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COMPRESSED ABSORBING BOUNDARY CONDITIONS VIA
MATRIX PROBING∗

R. BÉLANGER-RIOUX† AND L. DEMANET‡

Abstract. Absorbing layers are sometimes required to be impractically thick in order to offer
an accurate approximation of an absorbing boundary condition for the Helmholtz equation in a
heterogeneous medium. It is always possible to reduce an absorbing layer to an operator at the
boundary by layer stripping elimination of the exterior unknowns, but the linear algebra involved
is costly. We propose bypassing the elimination procedure and directly fitting the surface-to-surface
operator in compressed form from a few exterior Helmholtz solves with random Dirichlet data. The
result is a concise description of the absorbing boundary condition, with a complexity that grows
slowly (often, logarithmically) in the frequency parameter.

Key words. absorbing boundary condition, nonreflecting boundary condition, radiating bound-
ary condition, open boundary condition, Helmholtz equation, matrix probing, heterogeneous media
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1. Introduction. This paper investigates arbitrarily accurate realizations of ab-
sorbing (a.k.a. open, radiating) boundary conditions (ABCs), including absorbing
layers, for the two-dimensional (2D) acoustic high-frequency Helmholtz equation in
certain kinds of heterogeneous media. Instead of considering a specific modification
of the partial differential equation, such as a perfectly matched layer, studied here
is the broader question of compressibility of the nonlocal kernel that appears in the
exact boundary integral form Du = ∂νu of the ABC, where ∂νu is the outward nor-
mal derivative. The operator D is called the Dirichlet-to-Neumann (DtN) map. This
boundary integral viewpoint invites one to rethink ABCs as a two-step numerical
scheme, where

1. a precomputation sets up an expansion of the kernel of the boundary integral
equation; then

2. a fast algorithm is used for each application of this integral kernel at the open
boundaries in a Helmholtz solver.

This two-step approach may pay off in scenarios when the precomputation is amor-
tized over a large number of solves of the original equation with different data.

This paper addresses the precomputation step: a basis for the efficient expansion
of the integral kernel of the ABC in some simple 2D settings is described, and a
randomized probing procedure to quickly find the coefficients in the expansion is
discussed. This framework is, interestingly, halfway between a purely analytical or
physical method and a purely numerical one. It uses both the theoretical grounding of
analytic knowledge and the intuition from understanding the physics of the problem
in order to obtain a useful solution.
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2442 R. BÉLANGER-RIOUX AND L. DEMANET

The numerical realization of ABC typically involves absorbing layers that become
very thick (on the order of O(N) grid points) for difficult c(x) or for high accuracy
(see section 2.2). In this paper, we propose instead to realize the ABC by directly
compressing the integral kernel of D, so that the computational cost of its setup and
application would become competitive when the Helmholtz equation is to be solved
multiple times. Hence this paper is not concerned with the design of a new ABC,
but rather with the reformulation of existing ABCs that otherwise require a lot of
computational work per solve.

In many situations of practical interest we show that it is possible to “learn” the
integral form of D, as a precomputation, from a small number of solves of the origi-
nal problem with the expensive ABC. In fact the computational cost of the present
method is approximately that of solving the Helmholtz equation a few times (see sec-
tion 3.2), with the advantage of speeding up further solves (see section 2.3). By “a
few times” we mean a quantity essentially independent of the number of discretiza-
tion points N along one dimension—in practice as small as 1 or as large as 50. As
mentioned, this new approach becomes competitive when a large number of solves is
required. This strategy is called matrix probing [12, 17]. In these situations, we also
show that the accurate expansion of D requires a number of parameters p “essentially
independent” of N (see section 4.4). This is in sharp contrast to the scaling of O(N)
grid points for the layer width mentioned above. However, the basis for the expansion
needs to be chosen carefully. A rationale for this choice is provided in section 3.3, and
a proof of convergence in a special case is presented in section 5. This leads to the
successful design of a basis for a variety of heterogeneous media.

Once a matrix realization D̃ of the DtN map D is obtained from matrix probing,
it can be used in a Helmholtz solver. However, a solver would use matrix-vector
multiplications to apply the dense matrix D̃. Hence the second step of our numerical
scheme: D̃ needs to be compressed further, in a form that provides a fast matrix-
vector product. This second step can only come after the first, since it is the first step
that gives us access to the entries in D and allows us to use compression algorithms
of interest. Work on this second step appears here [6]. Note that the feasibility of
probing and the availability of a fast algorithm for matrix-vector multiplication are
two different goals that require different expansion schemes.

Section 2 introduces the DtN map, and how to obtain it both analytically and
numerically from an ABC. However, as will be explained, ABCs are computationally
expensive when solving the Helmholtz equation in a heterogeneous medium, and this
is why matrix probing is introduced in section 3 to compress such an ABC. Sec-
tion 4 presents numerical results documenting the complexity and accuracy of matrix
probing, including results on using an ABC, compressed using matrix probing, in a
Helmholtz solver. Section 5 presents a proof that matrix probing converges rapidly to
what is called the half-space DtN map in uniform medium, which justifies particular
choices made in the setup of the matrix probing algorithm of section 3.

2. Background and setup. Consider the Helmholtz equation in R
2,

(2.1) Δu(x) +
ω2

c2(x)
u(x) = f(x), x = (x1, x2),

with compactly supported f . Throughout this article the unique solution determined
by the Sommerfeld radiation condition (SRC) at infinity will be considered: when
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COMPRESSED ABCs VIA MATRIX PROBING 2443

c(x) extends to a constant c outside of a bounded set, the SRC is [40]

(2.2) lim
ρ→∞ ρ1/2

(
∂u

∂ρ
− iku

)
= 0, k =

ω

c
,

where ρ is the radial coordinate.

