
Language & Tools for Context-Aware Biology

by

Charles Fracchia

Submitted to the Program in Media Arts and Sciences
School of Architecture and Planning

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2014

Massachusetts Institute of Technology 2014. All rights reserved.

Author Signature redacted
Program in Media Arts and Sciences
School of Architecture and Planning

Aug 22, 2014

Certified by..................
Signature redacted

Joseph Jacobson
Associate Professor of Media Arts and Sciences

Thesis Supervisor

Accepted by.................
Signature redacted

Pattie Maes
Interim Academic Head

Program in Media Arts and Sciences

I
CDi

0 .D J

Language & Tools for Context-Aware Biology

by

Charles Fracchia

Submitted to the Program in Media Arts and Sciences
School of Architecture and Planning

on Aug 22, 2014, in partial fulfillment of the
requirements for the degree of

Master of Science

Abstract

Current biological research workflows make use of disparate, poorly integrated sys-
tems that cause large mental burden on the scientist leading to mistakes on often
long, complex and costly experimental procedures. The lack of open tools to assist in
the collection of distributed experimental conditions and data is largely responsible
making protocols difficult to debug and laboratory practice hard to learn. In this the-
sis, we describe an open Protocol Descriptor Language (PDL) and system to enable a
context-rich, quantitative approach to biological research. We detail the development
of a closed-loop pipetting technology and a wireless, sample temperature sensor that
integrate with our Protocol Description platform enabling novel, real-time experi-
mental feedback to the researcher thereby reducing mistakes and increasing overall
scientific reproducibility.

Thesis Supervisor: Joseph Jacobson
Title: Associate Professor of Media Arts and Sciences

3

Thesis Committee

Professor Joseph Jacobson
Signature redacted

Ia
Thesis Supervisor

Associate Professor of Media, Arts and Sciences

Signature redacted
Professor George Church. . .

Member, Thesis Committee
Professor of Genetics, Harvard Medical School

Signature redacted
Professor Neil Gershenfeld

Member, Thesis Committee
Professor of Media Arts and Sciences
Director, Center for Bits and Atoms

I A '_01

Signature redacted-
Dr Shuguang Zhang

/Th----Come............Membe. Thesis Committee
Principal Research Scientist, MIT Media Laboratory

Don't ask what the world needs. Ask what makes you come alive, because what the world

needs is people who have come alive.

Howard Thurman

This document is dedicated to all the people who have enabled

to help me find my own answer. For your support and kindness, my

In particular:

Dr. Shuguang Zhang

Prof. Joe Jacobson

Prof. George Church

Linda Peterson

Giovanni, Alice and Cecile Fracchia

Laura Beth Mours

Adam Marblestone

me and continue

sincerest thanks.

7

8

Contents

1 Introduction

1.1 Protocols: The Script Unit for Biology

1.2 Laboratory Environment

1.3 Data Collection in Biology

1.3.1 Electronic Lab Notebooks

1.3.2 Biological Research Equipment

1.4 Reproducibility in Biology

1.5 Design Paradigms in Biological Research

1.6 Teaching in Biological Laboratories

1.7 The Rise of Synthetic Biology

1.8 Biology as a Service (BaaS)

1.9 Context-Rich Approach

2 PDL: Protocol Descriptor Language for Biological

2.1 A Context-Aware Protocol

2.2 System Architecture

2.2.1 Walk-through

2.2.2 Protocol Timeline Visualization

2.2.3 Data Aggregation Engine

2.2.4 Notes and Comments Visualization

2.2.5 Notifications

2.2.6 T im er .

2.3 Simulation and Outcome Predictability

2.4 Robotic Automation

2.5 Reproducibility .

9

Research

19

19

20

21

22

22

24

24

25

25

26

26

29

29

30

32

32

33

34

36

38

38

39

40

3 A Closed-Loop, Context-Aware Pipetting System

3.1 System Architecture

3.2 Tracking and Annotating Well Plates

3.2.1 W ell Detection .

3.2.2 Corner Well Detection

3.2.3 Finding Well Rows

3.3 Tracking Pipette Position

3.4 Volum e Sensing .

3.5 User Interface Feedback

3.6 Pipette Control .

3.6.1 Reverse Engineering the EDP3

3.6.2 Custom Interface Board for the EDP3

3.6.3 Open Communication Library in Python: pyEDP3

4 Continuous Monitoring of Sample Temperature

4.1 Hardware Design

4.1.1 Electronics Architecture

4.1.2 Temperature Sensor

4.1.3 Temperature Calibration

4.1.4 Wireless Communication

5 Deployment

5.1 Deploy or Die

5.2 Rapid Prototyping

5.3 Production .

5.4 Dissemination and Market Reach

6 Conclusions & Future Directions

6.1 Sim ulation Tools .

6.2 Analytics for Data-Driven Biological Research

6.3 Contextual Sensors .

10

41

42

43

43

44

45

47

. 50

. 51

. 51

. 52

. 53

. 55

57

. 57

. 58

. 58

. 60

. 61

63

. 63

. 63

. 64

. 65

67

67

68

68

A Protocol Descriptor Language Specification v4

B Closed-Loop Pipetting Computer Vision Code

C Rainin EDP3 Communication Specifications

C.1 Packet Structure

C.1.1 Example Command

C.1.2 Example Responses

C.2 Commands

C.3 Checksum Calculation

C.3.1 Example

D pyEDP3 Serial Port Example

D.1 Command Names

E J2C Firmware for Communication with STLM75 Temperature Sen-

sor

11

69

71

85

. 85

. 85

. 85

. 85

. 86

. 87

89

89

91

12

List of Figures

1-1 Typical biological laboratory bench 21

1-2 Example of commonly used biological equipment. Note the space used

by the computer needed to run the Nanodrop DNA spectrophotometer. 23

2-1 PDL system architecture. Solid lines represent elements of the system

that were implemented as part of this work. Dotted lines refer to other

elements compatible with the PDL system but are not implemented as

part of this work. 30

2-2 Walk-through of the PDL system. The first step is to use the writing

module to create the protocol (1) and export it to a PDL file. The

protocol can then be uploaded to the system for future saving and

execution (2). Once uploaded, the interface will take the user to the

execution screen for the protocol (3). 31

2-3 A competent cells protocol visualized using the Timeline feature of

the Protocol Descriptor Language system. Original competent cells

protocol courtesy of Dr. Tom Knight. 32

2-4 Path across the system architecture of a typical sensor data packet . . 33

2-5 Example of a JSON packet sent by the temperature sensor designed in

this w ork . 34

2-6 The protocol for Ared recombination annotated by its author with in-

formation that would be shared after multiple protocol failures. Pro-

tocol courtesy of Dr. Marc Lajoie. 35

2-7 Left: Reference implementation snippet for qualitative comments in

PDL. Right: A qualitative comment is displayed as a pop-up at the

start of a step and when the user hovers over the target region. 36

13

2-8 Left: Reference implementation snippet for quantitative comments in

PDL. Right: A quantitative comment is shown as a heat map of the

three ranges: ideal, passable and unacceptable. 37

2-9 Sample notifications being displayed on the Web interface. A simple

color scheme from green to red is employed to denote severity/impor-

tance of the notification. 37

2-10 Left: A common lab timer. It consists of an LCD screen for display-

ing time, a buzzer and a few buttons to navigate through a couple of

timers and start/stop them at will. Right: Sample notification inte-

gration where the user is informed of the timer's completion via SMS

or through a heads-up display on Google Glass. 39

3-1 System architecture for the closed-loop pipetting system. The over-

head camera provides video to the embedded computer running the

computer vision code in real-time. The code detects the 96-wells of

the plate, annotates them with their address and sends a message to

the Web interface displayed on the tablet to provide real-time pipetting

feedback to the user. An electronic pipette is used to close the loop in

our system and prevent pipetting into the wrong well. 42

3-2 A number of commercially available plates. Note the diversity in color,

number and position of outer notches, etc. 44

3-3 Circle detection being performed on a common 96-well translucent plate 45

3-4 Corner well detection using the quadrant method for reduced search

tim e . 46

3-5 Left: Fitting a line to find row wells. Right: Missing wells compensa-

tion algorithm working when fingers obstruct the view. 47

3-6 Final result of annotation process . 48

3-7 Color-filtering process applied to tip tracking. Left: The raw image

with a tip colored blue. The tip was colored more than necessary for

effect. Right: The result of the color filtering mask showing only the tip. 49

14

3-8 Algorithm for volume detection using overhead video from the USB

camera. The plate cross-over volume is determined as the minimum

volume necessary for forming continuous layer surface inside of the

well. This volume varies depending on the specific plate used and the

diameter of the bottom of the well . 50

3-9 Left: Well with no water inside. Center: Well with 40 1iL which is

the cross over volume for this well, destroying the pattern. Right:

demagnifacation effect caused by the liquid in the well. In this case:

100 pL 51

3-10 The MIT logo is drawn on the well plate using the closed-loop pipetting

system developed in this work . 52

3-11 The annotated view of the EDP3 electronics following reverse engineering 53

3-12 Left: We connected a logic analyzer to the EDP3 battery port to cap-

ture and reverse engineer the pipette's communication port. Right:

Captured response packets on the response line after sending data to

the EDP3 using the remote communication program. Program cour-

tesy of Steve Konrad. 54

3-13 Left: Board layout for the wireless adaptor using the exposed com-

munication port on the Rainin EDP3 pipette. Right: The wireless

board installed in the battery compartment of the EDP3. The board

was designed to maximize backwards compatibility and require as few

modificiations as possible. 55

4-1 Left: Sample wireless temperature sensor electronic annotated board

design. Right: Assembled prototype within case and with sensor inside

the Eppendorf tube . 58

15

4-2 Temperature-sensing speed tests of the DS18B20. This shows that the

DS18B20 is slow (approx. 20m) to adapt to large temperature changes,

in particular when moving toward colder environments. This is in part

due to the heat generated by the system by being continuously on.

However, we found that different temperature sensors were able to

adapt to the same differentials in a matter of seconds. 59

4-3 Temperature-adaptation experiment using the STLM75 temperature

sensor with different holders in ice (left) and ice-water mix (right). . . 60

4-4 STLM75 temperature-sensor adaptation time validation experiments

in heating conditions inside an incubator 61

16

List of Tables

5.1 Bill of materials (BOM) for the wireless temperature sensor device

described in this thesis . 65

17

18

Chapter 1

Introduction

Biological research laboratories are spaces regulated by the BioSafety Level (BSL)

guidelines[63] where scientists carry out their experiments. These experiments are

described in documents called protocols, which outline the procedures step-by-step.

Oftentimes, the procedures require the use of instruments (e.g. centrifuge) to apply

the sought transformations to the samples. With the exception of certain specialized

industrial processes, the laboratory environment today is still dominated by disparate,

poorly integrated workflows, making it difficult to collect a comprehensive picture of

the experiment. With that in mind, this thesis develops a suite of open, integrated

technologies that enable a context-rich approach to biological research. This includes

the creation of a Protocol Descriptor Language (PDL), a closed-loop pipetting system

and sample temperature sensors.

In this document, we first outline the biological research environment and its cur-

rent limitations before detailing the architecture of the Protocol Descriptor Language

and execution engine, the closed-loop pipetting system and sample-sized networked

temperature systems. We will also discuss the implications this work has on biology

massive online open courses (MOOCs) and quantitative-based learning in biological

experiments.

1.1 Protocols: The Script Unit for Biology

In biology, protocols are documents that describe the operations required to carry

out a specific experiment. These documents can vary greatly in their depth and

formatting as they are often written and consumed by the same individual. As shown

in 2-6, this often leads to protocols that lack a lot of information considered implicit

19

or common knowledge by the original author.

Protocols are frequently laid out as bulleted or numbered lists of transformations

to be applied to the samples. In many cases, the time frame within which these trans-

formations occur is important as many of the steps involve chemical reactions whose

efficiencies are often time-dependent. Because of the widespread time-sensitivity of

these operations, they are most often sequential and parallel operations are only in-

troduced when the scientist is familiar with and proficient in the protocol's steps and

details. This is due to the fact that many steps involve the combination of various

reagents and materials often held at specific temperatures (refrigerator, freezer, etc.)

or make use of common resources shared among a lab. Furthermore, the handling of

multiple, parallel protocols is quickly impeded by the mental burden it places on the

scientist and thus is rarely performed in labs that rely on human operation.

All these factors have contributed to the current culture in biological research labs,

where debugging of biological protocols is so arduous that they are often repeated

first and not re-assessed until the failure is more consistent. Beyond the obvious

time and cost associated with this practice, it is made clear that the current environ-

ments do not provide the right tools and enough contextual data to conduct reliable

reproducible research (see section below).

1.2 Laboratory Environment

While the exact layout of these laboratories can vary, the common unit of the lab-

oratory is the bench, as pictured in 1-1. Benches are working surfaces most often

made of chemically inert resins to avoid reactivity with materials in an eventual spill.

While lab benches are common to almost any laboratory space, the way they are

used or even occupied varies widely based on the research context. Two such major

contexts exist: the academic and industrial contexts. In the former, manual labor is

more prevalent, while in the latter, robotics and other high-throughput platforms are

more commonly used. This is in large part due to the emphasis placed on the process

and scalability in industrial settings. As a result, benches in academic settings are

20

generally designed around the scientist as a central element, whereas robotics and au-

tomation platforms are more at the center of the attention in more industrial settings.

However, while their use and design of labs may differ, both academic and industrial

academic research environments rely on equipment to perform, simplify, and abstract

certain tasks carried out in their research.

Figure 1-1: Typical biological laboratory bench

1.3 Data Collection in Biology

In laboratory settings, data collection can mean many different things and involve

varied processes. In many cases, data collection relies on the machines used to export

data in a common format, such as spreadsheets. However, many processes in biological

research generate complex visual outputs that are solely analyzed and interpreted by

the scientist. In both cases, results are compiled in a lab notebook, and all variations

21

to the experimental procedure or setup should be recorded within it.

