
mean, age-normalized
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Figure 3.21: A comparison of the age-normalized, mean heart rate for transfer patients.
The ordinate and abscissa each display the mean heart rate taken over the designated
windows of time relative to call time (t=O) normalized to 1.0. Each triangle represents
a transfer patient colored by age. The coloring shows that the cluster of patients with
HR well above normal are also some of the oldest patients. The diagonal line is a visual
reference that draws out the essentially static character of the mean heart rate over
nearly a day.
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Figure 3.22: A comparison of the age-normalized, mean respiration rate for transfer
patients. The ordinate and abscissa each display the mean RR taken over the designated
windows of time relative to call time (t=O) normalized to 1.0. Each triangle represents
a transfer patient colored by age. The coloring shows that the cluster of patients with
RR well above normal are also some of the oldest patients. The diagonal line is a visual
reference that draws out the essentially static character of the mean RR over nearly a
day.
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Transfer: SpO2
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Figure 3.23: A comparison of the normalized, mean SpO 2 for transfer patients. The
ordinate and abscissa each display the mean SpO 2 taken over the designated windows
of time relative to call time (t=O) normalized to 1.0. Each triangle represents a transfer
patient colored by age. With only three outliers, the mean SpO 2 value is almost always
kept within normal limits and does not appear to be a valuable early warning sign.
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malized exceedence with age. Figures 3.21 and 3.22 reveal that patients who are older

are more likely to have sustained high heart rates and/or high respiration rates. Two

hypotheses exist for this occurrence. First, younger children, and especially newborns,

have less reserve capacity for their heart rate and respiration rate since the normal

values are already high. Second, there may be a nursing permissiveness in which high

heart rates and respiration rates are allowed to persist for older patients, but not for

younger ones.

Other vitals signs, such as (proportional) total peripheral resistance, (proportional)

cardiac output, and SpO 2 , were also considered. Values proportional to TPR and

cardiac output were computed using the models from Chapter 2, and their values were

normalized to the first point of each patient's time series. Estimated cardiac output

also showed a linear relationship but it was less strong than HR and RR. TPR showed

a strong linear relationship. Normalized SpO 2 is shown in Figure 3.23, where 1.0

corresponds to 97.5% regardless of age. Essentially all transfer patients have healthy

mean levels of oxygenation right up until transfer, so this aspect of SpO 2 may not be a

good early warning sign.

0 3.9 Human Classification Performance

The performance of CHEWS as a discriminator is qualitatively evident in the divergence

of the transfer and control CHEWS mean values as the transfer patients approach their

call time (Figures 3.7 and 3.8 ). However, the CHEWS score includes more information

than is available through the bedside monitoring data and is subject to clinician bias,

which is seen in the CHEWS underscoring phenomenon. Therefore, a retrospective

"human expert test" was performed on vital-sign records from our database. A total

of six clinicians, researchers, and nurses were asked to classify patients into transfer

and control solely on the basis of the vital-sign records of HR, RR, SpO 2 , and inter-
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mittent mean arterial blood pressure. This evaluation provided insights into how well

human experts can classify patients and revealed features that clinicians considered

discriminating.

The author randomly selected ten control and ten transfer vital-sign records from

the cohort, and included up to 48 hours worth of data if that much data existed for

a particular patient. For transfer patients, the record extended backwards from call

time, and for controls, the record extended back from the end of the record. The

heart rate, respiration rate, and SpO 2 were shown at a one-minute sampling resolution.

The blood pressure was provided when available. Meta data included patient age,

gender, and the BCH CHEWS scoring rubric, though the actual CHEWS scores were

withheld. Reference ranges for age-adjusted vital-sign values were also provided. The

normal values were taken from the BCH rubric. The six evaluators included four BCH

clinicians and two MIT personnel with clinical research experience. The evaluators did

not know how many control and transfer records were included in the test set of twenty

records.
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Figure 3.24: Self test performance by
evaluator, ordered by decreasing prob- Figure 3.25: Self test performance by
ability of correct classification. patient.

Performance on an individual basis is shown in Figure 3.24. Probability of correct

classification (Pec), sensitivity, and specificity are shown for individual evaluators. The
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Figure 3.26: Justification key words

average Pcc of 0.69, sensitivity of 0.55, and specificity of 0.83 suggest humans can iden-

tify controls well but frequently miss transfer patients. Figure 3.25 shows performance

as a function of the patient type (control = c, and transfer = t). The abscissa labels

are the true patient type, and the ordinate shows the number of votes for the true pa-

tient type. This chart shows significant agreement among all evaluators even when the

evaluators are wrong. By using a majority rule fusion of votes, the Pcc, sensitivity, and

specificity can be boosted to 0.80, 0.60, and 1.0 respectively. The fused performance is

on par with the best individual evaluator.

All evaluators were asked to write a one-sentence text justification of their decision

for each record. Using a basic form of natural language parsing, justification features

of "no change, heart rate, respiration rate, SpO 2 , and blood pressure" were extracted

from the responses. The number of times a feature occurred for a declared patient type

(regardless of whether the decision was correct) were tallied and are shown in Figure

3.26. The figure clearly shows that when evaluators are declaring patients as controls,
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the dominant feature is "no change" in the patient's status. This feature, taken with

the good specificity of the study, suggests steady state stability is a clear marker of

a control patient. If the patient is declared a transfer patient, specific vital signs are

called out. In order of frequency, these are heart rate (e.g. tachycardia), SpO 2 (e.g.

SpO 2 desaturations), and blood pressure (e.g. hypotensive). Respiration rate is only

occasionally noted and appears equally for both controls and transfers.

0 3.10 Data Exploration Summary

Data exploration has suggested several findings that will shape the questions posed by

and feature extraction approaches of subsequent chapters. Control patients tend to

have stable vital-sign trend trajectories while transfer patients tend to exhibit larger

variations. However, large trends are present for both patient groups, so simple thresh-

old crossings may not distinguish between the two. Furthermore, a comparison of

transfer patient vital signs a day before transfer to four hours before transfer shows a

strong concordance between the two average values for heart rate and respiration rate.

This suggests that trends may not be a dominant feature of transfer patient vital-sign

trajectories. Analysis of the average CHEWS score shows a divergence between the

transfer and control populations even as much as 48 hours before transfer. However,

a detailed investigation reveals substantial variability of scores, especially within the

transfer group, so the CHEWS score's predictive utility may be limited. Finally, the

human classification test showed that humans overall are specific (0.83) but not es-

pecially sensitive (0.55), so the benchmark probability of correct classification is only

0.69.
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Chapter 4

Classification and Prediction

The previous chapter ended with an informal human classification performance test. In

this chapter, we first explore automated classification and then automated prediction.

We compare the performance between the BCH CHEWS score and a reduced CHEWS

(rCHEWS). The rCHEWS uses the bedside monitoring data to which a machine has

access; the data is a strict subset of the information that goes into the CHEWS.

In our classification problem, an observed data set must be categorized as either

belonging to a control patient or a transfer patient. We will discuss this classification

problem first in order to tie back to the human performance in Chapter 3 and to discuss

common obstacles and techniques that apply to both classification and prediction. In

our prediction problem, we must decide if a patient is going to be transferred and

localize the transfer event in time. After presenting a clinically meaningful evaluation

metric, we will discuss automatic prediction performance.

In this thesis, the classification problem and the prediction problem both require

making a binary decision: given the observed data set, we must decide if the patient

is a control patient or a transfer patient. While the fundamental problem is the same

in both situations, we will focus on classification first to provide a concrete context for

terms that apply to both situations.

The information in the first two sections applies to both classification and pre-

diction. Section 4.1 will define feature vectors and explain our approach to feature

75
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selection. Section 4.2 will introduce the concept of decision rules and explain two par-

ticular rules that will be used in this chapter. In Section 4.3, we will apply the decision

rules introduced in Section 4.2 to the problem of classifying patients based upon their

CHEWS or rCHEWS scores. Sections 4.4 and 4.5 advance the chapter from discussing

classification to prediction. The former section describes our approach to evaluating a

prediction metric, and the latter applies the metric to CHEWS and rCHEWS features.

Section 4.6 summarizes the results of the chapter.

M 4.1 Feature Selection

In both classification and prediction, we will frequently refer to feature vectors. A

feature vector is a sequence of numbers that are some abstraction of the observed data.

As a specific example, the feature vector may be a 3-by-1 vector whose three elements

are the three most recent CHEWS scores. As another example, the feature vector may

be a 10-by-1 vector whose elements are the instantaneous heart rate at ten different

points in time. A feature vector could also have components of different types, e.g.,

both CHEWS scores and heart rates.

A fundamental issue is how many and what kinds of features should be chosen. In

the context of our work, a feature vector can be considered to exist in a two-axis space.

The first axis is the temporal axis, and the second axis is the measured physiological

data. These two axes refer to how finely the data is sampled to create the feature

vector. At the coarsest level, one can begin on the temporal axis by using only the

most recent early warning score, and on the measured physiological parameter axis by

using the CHEWS score as the early warning score. Features can be added along these

two dimensions. For example, on the temporal axis, not just the most recent but several

recent CHEWS scores could be used. On the feature axis, one could unmask oneself

to the respiratory health and heart rate health subscores. An even deeper level on the
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feature axis would be how the individual respiratory rate and SpO 2 category scores are

combined. A still deeper level would be changing the quantization limits for each of

the heart rate, respiration rate, and SpO 2 category scores. At each level, the feature

vector increases in dimensionality, which conceivably allows better performance on a

training set but potentially worse performance during an actual performance test. As

dimensionality increases, a user can begin to lose touch with the underlying classification

process. The principle of parsimony applies: the simpler model should be preferred

among two models that have similar performance.

At first glance, the CHEWS score itself only has a temporal dimension. However,

while the score cannot be changed, it can be conditioned on the patient population

characteristics such as age, gender, and/or transfer reason. An automated score can go

all the way from replicating aspects of the BCH CHEWS score using the trend data to

incorporating features from the waveform data.

Our strategy will be to begin at the coarsest level (lowest dimensionality), and

increase the dimensionality as needed.

E 4.2 Decision Rules

A decision rule is a mapping of each feature vector to a class. Figure 4.1 shows two

classes (black and white circles) in a two dimensional feature space. Several possible

decision rules are represented by the solid, dotted, and dashed lines. If the solid line

were the final decision rule, then all feature vectors that were above and to the right of

the solid line would be labeled as one class, and all other feature vectors would be labeled

as the second class. The following two subsections will provide details on two kinds of

decision rules used in this thesis and a discussion of decision rule complexity. However,

they are not necessary to understand the basic thrust of the results in subsequent

sections.
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Figure 4.1: Several possible decision rules (solid, dashed, dotted lines) for partitioning
the two-dimensional feature space. The feature vectors are circles, and the two classes
are distinguished by the color of the circles. Using the solid black line as a decision
rule, all feature vectors to its upper right would be one class while all other feature
vectors would be the second class. The solid line allows perfect class separation unlike
the straight dashed line, which groups some of the white circles with the black circles.

N 4.2.1 MAP Rule

Basic probability theory provides an intuitive classification strategy that minimizes the

probability of an erroneous classification given a specific feature vector x0 . We start

with a discrete probability mass function (PMF) p(xly) where y is the patient type

(y E {control, transfer}), and x is the feature vector. This PMF can be estimated

during a training phase, given example feature vectors from each patient type.