2.1. The Dirichlet-to-Neumann map. The SRC can be reformulated to the
boundary ∂Ω, so that the resulting solution inside Ω matches that of the free-space
problem (2.1), (2.2). There are many ways to do this numerically, as shall be seen in
section 2.2. However, the following analytical reformulation is important because it
introduces a fundamental concept, the Dirichlet-to-Neumann (DtN) map.

Let G(x,y) be the fundamental solution for this problem, i.e., the solution when
f(x) = δ(x−y). Define the single- and double-layer potentials, respectively, on some
closed contour Γ by the following, for ψ, φ on Γ (see details in [40, 13]):

(2.3) Sψ(x) =
∫
Γ

G(x,y) ψ(y) dSy, T φ(x) =
∫
Γ

∂G

∂νy
(x,y) φ(y) dSy,

where ν is the outward-pointing normal to the curve Γ, and x is not on Γ. Now let
u+ satisfy the Helmholtz equation (2.1) in the exterior domain R

2 \ Ω, along with
the SRC (2.2). Then Green’s third identity is satisfied in the exterior domain: using
Γ = ∂Ω, it follows that

(2.4) T u+ − S ∂u
∂ν

+

= u+, x ∈ R
2 \ Ω.

Finally, using the jump condition of the double layer T , Green’s identity on the
boundary ∂Ω is obtained:(

T − 1

2
I
)
u+ − S ∂u

∂ν

+

= 0, x ∈ ∂Ω,

where I is the identity operator.
When the single-layer potential S is invertible,1 we can let D = S−1(T − 1

2I) and
equivalently write (dropping the + in the notation)

(2.5)
∂u

∂ν
= Du, x ∈ ∂Ω.

The operator D is called the exterior Dirichlet-to-Neumann map because it maps the
Dirichlet data u to the Neumann data ∂u/∂ν. The DtN map is independent of the
right-hand side f of (2.1) as long as f is supported in Ω. The notion that (2.5) can
serve as an exact ABC was made clear in a uniform medium, e.g., in [21] and in
[36]. Equation (2.5) continues to hold even when c(x) is heterogeneous in the vicinity
of ∂Ω, provided the correct (often unknown) Green’s function is used. The medium
is indeed heterogeneous near ∂Ω in many situations of practical interest, such as in
geophysics.

Note that the interior DtN map has a much higher degree of complexity than the
exterior one, because it needs to encode all the waves that travel along the broken

1This is the case when there is no interior resonance at frequency ω. If there is such a resonance,
it could be circumvented by the use of combined field integral equations as in [13]. The existence
and regularity of D ultimately do not depend on the invertibility of S.
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2444 R. BÉLANGER-RIOUX AND L. DEMANET

geodesic rays that go from one part of the domain Ω to another (i.e., rays bouncing
inside the domain). In contrast, the exterior DtN map rarely needs to take into
account multiple scattering if the solution is outgoing. Only the exterior DtN map is
considered in this work and is referred to as the DtN map for simplicity.

The DtN map D is symmetric.2 The proof of the symmetry of D was shown in
a slightly different setting in [37] and is adapted to the present situation. Indeed,
consider again D = S−1(T − 1

2I) from above, and use it in the alternative Steklov–
Poincaré identity (mentioned in section 3.3, where H and T ∗ are defined) D = H −
(T ∗ − 1

2I)D, to obtain the symmetric expression D = H− (T ∗ − 1
2I)S−1(T − 1

2I).
Much more is known about DtN maps, such as the many boundedness and co-

ercivity theorems between adequate fractional Sobolev spaces (mostly in free space,
with various smoothness assumptions on the boundary). It was not attempted to
leverage these properties of D in the scheme presented here, but more can be found
in [41], as well as in [47] and references therein.

In this paper, unless otherwise noted, D is used to denote the exact, analytical
DtN map as described above, while D refers to the discrete realization of the DtN
map as will be made precise in section 2.3, and D̃ will be used for the approximation
of matrix D in the probing framework.

2.2. Discrete absorbing boundary conditions. There are many ways to re-
alize an absorbing boundary condition (ABC) for the wave or Helmholtz equation.
Some ABCs are surface-to-surface, such as in [21, 31, 32, 34, 36, 46]. Others in-
volve surrounding the computational domain Ω by an absorbing layer, or AL [2, 3, 8].
The latter approach is desirable because the parameters of the layer can usually be
adjusted to obtain the required accuracy.

The perfectly matched layer (PML) of Bérenger [8] is a convincing solution to
this problem in a uniform acoustic medium. Its performance often carries through in
a general heterogeneous acoustic medium c(x), though its derivation strictly speaking
does not. It is possible to define a layer-based scheme from a transformation of the
spatial derivatives which mimics the one done in a homogeneous medium, by replacing
the Laplacian operator Δ by some Δlayer inside the PML, but this layer will not be
perfectly matched anymore and is called a pseudo-PML (pPML) [42]. In this case,
reflections from the interface between Ω and the layer might not be small. In fact, the
layer might even cause the solution to grow exponentially inside it, instead of forcing
it to decay [19, 39]. It has been shown in [42] that a pPML for Maxwell’s equations
can still lead to an accurate solution, but the layer needs to be made very thick in
order to minimize reflections at the interface. Then the equations have to be solved
in a very large computational domain, where most of the work will consist in solving
for the pPML. In the setting where (2.1) has to be solved a large number of times, a
precomputation to speed up the application of the pPML (or any other accurate but
slow ABC or AL) might be of interest.