1.3.1 Electronic Lab Notebooks

Electronic lab notebooks are electronic counterparts of the traditional paper-based lab

notebook. They often rely on content management platforms like MediaWiki[33][45]

or note-taking applications like Evernote[20]. The overwhelming majority of cur-

rent electronic lab notebooks use either a keyboard or voice for input (using text-to-

speech). Unfortunately, the highly technical jargon routinely used in these experi-

ments makes the latter a non viable option. While dedicated keyboards do not pose

the same problem of input accuracy, they present their own challenges, including

cleanliness, typing ergonomy and input speed. The first is a problem that relates to

cross-experiment contamination. In fact, in laboratories, keyboards are often con-

sidered as potential sources of contamination due to the difficulty associated with

thoroughly cleaning them[58][82]. While this particular problem could be solved by

using a silicone, water-resistant keyboard, the typing ergonomy of such a keyboard

is significantly impacted. Finally, when comparing traditional notebooks with their

electronic counterparts, the celerity associated with taking a note on paper often

trumps navigating an electronic interface and typing. This is especially important

since many experiments are time sensitive and thus the rigidity associated with an

electronic input method can lead to significant annoyance on the part of the user.

All this means that while the use of electronic lab notebooks has increased in

recent years[78], they have yet to gain widespread adoption. We postulate that this

slow progression is due to two major factors: the lack of an ergonomic input interface

and the limited added value that electronic lab notebooks provide.

1.3.2 Biological Research Equipment

Biological equipment stretches from the simplest devices, like vortexers and cen-

trifuges to complex systems like liquid handling robots and fluorescent automated

cell sorters (FACS) (see Figure 1-2). Nearly all of the equipment currently offered

22

in the biological research field are proprietary systems that rarely possess computer

communication interfaces. When they do, these are rarely detailed for the end user

and are often meant to be restricted for the manufacturer's internal use. There are

two main reasons that explain this phenomenon: companies treat software as a sep-

arate revenue model, often charging for software with very basic functionality and

second, biologists rarely possess the computational skills required to communicate

with the devices.

Figure 1-2: Example of commonly used biological equipment. Note the space used
by the computer needed to run the Nanodrop DNA spectrophotometer.

All of this makes the modification of these machines and their cross-vendor integra-

tion nearly impossible and thus context-gathering from machines similarly unattain-

able. Yet biological research equipment is involved in many steps of a biological

protocol and information about their particular parameters would be highly enabling

for troubleshooting workflows and experiments.

23

1.4 Reproducibility in Biology

The lack of reproducibility in biological sciences has been an issue highlighted nu-

merous times in the past[57] [60] [61]. In two separate studies, it was found that as

little as 11%[61] and 25%[67] of the results were reproducible. The importance of

protocols in experimental biology make them a key target for improving reproducibil-

ity. While some journals have created infrastructures for sharing and distributing

protocols openly[38], the formats employed do not enable the centralized collection

and comparison of experimental results. In fact, these exchanges mainly serve the

purpose of disseminating protocol procedures between scientists, and do not currently

possess the ability to quantifiably compare outcomes. It is important to note that

this inability is not due to the journals' infrastructure but rather the lack of avail-

able, affordable technologies to collect the necessary data inside the laboratory. The

technologies we present in this work are geared toward filling that void and enabling

a quantitative approach to scientific reproducibility.

1.5 Design Paradigms in Biological Research

Designed biological experiments is a varied process, reflecting the diversity of tasks

that are accomplished in biological protocols. Modern biology experimental design

can go from DNA sequence design[42] to protein design[79] and population dynam-

ics simulation. For this reason, a unified tool for experiment design is currently

intractable. However, some efforts exist in the synthetic biology field to create a uni-

fied system to automate the experimental design process[9]. Likely due to the steep

learning curve and workflow adaptations they require, these tools have not yet seen

widespread adoption within the field.

24

1.6 Teaching in Biological Laboratories

A challenge involved in teaching modern molecular biology is often the laboratory

practice. Laboratory work requires not only a correctly accredited facility but also a

plethora of specialized technical equipment. For that reason, the teaching of biological

laboratory practice remains difficult to democratize and disseminate widely. With the

recent advent of Massive Open Online Courses (MOOCs)[16][11][56][53], the challenge

to provide tools that are low cost, require little infrastructure and assist the learning

process has only intensified. Furthermore, the tools currently used in laboratories

largely do not collect data that allows quantitative assessment of success in real time.

1.7 The Rise of Synthetic Biology

While the conceptualization of the field can be traced back to the early 20th century[72],

the establishment of synthetic biology as a field describing the engineering of syn-

thetic systems for technological use and understanding of natural biology did not

spread widely until around the year 2000[62]. During that time, the field attracted

a number of engineers which, led to a number of synthetic devices being built using

genetic circuitry, including an oscillator[66] and a light-sensitive kinase photographic

system[74]. Furthermore, the establishment by a small group of MIT researchers,

of the first international Genetically Engineered Machines (iGEM) competition[28],

further boosted the growth of the field by providing training grounds for many under-

graduates. While this creates a large amount of diversity in the direction of synthetic

biology research, we note that the field has done little work to develop hybrid bio-

electronic communication mechanisms[68]. We view the development of synthetic

biology as an opportunity to bridge some of the technologies described in this work

in order to create cellular-level context for biological protocols.

25

1.8 Biology as a Service (BaaS)

The rise of synthetic biology has also been a catalyst for the development of a new

model for the biotechnology industry whereby individual processes are outsourced to

service companies. Taking inspiration from the evolution that occurred in the software

industry[84], we refer to this new model as Biology as a Service (BaaS). Examples

of BaaS include current DNA synthesis companies, like Gen9[21] or IDT[27], which

provide fragments that can be as long as 3,000 bp in the case of the former. This allows

research labs and companies to remove the need to have an in-house synthesizer and

thus remove complexity and development time. Others, like Ginkgo BioWorks[24],

are aiming to expand the BaaS paradigm by abstracting away the entire process of

genetically modifying organisms. Analogous to the effect the SaaS model had on the

software industry, we expect Biology as a Service to enable more abstraction, thus

lowering the barrier to entry for doing biological engineering. However, if the recent

history of the software industry provides any clues, the current proprietary approach

still widespread in the biotech industry should be abandoned in favor of a more open

set of tools. This is the key reason motivating the open release of the tools detailed

in this work. In due time, we also aim to create the business infrastructure required

to ensure vast distribution and use of this platform while maintaining its open-source

foundations[8].

1.9 Context-Rich Approach

The technologies and infrastructure laid out in this document enable the collection

and visualization of disparate data sources as they relate to the experimental protocol

in a context-rich environment. The context of an experiment can be defined broadly

and efforts in this thesis should be considered a first step towards gathering more

variables in the future. Common experimental variables worth measuring include

temperature, pH, optical density, luminosity, various gas concentrations etc. However,

beyond direct physical variables, the condition and measurements from the equipment

26

also constitute an important target for achieving context-richness. In fact, most

modern equipment will produce data in electronic media, but only rarely in an open

format.

Achieving a context rich environment in biological laboratories would enable more

reproducible experimentation, easier debugging of experiments and increased under-

standing of protocol variability.

27

28

Chapter 2

PDL: Protocol Descriptor

Language for Biological Research

In the complex, multivariate environment of molecular biological research, protocols

are a necessary guide that allow scientists to describe and reproduce steps. However,

the currently widely used methods fall short in their ability to enable multivariate data

collection, cross-protocol correlation, mental-burden reduction and use as a teaching

tool.

To solve these problems, we created the Protocol Descriptor Language (PDL), an

open-source schema for describing biological research protocols. At its heart, PDL is a

simple XML structure that allows biologists to write their protocols easily in a format

that is both human and machine readable. Alongside the core specification, we also

created a Web-based platform that allows biologists to run PDL protocols, collect

data from disparate data sources including temperature sensors and smart pipettes

as well as assist in the redaction of new protocols. The suite of tools presented in this

document also present themselves as ideal learning aides for laboratory biology.

2.1 A Context-Aware Protocol

Current, commonly used methods for writing protocols traditionally make use of

word processors and bulleted lists. Such technology is not conducive to the use of

interactive protocols that incorporate contextual information to aid protocol execu-

tion and quality assessment in real time. For this purpose, we created a protocol

running application as part of the Web-based infrastructure developed for this the-

sis. The protocol-runner application leverages lightweight, modern communication

29

protocol[37] to gather real-time sensor data from devices detailed later in this docu-

ment. The runner application uses a PDL protocol file as input to aggregate, com-

pute and visualize information relevant to the procedures carried out. There are five

main features that enable context awareness in the protocol and researcher: protocol

timeline visualization, data aggregation engine, notes and comments visualization,

notifications and stopwatch.

2.2 System Architecture

Simutor Existing tools Distributed sensors
Simulator . (e.g.: pipette) (e.g.: tube temperature)

A. Workflow Tools
A..(e.g.: scheduler)

I - m ~ - I

IWebnterfac I
PrOtOcOO D crptor

Assisted PDL Natural language
writing processing

of existing protocols
Leaming Module

Figure 2-1: PDL system architecture. Solid lines represent elements of the system
that were implemented as part of this work. Dotted lines refer to other elements
compatible with the PDL system but are not implemented as part of this work.

In this section, we describe the overall system architecture for the Protocol De-

scriptor Language and its associated Web-based implementation. The system dia-

gram is visible in Figure 2-1. The core of the system rests on the PDL specification

30

......... ...

(Appendix A), which is interpreted by the Web-based application. The application

then implements all connections to devices, or other tools. This architecture permits

an easy sharing of small files between scientists yet provides a central system with

extensible features. Furthermore, the choice of the Web interface permits greater

availability since all that is required of the user is to have a device equipped with a

Web browser.

New Protocol

Main Information

Samples

Step #1

a
I

-N.-b

*

Upload Protocol

Load Existing Protocol

1 Prepa

25OmL c
tubes be

Competent Clls

Protocol Step Controls

re glassware 10m T'*r

t and pnwcam
'm 10Mentrifuge tubes And screw cap Thur 1w

fore use Help

Figure 2-2: Walk-through of the PDL system. The first step is to use the writing

module to create the protocol (1) and export it to a PDL file. The protocol can then

be uploaded to the system for future saving and execution (2). Once uploaded, the

interface will take the user to the execution screen for the protocol (3).

31

..........

.....

D-Wlk

10

Notificatons

2.2.1 Walk-through

The system currently provides the ability to write, upload and execute PDL files

(see Figure 2-2) and is available at www. pdl. io. Future plans include building an

extensible framework on top of the core PDL functionalities described in this thesis

to enable a modular approach to biological research. Drawing inspiration from the

app store model [5] [25], we are making provisions in the framework to enable custom

applications to access data gathered by the PDL system and interface with workfiow-

specific devices and processes.

2.2.2 Protocol Timeline Visualization

Competent Cells
This protocol is a variant of the Hanahan protocol using CCMB80 buffer for DHiOG, TOP10 and Machi stralns. It builds on Example 2 of the Bloorn5 patent as well. This protocol has been
tested on NEB10, TOP10, Machi and BL21(DE3) calls. See OWW Bacterial Transformation page for a more general discussion of other techniques. The Jesse patent describes using this

buffer for DH5o cells. The BloornO4 patent describes the use of essentially the same protocol for the invitrogen Mach I cells.

Estimated duration: 35h 42m

Prepe glassware

Pick colonies and grow in liquid medium

Prepare Glycerol

Move Imi of cell ti cryOtubes
Chill tubes In ice bath
Place zip lock beg in -80C freezer
Clean all areas using ethanol
hInoculate

Prepare ice bucket

Transfer saVles to and weigh centrifuge tubes

Centrifuge cells

Resuspend cells in buffer
incubate resuspension on ice

Centrifuge cells

0th 0" 10h 15h 20h oth W 10h

Figure 2-3: A competent cells protocol visualized using the Timeline feature of the
Protocol Descriptor Language system. Original competent cells protocol courtesy of
Dr. Tom Knight.

As discussed previously, protocols can be complex series of steps that can last

several days. This makes the tracking of every single step in time intractable for a

an individual and is what constitutes a significant portion of the mental burden issue

in biological labs. In order to address this issue, we used and extended a JavaScript

timeline graphing library[12]. Figure 2-3 shows a sample protocol displayed as a

32

................

....

timeline. Steps are color coded based on their expected complexity as described in

the PDL format with the <intensity>tag. This enables the user to find at a glance

which steps require more attention, thus minimizing the protocol's planning burden

on the user. This feature is important in preventing potential timing conflicts between

the user's other activities (like meetings or discussions) and the protocol he/she is

running.

2.2.3 Data Aggregation Engine

The data aggregation engine runs as a separate Node.js[40] application from the

main Web-server implementation. Its role is to monitor sensor messages relayed

through the MQTT broker and insert the corresponding information in a database for

storage. While Node's asynchronous input/output execution model[83] would allow

for the data aggregation engine to be run within the main application, we opted for

a separation of the two loops in order to insulate either of them against the other's

halted execution.

In order to interface with the MQTT broker relaying the incoming sensor data,

we make use of the MQTT package[39] and set the callback function to handle sensor

data input. The data is transmitted as a JSON[29] payload by the sensor, with only

one required key: the sensor value. Figure 2-4 shows the path taken by the data from

the sensor all the way to the user interface.

Manl

man &AN&**Wb@hS

MOTT Broker Pu@6 0818 Protocol Deecptor Language
Temperature SevrUerCmue

Senor '
Locae-to-Interet

Relay

Figure 2-4: Path across the system architecture of a typical sensor data packet

The sensor can also send a time-stamp to specify the time of the sensor reading.

The majority of sensors are expected to send data as time-stamp / value pairs, but

in case of a missing time-stamp, the time at which the payload is received will be

33

... - I ffieffifflon- - , '4__ - - - - . - - I - - - :

used as time-stamp by the database insertion application. Figure 2-5 shows a typical

JSON payload for a sensor.