In the classification step, given a single feature vector x0 , from a patient of unknown

type, the patient can be classified by choosing the patient type - that maximizes the

a posteriori PMF. This decision rule is known as the Maximum a Posteriori (MAP)

rule [54]:

y = argmax p (yIxo) (4.1)
y

The MAP rule maximizes the probability of a correct decision [54]. Using Bayes's

rule, Equation 4.1 can be rewritten in terms of the estimated PMF and the prior
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probability of a patient being a control or transfer patient, p(y).

=argmax p(xoly)p(y) (4.2)
y EY, p (xoI ly'p(y')

The denominator does not affect the argmax calculation as it is merely a normal-

ization factor; it is only shown to illustrate the explicit rewriting of Equation 4.1 with

Bayes's rule. If the prior probabilities are equal, the MAP rule is equivalent to max-

imizing the likelihood p(xoly) of the specific feature vector over the possible patient

types.

While the MAP strategy holds for feature vectors of arbitrary dimension, where

each element can take an arbitrary number of values, the state space from which x is

drawn grows exponentially with the dimension. For example, assume classification is

done on an N-dimensional feature vector x, where each element can take K values, and

the number of classes for categorization is M. Then the number of elements needed

in each of the M PMFs is KN. If we consider a feature vector that only uses the

most recent CHEWS score, then N = 1; K= 12 because CHEWS ranges from 0 to 11.

In estimating a histogram, a rule of thumb is to have 10 samples per bin, so already

121 - 2 - 10 = 240 patients are needed to train this model.

MAP may not be a practical rule to actually implement. As with any decision rule,

MAP may grossly overfit the data, which can lead to rules that do not generalize well.

In other words, a low classification error can be obtained on the data set from which

the model was trained. However, the model will have a high error when applied to

new data. Overfitting can also lead to counter-intuitive decision rules, which will be

discussed in Section 4.2.3.
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Figure 4.2: Two-dimensional feature space with two classes of feature vectors (black
and white circles). The SVM boundary would be the solid black line. While the dotted
line also is a linear separator that perfectly separates the classes, it is not the SVM
boundary because another boundary exists that has a larger minimum distance to the
feature vectors.

0 4.2.2 Support Vector Machines

Support vector machines (SVMs) construct a linear boundary in the feature space that

maximizes the distance to the closest points in each of the two classes. An example of

a notional SVM boundary in a two-dimensional feature space is shown in Figure 4.2.

The boundary is specified by the implicit equation

wTx + wo = 0. (4.3)

where w and wo are weights that define the normal vector to the decision boundary.

The geometric margin for each point is the perpendicular distance of the point from

the decision boundary. The goal is to maximize the minimum geometric margin among

all the points subject to all the points being classified correctly. For now, we assume

that the data can be perfectly separated. Then the optimization problem becomes [55]

{-,w} = argmin Iw||2 (4.4)
S2WW
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subject to the constraints that for all points xi in the training set

y (wTx, + wo) > 1 (4.5)

where y E {-1, 1}. Equation 4.4 has a single local minimum that can be found by

standard quadratic solvers.

Despite the straightforward computational problem, solvers can return weight vec-

tors with small weights. To enforce reasonable sparsity in the solution, we can change

the tolerance, tol, limit for our solver. Weights smaller in magnitude than tol are forced

to zero. We will use a tol parameter in our SVMs.

Once the weights are found, an unknown point xo is classified based on the sign of

its margin:

y = sign(GTxo + O) (4.6)

In other words, a functional margin of zero acts as the decision boundary.

Unfortunately, the SVM problem as stated has no solution if no linear boundary can

separate the classes [55]. To use an SVM with data that cannot be perfectly partitioned,

the optimization problem is augmented to be

I N

{O, W} = argmin Iw 12 + C (n. (4.7)WO, 2 n=1

subject to the constraints

Yn (wTxn - wo) > 1 - (n (4.8)

(n 2 0. (4.9)
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The slack variables (, reflect the distance of the misclassified training points from the

boundary as well as the failure of some correctly classified points to not be sufficiently

far away from the boundary. If 0 < (, < 1, then x,, is correctly classified but incurs a

penalty in the optimization, while if ( > 1, then x, is misclassified and also incurs a

penalty.

C is a tunable constant, chosen through cross validation, that is a regularization

term. It controls the tradeoff between the margin associated with the decision boundary

and the number of misclassified points. By letting C approach infinity, the hard margin

classifier in Equation 4.4 is recovered. Larger values of C lead to better fits on training

data but the resulting model may not generalize as well as a model with lower values

of C. A small value of C allows some points to be misclassified in exchange for placing

the decision boundary farther from the two main clusters of points from the different

classes.

By reformulating the optimization problem into an alternate form called the "dual"

form, SVMs permit an extremely flexible implicit feature vector expansion through a

function called a kernel. A polynomial kernel that is quadratic can automatically expand

a base set of features into all their squared and cross product terms. A linear SVM can

then be fit in the expanded feature space, but when the linear SVM boundary is viewed

in the original base feature space, it will appear as a non-linear decision boundary [55].

An example of classification with a quadratic kernel is shown in Figure 4.3.

Just as with MAP, the great potential flexibility afforded by SVMs can also lead

to overfitting the data if the feature vector is expanded to high enough dimensions.

Therefore, we will limit the order of our SVM kernels in our work.



Figure 4.3: Top: One-dimensional feature space with two classes of feature vectors
(black and white circles) each with value x0 . Middle: Two-dimensional feature space
obtained by creating a new feature vector [xo, 2j]. The SVM boundary would be the
solid black line. Bottom: The linear SVM boundary from the two-dimensional space as
it would appear in the original one-dimensional space.
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Figure 4.4: A simple decision rule (top) that may generalize well when deciding between
two classes (black and white). A complex decision rule (bottom) that may overfit the
data.

0 4.2.3 Decision Rule Complexity

Figure 4.4 shows two notional decision rules based on two features in a feature vector.

The possible values each feature element can take are along the axes, so a feature vector

maps to a square in the grid. The feature vector belongs to the patient type determined

by the square's color.

The MAP rule may give rise to a complex decision rule because it makes the optimal

decision with the given feature vector, irrespective of the patient types that go with

small perturbations of the feature vector. The decision can change several times instead
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of just once when reading along any row or column in a 2D decision graph. A decision

rule with multiple decision changes might suggest that features were not optimally

chosen. The chosen features might not be in accordance with physiology where we

expect a continuum of responses. For example, if a patient is a transfer patient and has

a score of 3, whether by CHEWS, rCHEWS, or some other method, then patients with

higher scores than 3 should also be transfer patients.

Ideally, a decision rule should separate the patient types into two distinct but inter-

nally connected clusters. Heuristics that violate the MAP rule can enforce a two-cluster

requirement. As this thesis progresses into using more than two dimensions in the fea-

ture vector, it will no longer be possible to visualize a natural boundary between two

clusters.

N 4.3 CHEWS and rCHEWS Classification

We begin by examining classification of control and transfer patients using only the

CHEWS score, and then turn to the use of the rCHEWS score. For transfer patients, the

window considered (observation window) ends at the call time and extends backwards

up to 48 hours, provided data is present. For control patients, the observation window

could start at an arbitrary location and extend back up to 48 hours, provided data is

available. Typical control patient time points could be the last CHEWS score or the

end of the record. Here, the time of the last CHEWS score will be used as the analog

of call time for control patients.

The current CHEWS system is a memoryless system. Previous scores are not consid-

ered explicitly when deciding if a patient should be transferred. As pointed out, patient

history is taken into account by the clinical staff but that process is not captured in the

CHEWS algorithm.

Our problem then is to classify patients as either control or transfer patients, using
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only the patient's history of CHEWS in the last 48 hours. Our objective is a probability

of correct classification (Pcc) of 80 percent, which would be on par with the human

classification performance in Chapter 3. We also set ourselves the additional challenge

of a Pcc of 80 percent using 48 hours of data that ends not at the call time but six

hours prior to the call time. The six hour buffer is called the warning time (WT). The

warning time is the minimum interval caregivers have, if a transfer event is predicted,

in which to take preventative action. Six hours is chosen for its medical significance

based on conversations with BCH clinical staff.

Only patients for whom good trend data is present and who have CHEWS scores

recorded are evaluated. While the trend data plays no role in this section for classifica-

tion, by only using patients for whom trend data is present, the data set can be reused

for the next section, where rCHEWS is computed on the basis of the trend data and

used for classification. Our set of 50 control and 50 transfer patients for whom good

trend data is present is reduced to 40 control patients and 34 transfer patients.

The first subsection reviews performance using the MAP rule with several heuris-

tically motivated feature vectors while the second reviews performance using SVMs of

various complexities. For ease of comparison, we have placed the results from both

subsections together in Tables 4.1 and 4.2.

0 4.3.1 MAP Classification

We will consider all the patients in our dataset and retrospectively choose the decision

rule for each one of the possible feature vectors to minimize the probability of error.

In this sense, we will present results using MAP classification as an upper bound on

performance. When applied this way, the MAP rule loses connection to the probabilistic

framework from which it comes, so "MAP" as used in this thesis is a misnomer. A better

name might be the "Omniscient Rule."
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We consider three feature vectors. The first feature vector uses only the most recent

CHEWS score; it best emulates current BCH practice. The second feature vector uses

the two most recent CHEWS scores, and the third feature vector uses the three most

recent CHEWS scores. Because CHEWS are generally collected at four-hour intervals,

a history of three CHEWS can allow trend identification over approximately one nursing

shift.

0 4.3.2 SVM Classification

We used support vector machines that are trained and tested using K-fold cross vali-

dation. The resulting Pcc of each SVM's performance is averaged across the K trials.

K-1 partitions of the data are used for training and the Kth fold is used for testing.

The training and testing is done K times in order to test on each of the partitions. We

chose K=3 to balance rounds of testing with a sufficient number of patients during each

round.

Four different SVMs were considered. The first two use the two most recent CHEWS

scores; one uses a linear separator while the other uses a quadratic separator. They are

called "SVM: Lin. 2 Latest" and "SVM: Quad. 2 Latest", respectively. The other two

SVMs use the three most recent CHEWS scores and the maximum score among the

three latest scores, respectively "SVM: Lin. Max & 3 Latest" uses a linear separator

and "SVM: Quad. Max & 3 Latest" uses a quadratic separator. The maximum score

over a window was motivated by the hypothesis that if at some point a patient crosses

some severity of sickness, even if they appear to get better, ultimately they might end

up in the ICU.

N 4.3.3 rCHEWS Classification Method

The rCHEWS procedure matches that of the CHEWS process, except for one difference

related to the sampling times. Trend data are available at the minute level, so an
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instantaneous rCHEW can be computed every minute. Because we desire initially to

emulate a CHEWS application, we downsample the trend data to four-hour intervals.

The most recent score is taken to be one hour before call time for transfer patients and

one hour from the record end for control patients. Unlike CHEWS, where the most

recent point may or may not be close to the call time and the spacing between points

may be uneven, the rCHEWS is always computed at the specified time points. Because

the trend data and consequently the computed rCHEWS is noisy, we first filtered the

trend data with a ten-minute median filter. Additionally, once the final rCHEWS was

computed, we filtered the rCHEWS sequence with a four-hour averaging filter. This

filter performs an integration of the signal, so after downsampling, information about

rCHEWS behavior between four-hour samples is encapsulated in the four-hour samples.