Other discrete ALs may also need to be quite wide in practice, or may be other-
wise computationally costly, and this can be understood with the following physical
explanation. Call L the required width (in meters) of a layer, for a certain accuracy.
Although this is not a limitation of the framework presented in this paper, discretize
the Helmholtz operator in the most elementary way using the standard five-point dif-
ference stencil. Put h = 1/N for the grid spacing, where N is the number of points per

2For example, the half-space DtN map in a uniform medium is certainly symmetric, as can be
seen from the explicit formulas (5.1) and (5.2) of section 5.
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dimension for the interior problem, inside the unit square Ω = [0, 1]2. Let w = L/h be
the AL width in number of grid points. While Ω contains N2 points, the total number
of unknowns is O

(
(N + 2w)2

)
in the presence of the layer. In a uniform medium,

the AL width L needed is a fraction of the wavelength, i.e., L ∼ λ = 2π
ω ∼ 1

N , so
that a constant number of points is needed independently of N : w = L/h = LN ∼ 1.
However, in nonuniform media, the heterogeneity of c(x) can limit the accuracy of the
layer. Consider an otherwise uniform medium with an embedded scatterer outside
of Ω; then the AL will have to be large enough to enclose this scatterer, no matter
the size of N . For more general, heterogeneous media such as the ones considered in
this paper, we have often observed empirically (results not shown) that convergence
as a function of L or w is delayed compared to a uniform medium. That means that
L ∼ L0 so that w ∼ NL0 or w = O(N), as is assumed in this paper from now on.

In the case of a second-order discretization, the rate at which one must increase
N in order to preserve a constant accuracy in the solution, as ω grows, is about
N ∼ ω1.5. This unfortunate phenomenon, called the pollution effect, is well known:
it begs to increase the resolution, or number of points per wavelength, of the scheme
as ω grows [4, 5]. As was just explained, the width of the AL may be as wide as O(N)
points, which will scale as O(ω1.5) grid points.

Before presenting the approach of this paper for compressing an ABC, a straight-
forward way of obtaining the DtN map from an ABC is presented. It consists of elim-
inating the unknowns in the AL in order to obtain a reduced system on the interior
nodes. This solution technique is enlightening but also computationally impractical,
as will be seen.

2.3. Layer stripping for the Dirichlet-to-Neumann map. The system for
the discrete Helmholtz equation is

(2.6)

(
A P
PT C

) (
uout
uΩ

)
=

(
0
fΩ

)
,

with A = Δlayer+k
2I and C = Δ+k2I, with Δ overloaded to denote discretization of

the Laplacian operator, and Δlayer the discretization of the Laplacian operator inside
the AL. Eliminating the exterior unknowns uout will give a new system which only
depends on the interior unknowns uΩ. The most obvious way of eliminating those
unknowns is to form the Schur complement S = C − PTA−1P of A by any kind
of Gaussian elimination. For instance, in the standard raster scan ordering of the
unknowns, the computational cost of this method3 is O(w4)—owing to the fact that
A is a sparse banded matrix of size O(w2) and band at least N + 2w. Alternatively,
elimination of the unknowns can be performed by layer stripping, starting with the
outermost layer of unknowns from uout, until the layer of points that is just outside
of ∂Ω is eliminated. The computational cost will be O(w4) in this case as well. To
see this, let uj represent the vector of the solution evaluated at the set of points on
the jth layer outside of Ω, so that in particular uw is the solution at the points on
the outermost layer. The system (2.6) is thus rewritten as(

Aw Pw

PT
w Cw

) (
uw
...

)
=

(
0
...

)
,

3The cost of the Schur complement procedure is dominated by that of Gaussian elimination to
apply A−1 to P . Gaussian elimination on a sparse banded matrix of size s and band b is O(sb2), as
can easily be inferred from Algorithm 20.1 of [50].
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where Aw is the discretization of Δlayer + k2 at points in layer w, and Cw is the
discretization of either Δlayer+k

2 or Δ+k2 at all other points. Note that, because of
the five-point stencil, Pw has nonzeros exactly on the columns corresponding to uw−1.
Hence the matrix PT

wA
−1
w Pw in the first Schur complement Sw = Cw − PT

wA
−1
w Pw

is nonzero exactly at the entries corresponding to uw−1. Then, in the next Schur
complement, the matrix Aw−1 (the block of Sw corresponding to the points uw−1)
to be inverted will be full. For the same reason, every matrix Aj to be inverted
thereafter, for every subsequent layer to be eliminated, will be a full matrix. Hence
at every step the cost of forming the corresponding Schur complement is at least
on the order of the cubic power of the number of points in that layer. Hence the
total cost of eliminating the exterior unknowns by layer stripping is approximately∑w

j=1(4(N + 2j))3 = O(w4).
Similar arguments can be used for the Helmholtz equation in 3 dimensions. In

this case, the computational complexity of the Schur complement or layer stripping
methods would be, respectively, O(w3(w2)2) = O(w7) or ∼

∑w
j=1(6(N + 2j)2)3 =

O(w7). Therefore, direct elimination of the exterior unknowns is quite costly. Better
methods than Gaussian elimination could be modified to reduce the system and obtain
D—for example, those in [20, 27, 29]. Some new insight is needed to construct the
DtN map more efficiently.

Note that eliminating the exterior unknowns, whether in one pass or by layer
stripping, creates a reduced system. This new system looks just like the original
Helmholtz system on the interior unknowns uΩ, except for the top left block, cor-
responding to u0 the unknowns on ∂Ω, which has been modified by the elimination
procedure. Hence with the help of some dense matrix D the reduced, N2×N2 system
is written as

(2.7) Lu =

⎛⎜⎜⎜⎜⎜⎜⎝

(hD − I)/h2 I/h2 0 · · ·

I/h2

0 [ Δ + k2I ]

...

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

u0

u−1

u−2

...

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

0

f−1

f−2

...

⎞⎟⎟⎟⎟⎟⎟⎠ .