1 {
2 "time" 1407809212,
3 "value" 24

4 }

Figure 2-5: Example of a JSON packet sent by the temperature sensor designed in
this work

The database that was chosen for this implementation is MongoDB[35]. The

rationale behind choosing MongoDB is three fold: First, MongoDB is a document-

oriented NoSQL database making it ideal for interaction with JSON payloads. Sec-

ond, is the greater speed compared to relational databases (e.g., MySQL). Finally,

MongoDB is more readily available for use with Node applications through the use of

well-established packages[36]. In this model, decoupling the data storage and visual-

ization also enables greater scalability of the overall system by allowing independent

control over each element.

2.2.4 Notes and Comments Visualization

As shown in Figure 2-6, protocols can contain complex annotations, notes and com-

ments that are crucial to the successful running of a protocol. These annotations

can be either qualitative or quantitative. In the former case, the annotations will

usually provide more information about a specific process or provide a rationale for

the particular procedure. In the latter, a value judgement is placed on a quantitative

range of a particular reagent or condition. For example, as can be seen at the top of

Figure 2-6, the author reveals in an annotation that it is crucial that the temperature

be under 34C and avoid 37'C.

These notes and comments are part of the Protocol Descriptor Language specifi-

cation detailed in this thesis. They are displayed as part of the Web interface that

helps to run protocols. This is part of the main Node application that is rendered to

the user within his/her Web browser. Bringing information to the attention of the

34

..................

.

z3ct "C -5J

Lambda Red Recombination (Qui k reference)

(This protocol can also be used for Lambda lot lot tion or remove the heat induction

for plasmid transformation) 4/

\ e Grow overnight culture from fresh monoclo culture/colony/glycerol s S
. Inoculate 3 ml. growth cultures using 30 u of overnight culture (eac ml, growth

culture can be used for 1-2 transf and I negative control
" Incubate the growth at 4 shaking/rotation mid-log growth phase is

acheived (0D600 OA0 .6).
di heat ho culture in a 42 ter bath with shaking for 15 minutes.

SImmediately transfer -shocked culture to ice, and perform the remainder of the

) experiment in the Id room
o Pipette ceSuito rf tubes.
o Wash cell x mL water (spin down at 16.1 rcf for

20 seconds a h
o Resuspend contents of each eppendorf tube in 50 uL cold dH2O containing:

a ssDNA oligo: 1-2
- MAGE oligos: upto 5 uM (MAGE oligos + 0.2 uM of coselection oligo

for MAGE/coMAG a - _s
dsDNAPCRproducts:-S0-00ng

* Negative control: just dH2O
o Transfer each cell aliquot to pre-chilled 0.1 cm electroporation cuvettes e /ec b e

Electroporate at the following settings:
1.8 kV
200 ohms
25 uF j 7 -1 7

aeo rd tant (close to 4.8 is ideal) -r A e5
_ Immediat ea mL (r selectable markers) 3 ml. for non-selectable alleles and all

vaation E) of LB-Lennox to s and transfer to a test tube

for recovery. 3 v w s F ' ', o 4dtr
c Without selection, .TO

CA kv-j o With itivcselection, I h recov is
Wi negative selection at I hours are uired -is

. After the cells ve or the amount o time, may be

screened/selected.
o Plate proper lution/concentration of cells on desired selective media.

o Screen for -selectable mutations by ASPCR (allele specific PCR).

Figure 2-6: The protocol for Ared recombination annotated by its author with infor-

mation that would be shared after multiple protocol failures.
Dr. Marc Lajoie.

Protocol courtesy of

user like notes and comments can be overwhelming to him/her and can compromise

the quality of the overall user interface. In particular, given our goal to reduce mental

burden, displaying too many notes and informational comments may be counterpro-

ductive. For this reason, we adopt a just-in-time approach[70] to displaying the notes

and comments encoded in a protocol.

Qualitative comments are simply displayed as text pop-ups (see Figure 2-7) upon

35

-- mooffs- : - - - - - - I . -

.. - - - 1111M . W

1 • <d CS C t i_ pt l 011 >

2 [Highlight] rest of comment
3 < c 011w1c 11 t >Comment </ co rnrnc 11 t -·
4 ..t. /ck·sc t ipti_or1>

Comment

v
pr 1 Detergent is a major inhibitor of

competent cell growth and
, transformation. Glass and plastic must ie

be detergent free for these protocols.

The easiest way to do this is to avoid
washing glassware, and simply rinse it

, out. Autoclaving glassware filled 3/4
with DI water is an effective way to
remove most detergent residue.

Media and buffers should be prepared
in detergent free glassware and
cultures grown up in detergent free
glassware.

[Eliminating detergent]
tubes and screw cap tl

Figure 2-7: Left: Reference implementation snippet for qualitative comments in PDL.
Right: A qualitative comment is displayed as a pop-up at the start of a step and when
the user hovers over the target region.

hovering over the target region and at the start of the step. Qualitative comments

are encoded in the Protocol Descriptor Language specification using [] to bound the

comment region and the <comment>tag for its contents.

Quantitative comments on the other hand are displayed as a heat map of the nu

merical ranges from ideal (green) to passable (orange) to unacceptable (red). Quan

titative comments are expressed in the PDL using {} to denote bounds and the

<variable>tag is used to declare the ranges. The reference implementation and a

visual example of quantitative comments is shown in Figure 2-8. The current imple

mentation of the variable tag supports inclusive ranges; however, we expect future

work to add support for a more complex range description.

2.2.5 Notifications

The notification engine has two main components: the client-side and server-side

components. The former is coded in JavaScript , resides on the client-side of the

36

l T

2"'

3"'
4

5

6

7

8•
9•

10.

<description>{ Highlight } rest of description
<variable>

<range>
<f rom> 22</f rom>
<to>24</to>
<unit s>(</urii ts>
<value>good</value>

</ran9e>
</variable»

</description>

es and arow in lie
Varlable

22 - 24 c - I 1ies into ~ SOB med
at {room temperature}

Figure 2-8: Left: Reference implementation snippet for quantitative comments in
PDL. Right: A quantitative comment is shown as a heat map of the three ranges:
ideal , passable and unacceptable.

Web application (i .e., the user's Web browser) , and is triggered by specific real

time operations like connection errors or specific protocol conditions being met. It

is used to provide feedback to the user within the Web interface. On the other

hand, the server-side component of the notification engine is used to communicate

asymmetrically with the user. The current implementation includes communication

channels like text messaging (SMS) and push notifications to wearable computing

platforms like Google Glass . Examples of notifications being displayed are shown in

Figure 2-9.

1

Competent Cells
Thlt .,,cxoco •• ··••ot tht' 1-'..anahan grotgico1 .,.,ng CCIJ!J&O bulfe~ for 0 H1 06. TOP10 andMac:h na ! ~~""'on f~mpte 2 rl It·• BIOOM05 a.twfltU ... it. Th11

OtO':OCC ._. bffn teStreclon ~EQ 1 0 , TOP1 0 ~acfll ¥td6l21tDE3) ceia. S.. O'H\V6~~1 Trans'ormr.on P1iOf tor amoregeneraldfteus1c:n c4 otn.rtecM10.,.H. -"he
Jesee Pl19f'lf CHa'bn u•f'99'tl DU1'1er tcr :lt r!>c c•ltt ltloe l~ OCtfll.M p.tent Clttcr ,bM th• UM ct esur1 1111y IMi urn• orococoi ~ N lnv1tr~n M1icti 1 cell•

Protocol

Prepare glassware

Ellmlnatlng a ~gen and prechill 250ml centrifuge tubes

and screw cap tubes before use.

Step Controls
H Pr9Y'o..1 Nu.I M

Duf9bon ~tty fool !--------------

10m

- Step
Timer

Timer

10m

Figure 2-9: Sample notifications being displayed on the Web interface. A simple
color scheme from green to red is employed to denote severity /importance of the
notification.

37

2.2.6 Timer

Timers are paramount to the correct execution of biological protocols. Timers are

used to regulate the time of individuals steps of a protocol and physical timer devices

are very commonly used in laboratories to help scientists. A common timer present in

labs is picture in Figure 2-10. These timers usually possess only a beeper to provide

feedback when reaching their target. While this is sometimes sufficient, it is common

for the timer to go unanswered because of the user not being able to hear the beeping

or not being in physical proximity to it.

The timer engine in the PDL system is run in software and rests upon the time

values specified in the protocol PDL file. The timer is displayed in software on the

Web application to provide feedback to the user. While not completed in time for this

thesis, we are currently designing a physical networked timer that would communicate

with the PDL infrastructure, thus allowing features like automatic timer setting as

well as starting and stopping based on the rest of the experimental context. Currently,

however, the timer engine allows integration with the notification setting, and in

particular with the SMS and wearable computer communication channels.

2.3 Simulation and Outcome Predictability

The ability to simulate a protocol solely based on its machine-readable description is

a desirable feature that would significantly enhance the speed of the design-build-test

(DBT) cycle in biology. Enhancing the DBT cycle is recognized to be an impor-

tant and enabling goal for biological engineering [13], and the system described in

this thesis lays the ground work for the future development of a simulation package

leveraging the information collected in the PDL system.

Two approaches can be used to create such a simulation package: bottom-up

and top-down. The bottom-up approach implies simulating all physical parameters

of the experiment from the ground up. While much work has been dedicated to

simulating various parts of a biological system ab initio [64] [59] [76], these are limited

38

Figure 2-10: Left: A common lab timer. It consists of an LCD screen for displaying
time, a buzzer and a few buttons to navigate through a couple of timers and start/stop
them at will. Right: Sample notification integration where the user is informed of
the timer's completion via SMS or through a heads-up display on Google Glass.

to specific subsystems and are yet to be compiled in models that enable holistic

simulation of all aspects of an experiment. The top-down approach on the other

hand implies first modeling the overall behavior of the system before attempting to

model subsystems[65].

The data generated by the system described in this thesis is well suited to provid

ing environmental variables used as parameters in models , whether they be bottom-up

or top-down. Given that capability, we foresee useful future work to integrate real

time computation (where possible) of biological models with the data generated by

the PDL system described in this thesis .

2.4 Robotic Automation

As discussed in the previous chapter , robotic automation platforms play an important

role in industrial environments. However, they are currently limited by proprietary

formats , rigid workfiows and programming steps, making them intractable for low

to medium throughput experiments and inadequate for rapid prototyping. It would

39

therefore be desirable to simplify the actuation of these automation platforms and

better integrate them into the rest of the biological laboratory workflows. The proto-

col descriptor language system is an ideal candidate for performing this function as

it describes the operations of the entire protocol in a format that is designed to be

both human and machine readable.

While the current version of the PDL system does not provide means to actuate

robotic platforms, we expect to add functionality for actuating some of the most

popular liquid handling platforms[4] [54] in the near future.

2.5 Reproducibility

By virtue of keeping track of all protocol-related events, the PDL system; allows

greater reproducibility and traceability of individual operations and conditions. Fur-

ther work is needed to establish quantitative data showing the effect of the system,

however, qualitative feedback relating to the interface has been encouraging. In par-

ticular, we aim to collect long tail data regarding sample temperature variability as

well as step completion time variability. This will in turn allow us to perform an-

alytics on protocol efficiency and variability and ultimately provide the user with

reproducibility information. This information will be delivered in real time within

the context of the protocol and will include information like the deviance of time or

temperature from average values.

40

Chapter 3

A Closed-Loop, Context-Aware

Pipetting System

Pipetting operations are at the core of nearly every molecular biology protocol. They

provide a way to precisely move, mix or separate liquids, whether they be samples,

reagents or other materials. However, a major issue of manual pipetting rests in the

feedback it provides to the user. In fact, many of the liquids that are carried using

pipettes in molecular biology experiments are transparent and do not present any

distinguishing features. While a low number of operations or using robotic platforms

may not present an issue, the reliable tracking of recent pipetting steps is difficult for a

human operator. This leads to a commonly experienced issue in laboratories regarding

content uncertainty. Recent efforts[86] demonstrate the use of a Web application

running on a tablet to provide visual pipetting instructions for well plates. However,

this work does not provide any feedback based on the actual movements of the user

or pipette actuation. Other systems[23][17][3][23] rely on custom hardware to provide

the pipetting instructions but still lack the ability to have real-time feedback, on the

user's actions.

To solve this problem, we have developed a computer vision system able to track

the position of the pipette tip relative to a pipetting plate. We also show how this

information can be integrated with an electronic pipette through the Protocol De-

scriptor Language system to provide real-time pipetting feedback including volume

quantity and sample content.

41

3.1 System Architecture

The different components of the closed-loop pipetting system are outlined in the

system architecture in Figure 3-1.

Figure 3-1: System architecture for the closed-loop pipetting system. The overhead

camera provides video to the embedded computer running the computer vision code

in real-time. The code detects the 96-wells of the plate, annotates them with their

address and sends a message to the Web interface displayed on the tablet to provide

real-time pipetting feedback to the user. An electronic pipette is used to close the

loop in our system and prevent pipetting into the wrong well.

The system is composed of two main parts: the computer vision system and

the electronic pipette. We have built the system to relax as many constraints as was

42

possible and reasonable. Currently, the system only requires the use of a USB camera

overhead and special tips whose sole modifications are their colored ends. The colored

ends were achieved using a blue permanent marker. The color can be changed in the

code and is therefore not restricted to our arbitrary choice of blue.

This project makes use of the popular OpenCV[43] library for Python to carry out

the computer vision portion of this work. The task of tracking the user's pipetting

patterns can be subdivided into two problems: first, obtaining positions and naming

each of the wells in the plate being used and, second, obtaining the current position of

the pipette tip. Once these two subproblems are solved, the current well into which

the user is pipetting can be extracted by comparing the position of the tip to the

position of the closest circle.