0 4.3.4 Classification Results

Tables 4.1 and 4.2 present the CHEWS and rCHEWS classification results for a WT

of 0 and 6 hours. As expected, overall performance as judged by probability of cor-

rect classification is better at WT=0 hours than WT=6 hours, which suggests that

discriminating information is most obvious the closer transfer patients are to call time.

Classification performance using the MAP rule steadily improves as more features are

added, but the performance is largely determined by only a single score with additional

scores improving performance but significantly adding to complexity. The classification

performance with CHEWS using WT=0 compares favorably to the performance of the

human experts, as Pcc > 0.80.

In summary, a simple linear SVM that uses the two most recent CHEWS can perform

nearly as well as the upper bound given by MAP classification at a WT of 6 hours.

Therefore, using complex decision rules that attempt to exploit trends in the CHEWS

history does not appear beneficial. Unfortunately, Pcc using the rCHEWS is about



Technique rCHEWS Pcc

MAP: Latest 0.86 0.63
MAP: 2 Latest 0.96 0.70

MAP: 3 Latest 0.97 0.84

SVM: Lin. 2 Latest 0.82 0.55
SVM: Quad. 2 Latest 0.80 0.58
SVM: Lin. Max & 3 Latest 0.82 0.62
SVM: Quad. Max & 3 Latest 0.86 0.59

Table 4.1: MAP and SVM classification with WT=0 hours on 40 control and 34 transfer
patients. The same patients were used for both CHEWS and rCHEWS classification.
Performance evaluation for the MAP rule was done without cross-validation, and the
decision rule for each feature vector was chosen retrospectively to provide the highest
possible Pcc. Different linear and quadratic SVMs were used and evaluated with 3-fold
cross-validation.

Technique

MAP: Latest 0.75 0.66

MAP: 2 Latest 0.81 0.78

MAP: 3 Latest 0.91 0.85

SVM: Lin. 2 Latest 0.69 0.42
SVM: Quad. 2 Latest 0.59 0.54

SVM: Lin. Max & 3 Latest 0.72 0.42
SVM: Quad. Max & 3 Latest 0.74 0.55

Table 4.2: MAP and SVM classification with WT=6 hours on 40 control and 34 transfer
patients. The same patients were used for both CHEWS and rCHEWS classification.
Performance evaluation for the MAP rule was done without cross-validation, and the
decision rule for each feature vector was chosen retrospectively to provide the highest
possible Pcc. Different linear and quadratic SVMs were used and evaluated with 3-fold
cross-validation.
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equal to chance. Based on these results, it appears that the CHEWS captures significant

information that is not present in the automatically collected data when the data is

analyzed using the rCHEWS metric.

N 4.4 The Prediction Problem

The classification problem takes a static data set and associates the data with one of

two patient groups. By contrast, the prediction problem is a dynamic classification

problem. The data set is continuously updated, and at periodic intervals the patient

must be declared to belong to the transfer or the control group.

A performance metric for a prediction algorithm is a necessary part of the research

process. However, many early warning systems neglect that component, which under-

mines their purported benefits [17]. Perhaps part of the reason a metric is not reported

is that the prediction is difficult to quantify. Ideally, an early warning score should

predict with reasonable lead time and high sensitivity and specificity whether or not

a patient will need to be transferred from the floor to the ICU. Quantitatively this is

ambiguous because "predict" needs to be qualified by how many hours ahead of transfer

the warning should or can be given.

The prediction itself is an ongoing process unlike situations in which there is a

once-and-done observation period and a single prediction based on the observation.

An example of the latter scenario would be patient evaluation upon admission to the

emergency department. The decision is whether the patient will be directed to the

general floor or ICU based on a collection of data acquired upon admission [52]. Another

example is the prediction of mortality after a 12- or 24-hour observation window that

began as soon as the patient was admitted to the ICU [53, 56]. Instead, an early

warning algorithm must constantly make decisions as time advances and new data

becomes available. Consequently, a performance metric must account for the sliding



window aspect of the prediction problem.

Section 4.4.1 begins by defining important segments of time in a data record. We will

refer to these definitions during a literature survey of how other authors have approached

the prediction problem in Section 4.4.2 and throughout the thesis. Sections 4.4.3,

4.4.4, and 4.4.5 will use the definitions from 4.4.1 to explain a prediction framework

that concretely measures prediction performance. Section 4.4.6 uses this framework to

understand some of the results presented in the literature survey.

0 4.4.1 Data Window, Uncertainty Window, and Observation Window

Figure 4.5 illustrates the data window, uncertainty window, and warning time. Recall

that WT is the minimum amount of notice caregivers have to take action if a transfer

event is predicted. The data window (DW) is the length of data prior to time t that is

used to make a prediction at time t. The maximum size of the data window is bounded

by the length of time between the current moment, t, and the start time of the data,

t. The time t is the right most point of the data window. The uncertainty (or event)

window (UW) is the length of time during which the predicted event may occur after

the warning time has expired.

Figures 4.5a and 4.5b schematically outline the prediction problem and how it relates

to DW, WT, and UW. The vertical arrow at time t represents a threshold crossing, or

the moment when a future transfer event is predicted. The fiducial time to represents the

time a call for transfer was made. The actual early warning score values are not shown.

The WT and UW regions are schematically represented by colored boxes. Because

the UW in Figure 4.5a includes to, the prediction situation is a correct prediction. In

Figure 4.5b, the threshold crossing occurs prematurely, so UW does not overlap with

to. Consequently, the prediction in Figure 4.5b is a false positive.

Figure 4.6 illustrates the notations of an observation window (OW) and a warning
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(a) This example shows a correct detection because the UW does
overlap time to.
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(b) This example
overlap time to.

shows a false alarm because the UW does not

Figure 4.5: Schematic of warning time (WT) and uncertainty window (UW) regions
relative to the threshold crossing (arrow) and call time for transfer to the ICU (time
to).
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Figure 4.6: An observation window, and a buffer region (warning time) before the call
time at to. During the warning time, predictions do not take place, and the goodness
of the early warning score is not evaluated.

time (WT). The observation window (OW) is the data interval during which we are

actively making transfer predictions. The interval begins as soon as a patient is admitted

at time t., and continues up until no more predictions are to be made. Figure 4.6 shows

how the OW is shifted back relative to to because WT is greater than zero. No data

is used from the WT, and no predictions are made. In order to have some measure

of consistency among patient records of various lengths, we will truncate records that

contain more than OW+WT hours of data to lengths of OW+WT. Then t, becomes

the start of the truncated record, and to remains the right most point of the record.

The ideas of UW and WT actually appear in the seizure prediction literature. Win-

terhalder calls uncertainty window the seizure occurrence period, and warning time the

seizure prediction horizon [57]. We will analyze his definitions of UW, WT, sensitiv-

ity, and specificity to evaluate performance from the receiver operating characteristic

(ROC) point of view in Section 4.4.3
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M 4.4.2 Literature Survey

The early warning score that we have in mind is different than other severity of disease

metrics such as the Simplified Acute Physiology Score (SAPS II) [58] and the Acute

Physiology and Chronic Health Evaluation II (APACHE II) score [59]. The latter two

compute a single score once after admission to the ICU. These single scores may be

used to compare the morbidity of the patient to other patients, determine if certain

procedures are warranted, or predict the patient's mortality. By contrast, an early

warning score is a continuously evolving metric where not only the final outcome of the

patient must be accounted for in the score (transfer or not transferred) but also the

value of the score through time towards the end point.

Three early warning score studies involving pediatric populations show two ap-

proaches to the problem of quantifying prediction performance. The first by Akre et

al. [18] considered early warning scores for pediatric patients before a rapid response

team (RRT) or code blue (respiratory arrest) call was made. In this study, there were

no control patients. Akre looked only at the 24 hours preceding the event right up to

the event itself. Akre's OW was 24 hours and WT was 0 hours. Because no controls

were present, no attempt was made to define specificity. For sensitivity, the maximum

score during the previous 24 hours was compared to a threshold of four. If the max-

imum score was greater than or equal to the threshold, a "transfer" was declared. A

transfer was also declared if a single domain score in the rubric was equal to three (the

maximum domain score). Sensitivity was then defined as the ratio of the number of

patients declared as transfer to the total number of patients. Akre reported a sensitivity

of 85.5% [18].

There are several concerns with Akre's approach. The most obvious is the lack of a

control group and the consequent inability to quantify the specificity of the approach.

One suggestion for overcoming the lack of a control group is to use data from the
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Figure 4.7: Three different threshold crossing locations all of which yield a sensitivity
of 1.0 under Akre's definition [18].

transfer patients prior to the 24 hours before each is transferred. The transfer patients

could act as self controls because any alarms earlier than 24 hours from the transfer

time could be considered false alarms. Second, the clinical utility of this approach

is questionable. Figure 4.7 shows three different scenarios all of which would yield a

sensitivity of 1.0 but with very different intervals between the threshold crossing and

the actual transfer time. When the latest score crosses the threshold, Akre's definition

of sensitivity predicts a transfer anytime between the threshold crossing and 24 hours

into the future.

Akre attempted to address the 24 hours of uncertainty surrounding a threshold
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crossing by calculating the median time of the earliest and of the latest threshold

crossings. The median earliest instance was 696 minutes and the median latest was 30

minutes. The respective ranges were 5 to 1439 minutes and 1 to 1438 minutes [18].

However, "earliest" and "latest" determinations do not appear to map to a clinically

actionable event. For example, if a patient checks into the floor and one hour later has

a threshold crossing, does that mean they will have an event twenty three hours from

that point or 1 minute from that point? Clearly a more precise prediction is necessary.

Two other studies, Duncan in 2006 [16] and Parshuram in 2011 [51], addressed some

of the issues raised by Akre's approach. As in Akre, both of these studies included a

transfer group, where a transfer was an unplanned transfer to the ICU or a code call.

They also included a control group. Control patients did not experience a transfer or

code for at least 48 hours following the end of the data segment used for the control

group. For transfer patients, the OW included 12 hours (Parshuram) or 24 hours

(Duncan) of data up to one hour preceding the transfer. The warning time for both

was therefore 1 hour. For control patients a stretch of data equal in duration to the

transfer patient observation window was selected. The one-hour buffer is shown for

three transfer patient scenarios in Figure 4.8.

As in Akre, the maximum score during the observation window was compared to

a threshold. An "event" was predicted if the maximum score was above the thresh-

old. However, this was done for both transfer and control groups, so specificity and

sensitivity could be calculated. Furthermore, the one-hour gap adds a buffer before

the predicted event during which clinicians have a chance to take action. For example,

the patient who has a threshold crossing during the last 12 or 24 hours might have

an event exactly one hour from the end of the observation period. Unfortunately, this

still leaves uncertainty in the form of the observation window's length. Using the same

example described above for Akre, a patient arrives on the floor and one hour later has
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a threshold crossing. Then the patient may have an event one hour from that point.

Caregivers have a minimum one-hour warning time unlike in Akre where there is a

zero-hour minimum. However, the event might not happen for as many as 13 hours

(Parshuram) or 25 hours (Duncan) from that point because the observation window

essentially becomes the uncertainty window. Ideally, one would like to be more precise

in when the event will actually occur.