This creates an absorbing condition which may be used on the boundary of Ω, inde-
pendent of the right-hand side f . Indeed, let u−1 be the solution on the first layer of
points inside Ω, so that the first block row of the system gives (I − hD)u0 = u−1, or

(2.8)
u0 − u−1

h
= Du0,

a numerical realization of the DtN map in (2.5), using the ABC of choice. Indeed,
elimination can be used to reformulate any computationally intensive ABC or AL into
a realization of (2.5), by reducing any extra equations coming from the ABC or AL
to relations involving only unknowns on the boundary and on the first layer (or first
few layers) inside the boundary, to obtain a numerical DtN map D. A drawback is
that forming this matrix D by elimination can be prohibitive, as explained above, and
a dense matrix D is obtained. Instead, this paper suggests adapting the framework
of matrix probing in order to obtain D in reasonable complexity, and in compressed
form. Matrix probing is also at least as memory efficient as the methods in [20, 27, 29],
which have a memory usage of about N2 logN , whereas the approximate D obtained
through matrix probing has memory usage on the order of N2.
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As for the complexity of solving the Helmholtz equation, reducing the ABC confers
the advantage of making the number of nonzeros in the matrix L of (2.7) independent
of the width of the AL or complexity of the ABC. Indeed, L has about 20N2 nonzero
entries, instead of the 5N2 one would expect from a five-point stencil discretization
of the Helmholtz equation, because D is a full 4N × 4N matrix. Obtaining a fast
matrix-vector product for our approximation of D is the second step of the algorithm
proposed in this paper. This could reduce the application cost of L from 20N2 to
something closer to 5N2. This is work the authors have completed, and that will
appear elsewhere. The present paper, again, focuses on the first step of the proposed
algorithm: obtaining D efficiently by adapting the framework of matrix probing. The
next section presents matrix probing and other algorithms used in this article.

3. Matrix probing for the DtN map. The idea of matrix probing is that a
matrix D with adequate structure can sometimes be recovered from the knowledge
of a fixed, small number of matrix-vector products Dg(j), j = 1, 2, . . . , where g(j)

are typically random vectors. In the case where D is the DtN map, each g(j) con-
sists of Dirichlet data on ∂Ω, and each application Dg(j) requires solving an exterior
Helmholtz problem, as explained in section 3.1. Matrix probing is then introduced in
section 3.2. For matrix probing to be an efficient expansion scheme, a careful choice of
the expansion basis is necessary, as shown in section 3.3. Some remarks on traveltimes
follow in section 3.4, and in section 3.5 a short note is given on using a probed DtN
map inside a Helmholtz solver.

3.1. Setup for the exterior problem. The exterior problem is the heteroge-
neous medium Helmholtz equation at angular frequency ω, outside Ω = [0, 1]2, with
Dirichlet boundary condition u0 = g on ∂Ω. In the present paper, this problem is
solved numerically with the five-point stencil of finite differences and a pPML, al-
though other methods could be used. The pPML starts at a fixed, small distance
away from Ω, so there is a small strip around Ω where the equations are unchanged.
Recall that the width of the pPML is in general as large as O(ω1.5) grid points (see
the end of section 2.2). Number the four sides of ∂Ω counterclockwise starting from
(0, 0): side 1 is the bottom edge (x, 0), 0 ≤ x ≤ 1, side 2 is the right edge, etc. The
exterior DtN map D is defined from ∂Ω to ∂Ω. Thus its numerical realization D has a
4×4 block structure and is 4N×4N . As an integral kernel, D has singularities at the
junctions between these blocks (due to the fact that ∂Ω has corners), and this feature
is taken into account by probing D block by block. Such a generic block is called M
or the (jM , 
M ) block of D, referring to its indices in the 4× 4 block structure.

The method by which the system for the exterior problem (and the original
problem in section 3.5) is solved is immaterial in the scope of this paper, though
for reference the experiments in this paper use UMFPACK’s sparse direct solver
[16]. For treating large problems, a better solver should be used, such as those in
[23, 24, 25, 28, 29, 48].

For a given Dirichlet boundary condition g, solve the system and obtain a solution
u in the exterior computational domain. In particular, consider u1, the solution on
the layer of points just outside of ∂Ω. Let

(3.1)
u1 − g

h
= Dg.

This relation is not exactly the same as in (2.8), but needs not be interpreted as a
first-order approximation of the continuous DtN map in (2.8). The matrix D in (3.1)
is an algebraic object of interest that will be “probed” from repeated applications
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2448 R. BÉLANGER-RIOUX AND L. DEMANET

to different vectors g. This D is then used (see section 3.5) to close the Helmholtz
system on Ω by eliminating the ghost points on the layer just outside ∂Ω, where u1
is defined.

For probing the (jM , 
M ) block M of D, one needs matrix-vector products of D
with vectors g of the form [z, 0, 0, 0]T , [0, z, 0, 0]T , etc., to indicate that the Dirichlet
boundary condition is z on the side indexed by 
M , and zero on the other sides. The
application Dg is then restricted to side jM .

3.2. Matrix probing. The dimensionality of D needs to be limited for recovery
from a few Dg(j) to be possible, but matrix probing is not an all-purpose low-rank
approximation technique. Instead, it is the property that D has an efficient represen-
tation in some adequate preset basis that makes recovery from probing possible. As
opposed to the randomized SVD method, which requires the number of matrix-vector
applications to be greater than the rank [33], matrix probing can recover interesting
N × N operators from a single matrix-vector application, even when the number of
matrix parameters approaches N [12, 17]. This technique has also been investigated
in [44, 43], where matrices are expanded in dictionaries of time-frequency shifts.

We now describe a model for M , any N × N block of D, that will sufficiently
lower its dimensionality to make probing possible. Assume M can be written as

(3.2) M ≈
p∑

j=1

cjBj ,

where the Bj ’s are fixed, known basis matrices, which need to be chosen carefully in
order to give an accurate approximation ofM . For illustration, let Bj be a discretiza-
tion of the integral kernel

(3.3)
eik|x−y|

(h+ |x− y|)j/2 ,

where h = 1/N is the discretization parameter. Choices of basis matrices and their
rationales will be discussed in section 3.3.