3.2 Tracking and Annotating Well Plates

The computer vision task of tracking and annotating well plates rests on the assump-

tion that a defining, recognizable pattern can be extracted and tracked in a sufficiently

agnostic way as to avoid restricting the user in their choice of plate. Upon examining

a vast range of commercially available plates (see Figure 3-2), it became apparent

that a number of features would not be suitable for tracking multiple types of plates.

For example, while notches in the overall rectangular frame are often present at the

corners of the plate, the position and number of each are not standardized across

different vendors and plate types. The number of wells in a plate is determined by

the number of rows and columns regimenting the grid pattern in which the wells are

arranged. Plates are often referred to by the number of wells they have. Common

formats are either 96-well plates: 8 rows (A through H) by 12 columns (1 through

12); and 384-well plates: 16 rows (A through P) by 24 columns (1 through 24).

3.2.1 Well Detection

With the exception of some cell growth plates, the vast majority of plates have circular

wells arranged in the grid pattern previously described. We therefore decided to base

43

Figure 3-2: A number of commercially available plates. Note the diversity in color,
number and position of outer notches, etc.

our detection on this common feature. Circle detection is performed in our system

by using the OpenCV HoughCircles[44] transform. Internally, this transform first

performs edge detection using the Canny algorithm[71] before using a gradient search

method[85] to detect circles on the image. The algorithms using the transform each

have input parameters that affect the overall result of the circle detection. The

parameters were chosen to ensure maximum detection of the circles representing the

wells in varied lighting and viewing angle conditions. A sample image of the circle

detection being performed on a plate is shown in Figure 3-3

3.2.2 Corner Well Detection

Key to determining the bounds of a well by solely using the circular well as the feature

is the ability to detect the edge wells, in particular the four corner wells. In order

44

.1 r

Figure 3-3: Circle detection being performed on a common 96-well translucent plate

to reduce search time through all detected circles from the previous step, the image

is split into four equally sized quadrants. This is acceptable since the optimal use of

this program involves placing the plate roughly centered on the image. The corner

wells are then detected by computing the distance from each of the wells within the

quadrant to their respective corners. Corner wells are determined as those having

the smallest overall distance to their respective corners. An annotated frame showing

corner well detection is visible in Figure 3-4.

3.2.3 Finding Well Rows

Once corner wells are detected, we now need to detect the rows of wells in the plate.

To this end, we first ask the user to ensure that the plate is upright with well Al

in the top-left corner, allowing us to associate the top-left and top-right corner wells

as Al and A12 respectively. Using the center of each well obtained from the circle

45

Figure 3-4: Corner well detection using the quadrant method for reduced search time

detection step described previously, we fit a line passing through both points. Using

the knowledge that wells are arranged following a grid pattern, we thus expect all A

row wells to be within some minimal distance from the fitted line. Once all row wells

are detected, we iterate from both edge wells at columns 1 and 12 inward to associate

the detected circle with the particular well.

It is important to note that some lighting conditions can affect the circle detection

algorithm and prevent all circles from being detected, which can disrupt the proper

annotation of the wells. In order to mitigate the effect of lighting artifacts, we check

the distance between adjacent wells and if it is found to be larger than the average

distance between detected circles on the overall plate, we instantiate the missing circle

along the fitted line. This allows us to fill in wells that may be missing due to lighting

or other aberrations. Figure 3-5 shows the result of fitting the line, finding the row

wells and annotating each of them with their correct well address.

46

-44
%Pk"1' 4

4:'*-,k~ i '

4B , 42 # 3.#9 316 43 'p4 3 r

10"~j 4

U~j 4li 4C5,C) 1 '1

Figure 3-5: Left: Fitting a line to find row wells. Right: Missing wells compensation
algorithm working when fingers obstruct the view.

The whole process is then repeated for each row. The following row edge wells

are determined by calculating the wells with minimum distance from the previous

edge wells but are not along the previously fitted row axis. The end result of this

row-by-row annotation is shown in Figure 3-6. Tests conducted in different lighting

conditions and plate orientations show that this annotation algorithm is robust and

virtually devoid of wrongful well addressing.

3.3 Tracking Pipette Position

Tracking the pipette position relative to the detected wells is necessary to provide

pipetting position feedback to the user. Following a number of failed attempts to

create an effective classifier for detecting the position of pipetting tips in a scene, we

opted to use color filtering in conjunction with a colored tip as a viable solution.

In our efforts to train the classifier, it quickly became apparent that the high

transparency of a typical pipetting tip was an issue for discerning it in a scene. In

fact, we found that instead of matching the tip, the classifier was matching objects

based on the background color present in positive images. We also created a method

for detecting the tip using background subtraction, but due to its significant impact

on overall performance and celerity of the program, this approach was rejected. A

final technique we attempted was to use the Features from Accelerated Segment

47

(43~ ~ 43
4

4! 4F F *F,4:'

40 L 2, 4 6

& t 2

4 43'

12

P-1
40 4D% ' 4p-j-p 4py 4PI,2

4Ej #54'0 4F ft2

4F1. Fqi
4F F!

4P 7 t L4Q)7

4H 7

Figure 3-6: Final result of annotation process

Test (FAST) algorithm[81] to detect desirable features in the tip. Unfortunately, this

approach worked inconsistently, often failing to find the very edge point of the pipette

tip, leading to unreliable estimation of overall tip position.

In order to successfully and reliably track the position of the tip, we opted for

tracking a custom-colored tip by applying color filtering to the frame. The choice of

color is arbitrary and can be readily changed. We settled on blue in order to provide

a larger contrast with the iPad present in the preferred configuration of the system.

The result of the color filtering is shown in Figure 3-7.

48

4F7i
lf

4G

40

Y

Figure 3-7: Color-filtering process applied to tip tracking. Left: The raw image with

a tip colored blue. The tip was colored more than necessary for effect. Right: The

result of the color filtering mask showing only the tip.

49

3.4 Volume Sensing

start

Display pattern below well

Measure dimensions of
patterm in well with no liquid

Detect and measure pattern
In all other wells

pattern
undetectable

Yes No

Measure and compare size Determine volume based on
of pattern In well plate cross-over volume

Correlate volume with
amount of effect observed

stop

Figure 3-8: Algorithm for volume detection using overhead video from the USB cam-
era. The plate cross-over volume is determined as the minimum volume necessary for
forming continuous layer surface inside of the well. This volume varies depending on
the specific plate used and the diameter of the bottom of the well

Using the same overhead camera, we outline an algorithm to detect the volume of

liquids contained in individual wells. The proposed algorithm is outlined in Figure 3-

8. At the center of its implementation, the algorithm uses a pre-defined pattern to

calculate how much volume there is in the well based on phenomenon that the liquid

in the well acts like a lens with respect to the pattern displayed below by the tablet.

The principle is demonstrated in Figure 3-9.

It is important to note that this current implementation of volume sensing rests

upon the use of cylindrically shaped wells inside the plate. We will extend the ap-

proach in future to allow for a greater diversity of well profiles.

50

Figure 3-9: Left: Well with no water inside. Center: Well with 40 11L which is the

cross over volume for this well, destroying the pattern. Right: demagnifacation effect

caused by the liquid in the well. In this case: 100 pL

3.5 User Interface Feedback

Building a closed-loop system meant for human operation also implies providing feed-

back to the user. This is achieved in real-time in our system by using the PDL Web

interface, where we display a drawing of the well being used and highlight the well

where the tip is placed. An example of this system is shown in Figure 3-10. The com-

puter vision portion of the system communicates which well to highlight by publishing

the highlighted well message to the centralized MQTT[37] broker.

3.6 Pipette Control

Now that we have real-time positional feedback of the pipette tip, all we need to

achieve a closed-loop system is the ability to control the pipetting process. Normal

manual pipettes are not suitable for this as they rely on manual actuation by the

scientist and do not possess an electronic interface. We therefore need to employ an

electronic pipette in order to achieve our desired closed-loop system. While there is

a healthy offering of different electronic pipettes[55] [18] [47][22][51][26], only two were

confirmed to have a communication interface (one of which was discontinued). We

chose to work with the Rainin EDP3 pipette because of availability within the lab

and low-cost procurement options (eBay). It is important to note that despite their

remote control ability, neither of the two electronic pipettes has open specifications for

their communication port. This is mainly because, as discussed in a previous chapter,

51

4 4

~1

Figure 3-10: The MIT logo is drawn on the well plate
system developed in this work

most bio-instrumentation companies see software as

open communications specifications could negate.

using the closed-loop pipetting

a separate revenue model that

3.6.1 Reverse Engineering the EDP3

Due to the lack of an open communication specifications for the chosen Rainin EDP3

pipette, we were forced to reverse engineer it. By inspecting the pipette electronics

closely, we discovered that the battery-charging port (see Figure 3-11) present at the

back of the bottom of the battery compartment had more traces beyond the expected

battery voltage and ground.

Using a logic analyzer[50] wired to each of the terminals on the battery connector,

we were able to collect all communications from the EDP3 (see Figure 3-12). However,

in its normal state, the EDP3 pipette did not seem to output any data. Despite the

pipette being a discontinued device, and thanks to the help of a Rainin engineer, we

52

U W

Ji~

Ake~

qu A

... , ., -

.

Figure 3-11: The annotated view of the EDP3 electronics following reverse engineering

were able to obtain a compiled version of the Windows utility used to control the

EDP3 remotely. Using two USB-to-Serial-FTDI cables and reversing the transmit

and receive wires, we were able to collect the serial commands used to communicate

with the pipette. Appendix C contains a summary table of packet structure, available

commands and sample packets.

3.6.2 Custom Interface Board for the EDP3

Having reverse engineered the pin functions of the connector present in the battery

compartment of the EDP3, we designed a custom circuit board to enable wireless

53

Figure 3-12: Left: We connected a logic analyzer to the EDP3 battery port to cap-
ture and reverse engineer the pipette's communication port. Right: Captured re-
sponse packets on the response line after sending data to the EDP3 using the remote
communication program. Program courtesy of Steve Konrad.

control of the pipette. We used an XBee[14] operating over the 802.15.4 wireless

communication layers to achieve the wireless bridge. Due to the simplicity and single-

sided nature of the designed board (see Figure 3-13), we fabricated our own circuits

using a small 3-axis circuit mill[49]. The board makes use of the JST ZH 5-position

connectors natively used in the EDP3 pipette. This allows us to enhance the ca-

pability of the pipette by installing our board in line with the rest of the system,

making installation both easy and reversible. The only modification that is required

is the use of a larger back plate due to the greater thickness of the overall battery

compartment. To solve this problem, we have designed a 3-D printable back cover

and made it available on the popular 3-D design sharing Website Thingiverse[2]. In

Figure 3-13, the original EDP3 battery can be seen below the circuit board in black.

It is connected using its native connector to the circuit board and provides power for

the whole system, including the added wireless connector. While the current design

of the wireless bridge is relatively power-hungry (approximately 40 mA running), it

does not make use of the sleeping capabilities of the radio. These capabilities are

demonstrated later in this thesis as part of the wireless sensor platform that was

54

designed. In this case however, we found that the native battery was able to sustain

the whole modified system (pipette + wireless radio) for a little over three hours.

This autonomy was found to be sufficient especially when taking into account that

the EDP3 is designed to recharge its battery every time it is replaced on its stand.

Figure 3-13: Left: Board layout for the wireless adaptor using the exposed communi-

cation port on the Rainin EDP3 pipette. Right: The wireless board installed in the

battery compartment of the EDP3. The board was designed to maximize backwards

compatibility and require as few modificiations as possible.

3.6.3 Open Communication Library in Python: pyEDP3

Using the custom interface board describe above allows us to send the EDP3 com-

mands directly to the pipette. However, that is still an arduous process given that

the command structure uses raw bytes to be passed through the serial port. To sim-

plify the process, we have created a Python package named pyEDP3. This packages

makes crafting and parsing of EDP3 commands significantly easier and is available

on GitHub[46]. An example using the pyEDP3 package to send commands to the

wireless-enabled EDP3 pipette is outlined in Appendix D. Notably, this package

allows the user to interact with the pipette using english language aliases for each

55

command instead of the byte equivalents.

56

Chapter 4

Continuous Monitoring of Sample

Temperature

Experimental temperature conditions have been shown to significantly affect a num-

ber of biological processes[73] [77] [69] [80]. Yet it is currently difficult to collect sample

temperature data continuously. To solve this problem, we designed an open battery-

powered temperature sensor designed to fit on top of an Eppendorf tube, a common

format for containing samples in biology labs. The sensor is designed to be carried

alongside the experiment's samples and thus be exposed to the same temperature

conditions. This approach prevents sample contamination by not requiring that the

sensor be placed inside of the sample solution. The sensor interfaces with the PDL

system to provide real-time sample temperature information to the scientist as well

as store the data for future analysis, including cross-experiment reproducibility as-

sessments.

4.1 Hardware Design

The hardware was custom designed with the following requirements in mind: wireless

communication, battery operation and overall small footprint, with the temperature

sensor portion being able to fit within an Eppendorf tube. Alongside this thesis,

we release the schematics, firmware and other software as open hardware and soft-

ware available on GitHub[19]. We would like to acknowledge Andrew Payne for his

contribution to the design and production of the sensor platform.

57

4.1.1 Electronics Architecture

Figure 4-1 shows the overall electronics design of the sensor. The platform revolves

around the ATTiny85 microcontroller[7], which regulates communications via the

wireless transceiver and sensing of temperature through the digital temperature sen-

sor. This particular microcontroller was chosen because of its small footprint and

larger memory (8 KB) compared to the ATTiny45 (4 KB). For accessibility and

openness reasons, we opted to use the Arduino framework[6] to program the firmware

on board the microcontroller. The whole platform is powered by a 150 mA h battery

ideally sized to fill the space between the printed circuit board (PCB) and the bottom

of the XBee module for optimal space usage.