* 4.4.3 The ROC with UW and WT

The ROC is a plot of the sensitivities and specificities for a variety of thresholds,

where varying the threshold trades increased sensitivity for decreased specificity. The

sensitivity is on the ordinate, and 1-specificity is on the abscissa. The area under

the curve (AUC) traced by varying the thresholds is a one-number summary of the

algorithm's performance. A ROC area close to 1.0 corresponds to an algorithm with

good sensitivity and specificity for a range of thresholds, while an ROC area of 0.5

represents performance on par with random guessing. In particular, the area enclosed

by a box whose upper left hand corner is a point with a given sensitivity and specificity

is equal to the point's sensitivity multiplied by its specificity. Therefore, a point whose

corresponding area is 1.0 translates to perfect sensitivity and specificity.

Just as a threshold is varied to generate a ROC, the warning time and uncertainty

window should also be swept independently to generate a family of ROCs. Sweeping

the WT and UW explores the full range of ROC areas as a function of WT and UW. If

the area under each ROC for a given UW and WT represents that ROC, then the family

of ROCs can be visualized as a two dimensional heat map with UW on the ordinate,

WT on the abscissa, and pixel color proportional to the underlying ROC's area. Figure

4.9 shows a notional heat map. In this fictitious example, the performance drops as the

WT is increased and UW is decreased because both changes correspond to increasing
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Figure 4.9: Generic heat map where each cell's
under the curve for the given UW and WT.

color corresponds to the ROC's area

the difficulty of the prediction problem.

By choosing a UW and WT point on the heat map to select a particular ROC and

by choosing a threshold on that ROC, a precise statement can be made: WT hours

from the prediction of a transfer, there begins a period of UW hours during which the

patient will be transferred with sensitivity Pd, and specificity 1-Pfa, where Pd is the

probability of detection and Pfa is the probability of a false alarm. Thus, if a transfer

event is predicted at time t, Pd is the probability that a transfer patient will actually

be transferred during [t+WT, t+WT+UW]. Pfa is the probability that the algorithm

declares a transfer to occur during [t+WT, t+WT+UW] and it does not. False alarms
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Table 4.3: Selected ROC Notation

Term

OW
UW
WT
DW
ts
Pd
Pf a
to
S(t)

[S(t) 2

Definition

Observation Window in hours, > 0
Uncertainty Window in hours, > 0
Warning Time in hours, 2 0
Data Window, 2 0
Record start time, > -OW - WT
Sensitivity, [0, 1]
Probability of a false alarm (1 - specificity), [0, 1]
t = 0, call time for transfer patients
Early warning score value at time t
Cardinality (size) of the set of scores in the time interval
Number of scores > threshold y in the time interval

may occur for control patients because they are never transferred, but they can also

occur for transfer patients if the transfer does not occur during the specified interval.

In addition to a high sensitivity and specificity, a good algorithm will have a large WT

and a small UW. A large WT will give clinicians sufficient lead time to intervene; a

small UW precisely localizes in time the need to transfer.

0 4.4.4 ROC Calculation

We will present our approach to the ROC calculations in a step by step manner. Then

we will follow this section by applying the definitions to our data. Table 4.3 summarizes

some of the principal terms that have been and will be encountered.

The ROC calculation as applied to a single transfer patient is the following: given

a WT, UW, and threshold, 77, at each time, t, compare the early warning score, S(t),

to the threshold, i1. If the score is greater than or equal to the threshold, check if the

patient's call time for transfer occurred during [t + WT, t + WT + UW]. If the call time

occurs in that window, the threshold crossing was a correct detection and is counted

as a true positive. If not, the threshold crossing was a false positive. We denote the

number of times a threshold crossing occurs during an interval as JS(t) > 7| : t E time

t E time interval

1 : t G time interval
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interval.

Following Akre [18], we define an indicator or binary sensitivity Pd, which we have

explicitly written in Equation 4.10 using the UW, WT framework. For the ith transfer

patient, if there is at least one threshold crossing in [-WT-UW, -WT] hours, then

Pd(i) = 1, and if there are no threshold crossings then Pd(i) = 0:

Pa~ranfe (i = 1, if |S(t) ;> I| ;> 1 : -WT - UW < t < -WT (.0Pd,transfer(i) = (4.10)

t0, otherwise

For transfer patients, opportunities for correct detection occur only during the win-

dow [-WT-UW, -WT]. For any time t < (-WT-UW) there is no call time during the

interval [t+WT, t+WT+UW]. Therefore any threshold crossings for t < (-WT-UW)

will be declared false alarms. Pfa for a single transfer patient can then be calculated as

S(t) > i|
Pfa,transfer S : t, < t < -WT - UW. (4.11)

|S(t)

With the definition of sensitivity in Equation 4.10, it is possible to determine ret-

rospectively where threshold crossings should occur and where they should not occur

(Figure 4.10a). As mentioned above, threshold crossings should occur only during the

UW region [-WT-UW, -WT] in Figure 4.10a because these crossings result in true

positives. UW and WT are flipped in Figure 4.10a to graphically show where thresh-

old crossings result in true positives. Sample scenarios corresponding to the threshold

crossings are illustrated in Figures 4.10b, 4.10c, and 4.10d. Threshold crossings should

not occur earlier than -(UW+WT), else they are false alarms. Threshold crossings

cannot occur at -WT< t < to because prediction with a buffer of WT requires trun-

cating WT hours from the data prior to call time. Under a hypothesis of WT hours,
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data from [-WT, to] would not be collected, so the algorithm will not be tested on it.

For control patients, every threshold crossing is a false alarm because the patient is

never transferred from the floor. There are never correct detections of an impending call

time because call times do not occur by definition of being a control patient. Therefore,

for a single control patient, only Pfa has meaning, and it is computed as

Pf acontrol = S(t) |] : t, < t < to (4.12)

To compute the algorithm's overall performance, we give the following definitions:

Mtransfer = Number of transfer patients

P E = Mt1ansfer Pd,transfer (i)
IMtransfer

N'ransfer = S(t) > 71 : t, < t < -WT - UW

Ntransfer = S(t)| : ts < t < -WT - UW

N'ontroi = S(t) 1| : t8  t < to

Ncontroi = |S(t)| : t, < t < to

pf __= EAll transfer N'ransfer + EAll control Ncontrol

ZAll transfer Ntransfer + EAlU control Ncontro

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

Pd represents the proportion of transfer patients that are correctly detected as trans-

fer patients. N'ransfer is the number of times that the score matched or exceeded the

threshold too early for the given UW, WT pair in the transfer population. Ntransfer

is the total number of scores from transfer patients that could have resulted in a false

alarm if all the scores had matched or exceeded 77. N'ontroj and Ncontrol are defined

similarly. Pf a represents the proportion of scores that yielded false alarms relative to

the total number of scores among all transfers and controls that could have yielded false

alarms if they had been above threshold. In subsequent sections and plots, we will refer
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Figure 4.10: Examples of correct detection of need to transfer.
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to this method of computing the ROC as ROCv2.

0 4.4.5 ROC Discussion

ROCv2 requires a UW, WT sweep to observe performance trade-offs. By using ROCv2,

an algorithm's performance should trend in an intuitive manner if false alarms are

uniformly distributed through the false alarm region. Defining sensitivity as perfect

given at least one threshold crossing means that increasing the UW will at least not

decrease, and probably will increase, sensitivity. There are more opportunities to catch

a single threshold crossing during [-WT-UW, -WT.

We also expect that early warning scores should increase towards to. Consequently,

a decrease in WT, which shifts the true positive region [-WT-UW, -WT] closer to

to, is likely to improve the probability that the true positive region includes a threshold

crossing score, and therefore improve the sensitivity of the algorithm.

However, as UW is increased the ROC area under the curve (AUC) may or may

not increase because the specificity for transfer patients could increase or decrease.

If false alarms are independent and uniformly distributed over the false alarm region

[-OW-WT, -WT-UW, then specificity should stay the same on average. However,

if false alarms are clustered towards t, the beginning of the false alarm region, then

increasing the UW actually increases the density of false alarms, so specificity will

decrease. For example, Figure 4.11a has higher estimated specificity than Figure 4.11b

because there are three false alarms out of six evaluation instances as opposed to three

false alarms out of three evaluation instances. Therefore, while there is no guarantee

that increasing the UW and decreasing the WT will increase performance using ROCv2,

a reasonable expectation is that the ROC area would increase.

A heat map also resolves the problem that a binary Pd(i) prohibits comparing

two algorithms based on their sensitivity. As shown in Figure 4.12, algorithm A may
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Figure 4.11: Relationship of small and large UW with specificity for ROCv2.
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detect a threshold crossing ("trigger") and stay triggered while algorithm B may only

trigger once during [-WT - UW, -WT]. However, both algorithms will produce perfect

sensitivity because at least one threshold crossing occurred. On the other hand, a sweep

through UW and WT will reveal that algorithm A is superior because it has a sensitivity

of 1.0 with twice the WT and the same UW (UW = 0) as algorithm B.

It is tempting to increase sensitivity by increasing the frequency of evaluation 1/AT.

More evaluation instances during the true positive region should increase the chance

that at least one evaluation instance will be above threshold. Furthermore, increasing

the evaluation frequency may not increase Pf a because the absolute number of false

alarms would increase but the number of opportunities for false alarms would increase.

The ratio may be unchanged. However, the cost of increasing the evaluation frequency

is in the false alarm rate, EfLa = , which is the number of false alarms per unit time.AT'

While our definition of sensitivity follows that of Akre, Duncan, and Parshuram,

our definition of specificity differs slightly. They compute specificity as the ratio of the

number of control patients that did not have any scores above threshold to the total

number of control patients. By contrast, we account for the number of times a control

patient's score was above threshold, and we account for the number of a times when

a transfer patient's score was above threshold that would have resulted in false alarm

for the given UW, WT. We believe our approach is similar to how an EWS system

would actually be implemented. If a control patient always is above threshold, that

EWS rubric should have worse specificity than an EWS rubric that occasionally rates

a control patient above threshold.

The framework we developed here may not really fit the probabilistic framework

of an honest-to-goodness sensitivity/specificity calculation. By choosing our approach

to specificity, our computations involve multiple contributions from each patient and

unequal contributions from all patients because patients have different record sizes.
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Figure 4.12: Algorithm sensitivity comparison under ROCv2.
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Furthermore, when the data window grows beyond just using the latest score and

uses multiple past scores in determining if a transfer event will occur, the moment to

moment predictions will not be independent predictions. Each prediction will depend

on a segment of data within the data window that also is used in an adjacent prediction

instance.

0 4.4.6 Understanding Published Results with UW and WT

With the ROCv2 developed in the preceding sections and the ideas of UW and WT, we

can interpret the published values of Akre [18], Duncan [16], and Parshuram [51], and

investigate how their results might have changed with a different OW. We did not try to

re-score patients according to the Akre, Duncan, and Parshuram rubrics. Instead, the

reproduction is done using the BCH CHEWS score, which is very similar to the criteria

used by Akre and Duncan. Akre's score and CHEWS range from 0 to 11, and Duncan's

score ranges from 0 to 9. The Parshuram score goes from 0 to 26. We used CHEWS as

our surrogate score and evaluated performance on our data set using the OW, UW, and

WT implied by the published papers. We then lengthened the OW and re-evaluated

performance. We labeled the reproduced results using CHEWS as "mimic" in Table 4.4

and provided the original published performance values for reference. To reiterate, the

only aspect of the authors' studies that we are explicitly mimicking is the respective

UW and WT values.