For now, note that the advantage of the specific choice of basis matrices (3.3), and
its generalizations explained in section 3.3, is that it results in accurate expansions
with a number of basis matrices p “essentially independent” of N , namely, with a
p that grows either logarithmically in N , or at most like a very sublinear fractional
power law (such as N0.12; see section 4.4). This scaling is much better than that of
the layer width, w = O(N) grid points, mentioned earlier in section 2.2. The form of
Bj suggested in (3.3) is also confirmed by the fact that it provides a great expansion
basis for the uniform-medium half-space DtN map in R

2, as shown in section 5.
To recover the matrix probing expansion coefficients cj , let z be a Gaussian in-

dependent and identically distributed random vector of N entries, with mean 0 and
variance 1 (other choices are possible; see [12]). Applying the expansion (3.2) to z
gives

(3.4) v =Mz ≈
p∑

j=1

cjBjz = Ψz c.

Multiplying this equation on the left by the pseudoinverse of the N × p matrix Ψz

will give an approximation to c, the coefficient vector for the expansion (3.2) of M .
Note that both Ψz and the resulting coefficient vector c depend on the vector z.
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In order to improve the conditioning in taking the pseudoinverse of Ψz and reduce
the error in the coefficient vector c, one may use q > 1 random realizations ofM , that
is, v(1) =Mz(1), . . . , v(q) =Mz(q). Then v will be a long column vector of Nq entries
containing the concatenation of the v(j)’s; Ψ will similarly4 be the concatenation of

the Ψ
(j)
z ’s and will have size Nq × p. Now the solution c of v = Ψc can be obtained.

There is a limit to the range of p for which this system is well-posed: [12] covers the
precise conditions on p, N , and the following two parameters, called “weak condition
numbers,” for which recoverability of c is accurate with high probability.

Definition 3.1 (weak condition number λ).

λ = max
j

‖Bj‖2
√
N

‖Bj‖F
.

Definition 3.2 (weak condition number κ).

κ = cond(B), Bj� = Tr (BT
j B�).

Note that a small λ translates into a high-rank condition on the basis matrices
[12]. A small κ translates into a necessary condition for the set of basis matrices to be
a Riesz basis (see equation (7) of [15], where constants A,B can be taken, respectively,
to be the minimum and maximum singular values of B). Having small weak condition
numbers will guarantee a small failure probability of matrix probing and a bound on
the condition number of Ψz or Ψ, while allowing for a higher p and thus potentially
higher accuracy. These results are contained in the following theorem.

Theorem 3.3 (Chiu and Demanet [12]). Let z be a Gaussian independent and
identically distributed random vector of length qN , and let Ψ be as defined above.
Choose a value of p which is not too large, namely, which satisfies

(3.5) qN ≥ C p (κλ logN)2

for some number C > 1 independent of all other quantities. Then cond(Ψ) ≤ 2κ+ 1
with probability at least 1− 2C2pN

1−α, where α = C
2e

√
2
.

The constant C2 in Theorem 3.3 might be large, but N−α decays very fast with
larger N and C. Theorem 3.3 in turn implies the accuracy of matrix probing. Indeed,
as is shown in Proposition 1.5 of [12], a small error in truncating to p the expansion of
M in the probing basis leads to a small error between the probing expansion

∑p cjBj

and M , which leads to small errors in the coefficients c. Also, Theorem 3.3 says that
using q > 1 allows one to use a larger p, leading to a smaller truncation error of M,
hence greater accuracy of

∑p
cjBj . In a nutshell, recovery of c works under mild

assumptions on the Bj ’s, when p is a small fraction of Nq up to log factors.5

As noted previously, the work necessary for probing M is on the order of q solves
of the original problem. Indeed, computing Mz(1), . . . ,Mz(q) means solving q times
the exterior problem with the AL. This is roughly equivalent to solving the original

4Note the use of Ψz and v when a single random realization of M is employed, and the use of Ψ
and v when q > 1 random realizations are employed.

5It is difficult to use Theorem 3.3 and [12, Proposition 1.5] to find appropriate values of p, q,
N . In practice, first pick an N which makes sense with the desired accuracy of the Helmholtz
equation solution u. Then choose an affordable q and obtain the products Mz(�). Finally, pick a
small p, obtain the coefficients c, and test for the error in M . Increase p if needed, until the error is
satisfactory or the approximation gets worse (p is too large). If p is too large, increase q and start
again with a lower p. See section 4 for details on finding or approximating the error in M .
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Helmholtz problem with the AL q times, assuming the AL width w is at least as
large as N . Then computing the qp products of the p basis matrices with the q
random vectors totals at most qpN2 work, or less if the basis matrices have a fast
matrix-vector product. Finally, computing the pseudoinverse of Ψ has cost Nqp2 [50].
Hence, as long as p, q 	 N , the dominant cost of matrix probing6 comes from solving
q times the exterior problem with a random Dirichlet boundary condition. In our
experiments, q = O(1) and p can be as large as a few hundred for high accuracy.