Figure 4-1: Left: Sample wireless temperature sensor electronic annotated board
design. Right: Assembled prototype within case and with sensor inside the Eppendorf
tube

4.1.2 Temperature Sensor

The current revision of the hardware makes use of the Maxim DS18B20[32] digital

temperature sensor. This was initially chosen for its use of the 1-wire protocol, which

only requires a single wire for digital communication[1], compared to an otherwise

minimum of two wires like I2C. However, this design choice is currently being re-

considered in favor of a more generic approach that leverages I2C due to the wider

58

availability of precision temperature sensors using the protocol. Furthermore, tests

summarized in Figure 4-2 highlight the slow adaptation time of the DS18B20 sensor

to cold temperatures. This is unsuitable for our purposes as the DS18B20 can take

up to 20 minutes to adapt to the cold temperatures expected in ice-water baths used

in biological experiments. We are therefore currently evaluating alternatives for the

temperature sensor, yet by restricting ourselves to 12C communication, we prevent

the need for PCB layout changes for the main board.

301

20

4

II0

0)

1o [

201 L

R(t) at Room Temp

20 .40 60
Time [min]

S0 1(1W 120

Figure 4-2: Temperature-sensing speed tests of the DS18B20. This shows that the

DS18B20 is slow (approx. 20m) to adapt to large temperature changes, in particular

when moving toward colder environments. This is in part due to the heat generated by

the system by being continuously on. However, we found that different temperature

sensors were able to adapt to the same differentials in a matter of seconds.

59

I * R(t)
baseline RL

0
0
0

i
0

4.1.3 Temperature Calibration

In order to determine the real-world time constants of the temperature sensor, we con-

ducted an experiment summarized in Figure 4-3. These experiments were conducted

using the STLM75[52] I2 C temperature sensor due to the DS18B20's inadequately

slow response time. Based on the result presented in Figure 4-3, the most adaptive

configuration would be to use the sensor without a tube. However, two reasons make

this option more difficult to carry out. First, this option would require thorough

waterproofing of the electronics, adding significant complexity to the production and

quality checking of the device. Second, the lack of a plastic tube does not reflect

accurately the conditions of the sample liquid, which is the target of our measure-

ments. The firmware used to collect this data from the STLM75 temperature sensor

is available in Appendix E.

R(t) in Ice R(t) in Ice Water

- tube - tube
- no tube(t) - no tube(t)
- water tube(t) - water tube(t)

20

Time [mini Time Imin]

Figure 4-3: Temperature-adaptation experiment using the STLM75 temperature sen-
sor with different holders in ice (left) and ice-water mix (right).

It can be seen in Figure 4-3 that the most efficient adaptation occurs with no tube

covering the sensor. This is to be expected since the sensor is in more direct contact

with the measured medium. The water tube is the second best due to the higher

thermal conductivity of water compared to air in the case of the simple tube. However,

it is important to note that the tube has a clear and significant insulating impact on

the measurement system. Comparing the data from the ice-only (left) and ice-water

(right) test cases, it is clear that the water plays an important role in speeding up

60

......- -... -.-... -.. - . .- -... -----_- .__ .., __ -

the transition to the desired chilled temperature. This suggests, unsurprisingly, that

in experiments where chilling the sample is time-sensitive, ice-water mixture should

be sharply preferred to ice alone. Importantly, our sensor platform enables the user

to verify that these parameters are reproducibly used.

These experiments were also carried out in heating environments common in bi-

ological experiments like that of the incubator to confirm behavior consistency (see

Figure 4-4).

R(t) in Incubator

-- tube

-- no tube(t)
-- water tube(t)

35

25

0 5 10 15 20
Time [min]

Figure 4-4: STLM75 temperature-sensor adaptation time validation experiments in
heating conditions inside an incubator

4.1.4 Wireless Communication

The wireless communication portion of the sensor employs XBee modules[14] to im-

plement a ZigBee 802.15.4 mesh network[15]. We opted for this radio module due

to its maturity, documentation, flexibility and ability to run a true mesh topology,

unlike most of its competitors[48][41]. While peak power consumption of the XBee

during data transmission can be as high as 70 mA, we make use of the sleep pin to

maximize time at low power modes where power consumption is rated at 3 pA. Early

endurance tests have shown operation for several continuous days on a single charge.

61

I -I - - : . - - -:. - ..__._ 11 , - - - - --.' 11 - 11 : : -1 1 -- .11 _.__ .. - - - z . .-- -.-.:Z:

62

Chapter 5

Deployment

5.1 Deploy or Die

"Deploy or Die" refers to the new approach for research introduced by the director of

the MIT Media Lab Joi Ito[30]. This mantra places deployability, manufacturability,

scale and robustness at the center of research objectives. This approach follows from

Nicholas Negroponte's own approach at the Media Lab of "Demo or Die" [75], itself a

departure from the common academic adage "Publish or Perish".

This new emphasis on deployability significantly affects the way one conducts

research. In this thesis, we took particular care to build a system that is deployable

and addresses the needs of the biological research community. It can be seen in

the speed of development of the temperature sensor platform: under two months for

full design, parts sourcing and manufacturable design from two individuals who had

little prior experience with electronics. The overall approach is also reflected in the

choice of technologies for the PDL system, opting for widely available, cross-platform

compatible technologies to lower the barrier to entry as much as possible. Finally,

our commitment to open software and hardware is key in achieving deployability into

the real world, permitting other scientists and engineers to expand the system and

its capabilities.

5.2 Rapid Prototyping

Rapid prototyping technologies played an essential role in reducing the time to having

deployment-ready versions of the technologies described in this document. The early

versions of electronic circuits were fabricated using a circuit board mill[49], allowing us

63

to perform early development in-house. Using this method, functional circuits could

be milled, assembled and tested in under 30 minutes, thus drastically increasing our

ability to settle on circuit designs.

5.3 Production

Deployment of the technologies described in this document cannot be achieved with-

out taking into account manufacturing constraints and volumes. While we expect the

bulk of that effort to be achieved as further work, there are some key aspects that

have arisen from our initial explorations. The systems that have been constructed and

detailed in this document all consist of electronic devices and their respective enclos-

ing cases. Therefore, production of said devices needs to encompass PCB fabrication,

electronic assembly and injection molding of plastic cases.

When considering PCB fabrication and electronics assembly, the bill of materials

(BOM) of the components and PCB complexity are key factors in determining the

unit cost of the device. The bill of materials for the temperature sensor is summarized

in Table 5.1. The PCB fabrication costs (not including assembly and testing) were

estimated to be $3 per board, using a supplier in the United States. However, PCB

fabrication alone is not sufficient to build a realistic estimate of the overall production.

We are currently working with different partners to determine the cost of stuffing and

testing our circuits either separately (potentially greater shipping costs) or combining

this with PCB fabrication.

Finally, we are also currently examining the different options regarding the pro-

duction of the casing. Injection molding prototyping facilities in the United States

exist but often require a minimum of a few thousand dollars, making rapid proto-

typing costly and difficult. We are currently exploring capabilities more globally as

part of a collaboration with the city of Shanghai in China, which should enable us to

rapidly prototype molds far quicker and relatively inexpensively.

64

Item
XBee

LiPo Battery (150 mA h)
Toggle Switch
Push Button

STLM75 Temperature Sensor
Micro USB Connector

Red LED
Green LED
Blue LED

ATTiny85 Microcontroller
LiPo Charging Integrated Circuit

Male In-Circuit System Programmer Header
XBee Female Socket

10 11F Capacitor
0.1 pF Capacitor

10 kQ Resistor
499 Q Resistor

Total

Cost (At Quantity 100)
$ 19

$ 4.76
$ 0.46
$ 0.76
$ 0.69
$ 0.30
$ 0.11
$ 0.10
$ 0.15
$ 1.12
$ 0.42
$ 0.83
$ 0.50
$ 0.07
$ 0.14
$ 0.01
$ 0.01

$ 29.29

Table 5.1: Bill of materials (BOM) for the wireless temperature
scribed in this thesis

5.4 Dissemination and Market Reach

Producing a device and system in a scalable manner is only part of the question

when exploring deployment. The question of market validation and ultimately reach

is crucial in achieving true dissemination. Otherwise the project risks, as it is often

the case in academia, to fail due to the lack of customers or the product being over

engineered. While we are currently very actively researching this aspect, there are

some resources that we have been able to leverage at the institute that have proved

invaluable in helping us avoid common mistakes and are having an important guiding

influence on the process.

First, the Venture Mentoring Service[34] at MIT has been a key resource in helping

us frame the problem within a deployment perspective, helping us develop a keener

sense for notions of minimal viable product (MVP) and ensuring that our candidate

devices for deployment hit a core pain point in our industry. In particular, this

65

sensor device de-

service is made all the more unique by its ability to understand the subtleties that

emerge from seeking deployment as an academic metric of success, even if that means

employing what may seem at first glance like a commercial strategy better suited for

a stand-alone entity. We believe that Deploy or Die requires those lines to be blurred

in order to successfully attain market dissemination as an academic goal and that

VMS plays a central role in achieving this.

Second, the Media Lab itself has been home to a number of successful crowd-

funding campaigns, combining exposure and a form of market validation. We believe

a crowdfunding campaign for the projects described in this thesis may be an ideal

way to do forward market validation on a smaller scale and go all the way through

manufacturing and delivery of a few hundred units, the key in this case being the

celerity with which we could design, build and deploy.

66

Chapter 6

Conclusions & Future Directions

In this work, we developed a language and tools that forms the basis for a context-

aware biological research paradigm. It allows writing and execution of scientific proto-

cols, providing real-time feedback of pipetting operations and temperature conditions

of the experiment. All work performed in this thesis has been made openly available.

The Protocol Descriptor interface is reachable at www. pdl. io allowing scientists to

use the resources from this thesis for their experiments using any device with a Web

browser. The code and instructions to enable pipetting feedback are available on

GitHub[10], along with hardware schematics and firmware code for the networked

temperature sensor[19.

As mentioned earlier, the work developed in this thesis sets out some of the nec-

essary technologies for achieving context awareness in biological settings. We discuss

future directions and desirable features of the system below.

6.1 Simulation Tools

Given the lengthy and complex nature of many biological protocols, system simu-

lation plays an important role in shortening the design-build-test (DBT) cycle of

experiments. However, the complexity of simulating biology bottom-up through all

layers of rationalization (from molecular interactions to population dynamics) makes

overall system simulation very difficult. Therefore, we plan to use data generated by

the system described in this thesis to inform models and build simulation systems.

To enable such integration, we plan to develop a public API, allowing the extraction

of contextual experiment information from the PDL system. Visual simulation can

also play an important role in the educational process of running experiments in the

67

lab and partnerships with virtual lab environment makers[31] is a direction to be

considered.

6.2 Analytics for Data-Driven Biological Research

The PDL system detailed in this work has the potential to change how experimental

biology is executed from a predominantly qualitative process to a more quantitative,

data-driven one. This can be achieved by embedding data analytics into the PDL Web

interface and displaying quantitative information to the user. For example, using the

system described in this thesis, we aim to provide average temperature distribution

of individual steps to the user and generate an alert when it deviates more than a

given percentage from the average. In this example, the average temperature of a

step is computed using step start and stop times from the PDL system and sample

temperature from the temperature sensor device to provide statistical information

about the average duration of steps correlated with overall success of the protocol.

This example shows how the system can provide unique metrics to improve scientific

reproducibility.

6.3 Contextual Sensors

Future work on this project will also include the design of more wireless sensors

to allow a more thorough collection of experimental variables (e.g., carbon dioxide,

humidity, etc). While these sensors are macroscopic, we can foresee the footprint

and scale of these sensors being reduced by orders of magnitudes in the future, not

only through electronics miniaturization, but also by using other technologies and

approaches like synthetic biology, to create sensors that operate at the same scale

as the target molecules and processes. Past work[68] serves as an example how a

bacterium could be reprogrammed to produce an electronically sensible reporter to

achieve far greater context awareness by creating a hybrid bio-electronic interface.