Our data set for this experiment used between 207-211 control patients and 162-192

transfer patients. Transfer patients were from October 2010 through March 2012 and

controls were from a similar time frame. The range in numbers exist because some

patients do not have CHEWS scores more than six hours before the call time or the

record end. This is a large data set because only the meta data, not the trend data was

needed. To be consistent with published results, no cross-validation was performed nor
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was a MAP rule or SVM used as the decision rule. Instead, each ROC whose AUC is

in Figures 4.13 and 4.14 was computed by sweeping the CHEWS threshold from 0 to

11 in integer steps, and Pd and Pf a were computed via ROCv2. The values in Table

4.4 are taken from the heat maps. When comparing specificities between published and

mimic results, recall that the ROCv2 version of specificity is slightly different than the

Duncan and Parshuram version.

As published, the observation window is equal to the uncertainty window for Akre,

Duncan, and Parshuram. Equality of OW and UW allows excellent results as repro-

duced below in the second row for each of the respective authors' sections. However,

when the OW is extended to 48 hours and the UW stays the same, there is a noticeable

performance decline.

When OW is increased for controls, there is a larger interval during which false

alarms may be recorded, but there is no reason to believe that the density of false

alarms would change depending on the duration of the control record. Therefore, using

only controls, the specificity should be unchanged (recall Equation 4.12).

For transfer patients, the time from [t,, -UW-WT] is a "control" period because

any predictions during that period about future events are a false alarm (recall Equa-

tions 4.11 and 4.12). Chapter 3 showed that transfer CHEWS scores are obviously

different than control scores even as much as 48 hours prior to call time. When UW

and OW were equal, an algorithm only had to distinguish between transfer and control

scores which was comparatively easy as suggested in Chapter 3. However, when OW

was made larger than UW, an algorithm additionally must distinguish between transfer

scores that are close to call time (within UW + WT hours) and transfer scores that are

far from call time. The challenge associated with this additional requirement caused

the performance decline in terms of specificity. Sensitivity should remain unchanged

because the true positive region is unchanged. The decline in performance is exactly
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Figure 4.13: ROCv2 heat map for OW-24 hours. Approximately 200 transfer and 200
control patients' CHEWS scores were used to generate the ROC associated with each
cell by varying the CHEWS threshold from 0 to 11. The top two rows are identical
because a UW of 24 hours already encompasses the whole data record which is at most
OW=24 hours long. Therefore, a UW of 48 hours does not bring any new chances for
true positives or false positives.

the expected behavior when using ROCv2.

In conclusion, our analysis has led us to a prediction metric described by ROCv2,

which uses the intuitive notions of warning time and uncertainty window along with the

probabilistic metrics of sensitivity and specificity. We have taken the time to define the

ROCv2 metric in order to provide a clinically meaningful understanding of results that

have been published and to understand results for the rest of this thesis. The results

presented in this subsection constitute a retrospective evaluation of CHEWS. In the

following section, we will evaluate the performance of decision rules based on CHEWS

and rCHEWS.
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Table 4.4: ROC performance from literature as well as ROCv2 results ("mimic") using BCH CHEWS scores.

Source OW UW WT ROC Area Threshold Sens. at Threshold Specf. at Threshold

[hour] [hour] [hour] [0, 1.0] [0, 1.0] [0, 1.0]
Akre 2010 24 24 0 Undefined 4* 0.86 Undefined

Akre 2010 ROC Mimic 24 24 0 0.95 3 0.87 0.97
Akre 2010 ROC Mimic 48 24 0 0.94 3 0.86 0.94

Duncan 2006 24 24 1 0.90 5 0.78 0.95
Duncan 2006 ROC Mimic 24 24 1 0.93 3 0.78 0.97
Duncan 2006 ROC Mimic 48 24 1 0.89 3 0.78 0.88

Parshuram 2011 12 12 1 0.87 7 0.64 0.91
Parshuram 2011 ROC Mimic 12 12 1 0.91 2 0.86 0.88
Parshuram 2011 ROC Mimic 12 12 1 0.91 3 0.75 0.96
Parshuram 2011 ROC Mimic 48 12 1 0.86 3 0.75 0.84

* Or single domain score > 3
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Figure 4.14: ROCv2 heat map for OW=48 hours. Approximately 200 transfer and 200
control patients' CHEWS scores were used to generate the ROC associated with each
cell by varying the CHEWS threshold from 0 to 11.
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0 4.5 CHEWS and rCHEWS Prediction

With the prediction metric of ROCv2 presented in Section 4.4, we can turn to the

prediction problem in which we can now evaluate algorithms. In the prediction problem,

we use a SVM detailed in Section 4.2.2 to decide if a patient is going to be transferred

during a period of UW hours starting WT hours after a threshold crossing.

0 4.5.1 SVM Training for Prediction

SVM training is done with the ROCv2 metric in mind, which means that each patient

actually contributes multiple training vectors unlike in classification where each patient

contributes one training vector. The feature vector's time span may be less than the

amount of data for a patient. For example, a patient may have 48 hours of scores but

the feature vector only considers a sequence of Ntap equal to three scores which span 8

hours. Ntap is the number of scores in time needed to make a decision. The name is by

analogy with the number of filter taps or coefficients in a finite impulse response filter.

For a patient of either type with Nscore values, the total number of contributed feature

vectors, Ntotai, is Nscore - Nap + 1. Ntotal comes from sliding a window of length

Ntap across the Nscore length sequence and only counting points where the window

completely overlaps the sequence.

For control patients, each of the points where the window fully overlaps the sequence

is a control feature vector. If an algorithm is presented with that feature vector, it should

declare a control patient.

For transfer patients, feature vectors whose most recent time point is less than

-WT-UW hours are control features while feature vectors whose most recent time

point is greater than -WT-UW are transfer feature vectors. The distinction comes

from how decisions for transfer made outside of -WT-UW are actually false alarms

because the transfer does not take place within the ensuing WT+UW hours. Only
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decisions for transfer made during the interval [-WT-UW, 0] are true positives.

The SVM parameters of C and tol were 106 and 10-5 respectively. The SVM was

re-trained and re-sampled. These terms will be discussed in Chapter 5.

U 4.5.2 Evaluation Method

The process of dividing a dataset into non-overlapping segments, training on some of

these and testing on others, and then changing which segments are used for training

and testing, is called cross-validation. K-fold cross-validation divides the data into K

segments or 'folds', and runs K different trials, where K-1 folds are used as training and

the last fold is used for testing. Our experiments used 3-fold cross validation.

In evaluating prediction, we will use a single value called AUC-pt-zero. AUC-pt-zero

is the area under the ROC curve when an SVM threshold of zero is used, which comes

from the SVM decision rule (Equation 4.6). The area associated with a point on the

ROC is a lower bound on both the sensitivity and specificity for that point. Because

the area is the product of sensitivity and specificity, and sensitivity and specificity are

upper bounded by one, the area cannot be lower than sensitivity or specificity. The

area can only equal sensitivity if specificity is one or vice versa.

We use up to the three most recent CHEWS and the maximum CHEWS of those

three as inputs to the SVM. The chance predictor is provided as a reference. Rather

than using the output from an SVM as the decision rule for a feature vector, we used

a Bernoulli random variable with p = 0.5. Otherwise, Pd and Pfa were still computed

using ROCv2.

Because not all patients that have good trend data also have CHEWS scores, the

patients used for the CHEWS SVM prediction performance are a subset of the 50

control and 50 transfer patients used for the rCHEWS performance. rCHEWS values

are computed using the BCH rubric, which accounts for the heart rate, respiration rate,
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and SpO 2 values. Before a rCHEWS value is computed, the trend data is filtered with

a ten-point (ten minute) median filter, and then passed through a four-hour averaging

filter. rCHEWS sample points are uniformly taken at four-hour intervals stepping

backwards from one hour before call time for transfer patients and from the record end

for control patients. The observation window is 48 hours.

M 4.5.3 Prediction Results

Tables 4.5 and 4.6 summarize prediction performance. We see that the CHEWS based

SVM does significantly better than chance with UW=48 hours and WT=0 hours, while

rCHEWS does not. Additionally, we see that CHEWS performance is essentially the

same regardless of the complexity of the SVM. Unfortunately, CHEWS and rCHEWS

performance both decline to essentially chance when the UW is decreased and the WT

is increased. CHEWS performance declines because for some patients, CHEWS scores

are not elevated 6 hours prior to transfer while for other patients CHEWS becomes

elevated more than 18 hours prior to transfer. Therefore, a CHEWS based SVM is not

able to localize the transfer decision in time.

Not shown in the table was an additional test with UW=48 hours and WT=6 hours.

With CHEWS, sensitivity was 0.78 and specificity was 0.90, so AUC was 0.70. However,

rCHEWS was no better than chance. Therefore, CHEWS does provide a warning time

but the uncertainty is so large that the overall use as applied here is limited.

In summary, CHEWS can act as a good distinguisher but the UW must be large.

Also, essentially all predictive information is encapsulated by the most recent CHEWS

for both a WT of 0 and 6 hours. rCHEWS fails as a predictor even if warning time is

0 hours.



Technique iU TACp~eoMa

Chance 48 0 0.49
SVM Un. Latest 48 0 0.87
SVM n 2 Latest 48 0 0.7
SVM Quad. 2 Latest 48 0 0.82
SVM Un. Max & Latest 48 0 089
SVM Quad. Max & 3 Latest 48 0 0.80
Chance 12 6 0.5
SVM Un. Latest 12 6 0.49
SVMan 2 Latest 12 6 0.53
SVM Quad. 2 Latest 12 6 0.37
SVMUn.Max&Latest 12 6 0.41
SVM Quad. Max & 3 Latest 12 6 0.47

Table 4.5: Different linear and quadratic SVMs were used with CHEWS scores and eval-
uated with 3-fold cross-validation. The mean AUC associated with an SVM threshold
of 0 is reported. Chance performance is provided as a reference.

Technique UWTAUC_pt_zero Mean

Chance 48 0 0A6
SVM Lin. Latest 48 0 0.44
SVM Lin 2Latest 48 0 0.57
SVM Quad. 2 Latest 48 0 0.59
SVM Un. Max & Latest 48 0 0.63
SVM Quad. Max & 3 Latest 48 0 0.37
Chance 12 6 0.48
SVM Un. Latest 12 6 0.35
SVM Un 2 Latest 12 6 0.45
SVM Quad. 2 Latest 12 6 0.41
SVM Un. Max & Latest 12 6 0.47
SVM Quad. Max & 3 Latest 12 6 0.28

Table 4.6: Different linear and quadratic SVMs were used with rCHEWS scores and
evaluated with 3-fold cross-validation. The mean AUC associated with an SVM thresh-
old of 0 is reported. Chance performance is provided as a reference.
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0 4.6 Summary

This chapter has shown that classification using the CHEWS results in very high per-

formance. If only the most recent CHEWS is used, classification is on par with or

slightly better than the human classification performance in Chapter 3. For the pre-

diction problem, we have introduced a clinically meaningful prediction metric, ROCv2,

and applied it to several different prediction algorithms. If WT is 0, a simple threshold

on the CHEWS yields performance on par with the more complex SVM algorithms.

Even if WT is 6 hours, a one feature algorithm still appears best. The rCHEWS does

not perform well as a predictor, so Chapter 5 will consider finer grained features that

exploit the trend data directly.
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Chapter 5

Modified rCHEWS

The previous chapter focused on methods to improve classification and prediction per-

formance by a considering a history of the CHEWS score and also to test performance

against an automated reduced CHEWS score (rCHEWS). This chapter focuses on

changing the reduced CHEWS score at the level of the trend data to improve per-

formance.