Note that the information from the q solves can be reused for any other block
which is in the same block column as M . However, if it is needed to probe blocks
of D which are not all in the same block column, then another q solves need to be
performed, with a Dirichlet boundary condition on the appropriate side of ∂Ω. This
of course increases the total number of solves needed.7

3.3. Choice of basis matrices. The essential information of the DtN map
needs to be summarized in broad strokes in the basis matrices, with the details of
the numerical fit left to the probing procedure. In the case of D, most of its physics
is contained in its oscillations and diagonal singularity, as predicted by geometrical
optics. A heuristic argument to obtain the form of D starts from the Green’s formula
(2.4), differentiating it one more time in the normal direction. After accounting for the
correct jump condition, an alternative Steklov–Poincaré identity is obtained, where
T ∗ denotes the adjoint of the operator T defined in (2.3), namely,

D =

(
T ∗ +

1

2
I
)−1

H,

where H is the hypersingular integral operator with kernel ∂νx∂νyG, where G(x,y) is
the Green’s function and νx, νy are the normals to ∂Ω in x and y, respectively. The
presence of (T ∗ + 1

2I)−1 is inconsequential to the form of D, as it involves solving a
well-posed second-kind integral equation. As a result, the oscillations and singularity
of D are qualitatively similar to those of H. (The exact construction of D from G is of
course already known in a few special cases, such as the uniform-medium half-space
problem considered in section 5.)

In turn, geometrical optics reveals the form of G. In a context where there is
no multipathing, that is, where there is a single traveltime τ(x,y) between any two
points x,y ∈ Ω, one may write a high-ω asymptotic series for G as

(3.6) G(x,y) ∼ eiωτ(x,y)
∑
j≥0

aj(x,y)ω
−j ,

τ(x,y) is the traveltime between points x and y, found by solving the Eikonal equation

(3.7) ‖∇xτ(x,y)‖ =
1

c(x)
,

6In this paper we also perform a QR factorization on the basis matrices (see section 3.3), and
this has cost N2p2. This operation has a cost similar to or smaller than the cost of an exterior solve
using current Helmholtz solvers. It might also be possible to avoid the QR factorization if a set of
basis matrices closer to orthonormal is used.

7Another option would be to probe all of D at once, using basis matrices that have the same size
as D, but are 0 except on the support of each distinct block in turn. In this case, κ remains 1 if the
basis matrices are orthonormalized, but N becomes 4N in (3.5), and λ doubles. Hence a higher value
of q might be needed for the same p, or the same accuracy. This approach, which might become more
advantageous for a more complicated polygonal domain, is not investigated in the present paper.
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and the amplitudes aj satisfy transport equations. The derivation of geometrical op-
tics is classical; see [51, 22]. In the case of multipathing (multiple possible traveltimes
between any two points), the representation (3.6) of G becomes instead

G(x,y) ∼
∑
j

eiωτj(x,y)
∑
�≥0

aj�(x,y)ω
−�,

where the τj ’s each obey (3.7) away from caustic curves. The amplitudes aj�(x,y)
are singular at caustic curves in addition to the diagonal x = y and contain the
information of the Maslov indices. Traveltimes are symmetric: τj(x,y) = τj(y,x).

The singularity of the Green’s function in a uniform medium is O (log |x− y|)
in 2D and O

(
|x− y|−1

)
[11, 1]. Thus the amplitude factor in (3.6) for a uniform

medium, at x = y, is O (log |x− y|) in 2D and O
(
|x− y|−1

)
in 3D, and similarly

in smooth heterogeneous media.8 After differentiating G twice to obtain the kernel
H, the homogeneity on the diagonal becomes O

(
|x− y|−2

)
in 2D and O

(
|x− y|−3

)
in 3D. For the decay at infinity, the scalings are different and can be obtained from
Fourier analysis of square root singularities; the kernel ofH decays likeO

(
|x− y|−3/2

)
in 2D, and O

(
|x− y|−5/2

)
in 3D. In between, the amplitude is smooth as long as the

traveltime is single-valued.
For all these reasons, we define the basis matrices Bj as follows. Assume τ is

single-valued. In 1D, denote the tangential component of x by x, and similarly that
of y by y, in coordinates local to each edge with 0 ≤ x, y ≤ 1. Each block M of
D relates to a couple of edges of the square domain. Let j = (j1, j2) with j1, j2
nonnegative integers. First consider the general forms

(3.8) βj(x, y) = eiωτ(x,y)(h+ |x− y|)−
j1
α (h+ γ(x, y))−

j2
α

and

(3.9) βj(x, y) = eiωτ(x,y)(h+ |x− y|)−
j1
α Pj2(γ(x, y)),

where Pn is the Legendre polynomial of degree n. These forms have three factors:
oscillations eiωτ(x,y), inverse powers of h+|x−y| to account for the expected decay ofD
across diagonals, and a function of γ, where γ(x, y) depends on the block and medium
of interest, to account for the behavior of D along diagonals. The more favorable
choices for γ respect the singularities created at the vertices of the square; typically
γ(x, y) = 1− |x+ y − 1|, γ(x, y) = min(x, y, 1− x, 1− y), or γ(x, y) = min(x, y). The
parameter α can be taken to be 2, a good choice in view of the numerics of section 5.2
and in the light of the asymptotic behaviors on the diagonal and at infinity discussed
in the previous paragraph.

If several traveltimes are needed, then different sets of βj are defined for each
traveltime. For example, if the four traveltimes +τ1,−τ1,+τ2,−τ2 are to be used
(more details on this in section 3.4), then the following forms could be considered:⎧⎨⎩

{
eiωτ1

(h+ |x− y|)−
j1
α (h+ γ(x, y))−

j2
α

}
j

,

{
e−iωτ1

(h+ |x− y|)−
j1
α (h+ γ(x, y))−

j2
α

}
j

,

{
eiωτ2

(h+ |x− y|)−
j1
α (h+ γ(x, y))−

j2
α

}
j

,

{
e−iωτ2

(h+ |x− y|)−
j1
α (h+ γ(x, y))−

j2
α

}
j

⎫⎬⎭ .