68

Appendix A

Protocol Descriptor Language

Specification v4

1 <protocol>

2 <id></id>

3 <name></name>

4 <description ></description>

5 <created></created>

6 <relationship></relationship>

7 <samples>

8 <sample>

9 <id></id>

10 <container></container>

11 <contents></contents>

12 </sample>

13 </samples>

14 <steps>

15 <step>

16 <number></number>

17 <name></name>

18 <description>[Comment #1]

19 <comment>Comment Content</comment>

20 </description>

21 <difficulty></difficulty>

22 <duration>10m</duration>

23 <onStart>

24 <timer>10m</timer>

25 </onStart>

26 <onClick>

69

27 <timer>10m</timer>

28 </onClick>

29 <onComplete>

30 <notify>

31 <email />

32 <phone />

33 </notify>

34 </onComplete>

35 </step>

36 </steps>

37 </protocol>

70

Appendix B

Closed-Loop Pipetting Computer

Vision Code

1

2 import numpy as np

3 import cv2, random, os

4 import time, sys, math

5 import mosquitto

6
7 windowName = "Well Classifier"

8 cv2.namedWindow(windowName , cv2.CVWINDOWAUTOSIZE)

9 cameraindex = 0

10 cam = cv2.VideoCapture()

11 cam.open(camera-index)

12 fgbg = cv2.BackgroundSubtractorMOG() #
Used in background substraction

13

14 def addMissingWells(frame, axisWells , columns, avgDistance,

avgDiameter, vx, vy, cx, cy, bufferPixels=10, draw=True):

15 """Add the non detected circles to the list"""

16 pass

17 #print "Average distance between wells: " avgDistance

18 if len(axisWells) != columns:

19 for k, well in enumerate(axisWells):

20 if k == 0:

21 pass

22 elif k == len(axisWells)-i:

23 pass

24 else:

25 distanceToPrevious = distanceBetween((well
[01,well[1]), axisWells[k-1])

26 #print "Well: ",well

27 #print "Distance to previous:

distanceToPrevious

28 if distanceToPrevious > avgDistance+

bufferPixels:

29 #print "Distance Greater than Expected:

should add missing circle"

71

xVal = axisWells[k-1] [0]+avgDistance-
bufferPixels/2

yVal = vy*xVal + cy-vy*(cx+10)

axisWells.insert(k, (np.float32(xVal),

yVal [01, avgDiameter))
drawCircle (frame, (np. float32 (xVal),

yVal [0], avgDiameter), (0,0,255))

return axisWells

def annotateAllWells(frame, Al,
allCircles, avgDistance , avgDi

=True):
"""Label all the wells based

111111

pass

alphabet = ["A","B","C","D
L ,"M" , "N" , , "P" , "Q" , "F
"," Z " I]

annotatedWells = {}
wellsByAxis = []
corner = Al

end = Aend

for currRow in xrange(rows):

cArray = []
try:

Aend, rows, columns,
ameter, bufferPixels=5, draw

on giving the corner wells

"E ,"F"," G", "H","I" ,"J" , "K",
"," IS","%11T","% IU","1V"," ofW","%ofX","$ fy

cArray.append(np.array([corner['circle'] [0],
corner['circle'][1]]))

cArray.append(np.array([end['circle'][0],end['

circle'][1]]))

except TypeError:

print "Moose under a train"

break

vx, vy, cx, cy = cv2.fitLine(np.array(cArray), cv2.
cv.CVDISTL2, 0, 0.01, 0.01)

if draw:

cv2.line(frame, (int(cx-vx*width), int(cy-vy*
width)), (int(cx+vx*width), int(cy+vy*width)),

(0, 0, 255))

axisWells = sorted(findAllWellsOnAxis(frame,

allCircles, vx, vy, cx, cy))
#axisEquation = vy*well[0 + cy-vy*(cx+10)

if len(axisWells) < columns:

axisWells = addMissingWells(frame, axisWells,

columns, avgDistance , avgDiameter, vx, vy, cx,
cy)

72

61 #print "ERROR: Found a fewer wells than expected
on axis %s!!!" % alphabet [currRowl

62

63 wellsByAxis.append(axisWells)
64

65 previousWell = '099"

66 for i, well in enumerate(axisWells):

67 #print "i+1: %s and previouswell:%s" % (1+1, int
(previousWell[1:1))

68 if i != 0:
69 if i+1 == int(previousWell[1:1):

70 pass

71 #print "Skipping this well because

already assigned due to skip"

72 else:

73 distance = distanceBetween(

annotatedWells[previousWell],well)

74 if distance > avgDistance+bufferPixels:

75 #print "*****"

76 #print "Distance is greater than the

average one"

77 #print "*****"

78 hops = round(distance / avgDistance)

79 wellAddress = "%s%s" % (alphabet[

currRow],int(i+hops))

80 cv2.putText(frame,wellAddress,(well
[0],well[1]), cv2.

FONTHERSHEYSIMPLEX, 0.5,

(0,0,255))

81 #print "Assigning: %s" % wellAddress
82 annotatedWells[wellAddress] = well

83 previousWell = wellAddress

84 else:

85 wellAddress = "%ss" % (alphabet[
currRow] ,i+1)

86 #print "Well Address: ",wellAddress

,"\t Val : ", (well [0 , well [1]) ,"\t
type: ", type (well [0) , '\t ', type (

well [1]i)

87 cv2.putText(frame,wellAddress,(well

[0],well[1]), cv2.

FONTHERSHEYSIMPLEX, 0.5, (0,0,0)

)
88 annotatedWells[wellAddress] = well

89 previousWell = wellAddress

90 else:

73

91 wellAddress = "Xss" % (alphabet[currRow],i

+1)

92 cv2.putText(frame,wellAddress ,(well [01 ,well

[1]), cv2.FONTHERSHEYSIMPLEX, 0.5,

(0,0,0))

93 annotatedWells[wellAddress] = well

94 previousWell = wellAddress

95

96 #print annotatedWells

97 allCircles = removeCirclesFromList(allCircles,
axisWells)

98 corner = findCircleClosestTo(corner['circle'],
allCircles, 10)

99 end = findCircleClosestTo(end['circle'], allCircles,
10)

100

101 return annotatedWells

102
103

104 def calculateAvgDiameter(circles):

105 """Calculate the average distance between circles"""

106 pass

107 diameters = [circle[2] for circle in circles]

108 return np.mean(diameters)

109

110 def calculateAvgDistance(circles):

111 """Calculate the average distance between circles"""

112 pass

113 distances = []
114 for i, circle in enumerate(circles[:len(circles)-1]):

115 for secondCircle in circles[i+1:]:

116 distance = distanceBetween(circle,secondCircle)

117 #print distance, circle [2

118 if distance < 3*circle [2]:

119 distances.append(distance)

120
121 return np.mean(distances)

122
123 def distanceBetween(ptl,pt2):

124 """Calculate the distance between two points"""

125 pass

126 return math.sqrt((pt2[0] - pt1[0])**2 + (pt2[1] - ptl

[1])**2)
127
128 def doColorMask(frame,lowerColor,higherColor):

129 " " " df

130 pass

74

131
132
133
134
135
136
137
138
139

140

141
142
143
144
145

146
147
148
149
150
151
152
153
154

155

156
157
158
159
160
161

162

163
164
165
166
167
168
169
170
171

def
m

try:
return frame, circles[0]

except TypeError:

return frame, None

doBGSubstraction(frame, addMask=None, maxCorners=50,

inDistance=5, draw=True):

"""Does the background subtraction and returns points

for the corners detected """

pass

unraveledCorners = []
fgmask = fgbg.apply(frame)

if addMask != None:

cv2.imshow("Add Mask", addMask)

fgmask = fgmask - addMask

else:

print "addMask is None"

cv2.imshow("Post Mask", fgmask)

75

hsv = cv2. cvtColor(frame, cv2.COLORBGR2HSV)

lowerColor = np.array(lowerColor)

higherColor = np.array(higherColor)

mask = cv2.inRange(hsv, lowerColor, higherColor)

res = cv2.bitwise-and(frame, frame, mask=mask)

return hsv, mask, res

def doHoughDetection(frame ,grayFrame ,circleBounds,

cannyUpperBound=50,minCenterDistance=20,draw=True):

"""Search for circles in frame and return annotated

frame"""
pass

circles = cv2.HoughCircles(grayFrame ,\
cv2.cv.CVHOUGHGRADIENT,\

1,\

minCenterDistance ,\
paraml=cannyUpperBound,\

param2=30,\

minRadius=circleBounds[0],\

maxRadius=circleBounds[1]\

if circles != None:

for i in circles[0,:]:

if draw:

cv2.circle(frame ,(i[0],i[1]),i[2],(
2 55,0,0)

,1) # draw the outer circle

cv2.circle(frame ,(i[0],i[1]) ,2,(255,0,0),
3)

draw the center of the circle

172 edges = cv2.Canny(fgmask ,1,100)
173 corners = cv2.goodFeaturesToTrack(fgmask,maxCorners

,0.01,minDistance)

174 if corners != None:

175 corners = np.intO(corners)

176 #print "Found %s corners" % len(corners)
177 for i in corners:

178 x,y = i.ravel()

179 unraveledCorners.append((x,y))

180 if draw:

181 drawCircle(frame,(x,y,10) ,(255,0,255))
182

183 return unraveledCorners

184

185
186 def drawCircles(frame, circles, color=(0,0,0)):

187 """Draws a all circles to the frame """

188 pass

189 try:

190 frame = cv2.cvtColor(frame, cv2.COLORGRAY2BGR)

191 except:

192 pass

193 if circles != None: #Do only if

there are circles detected

194 for circle in circles:

195 drawCircle(frame ,circle ,color)
196

197 def drawCircle(frame, circle , color=(0,0,0)):

198 x = circle[0]

199 y = circle [1]
200 r = circle [2]

201 cv2.circle(frame, (int(x),int(y)), int(r), color, 1)
202 def drawLine(frame,ptl,pt2, color=(0,0,0)):

203 try:

204 f rame = cv2. cvtColor (frame , cv2. COLORGRAY2BGR)

205 except:

206 pass

207 cv2.line(frame, ptl, pt2, color, 1 ,8, 0)
208 def drawQuadrants():
209 drawLine (f rame , (width/2 , 0) , (width/2, height) ,(255, 0 ,255))
210 drawLine (f rame , (0, height /2) , (width , height/2) ,(255, 0 ,255)

)
211

212 def findCircleClosestTo(position, circles, minDistance=O)
213 """Find closest circle to a set point """

214 pass

215 x = position[0]

76

216 y = position[1]

217 closest = {"circle":None, "distance":500000}

218 for circle in circles:

219 distance = math.sqrt((circle [0] - x)**2 + (circle[1]

- y)**2)

220 if distance < closest['distance'] and distance >

minDistance:

221 #print "Is new closest, with distance: %s (
previous best:%s)" % (distance, closest['

distance'i)

222 closest['distance'] = distance

223 closest['circle '] = circle

224 else:

225 #print "Is farther"

226 continue

227
228 return closest

229 def findAllWellsOnAxis(frame ,wellsvx,vy,cx,cy,bufferPixels

=5):

230 """This function calculates the line's equation and

returns the circles that are on it within small buffer

231 pass

232 correctWells = []
233 yIntersect = cy-vy*(cx+10)

234 for well in wells:

235 if well[1] < vy*well[0]+yIntersect+bufferPixels and

well[l] > vy*well [0] +yIntersect -buff erPixels:

236 correctWells.append(well)

237 drawCircle(frame, well, (0,255,0))

238
239 return correctWells

240

241
242
243 def findTipPoint(frame, cnt, draw=True):

244 """docstring for findTipPoint"""

245 pass

246
247 white = np.nonzero(cnt)

248 #print white

249 #print "***"

250 xArr = []
251 yArr = []
252 for i in xrange(len(white [0])):

253 xArr.append(white [1][i])

254 yArr.append(white [0][i])

77

#print xArr, yArr

if xArr != [I and yArr

minX = min(xArr)

maxX = max(xArr)

minY = min(yArr)
maxY = max(yArr)

[]:

255
256
257
258
259
260
261
262
263

264

265

266

267
268
269
270
271
272
273
274

275

276

277

278
279
280
281
282
283

284
285
286
287
288

#print
#print
#print
#print
#return

"leftMost:",leftMost
"rightMost:",rightMost

"upMost: ", upMost
"downMost: ", downMost

leftMost, rightMost, upMost

if draw:
drawCircle(frame,

, (0,255,0))
drawCircle(frame,

15), (0,255,0))

drawCircle(frame,

(0,255,0))

drawCircle(frame,

, (0,255,0))

return leftMost

else:

return None

def findTipPoint0LD(tipPoints,
"""Finds the tip most point

III

yArr[xArr.index

yArr[xArr.

Arr[yArr.index(

yArr[yArr.index

downMost

(leftMost[0], leftMost[1], 15)

(rightMost [0], rightMost[1],

(upMost[0], upMost[1], 15),

(downMost[0], downMost[1], 15)

imgWidth):
among candidate tip points

pass
sortedPoints = sorted(tipPoints)

print sortedPoints

if sortedPoints != [1:
minMaxDist = distanceBetween(min(sortedPoints),max(

sortedPoints))

else:

minMaxDist = 0

print "MinMax Distance: %s" % minMaxDist

78

leftMost = (xArr[xArr.index(minX)],
(minX)])

rightMost = (xArr[xArr.index(maxX)]
index(maxX)])

upMost = (xArr[yArr.index(minY)], y

minY)])
downMost = (xArr[yArr.index(maxY)],

(maxY)])

289
290
291

,

292 if minMaxDist > 500:

293 if sortedPoints != [1:

294 #print [point for point in sortedPoints]

295 avg = np.mean([point[0] for point in

sortedPoints])

296 #print "Average: %s" % avg

297 minPoint = min(sortedPoints)
298 maxPoint = max(sortedPoints)

299 #print "Min: %s Max: %s" % (minPoint[0],maxPoint

[0)

300 if avg > imgWidth/2: #Right handed

301 tipPoint = minPoint

302 elif avg < imgWidth/2: #Left handed

303 tipPoint = maxPoint

304 else:

305 tipPoint = None

306 return tipPoint

307 else:

308 return None

309 else :
310 return None

311
312 def getFeaturesFromMask (mask, maxCorners=50, minDistance=5,

draw=True):

313 """docstring for getFeaturesFromMask"""

314 pass

315 unraveledCorners = [J
316 edges = cv2.Canny(mask,1,100)

317 corners = cv2.goodFeaturesToTrack(mask,maxCorners ,0.01,

minDistance)

318 if corners != None:

319 corners = np.intO(corners)

320 #print "Found %s corners" % len(corners)

321 for i in corners:

322 x,y = i.ravel()

323 unraveledCorners . append ((x , y))

324 if draw:

325 drawCircle (frame, (x,y,3) ,(255 ,0 ,255))

326
327 return unraveledCorners

328
329 def normalizeCircle(circle):

330 """docstring for normalizeCircle"""

331 pass

332 return (circle[0] , circle[1] , circle[2])

333
334 def normalizeCircles(circleArray):

79

335 normalizedCircles = []
336 for circle in circleArray:

337 normalizedCircles.append(normalizeCircle(circle))

338 return normalizedCircles

339 def onmqtt-connect(rc):

340 if rc == 0:

341 #rc 0 successful connect

342 print "Connected to MQTT broker"

343 else:

344 raise Exception

345
346 def onmqtt-disconnect(rc):

347 if rc == 0:

348 #rc 0 successful connect

349 print "Disconnected from MQTT broker"

350 else:
351 raise Exception

352
353 def pushToMQTT(topic, message):

354 """Push specific message to specific topic on dime.

smartamerica.io broker"""

355 pass

356 broker = "dime.smartamerica.io"

357 port = 1883

358 #create an mqtt client

359 mypid = os.getpid()