Various forms of temporal integration at the rCHEWS level only marginally in-

creased performance despite significant increases in complexity. Therefore, it is neces-

sary to move from the temporal axis of the feature space to the physiological feature

axis. We need features other than rCHEWS that can be derived from the raw trend

data if we are to improve classification and prediction performance.

In Sections 5.1 and 5.2 we will consider features at the level of the age-normalized

vital signs. In Sections 5.3 and 5.4 we will consider incorporating meta-data directly

as a feature. Finally in Section 5.5 we will return to the classification problem using a

variety of features derived from the trend data.

* 5.1 BCH Age-Normalized Trend Data

The conventional BCH rubric takes the unnormalized trend data and applies an age

appropriate normalization in order to calculate each vital sign's percent deviation from

normal. The percent deviation is then converted to a CHEWS subscore using coarse

119
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quantization boundaries. A deviation greater than 10% above normal is needed for a

score of 1, a deviation greater than 25% above normal is needed for a score of 2, and

a deviation greater than 50% above normal is needed for a score of 3. The CHEWS

rubric does not allow distinctions finer than the 10, 25, and 50% levels. The CHEWS

also enforces a strong asymetry because any deviation below normal, no matter how

small or large, is immediately scored as 3; there is no gradual transition from 0 to 3.

In this section, we propose using the percentage deviation itself as the feature for

the heart rate, respiration rate, and SpO 2 categories. First we will consider each vital

sign on its own, and then we will include all three vital signs in the feature vector. As

in Chapter 4, the vital signs will be preprocessed with a 10-point median filter, followed

by a four-hour averaging filter. Samples will be taken at four-hour intervals, working

backwards from one hour before call time for transfer patients (if WT=0 hours) and one

hour before the record end for control patients. We used the SVM decision approach

introduced in Section 4.5, with a warning time (WT) of 0 hours and an uncertainty

window (UW) of 48 hours, because we wanted to test performance under the most

favorable circumstances.

Figures 5.1 and 5.2 present prediction performance using only heart rate and res-

piration rate trend data. Chance is provided as reference for the SVM performance.

The titles of these and similar figures in this chapter include the phrase "c:t". The 'c'

refers to the number of control feature vectors, which can come from both control and

transfer patients. The 't' refers to the number of transfer patients. These counts are

the denominators of Pfa and Pd from the ROCv2 definitions in Chapter 4.

Chance performance was computed by randomly classifying each feature vector as

either control or transfer with probability 0.5 and then evaluating prediction perfor-

mance using ROCv2. Because control features are labeled with probability of 0.5 as

control, we expect specificity to be 0.5. Transfer vectors are labeled as transfer with
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Figure 5.1: Area under the curve (AUC) for prediction problem using only heart rate
and a number of SVM feature choices. SVM parameters: C = 106 and tol = 10-5.
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Figure 5.2: Area under the curve (AUC) for prediction problem using only respiration
rate and a number of SVM feature choices. SVM parameters: C - 106 and tol = 10~5.
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probability of 0.5, and ROCv2 only needs one transfer vector to be labeled as transfer

in order for the sensitivity for that patient to be 1.0. Therefore, as shown in Chapter

4, the overall sensitivity of chance prediction for all the patients can approach 1.0. The

chance area under the curve (AUC) is the product of the sensitivity and specificity, so

chance performance should be approximately 0.5.

Under the SVM scenarios, feature vectors were labeled according to the sign of the

computed margin, as discussed in Chapter 4.

Performance is terrible in both cases. None of the SVMs can do better than chance,

regardless of whether just the most recent vital sign datum ("Latest") or several vital

sign points are used ("2 Latest", "Max & 3 Latest"). When considering two dimensions

only, Figure 5.3 shows that respiration rate at the most recent time point (ordinate)

and four hours prior (abscissa) are almost completely intertwined, so every classifier is

going to struggle with separating the points into two classes. Consequently, we observe

that there is almost no predictive information encoded by the respiratory rate.

It is possible for two features together to be better predictors than either alone. For

example, there might be equal numbers of control and transfer patients with symptoms

A and equal numbers with symptoms B, but there might only be transfers with both

symptoms A and B. Therefore, we moved to joint classification using both heart rate

and respiration rate (Figure 5.4). Unfortunately, we still see very poor performance.

The feature vector "Latest" refers to using the most recent heart rate and respiration

rate jointly at each evaluation. "Max & 3 Latest" means we used the three most recent

heart rate and respiration rate age-normalized values in addition to the maximum of

each of these vital signs at each evaluation. The maximum was taken over the three

evaluation instances of the vital sign during the previous 12 hours. While there is

no apparent benefit to jointly using features, we did notice that the area associated

with a point (AUC point) was exactly zero for many trials. We sought to explain this
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Figure 5.4: BCH age-normalized heart rate and respiration rate used
tion.

jointly for predic-

phenomenon in order to gain insight into the poor overall performance.

0 5.2 Resampling and SVM Retraining

During training it is possible by chance that there are many more training vectors for

one patient class than another because representative patients are chosen at random

during each trial and some patients have more data than others. A class imbalance

combined with poor separability between classes can force the SVM's optimal solution

to simply declare all vectors as belonging to only one class. Therefore, sensitivity may

be one, but specificity will be zero, so the area associated with the ROC point will be

zero. This phenomenon explains why so many trials resulted in AUC values of zero in

the preceding figures.

We mitigate the issue of unequal class representation with a modified sample with

replacement scheme. For the predominant class, we take all the feature vectors as they
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Figure 5.5: BCH age-normalized heart rate and respiration rate used jointly for classi-
fication. Resampling for class equalization was used, and overall performance is better
than in Figure 5.4.

are. For the underrepresented class, we take all of the feature vectors available, and

then we sample the underrepresented class with replacement until the number of feature

vectors in both classes is equal. We can then proceed to cross-validation training and

testing as usual. Figure 5.5 shows the result of sampling with replacement. We can see

that overall AUC point area is increased for all techniques (except for chance) because

the SVM is less likely to declare all patients as the predominant class.

In an additional attempt to improve performance, we have tried training the SVM

twice. Training the SVM, and then modifying the SVM constraints before retraining,

allows us to account for the fact that ROCv2 does not penalize a decision rule if the

decision rule misses all but one opportunities to declare a transfer. In the first round of

SVM training, the SVM tries to separate all transfer vectors from all control vectors.

However, this task may be unnecessarily difficult because the SVM really only has to

separate one transfer vector for each patient from all the control vectors. In trying to
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separate all the transfer vectors, the SVM's specificity may suffer.

Our solution is to train the SVM once using all the transfer and control data and

then compute the margin for all the transfer vectors (recall from Section 4.2.2 that

the margin is a distance of the point from the decision boundary). For each patient,

we keep only the largest margin vector and then retrain using all control vectors but

only the kept transfer vectors. This process should make the SVM classification problem

easier by accentuating the extreme feature-vectors for the transfer patients. Because the

retraining has many more control vectors than transfer vectors, we avoid the problem

of the SVM declaring all patients as control by changing the SVM parameter C. Recall

that a larger C more heavily penalizes misclassified points than a smaller C. We

actually make C a vector, where C for the kept transfer vectors is multiplied by the total

number of transfer vectors that were removed divided by the number that were kept.

Consequently, the penalty for misclassifying the kept transfer vectors is substantially

increased. While training twice works on simulated data, its impact on real data is

both variable and limited.

Upon review of the different SVM classifiers' performances, the quadratic classifier

that uses all the time points may at first appear to have potential because it never

declares all features as belonging to one class or another. We considered whether or

not we should focus our efforts on improving the quadratic SVM. Unfortunately, a

simple explanation is available upon visual inspection of two-dimensional plots which

likely extends to the higher dimensions used by the "Max & 3 Latest" version. The

boundaries the classifier creates in higher dimensions are so complicated that they mimic

a chance partitioning of the test data into two categories. Therefore performance is on

par with chance, but the classifier actually is not partitioning the data in a meaningful

way.

In summary, we have attempted SVM prediction using the vital-sign percentage
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deviations from normal for both heart rate and respiration rate and met with disap-

pointing performance due to the large feature overlap. We have accounted for one

weakness of the SVM by resampling data to ensure equal class representations to good

effect, and we have discussed a method of training the SVM that is appropriate for the

prediction metric ROCv2. Nonetheless, weak performance across patients motivates a

closer look at the patients who are misclassified.

0 5.3 The Misclassified Misfits

The rCHEWS has shown little overall discriminating ability, especially at the sub-

CHEWS level. This could be because it is inherently not a good discriminator, but

this could also be because it only discriminates certain types of patients well. Patient

meta-data includes the age, gender, transfer reason, type of call, and hospital admission

reason.

The underlying admission reason could potentially be a useful discriminator since

it is unlikely that certain admission reasons will lead to life threatening deterioration

and transfer. However, admission reasons are diverse and entered in clinical shorthand

notation. Due to the difficulty of working with them, they will not be considered further.

The type of call and transfer reason could be useful, except that Chapter 3 has shown

that nearly all transfer patients are in respiratory distress. Gender is an interesting

possibility but there are currently no grounds for believing that the rCHEWS would be

favoring one gender over another.

Finally, there is age. We hypothesize that age is the most significant of the meta-

data available; it can also be readily incorporated into testing. While the rCHEWS does

adapt threshold levels to age specific norms, it is possible that the rCHEWS norms are

only working well for particular age groups. For example, the physiology of newborns

is not as developed as older patients, and the rCHEWS overall performance could be
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suffering by including children less than four years old.

0 5.4 Using Age

Up to this point, the BCH quantization, which is based on BCH scores and age-

dependent normal values, has been used. However, while the BCH quantization map

has the advantage of being accepted clinical practice, it may be possible to use age as

a feature explicitly in conjunction with the unnormalized vital-sign values. To use the

unnormalized vital-sign values, we actually do have to normalize them because heart

rate and respiration rate span widely different values and an SVM has heuristically

been shown to perform better when the input feature vectors are all of the same com-

parable magnitude. However, the applied normalization will not be age dependent, it

will simply be an age independent rescaling for each vital sign.

A common method of rescaling is to treat the data as if it were Gaussian, and then

to convert it to standard normal by subtracting the mean and dividing by the standard

deviation. For each vital sign, we estimated the mean and standard deviation for a single

Gaussian by creating an empirical probability mass function using the median filtered

trend data from all training patients (both control and transfer). We also estimated

the mean and standard deviation of the age for all training patients.

Using the normalized feature vector of vital signs and age, we ran the SVM as usual

and obtained the results in Figure 5.6. Unfortunately, even explicitly including age is

not sufficient to reliably achieve performance on par with chance.

* 5.5 Custom Features

Given the lackluster predictive performance of the raw bedside data, we take a step back

and return to the classification problem. Given all the data over the past 48 hours, can

we improve upon the rCHEWS performance in Chapter 4? If we can, perhaps those
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Figure 5.6: Heart rate and respiration as vital signs, Gaussian normalized values, age
is used as a feature.

features may apply to the prediction problem. We computed a series of possible features

for each vital sign and then derived several more features. Using age plus one feature,

we tested every age-feature pair using a linear SVM. We did not try to jointly fit all

features in order to keep the model simple and interpretable. We wished to identify

the classification ability of each feature by itself, but we did include age as a second

feature in each SVM because we did not age-normalize the raw values by the BCH scale

factors. Instead we used the approximate Gaussian normalization.