8The careful analysis of the remainder of a geometrical optics expansion [51] or progressive wave
expansion [14] in smooth heterogeneous media would be a way to make this statement precise.
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The basis matrices B� are then obtained by first discretizing the above forms and
then applying a QR factorization, where orthogonality between two matrices A and
B is defined in the sense of the Frobenius inner product 〈A,B〉 = Tr(ABT ). This
automatically sets the weak condition number κ of probing to 1. In many of our test
cases it appears that the “triangular” condition j1 + 2j2 < const works well. The
number of couples (j1, j2) satisfying this relation will be p/T , where p is the number
of basis matrices in the matrix probing algorithm and T is the number of distinct
traveltimes. The ordering of the basis matrices B� respects the increase of j1 + 2j2.

3.4. Traveltimes. Determining the traveltime(s) τ(x,y) is the more “super-
vised” part of this method, but is needed to keep the number p of parameters small
in the probing expansion. A few different scenarios can arise.

1. In the case when ∇c(x) is locally perpendicular to a straight segment of
the boundary, this segment is itself a ray and the waves are called interfacial, or
“creeping.” The direct traveltime between any two points x and y on this segment is
then given by the line integral of 1/c(x). An infinite sequence of additional interfacial
waves results from successive reflections at the endpoints of the segment. Consider
points x,y on the same side of ∂Ω—for illustration, let x = (x, 0) and y = (y, 0)
on the bottom side of Ω = [0, 1]2, with x ≤ y (this is sufficient since traveltimes are
symmetric). Then traveltimes are predicted as follows:

τ1(x,y) =

∫ y

x

1

c(t, 0)
dt,

τ2(x,y) = τ1(x,y) + 2min

(∫ x

0

1

c(t, 0)
dt,

∫ 1

y

1

c(t, 0)
dt

)
,

τ3(x,y) = τ1(x,y) + 2max

(∫ x

0

1

c(t, 0)
dt,

∫ 1

y

1

c(t, 0)
dt

)
= 2

∫ 1

0

1

c(t, 0)
dt− τ2(x,y),

τ4(x,y) = 2

∫ 1

0

1

c(t, 0)
dt− τ1(x,y), etc.

All of the first four traveltimes can be expressed as a sum of±τ1, ±τ2, and the constant

phase 2
∫ 1

0
(c(t, 0))−1 dt, which does not depend on x or y. In fact, any subsequent

traveltime corresponding to traveling solely along the bottom boundary of ∂Ω will be
again a combination of those quantities. This means that using ±τ1 and ±τ2 in the
basis matrices captures all the traveltimes relative to a single side, which can help to
achieve higher accuracy when probing the diagonal blocks of D.

This analysis can be adapted to deal with creeping waves that start on one side
of the square and terminate on another side, which is important for the nondiagonal
blocks of D. For example, let us consider a point x = (x, 0) on the bottom side of
Ω = [0, 1]2 and a point y = (1, y) on the right side of Ω. The first few traveltimes
between x and y, assuming that those traveltimes correspond to creeping waves that
only travel along the bottom or right side of ∂Ω, are then as follows:

τ1(x,y) =

∫ 1

x

1

c(t, 0)
dt+

∫ y

0

1

c(1, t)
dt,

τ2(x,y) = τ1(x,y) + 2min

(∫ x

0

1

c(t, 0)
dt,

∫ 1

y

1

c(1, t)
dt

)
,
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τ3(x,y) = τ1(x,y) + 2max

(∫ x

0

1

c(t, 0)
dt,

∫ 1

y

1

c(1, t)
dt

)
= 2

(∫ 1

0

1

c(t, 0)
dt+

∫ 1

0

1

c(1, t)
dt

)
− τ2(x,y),

τ4(x,y) = 2

(∫ 1

0

1

c(t, 0)
dt+

∫ 1

0

1

c(1, t)
dt

)
− τ1(x,y), etc.

Once again, all of the first four traveltimes are expressed as a sum of ±τ1, ±τ2, and
the constant phase 2(

∫ 1

0
(c(t, 0))−1 dt +

∫ 1

0
(c(1, t))−1 dt). In fact, any subsequent

traveltime corresponding to traveling solely along the bottom or right boundary of
∂Ω will be a combination of those quantities. This means that using ±τ1 and ±τ2 in
the basis matrices captures all the traveltimes between the two adjacent sides, which
can help achieve higher accuracy for probing nondiagonal blocks of D.

2. When c(x) increases outward in a smooth fashion, there may be body waves
going off into the exterior and coming back to ∂Ω. The traveltime for these waves
needs to be solved either by a Lagrangian method (solving the ordinary differential
equation for the rays) or by an Eulerian method (solving the Eikonal equation shown
earlier). In this paper we use the fast marching method of Sethian [45] to deal with
these waves in the case that we label “slow disk” in section 4.1.3.

3. In the case when c(x) has singularities in the exterior domain, each additional
reflection creates a traveltime that should (ideally) be predicted. Such is the case of
the “diagonal fault” example introduced in the next section, where a straight jump
discontinuity of c(x) intersects ∂Ω at a nonnormal angle. If points x and y on a side
of the boundary intersected by the jump discontinuity in c(x) are such that there is a
path leaving the boundary at x, reflecting off of the discontinuity and coming back to
the boundary at y, then the corresponding traveltime can be constructed. This is now
a body traveltime, as opposed to a creeping traveltime, and is called τ ′2(x,y). Note
again that τ ′2(x,y) only exists for some pairs of points on the boundary. In the case
of the “diagonal fault,” we found empirically that replacing the quantity τ2 that was
described previously by τ ′2 where τ ′2 exists (calling this new traveltime τ̃2) increased
accuracy by an order of magnitude, as mentioned in the numerical results of section
4.1.5. The intuition behind the replacement of τ2 with τ̃2 is that the reflections of
creeping waves off of corners of Ω, whose traveltimes are in τ2, should be weaker than
the body waves reflected from the fault, whose traveltimes are in τ ′2. Using the 6
traveltimes ±τ1,±τ2,±τ ′2 where they are defined did not improve upon using simply
±τ1,±τ̃2.