360 clientuniq = "arduino-pub "+str(mypid)

361 mqttc = mosquitto.Mosquitto(client-uniq)

362 #connect to broker

363 mqttc.connect(broker, port, 60, True)

364 mqttc.on_ connect = on-mqtt _ connect

365 mqttc.onconnect = onmqttdisconnect

366 mqttc.publish(topic, message)

367 print "Published %s to topic: %s" % (message, topic)

368 mqttc . disconnect ()

369 def removeCirclesFromList (circleList , circlesToRemove)

370 """This function will the 'circlesToRemove' from the

circleList"""

371 pass

372 result = list(circleList)

373 for remCircle in circlesToRemove:

374 try:

375 result.remove(remCircle)

376 except ValueError:

377 pass

378 return result

379

80

380 def rotateFrame(frame, angle):

381 h = frame.shape [0]

382 w = frame.shape[1]

383 M = cv2. getRotationMatrix2D ((w/2, h/2) , angle , 1)

384 rotated_frame = cv2.warpAffine(frame,M,(w,h))

385 return rotated-frame

386
387 def scaleFrame(frame,scale):

388 """docstring for scaleFrame"""

389 pass

390 height , width = frame. shape [0: 2]

391 height-display, widthdisplay = scale * height, scale *

width

392 # you can choose different interpolation methods

393 frame.display = cv2.resize(frame, (int(widthdisplay),

int(height.display)), interpolation=cv2.INTERCUBIC)

394 return frame-display

395
396 def wellsWithin(circles ,xBounds ,yBounds):

397 "1 "" """111

398 pass

399 circlesWithin = []
400 for circle in circles:

401 if xBounds [0] < circle [0] < xBounds [1] and yBounds

[0] < circle [1] < yBounds [1]:

402 circlesWithin.append(circle)

403
404 return circlesWithin

405
406 def whichWell (tipPoint , annotatedWells , avgDiameter):

407 """Determines which well the tip is in"""

408 pass

409 currentWell = None

410 for well in annotatedWells:

411 #print "Checking:", well

412 dist = distanceBetween(tipPoint ,(annotatedWells [well

][0] ,annotatedWells [well] [11))

413 if dist < avgDiameter+avgDiameter/4:

414 currentWell = well

415 break

416 return currentWell

417
418
419 previousWell = None

420 fixedCamera = False

421 while 1:

422 ret, frame = cam.read()

81

423
424
425
426
427
428
429
430
431

432
433
434

435
436
437
438
439
440
441
442

443
444

445
446
447
448
449
450

451
452
453
454
455

456
457
458
459
460

461
462

if fixedCamera:

frame, circles = doHoughDetection(frame,

[10,45]) #Used when scaling down
grayFrame,

else:
frame, circles = doHoughDetection(frame, grayFrame,

[15,30])

#cv2.imshow(windowName, frame)
if circles != None:

circles = normalizeCircles(circles)

avgDistance = calculateAvgDistance(circles)

avgDiameter = calculateAvgDiameter(circles)

circlesWithin = wellsWithin(circles, [0,width/2] , [0,

height/2]) #Within top left quadrant

Al = findCircleClosestTo((0,0), circlesWithin)
if A1['circle'] != None:

drawCircle(frame , A1['circle'], (255,0,255))

circlesWithin = wellsWithin(circles ,[width/2,width

],[0,height/2])

A12 = findCircleClosestTo((width,0), circlesWithin)

if A12['circle'1 != None:

drawCircle(frame, A12['circle'], (255,0,255))

circlesWithin = wellsWithin(circles ,[0,width/2],[

height/2,height])

H1 = findCircleClosestTo((0,height) , circlesWithin)

if H1['circle'] != None:

82

if not fixedCamera:

frame = scaleFrame(frame ,0.5)

rawFrame = frame.copy()

else:

frame = rotateFrame(frame ,180)

height, width, depth = frame.shape

grayFrame = cv2.cvtColor(frame, cv2.COLORBGR2GRAY)

if not fixedCamera:

hsv, mask, res = doColorMask(frame,[99, 150,
127],[124, 255, 255])

corners = getFeaturesFromMask(mask)

ret,thresh = cv2.threshold(mask,127,255,0)

contours, hierarchy = cv2.findContours(thresh,cv2.

RETRTREE,cv2.CHAINAPPROXSIMPLE)

cv2.drawContours(frame,contours ,-1,(0,255,0) ,1)

tipPoint = findTipPoint(frame, mask)

#cv2.imshow('Color Mask', mask)

drawQuadrants()

463 drawCircle(frame , H1[' circle '], (255,0 ,255))

464
465 circlesWithin = wellsWithin(circles , [width/2,width

],[height/2,height])

466 H12 = findCircleClosestTo((width,height),
circlesWithin)

467 if H12['circle'] != None:

468 drawCircle(frame , H12['circle '], (255,0 ,255))

469
470 if Al['circle'] ! None and A12['circle'] != None

and Hl['circle'] != None and H12['circle'] != None

471 #Filter down the feature points given by the Shi

-Tomasi to the area of the plate

472 plateRegion = [(A1 ['circle '] [0] ,A1 [' circle'

] [1]) , (A12 [' circle '] [0] , A12 [' circle '] [1])

(H12['circle'][0],H12['circle'][1]) , (H1['

circle'][0],H1['circle'][1])]

473 if not fixedCamera:

474 featureChangesInPlate = wellsWithin(corners

,[Al [' circle '1 [0] -100 , A12 [' circle'

] [0] +100] , [Al ['circle '] [1] -100 ,H1['circle

] [1]+100])
475 #drawCircles(frame, [[cir[0],cir[1J,51 for cir

in featureChangesInPlate I, (122,255,0))

476 annotatedWells = annotateAllWells(frame, Al, A12

, 8, 12, circles, avgDistance , avgDiameter)

477
478 if fixedCamera:

479 tipPoint = (width/2-12, height*2/3+3)

480 else:

481 print " " #tipPoint = findTipPoint()

482 #print "Tip point is Q:", tipPoint

483
484 try:

485 tipPoint

486 except NameError:

487 tipPoint = None

488
489 if tipPoint != None and annotatedWells != None:

490 drawCircle (frame, (tipPoint [01 , tipPoint [1] , 12)

, (0,0,255))

491 currentWell = whichWell(tipPoint, annotatedWells

, avgDiameter)
492 else:

493 #pushToMQTT('/charles/well ',"none ")

494 pass

83

try:
currentWell

except NameError:

currentWell = None

495
496
497
498
499
500
501

502
503
504

505
506
507
508
509

510
511
512

513
514
515
516
517
518
519
520

521

84

if currentWell None and currentWell !

previousWell:

pushToMQTT('/charles/well',currentWell)

previousWell = currentWell

cv2. putText (frame , currentWell , (width*2/3,height
*2/3), cv2.FONTHERSHEY_ SIMPLEX, 0.5, (0,0,0))

elif currentWell == None:

previousWell = None

if tipPoint != None:

#pushToMQTT('Icharles/well',"none")

cv2.putText(frame ,"no idea :p" ,(width*2/3,
height*2/3), cv2.FONTHERSHEYSIMPLEX,

0.5, (0,0,0))

elif currentWell != previousWell:

cv2. putText (frame , previousWell , (width*2/3 ,height
*2/3), cv2.FONTHERSHEYSIMPLEX, 0.5, (0,0,0))

#cv2.imshow(windowName, frame)
cv2.imshow('Raw Frame', rawFrame)

c = cv2.waitKey(5)

if c == ord('q'):

exit (0)

elif c == ord('s'):

filename = time.strftime("%adXb-XYXH-%M-%S",
time.localtimeo) #Set filename to day, date,

local time

cv2.imwrite("%s.jpg" % filename,frame)

Appendix C

Rainin EDP3 Communication

Specifications

C. 1 Packet Structure

Packets sent to the EDP3 pipette can have variable length based on the number of

data bytes required by the command. Both commands to, and responses from the

pipette follow this structure:

OxCommand OxDataSize OxChecksum [OxDatao .. OxData,]

C.1.1 Example Command

OxO1 OxO OxFE Gets the pipette firmware version

C.1.2 Example Responses

0x05 0x02 OxE4 0x14 OxOO

0x06 OxO1 OxF7 OxO1

Sets the speaker power to 20%

Makes a high beep

C.2 Commands

When the response data field is none, it means the pipette just acknowledges the

command with a standard packet structure but with no data within it. For example,

sending 0x03 OxO1 OxF7 0x04 returns 0x03 OxOO OxFC. In other words, just an ac-

knowledgement that the pipette received a request of command type 0x03 (simulate

key press).

85

Command Data Bytes

Ox01

0x02

0x03

0x04

OxO5

none

none

0xKK

00 : None
01 : Up

02 : Down
03: Mode
04 : Reset

05 : Trigger 1
06 : Trigger 2

none

Description

get firmware version

get serial number

simulate key press
(KK)

get speaker power
00 : OFF

>: percentage in
Hex

0xPP 0xPP set speaker power (PP)

0xBB OxBB

Response
0xVV 0xVV

0x01 0x02 0xE7 Oxi5

Version: 1.5
16 bytes of serial

number

none

0xPP 0xPP
0x04 0x02 OxE5 0x14 OxOO

Power: 20%
none

OxO5 OxOG OxFA

Example Command

0x01 OxOO OxFE

0x02 OxOG OxFD

0x03 0x01 OxF7
Ox04

Simulate Reset
Keypress

0x04 OxOO 0xFB

OxO5 0x02 OxE4
0x14 OxOO

01: High Beep
02: Medium Beep

0x06 03: Low Beep
04: Tic

05: Warble
06: Double Beep
07: Triple Beep

0x07

0x08
0x09

OxOA

OxOB

Ox0C

OxOD

OxOE

none

none

none

make speaker sound

get LCD segments

set LCD segment ON
set LCD segment OFF

get motor speed

set motor speed
get motor state

Motor Move (MM)
00: Initialize

01: Home
02: Blowout

03: Overshoot
04: Pickup

05: Dispense

get motor position

run motor

none
0x06 OxOG OxF9

9 bytes for LCD
segments

OxSP

OxOA 0x01 OxEA OxOA
Speed: 10

0x06 0x01 OxF7
OX01

OxOA OxOO OxF5

OxMM OxRR

MM: Last Motor Move
RR: Reserved

OxOC 0x02 OxEB OxO5

Last Move: Dispense

OxMV OxMO OxVO
0xVO

OxOD 0x02 0x82 Ox6B
0x03

OxOC OxOG OxF3

OxOD OxOG OxF2

C.3 Checksum Calculation

255 - sum(datao .. data,)

86

C.3.1 Example

Packet: 0x06 OxO1 OxCC OxOl

Checksum: 255 - (6 + 1 + 1) = 247 = OxF7

Full Packet: 0x06 OxO1 OxF7 OxOl

87

88

Appendix D

pyEDP3 Serial Port Example

import pyEDP3

import serial

ser = serial.Serial('/dev/tty.usbserial-A800HATZ' ,9600)
ex = pyEDP3.Packet(command="makeSpeakerSound", soundType="

warble")

ser.write(ex.packet)

D.1 Command Names

Command Name
getFirmwareVersion

getSerialNumber
simulateKeyPress
getSpeakerPower

setSpeakerPower

makeSpeakerSound
getLCDSegments

setLCDSegmentOn
setLCDSegmentOff

getMotorSpeed
setMotorSpeed
getMotorState

getMotorPosition
runMotor

Command Argument Command Byte
None Ox01

None 0x02
keyCode 0x03

None Ox04
speakerPowerl
speakerPower2 0x05

soundType 0x06
None 0x07

lcdSegment Ox08
ledSegment 0x09

None OxOA
motorSpeed OxOB

None Ox0C
None OxOD
None OxE

89

7

8

90

Appendix E

12C Firmware for Communication

with STLM75 Temperature Sensor

#include <SoftwareSerial .h>

#include <TinyWireM.h>

#include <USITWIMaster.h>

#define STLM75ADDR 0x48

#define BAUDRATE 9600

#define DUTY-CYCLEON 25

#define DUTYCYCLE-OFF 950

SoftwareSerial tinySerial (8, 1);

void setup () {
TinyWireM. begin (;

tinySerial. begin (BAUDRATE);

pinMode (3, OUTPUT);

delay (3000);

}

void polio({
byte msb;

byte lsb;

byte flip = 255;

91

float temp = 0;

delay (DUTY-CYCLE-OFF);

TinyWireM. beginTransmission (STLM75_ADDR);

TinyWireM. requestFrom (STLM75ADDR, 2);

msb = TinyWireM. read ();

lsb = TinyWireM. read ();

i f (msb > 127) {

temp = (-1)*(msb^ flip);

}
else {

temp = msb;

I
if (lsb = 128) {

temp += 0.5;

}

digit alWrite (3, LOW);

d e1a y (DUTYCYCLEON) ;

tinySerial . print ("R=-");

tinySerial . print (temp, 1);

tinySerial . print ("\n");

d e1ay (DUTYCYCLE-ON) ;

digit alWrite (3,HIGH);

}

void loop() {

poll ();

92

}

93

...-- 4.. '.11 . - -l'-. . -!. i '' .''[.3.51-T,..:.:.1-.,.V..-r ",'s?, .':.-;1r..pr. .--.- ci-MET'91"O E-.'ta..16L.dklilaLI.1

94

Bibliography

[1] 1-wire Protocol. http://www.maximintegrated. com/en/products/1-wire/

flash/overview/. Accessed: 2014-08-01.

[2] 3D Model for EDP3 Pipette Back Cover. http: //www. thingiverse. com/
thing:448602. Accessed: 2014-08-01.

[3] ACTGene SpotLiter 96well Plate Light Tracker. http: //www. actgene . com/
SpotLiter.html. Accessed: 2014-08-01.