We used the bedside data of heart rate, respiration rate, SpO 2 , systolic pressure,

diastolic pressure, and mean blood pressure to compute the average value, interquartile

range (IQR), length transform, and least-squares line slope of the vital sign over the past

12 hours before transfer. We also computed the pulse pressure and values proportional

to cardiac output and total peripheral resistance. The derived features such as pulse

pressure were included because they encode dependencies that might not be obvious if
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vital signs were taken at face value by themselves.

We considered mean values and simple measures of variability such as the IQR as

natural starting points because of their ease of interpretation. We used the slope of a

trend line in order to characterize trends if they were present.

A more advanced measure of variability than IQR is the length transform, L(y), in

Equation 5.1 [60]. The length transform measures the length of the path as one moves

along the path:

L(y) = 1 i+( [ 
(5.[n1]1)

N is the number of points in the record, y is the signal value and t is the time. We

normalized the length transform of the signal by the number of points used in the

computation to account for records that did not have 12 hours of data. Unlike IQR,

the length transform captures information about how the signal evolves with time.

Reordering points will not change the IQR but will change the length transform. The

length transform may be especially suited for detecting transient events among an

otherwise steady signal such as desaturations in the SpO 2 signal.

We trained and tested on the same data because we have insufficient patients per age

group to effectively use age as a feature unless we use all available patients. This method

will therefore overestimate performance. We used a linear SVM with parameters C=le6

and tol=0.01. The data was not median filtered in order to accentuate variability,

especially with respect to the SpO 2 signal. We also limited ourselves to patients greater

than or equal to four years of age, and normalized the age as detailed in Section 5.4.

Of the original 50 transfer and 50 control patients, the age limitation reduced the set

to 21 transfers and 23 controls. The decision to restrict to older patients was motivated

by signs that classification would be easier for older patients and because we wished

to see performance under "good circumstances." If performance is bad even under the



Table 5.1: Custom Feature Classification Performance via SVM

Pcc SVM Feature
1) 0.75 Average Respiration Rate
2) 0.73 Average Mean BP
3) 0.73 SpO 2 Length Transform
4) 0.68 Average Systolic BP
21) 0.59 Average Heart Rate

Pcc: probability of correct classification

most favorable conditions, we would not expect good performance among the younger

age group.

Table 5.1 shows the performance of the top four features and the performance of the

average heart rate for reference. Two important observations can be made. First, the

mean respiration rate is actually a much better classification feature than the mean heart

rate. Despite the fact that clinicians note high heart rates, the respiration rate actually

contains more discriminating information. This is reasonable, given that most patients

are transferred for respiratory distress. Second we see that the length transform of the

SpO 2 signal yields more information than its mean. This is again reasonable because

the length transform is a measure of the variability of the signal. A mean over twelve

hours will easily smooth out intermittent desaturations, but the length transform will

register larger values because of the increased signal variability.

We also attempted to combine features using a voting scheme to capitalize on the

individual feature performances. Each feature cast one vote for each patient and the

majority of votes determined the declared patient type. Voting was not able to signifi-

cantly change overall performance when compared to the individual performance of just

the mean of respiration rate. As more features were incorporated, performance actually

declined. The low classification abilities of most of the features resulted in essentially

adding noise to the moderate classification abilities of the top features.

To summarize, we have investigated various methods of improving prediction using

Sec. 5.5. Custom Features 131
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the raw bedside monitoring data. We have addressed potential problems associated

with the SVM training but still see poor predictive performance. We returned to the

classification problem and discovered that the overlooked respiration rate signal does

contain classification value greater than that of heart rate. Unfortunately, many other

features have no substantial classification value, so there is not an expectation that

prediction performance can be improved with them.

Overall, the results associated with the prediction and the classification problems do

not suggest that clinically acceptable performance can be achieved just from the readily

available vital sign data above. Note that many results in this chapter are best-case

results, and performance is likely to be even worse in real-life applications.



Chapter 6

Conclusion and Future Work

In approaching the problem of distinguishing which patients might be transferred from

the general ward to the ICU, this thesis had two aims. First, the thesis set out to

evaluate the capability of the BCH CHEWS score in identifying patients at risk of

decompensation and for prediction of transfer. Second, it aimed to explore the utility

of routine, automatically collected patient bedside data for the same tasks. Bedside data

included intermittently sampled blood pressure determined by the oscillometric method,

and heart rate, respiration rate, and SpO 2 levels, sampled at one-minute intervals for

pediatric patients, 0-18 years of age and with diverse pathologies. Prediction is desirable

in order to prevent transfer, through appropriate treatment, or to preemptively transfer

in order for an impending decompensatory event to take place in a properly equipped

environment.

In order to evaluate the predictive abilities of CHEWS and the bedside data, we first

needed to introduce a clinically meaningful, probabilistically based prediction metric

that encapsulated sensitivity, specificity and a measure of the prediction's temporal

localization. We believe the UW-WT framework discussed in Chapter 4 is an essential

element for early warning score evaluation that is currently lacking in the early warning

literature. Without it, published results can claim success without rigorously showing

if an EWS rubric is providing both sufficient warning time to take action and sufficient

localization in time to be meaningful.
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Our advice on improving the use of CHEWS is limited, given its good classification

performance. However, our analysis suggests that a CHEWS greater than or equal to 3 is

indicative of a patient being a transfer patient, rather than the currently used threshold

of 4 or 5. Moving the threshold for transfer to 3 could advance the transfer decision

by 4-6 hours. Furthermore, we see that CHEWS is more specific than sensitive. There

are many more controls than transfers, so a high specificity will give the appearance of

good performance because probability of correct classification will be high. However,

the low sensitivity shows that the performance comes at the expense of missing transfer

patients. We note that CHEWS underscoring occurs primarily in the respiration rate

category, so one avenue for improving sensitivity would be to pay particular attention

to respiratory health when scoring that section of the CHEWS rubric. While the EWS

literature describes some indicators of impending transfer, a thorough BCH-specific,

retrospective evaluation of each transfer when it occurs might reveal patterns of care

that are more sensitive indicators of a future transfer than the currently used vital signs.

These other indicators might include admission reasons, medications, and response to

medications.

The utility of trend data from bedside monitoring for early warning is more ques-

tionable than the utility of CHEWS. We see that classification with rCHEWS is slightly

better than chance with a WT of 0 hours (Pcc = 0.69), but it is no better than chance

with a WT of 6 hours (Pcc = 0.47). However, there exists a clear positive correlation of

rCHEWS performance with age. The oldest age bracket of 12-18 years has a Pcc greater

than 0.80 in both cases. Currently, we cannot say that rCHEWS (or bedside trend data

in general) are not beneficial. We see more promise in older patients who have more

variation in vital signs than younger patients. Increasing the numbers of patients in

each age group could provide evidence as to whether the rCHEWS has clinical utility

for older patients or only has potential for older patients. Therefore, data availability
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rather than fundamental limitations of rCHEWS currently limits conclusions in this

regard.

This thesis reveals the challenges in using monitoring data for predicting the need

to transfer patients. In younger patients, vital sign trend values show nearly perfect

overlap between control and transfer distributions. Completely overlapped distributions

are a fundamental limitation that more data of the same kind cannot help overcome. For

older patients, vital-sign segregation between the two groups is more pronounced, yet we

see that the vital signs (heart rate and respiration rate) generally stay elevated for tens

of hours before transfer occurs, if it occurs. While monitoring provides a graphic record

of this phenomenon, charted four-hourly vital signs would provide a nearly identical

picture. A monitor's strength may be in emphasizing to a clinician just how long a

vital sign has been elevated rather than searching for a quick decompensation or an

indicative trend.

Among the vital signs to which we had access, the data suggests that respiration

rate, systolic blood pressure, and mean SpO 2 values have more utility than heart rate.

Heart rate has high positive predictive value for transfer patients older than 4 years,

but it is not specific. On the other hand, high respiration rates, high systolic blood

pressure, and low SpO 2 values are more sensitive and specific than heart rate, but none

of them are decisive. Therefore, clinicians may want to pay particular attention to these

values during rounds, especially given that CHEWS underscoring occurs primarily in

the respiratory rate category and most patients are transferred for respiratory distress.

The classification and prediction problems approached in this thesis are challenging

for several additional reasons. First, the majority of transfers occur for respiratory dis-

tress, which is poorly defined symptomatically. The underlying deterioration could be

from a multitude of pathologies. Second, there is no objectively defined gold standard

for control and transfer patients. Classification is difficult because we do not know if
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some patients who were transferred by one medical team would not have been trans-

ferred by another. Prediction is difficult because we also do not know if the actual time

of transfer would have varied if different staff had been on call. There may be context-

dependent decisions such as inability to transfer because the ICU is at capacity, or

decision to delay transfer because the patient is in a higher care, but still non-ICU bed.

These limitations on algorithm evaluation will exist because of the subjective compo-

nent of evaluation. If some patients were associated with a certain clinical team, some

insight might be gained into whether particular clinicians had above average sensitivity

and specificity. Unfortunately, simply collecting more data will not solve the subjectiv-

ity associated with assessing the severity of symptoms such as "work of breathing."

Additional cases could help with the problem that vital-sign values (or features ex-

tracted from them) are age dependent. Currently, we have insufficient data to properly

characterize any age bracket, except for the patients under four years old. We do not

even know for very young patients (less than one year) if these are term infants. We

suggest both increasing the number of patient records for all age groups and performing

our analysis for each age bracket separately.

We have mentioned some deficits with the data set. Important vital signs are not

continuously monitored (blood pressure) or are missing entirely (temperature). We

cannot observe a patient's physical or mental state. Additionally, we do not know what

interventions have taken place. Consequently, SpO 2 values or changes in heart rate or

breathing rate can be misleading. We would expect temperature to be a more useful

indicator than blood pressure because blood pressure is known to be a late indicator of

decompensation whereas temperature may herald a low-level infection before it becomes

a dangerous and potentially life-threatening case of sepsis.

We also suggest focusing on a specific, well defined pathology with an unambiguous

diagnosis, and preferably an unambiguous time of the event. For example, respiratory
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arrest is specific, and its time of onset, unlike the transfer time, is not debatable. How-

ever, doing so avoids the larger question of predicting transfer in the general pediatric

inpatient population. On the other hand, if prediction could be done for this small

subset, that would already be beneficial because respiratory and cardiac arrests are life

threatening.

The ECG, respiratory waveform, and plethysmogram carry their own challenges

but also the potential of very fine grained temporal features. We have done preliminary

investigations into heart rate variability, but essentially all the waveform data have yet

to be exploited. On the other hand, we see significant noise for stretches of time in

these waveforms, and the sampling rate for the ECG is only sufficient to pick up large

ECG features because a child's heart rate can be twice as fast as an adult's heart rate.

The utility of prediction is rooted strongly in what interventions, if any, can be taken

to alter outcomes. It could be insightful to consider the interventions that take place

immediately upon transfer to the ICU to determine the most common interventions

and their outcomes. It would also be beneficial to retrospectively determine for transfer

patients what interventions applied at what time could have prevented transfer. For ex-

ample, if simply giving supplemental oxygen or another low-cost and low-risk treatment

can prevent transfer, then even a non-specific predictor may still be beneficial.

In summary, we have shown that CHEWS is a good distinguishing metric for transfer

and control patients. We have not seen equal success with the bedside monitoring

trend data, but part of the limitations discussed are insufficient data rather than a

discovered and demonstrated limitation of the bedside data itself. The problem of

early identification of patients at risk of acute physiological decompensation remains

important and is certainly worthy of continuing attention.
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Appendix A

Classification Self Test

The following pages are unlabeled patients showing unfiltered machine data. The charts

go from [-48, 0] hrs. If the patient is a transfer, then the 0-hour mark is the call time.

If the patient is a control, then a random 48 hr (or shorter) stretch of data is plotted.

The BCH "normal" limits are the black horizontal lines. The age and gender are in

the title. The reader's task is as follows: look through the charts, and for each patient

determine whether at time t=0, the patient was transferred or not. The solutions are

on the page following the last chart.

139



A0276--F- 0.92: heart-rate vs. Time

200 -

a 150-

ID 100-

50

A0276--F- 0.92: respiration-rate vs. Time

2 60 -
T

c

AO276--F- 0.92: SpO2 vs. Time
-= 4!-

60I-

A276--F- 0.92: blood~pressure vs. Time

)j 150k -

100- Ylv IT

0 g-

05

-45 -40 -35 -30 -25 -20 -15 -10 5 0 -
Time [hr]



AR036--M-15.00: heart-rate vs. Time

~f~MA~

AR036--M-1 5.00: respiration-rate vs. Time

C
0

B.
aa

AR036--M-15.00: SpO2 vs. Time

AR036--M-15.00: blood-pressure vs. Time

0 -A

0

~0rIIIIII
-25

Time [hr]

200

1D

j!t

150

1001-

50

1001

90

80

0.CL,

'0

~0
-0

15

10

5

0-45 -40 -35 -30 -20 -15 -10 -5



AS506--M- 0.08: heart-rate vs. Time

AS506--M- 0.08: respiration-rate vs. Time

a)
1a 1501-

!! 100-

50 -_

) 60 -

co 40 -

2 20-

100-

90 -

80

Illi

AS506--M- 0.08: blood-pressure vs. Time

j
0~-45 -40 -35 -30 -25 -20 -15 -10 -5

Time [hr]

AS506--M- 0.08: SpO2 vs. Time

150

100

0
-0

0

I



BL660--F-14.00: heart-rate vs. Time

BL660--F-14.00: respiration-rate vs. Time

BL660--F-14.00: SpO2 vs. Time

BL660--F-14.00: blood-pressure vs. Time

0 -

0 -

-25
Time [hr]

200

150 F-
(U

(U

-c 100

So

30

20

10

100

90

80

0
CL,

C,,

-0

15

10

5

i -A--U-A A

-45 -40 -35 -30 -20 -15 -10 -5 0



BR467--M-16.00: heart-rate vs. Time

BR467--M-1 6.00: respiration-rate vs. Time

BR467--M-16.00: SpO2 vs. Time

90

80

BR467--M-16.00: blood-pressure vs. Time

150- -1 1 1 j

100 -40.-35 -30 -20 -- 5.-10-5.0.-2

50 --

-25
Time [hr]

(D

c 150

! 100

50

40

30

20

10

100

00.
a,

-a
0.~0
.0

-45 -40 -35 -30 -20 -15 -10 -5 0



20

15

Q 10

5

.2 6

4

C2
C

" 2

-45 -40 -35 -30 -25
Time [hr]

-20 -15 -10 -5 0

CB420--F-10.00: heart-rate vs. Time

0-

0-

0 -

CB420--F-10.00: respirationrate vs. Time

0-

0 -

:0 ___ _A _ ___ ___ __Lb_

CB420--F-10.00: SpO2 vs. Time

0 -

0 - -

0 --

CB420--F-10.00: blood-pressure vs. Time

0 -

0 --

n I | I

10

9
0l
0.
CL)

8

15

S10

0.50
05

4c~1



CF025--M- 0.50: heart-rate vs. Time

CD200 -11Is Ik i

150
ca
=0 100

50k

CF025--M- 0.50: respiration-rate vs. Time

2 60-

CL
0

CF025--M- 0.50: SpO2 vs. Time

100 -

M, -

80 -
II

CF025--M- 0.50: blood-pressure vs. Time

150-

C 100- -

0 50 r 3l -0 -

-45 -40 -35 -30 -25 -20 -15 -10 -5 0
Time [hr]



DS931--M- 2.00: heartrate vs. Time

200-
a
- 150
V

.~100

50-

DS931 -- M- 2.00: respiration-rate vs. Time

60 --

210

DS931---M- 2.00: odpresu vs. Time

- 150 -h

ca

-o 10

0DS931--M- 2.00: blood-pressure vs. Time

(D150- 1* 1

CU)100- W

~.0
0 o

.0

-45 -40 -35 -30 -25 -20 -15 -10 -5 0
Time [hr]



00

HE255--F- 1.67: heart_rate vs. Time

200 -

150-
ca
! 100 -

50 -

HE255--F- 1.67: respiration-rate vs. Time

CD 60 -EL
HE255--F- 1.67: SpO2 vs. Time

100-

cm

0

HE255-F- 1.67: bloodpressure vs. Time

aI50I I I

S10011- 2

0 g-T

n0o--45 -40 -35 -30 -25 -20 -15 -10 -50

Tie[r

HE55-F .6: lodprsur v.Time r



JB126--M-12.00: heart-rate vs. Time

JB126--M-12.00: respiration-rate vs. Time

0

JB1 26--M-1 2.00: SpO2 vs. Time

I-

JB1 26--M-1 2.00: blood-_pressure vs. Time

-45 -40 -35 -30 - -15 -10 -5 0.-25-..... ... ... ...... ............. ..... ....-. ..... ..... ..................

-25
Time [hr]

200

150

100

CD

ca-c

100

cm:

80

e150

100

0 500

80

-10-45 -40 -35 -30 -20 -5 0-15



JD426--F-11.00: heart-rate vs. Time

200 -
0

150 -

a) 100 -

501-

JD426--F-1 1.00: respiration-rate vs. Time

60-

20 -

JD426--F-1 1.00: SpO2 vs. Time

15

10

5

JD426--F-1 1.00: blood-pressure vs. Time

0 -_-

0 -- -40 -35 -0-0-51050

0-

-25
Time [hr]

0-
0.

CI)

co

0
0.
B

-45 -40 -35 -30 -20 -15 -10 -5 0



JW629--M- 3.00: heart-rate vs. Time

200 -
(1) I

S150-

50

JW629--M- 3.00: respiration-rate vs. Time

60-

2
10

40 L IfLh LpMij . a...i L.~ .11416tk Li. rl

JW629--M- 3.00: Spr2 vs. Time

100 -

JW629--- 3.00:-l-oc-p-ss-re s. Tim

CM

0

-4 4 -35 -30 -25 -20 -15 -10 -5 0
Time [hr]



KC327--F-18.00: heart rate vs. Time

KC327--F-18.00: respiration-rate vs. Time

KC327--F-18.00: SpO2 vs. Time

KC327--F-18.00: blood-pressure vs. Time

-45 -40 -35 -25
Time [hr]

200

150
It

100 -

50

0

U)

100

cu
%90

80

150

CL 100

0

0
-30 -20 -15 -10 -5 0



MB604--F-13.00: heart-rate vs. Time

?00 --

150 -

100 -

501-

MB604--F-13.00: respiration-rate vs. Time

20 -

101

MB604--F-13.00: SpO2 vs. Time

15

10

5

MB604--F-13.00: blood-pressure vs. Time

0- 
A

0 -

0-

-45 -40 -35 -30 -25
Time [hr]

-20 -15 -10 -5 0

ca

0

U.
cn
P)

0l
0.

a

Cu
'a

0
0

c.,1



MD740--F-13.00: heart-rate vs. Time

MD740--F-13.00: respiration-rate vs. Time

MD740--F-13.00: SpO2 vs. Time

0 -

0- -
0 -

MD740--F-13.00: blood-pressure vs. Time

0I I -

0 4 40---3 20---1 5 2

-2
Time [hr]

P"

m
z

0
2
U,)
m

m
Lh

H--

150

100-

200
0

ca

0)

50

40

30

010
'a. 20

0

10

cqJ
0 9

8

15

CL

_0
0 50

5

-45 -40 -35 -30 -20 -15 -10 -5 0



MR276--F- 5.00: heart-rate vs. Time

00 -

50 -

00 -
-\

50

MR276--F- 5.00: respiration-rate vs. Time

60--

40 --

20 -- -l W

MR276--F- 5.00: SpO2 vs. Time

1001

90

80

MR276--F- 5.00: blood.pressure vs. Time

0 -
-

0- -A

n II II I I
-45 -40 -35 -30 -25

Time [hr]
-20 -15 -10 -5 0

2

c1

4)
ca

c
0

,4a

CMJ
0
C.

(I,

(D

'a

0.
.0

15

10

5

CA,



RD742--F- 0.75: heart-rate vs. Time

- A

RD742--F- 0.75: respiration-rate vs. Time

RD742--F- 0.75: SpO2 vs. Time

cli
0

RD742--F- 0.75: blood-pressure vs. Time

-45 -40 -35 -30 -25 -20 -15 -10 -5
Time [hr]

200

150

100

(D

-c

50

0

CL

150

100

_0
0 50
0

0
0



200

150

j! 100

50

. 60

S40co

CL

S20

-45 -40 -35 -30 -25
Time [hr]

-20 -15 -10 -5 0

TA582--M- 1.00: heart-rate vs. Time

TA582--M- 1.00: respiration-rate vs. Time

TA582--M- 1.00: SpO2 vs. Time

TA582--M- 1.00: blood-pressure vs. Time

F..... ...............
-AF -

100

O% 90
c8i

80

a)
C,,
'a
*0
0

150

100

50

0

-1



TB972--M- 3.00: heart-rate vs. Time

TB972--M- 3.00: respiration_rate vs. Time

TB972--M- 3.00: SpO2 vs. Time

TB972--M- 3.00: blood-pressure vs. Time

-I ~

- -.. . ..

-4~5 -40 -35 -30 -20 -15 -10 -5 0
-25

Time [hr]

1-A
C
00

m

(z~

0
x

-n

0
m
(J-
n

S?

ca

a>

C
0

A

c\J
0
0.
U)

0.

M

150

100

50

V
-45 -40 -35 -30 -20 -15 -10 -5 0



20

15

( 10

5

!!6

0
CL

)2

-45 -40 -35 -30 -25
Time [hr]

-20 -15 -10 -5

WB873--M- 7.00: heart-rate vs. Time

0-

0-

0-

WB873--M- 7.00: respiration rate vs. Time

0 -

0O --

WB873--M- 7.00: SpO2 vs. Time

0 --

0 --

0-

WB873--M- 7.00: blood-pressure vs. Time

0 -

0 -

0 1 .. . I .. .... I ... ...

n I I III

10

9
0
0.
CL

8

o 15

10
Cu0 10

050
:8

0

C



APPENDIX A. CLASSIFICATION SELF TEST

1 A0276 t
2 AR036 t
3 AS506 t
4 BL660 c
5 BR467 t
6 CB420 c
7 CF025 t
8 DS931 t
9 HE255 c
10 JB126 c
11 JD426 c
12 JW629 c
13 KC327 c
14 MB604 t
15 MD740 t
16 MR276 c
17 RD742 t
18 TA582 c
19 TB972 t
20 WB873 c
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