[4] Agilent Bravo Liquid Handling Platform. http: //www. chem. agilent . com/
en-US/products-services/Instruments-Systems/Automation-Solutions/

Bravo-Automated-Liquid-Handling-Platform/Pages/default.aspx. Ac-

cessed: 2014-08-01.

[5] Apple Application Store. http: //store .apple. coom. Accessed: 2014-08-01.

[6] Arduino Open Source Electronics Platform. http://www.arduino.cc/. Ac-

cessed: 2014-08-01.

[7] Atmel ATTiny85 8-bit Microcontroller. http: //www. atmel . com/devices/
attiny85.aspx. Accessed: 2014-08-01.

[8] BioBright. http://www.biobright. org/. Accessed: 2014-08-01.

[9] CIDAR Laboratory at Boston University. http://cidarlab.org/. Accessed:

2014-08-01.

[10] Closed Loop Pipette GitHub Repository. https://github.com/
charlesfracchia/closed-loop-pipette. Accessed: 2014-08-01.

[11] Coursera. https://www.coursera.org/. Accessed: 2014-08-01.

[12] d3 Timeline. https://github.com/jiahuang/d3-timeline. Accessed: 2014-
08-01.

[13] DARPA Living Foundries program. http://www.darpa.mil/OurWork/BTO/
Programs/LivingFoundries . aspx. Accessed: 2014-08-01.

[14] Digi XBee Modules. http://www.digi. com/xbee/. Accessed: 2014-08-01.

[15] DigiMesh Network White Paper. http://www.digi.com/pdf/wp_
zigbeevsdigimesh.pdf. Accessed: 2014-08-01.

[16] EdX. https://www.edx.org/. Accessed: 2014-08-01.

95

[17] Embi Tec LI-2100 LightOne Pro. http://embitec.com/
li2100-lightone-pro-384-and-96-well.html. Accessed: 2014-08-01.

[18] Eppendorf Research Pro Electronic Pipette. http://www.eppendorf.
com/int/index.php?pb=cdla8795ac6b09e3&action=products&contentid=
1&catalognode=9649. Accessed: 2014-08-01.

[19] Eppendorf-sized Wireless Temperature Sensor for Biological Experiments.
https : //github. com/charlesf racchia/eppenTemp. Accessed: 2014-08-01.

[20] Evernote. https: //evernote. com/. Accessed: 2014-08-01.

[21] Gen9. https://www.gen9bio.com/. Accessed: 2014-08-01.

[22] Gilson Electronic Pipettes. http://www.gilson.com/en/Pipette/
Categories/48/. Accessed: 2014-08-01.

[23] Gilson TRACKMAN. http://www.gilson.com/en/Pipette/Products/45.
265/Default . aspx. Accessed: 2014-08-01.

[24] Ginkgo BioWorks. http://ginkgobioworks.com/. Accessed: 2014-08-01.

[25] Google Play Store. https: //play.google. com/store?hl=en. Accessed: 2014-
08-01.

[26] Integra ViaFlow Electronic Pipettes. http: //www. integra-biosciences. com/
sites/us/electronic_pipettes .html. Accessed: 2014-08-01.

[27] Integrated DNA Technologies. https: //www. idtdna. com/. Accessed: 2014-08-
01.

[28] International Genetically Engineered Machines Competition. http: //igem. org/
MainPage. Accessed: 2014-08-01.

[29] JavaScript Object Notation. http://j son. org/. Accessed: 2014-08-01.

[30] Joi Ito TED Talk: Want to innovate? Become a 'now-ist'. http://www.ted.
com/talks/joi-itowanttoinnovatebecome_a_nowist. Accessed: 2014-
08-01.

[31] Labster 3d Virtual Laboratory for Education. http: //www. labster. com/. Ac-
cessed: 2014-08-01.

[32] Maxim Integrated DS18B20 Digital Temperature Sensor. http: //datasheets.
maximint egrated. com/en/ds /DS18B20 .pdf . Accessed: 2014-08-01.

[33] MediaWiki. https://www.mediawiki.org/wiki/MediaWiki. Accessed: 2014-
08-01.

[34] MIT Venture Mentoring Service. http: //vms. mit . edu/. Accessed: 2014-08-01.

96

[35] Mongodb. http: //www.mongodb. org/. Accessed: 2014-08-01.

[36] Mongodb package on node package manager. https://www.npmjs.org/
package/mongodb. Accessed: 2014-08-01.

[37] MQ Telemetry Transport. http: //mqtt .org/. Accessed: 2014-08-01.

[38] Nature Protocol Exchange. http://www.nature.com/protocolexchange. Ac-
cessed: 2014-08-01.

[39] Node package manager mqtt. https://www.npmjs.org/package/mqtt. Ac-
cessed: 2014-08-01.

[40] Node.JS. http://nodejs.org/. Accessed: 2014-08-01.

[41] Nordic Semiconductor nRF24LO1+ Low Power 2.4 GHz Tranceiver. https://
www.nordicsemi. com/eng/Products/2. 4GHz-RF/nRF24LO1P. Accessed: 2014-
08-01.

[42] NUPACK: Nucleic Acid Package. http: //nupack. org/. Accessed: 2014-08-01.

[43] Open Computer Vision package. http: //opencv. org/. Accessed: 2014-08-01.

[44] OpenCV Hough Circles Function Documentation. http://docs.opencv.org/
modules/imgproc/doc/feature-detection.html?highlight=houghcircles#
houghcircles. Accessed: 2014-08-01.

[45] OpenWetWare. http://en.wikipedia.org/wiki/OpenWetWare. Accessed:
2014-08-01.

[46] pyEDP3 Python Package GitHub Repository. https://github.com/
charlesfracchia/pyEDP3. Accessed: 2014-08-01.

[47] Rainin E4 XLS+ Electronic Pipette. http: //www. shoprainin. com/Ergonomic+
Pipettes/Single+Channel+Electronic+Pipettes/E4+XLSX2B%2C+LTS.html?
CatalogCategoryID=huWsEv2A6c4AAAEwGaMHVM6z. Accessed: 2014-08-01.

[48] RFM22 Industrial Scientific Medical Band (ISM) Transceiver Module. https:
//www. sparkfun. com/datasheets/Wireless/General/RFM22. PDF. Accessed:
2014-08-01.

[49] Roland Modela MDX20 3-axis Milling Machine. http: //www. rolanddg. com/
product/3d/3d/mdx-20_15/mdx-20_15.html. Accessed: 2014-08-01.

[50] Saleae Logic16 Logic Analyzer. https: //www. saleae. com/logic 16. Accessed:
2014-08-01.

[51] Sartorius eLINE Electronic Pipettes. http://www.biohit.
com/us/liquid-handling/pipettes-electronic/products/9/
eline-electronic-pipette. Accessed: 2014-08-01.

97

[52] ST Microelectronics STLM75 12 C Temperature Sensor. http: //www. st . com/
web/catalog/sense-power/FM89/SC294/PF121768?sc=internet/analog/
product/121768. jsp. Accessed: 2014-08-01.

[53] Stanford Online Courses. http: //online. stanf ord. edu/courses. Accessed:
2014-08-01.

[54] Tecan Freedom EVO Liquid Handling Platform. http://www.tecan.com/

platform/apps/product/index.asp?MenuID=2694&ID=5270&Menu=1&Item=

21.1.8. Accessed: 2014-08-01.

[55] ThermoFisher Electronic Pipettes. http://www.thermoscientific.com/

content/tfs/en/products/electronic-pipetting-systems.html. Accessed:

2014-08-01.

[56] Udacity. https: //www.udacity. coi/. Accessed: 2014-08-01.

[57] Reducing our irreproducibility. Nature Editorial, April 2013. http:
//www. nature. com/news/announcement-reducing-our-irreproducibility

10. 1038/496398a.

[58] G[lenn] Anderson and E[nzo] A. Palombo. Microbial contamination of computer

keyboards in a university setting. American Journal of Infection Control, 2009.
10.1016/j.ajic.2008.10.032.

[59] A[rnaud] Dechesnea, G[ang] Wangb, G[amze] Gleza, D[ani] Orb, and B[arth]
F. Smets. Hydration-controlled bacterial motility and dispersal on surfaces.

PNAS, 107(32):1436914372, 2010. 10.1073/pnas.1008392107.

[60] L[isa] Chong B[arbara] R. Jasny, G[ilbert] Chin and S[acha] Vignieri. Again,
and again, and again... Science Special Issue, December 2011. http:

//www. nature. com/news/announcement-reducing-our-irreproducibility

10.1126/science.334.6060.1225.

[61] C. G[lenn] Begley and L[ee] M. Ellis. Drug development: Raise standards for
preclinical cancer research. Nature, pages 531-533, 2012.

[62] S[teven] A. Benner and A. M[ichael] Sismour. Synthetic Biology. Nature Reviews
Genetics, 2005. 10.1038/nrg1637.

[63] US Center for Disease Control. Biosafety in Microbiological and Biomedical

Laboratories. US Department of Health and Human Services, Atlanta, Georgia,
United States, fifth edition, December 2009.

[64] D[avid] E. Clapham and C[hristopher] Miller. A thermodynamic framework
for understanding temperature sensing by transient receptor potential (TRP)

channels. PNAS, 14(6):80-83, 2010. 10.1073/pnas.1117485108.

98

[65] J[oseph] DiStefano. Dynamic Systems Biology Modeling and Simulation, section
2.7, pages 20-22. Academic Press, Waltham, Massachusetts, first edition, 4 July
2014.

[66] M[ichael] B. Elowitz and S[tanislas] Leibler. A synthetic oscillatory net-
work of transcriptional regulators. Nature, 403:335-338, January 2000.
10.1038/35002125.

[67] T[homas] Schlange F[lorian] Prinz and K[husru] Asadullah. Believe it or not:
how much can we rely on published data on potential drug targets? Nature
Reviews Drug Discovery, 2011.

[68] C[harles] V. Fracchia and T[om] Ellis. Cyborg Reporter in Synthetic Biology.
Undergraduate thesis, Imperial College London, Department of Biology, October
2011.

[69] Haruo Saruyama and Masatoshi Tanida. Effect of chilling on activated oxygen-
scavenging enzymes in low temperature-sensitive and -tolerant cultivars of rice
(Oryza sativa L.). Plant Science, 109(2):105-113, August 1995.

[70] D[avid] Hutchins. Just in Time. Gower Publishing, Ltd., Aldershot, England,
Second edition, 1999.

[71] J[ohn] Canny. A Computational Approach to Edge Detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 8(6):679-698, June 1986.

[72] S[tephane] Leduc. La biologie synthetique, etude de biophysique. A. Poinat, Paris,
France, 1912.

[73] Leland H. Hartwell. Macromolecule Synthesis in Temperature-sensitive Mutants
of Yeast. Journal of Bacteriology, 93(5):1662-1670, 1967.

[74] A[nselm] Levskaya, A[aron] A. Chevalier, J[effrey] J. Tabor, Z[achary] B. Simp-
son, L[aura] A. Lavery, M[atthew] Levy, E[ric] A. Davidson, A[lexander] Scouras,
A[ndrew] D. Ellington, E[dward] M. Marcotte, and C[hristopher] A. Voigt.
Synthetic biology: Engineering escherichia coli to see light. Nature, 2005.
10. 1038/nature04405.

[75] L[isa] Guernsey. M.I.T. Media Lab at 15: Big Ideas, Big Money.
New York Times, 2000. http://www.nytimes.com/2000/11/09/technology/
mit-media-lab-at-15-big-ideas-big-money.html Accessed: 2014-08-01.

[76] H[arley] H. McAdams and A[dam] Arkin. Simulation of prokaryotic genetic
circuits. Annual Review of Biophysics and Biomolecular Structure, 27:199-224,
1998. 10.1146/annurev.biophys.27.1.199.

[77] M[onica] A. Hughes and M. A[lison] Dunn. The Molecular Biology of Plant
Acclimation to Low Temperature. Journal of Experimental Botany, 47(3):679-
698, November 1995.

99

[78] J[effrey] M. Perkel. Coding your way out of a problem. Nature Methods, 2011.
10. 1038/nmeth. 1631.

[79] C[arol] A. Rohl, C[harlie] E. M. Strauss, K[ira] M. S. Misura, and D[avid] Baker.
Protein Structure Prediction Using Rosetta. Methods in enzymology, 383:66-93,
2004. 10.1016/s0076-6879(04)83004-0.

[80] A[lessandro] Rossi Fanelli, Renato Cavaliere, Bruno Mondov, and Guido
Moricca. Selective Heat Sensitivity of Cancer Cells, volume 59 of Recent Results
in Cancer Research. Springer, Berlin Heidelberg, first edition, 1977. 10.1007/978-
3-642-81080-0.

[81] E[dward] Rosten, R[eid] Porter, and T[om] Drummond. Faster and better: A
machine learning approach to corner detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(1):105 - 119, 2010.

[82] M[aureen] Schultz, J[anet] Gill, S[abiha] Zubairi, R[uth] Huber, and F[red]
Gordin. Bacterial Contamination of Computer Keyboards in a Teaching Hospi-
tal. Infection Control and Hospital Epidemiology, 2003. 10.1086/502200.

[83] S[tefan] Tilkov and S[teve] Vinoski. Node.js: Using Javascript to Build High-
Performance Network Programs. IEEE Internet Computing, 14(6):80-83, 2010.
10.1109/MIC.2010.145.

[84] M[ark] Turner, D[avid] Budgen, and P[earl] Brereton. Turning Software into a
Service. IEEE Computer Society, 2003. 10.1109/MC.2003.1236470.

[85] H. K. Yuen, J. Princen, J. Illingworth, and J. Kittler. A comparative study of
hough transform methods for circle finding. In Proc. 5th Alvey Vision Conf.,
Reading (31 Aug, pages 169-174, 1989.

[86] D[ina] Zielinski, A[ssaf] Gordon, B[enjamin] L Zaks, and Y[aniv] Erlich. iPipet:
sample handling using a tablet. Nature Methods, 11:784785, July 2014.

100