In every case described above, except when using the fast marching method [45],
traveltimes were computed to an accuracy of both six and ten digits, and we did not
notice a difference in the probing results. We thus used an accuracy of ten digits for
these traveltimes. Because of the complexity of the fast marching method, we were
only able to compute traveltime using this method to an accuracy of three digits.

3.5. Solving the Helmholtz equation with a compressed ABC. Once
approximations M̃ of each blockM are obtained through matrix probing, we construct
block by block the approximation D̃ of D and use it in a solver for the Helmholtz
equation on the domain Ω = [0, 1]2. To close the system at the boundary, we used
the method of ghost points alluded to earlier and eliminated the ghost points on the
layer just outside Ω using the relationship (3.1).
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4. Numerical experiments. Our benchmark media c(x) are as follows (color
figures available in online version):

1. a uniform wave speed of 1, c(x) ≡ 1 (Figure 1),
2. a “Gaussian waveguide” (Figure 2),
3. a “Gaussian slow disk” (Figure 3) large enough to encompass Ω (this will

cause some waves going out of Ω to come back in),
4. a “vertical fault” (Figure 4),
5. a “diagonal fault” (Figure 5),
6. and a discontinuous “periodic medium” (Figure 6). The periodic medium

consists of square holes of velocity 1 in a background of velocity 1/
√
12.

The media are continued in the obvious way (i.e., they are not put to a constant)
outside the domain shown in the figures. The outline of the [0, 1]2 box is in black.
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Fig. 1. Color plot of c(x)
for the uniform medium.
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Fig. 2. Color plot of c(x)
for the Gaussian waveguide.
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for the Gaussian slow disk.
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Fig. 4. Color plot of c(x)
for the vertical fault.
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Fig. 5. Color plot of c(x)
for the diagonal fault.
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Fig. 6. Color plot of c(x)
for the periodic medium.

We use a Helmholtz equation solver to estimate the relative error in the Helmholtz
equation solution caused by the finite difference discretization (the FD error9) and
the error caused by using the specified pPML width.10 Those errors are presented in
Table 1, with some parameters used in this section, including the position of the point
source f . Whenever possible, we use an AL with error smaller than the precision we
seek with matrix probing, so with a width w greater than that showed in Table 1.
This makes probing easier, i.e., p and q can be smaller.

Note that some blocks in D are the same up to transpositions or flips (inverting
the order of columns or rows) if the medium c(x) has symmetries.

Definition 4.1 (multiplicity of a block of D). Let M be the (jM , 
M ) block of D.

9To find this FD error, use a large pPML and compare the solution u for different values of N .
The FD error is the relative �2 error in u inside Ω.

10To obtain the error caused by the absorbing layer, fix N and compare the solution u for different
layer widths w to calculate the relative �2 error in u inside Ω.
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Table 1

For each medium considered, we show parameters N and ω/2π, along with the discretization
error caused by the finite difference (FD error) formulation. We also show the width w of the pPML
needed, in number of points, to obtain an error caused by the pPML of less than 1e-1, and the total
number of basis matrices (P ) needed to probe the entire DtN map with an accuracy of about 1e-1 as
found in section 4.1. Finally, we show the position of the point source (Source).

Medium N ω/2π FD error w P Source

c(x) ≡ 1 1024 51.2 2.5e-01 4 8 (0.5, 0.25)

Waveguide 1024 51.2 2.0e-01 4 56 (0.5, 0.5)

Slow disk 1024 51.2 1.8e-01 4 43 (0.5, 0.25)

Vertical fault, left source 1024 51.2 1.1e-01 4 48 (0.25, 0.5)

Vertical fault, right source 1024 51.2 2.2e-01 4 48 (0.75, 0.5)

Diagonal fault 1024 51.2 2.6e-01 256 101 (0.5, 0.5)

Periodic medium 320 6 1.0e-01 1280 792 (0.5, 0.5)

The multiplicity n(M), sometimes written as n((jM , 
M )), of block M is the number
of copies of M appearing in D, up to transpositions or flips.

Only the distinct blocks of D need to be probed. Whenever possible, out of all the
blocks that are copies of each other up to transpositions or flips, it is best to choose
representative blocks to be probed so as to minimize the number of distinct block-
columns of D that contain those representatives, because this in turn will minimize
the total number of solves Q (Definition 4.7) that will be needed. Once a block M is
chosen, we may calculate its true probing coefficients if we have access to M directly
(if not, see the remarks after Definition 4.4), given basis matrices {Bj}.

Definition 4.2 (true probing coefficients of block M). Let M be a block of D,
corresponding to the restriction of D to two sides of ∂Ω. Assume orthonormal probing
basis matrices {Bj}. The true coefficients ctj in the probing expansion of M are the
inner products ctj = 〈Bj ,M〉.

We may now introduce the p-term approximation error for the blockM . Because
the blocks on the diagonal of D have a singularity, and we expect the magnitude of
entries in D to decay away from the diagonal, the Frobenius norm of blocks on the
diagonal can be a few orders of magnitude greater than that of other blocks, and
so it is more important to approximate those blocks well. This is why the error is
considered relative to D, not to the blockM , in the p-term approximation error below.
Also, multiplying the error by the square root of the multiplicity of the block gives a
better idea of how big the total error on D will be.

Definition 4.3 (p-term approximation error of block M). Let M be a block
of D, corresponding to the restriction of D to two sides of ∂Ω. For orthonormal
probing basis matrices {Bj}, let ctj be the true coefficients in the probing expansion

of M . Let Mp =
∑p

j=1 c
t
jBj be the probing p-term approximation to M . The p-term

approximation error for M is

(4.1)
√
n(M)

‖M −Mp‖F
‖D‖F

,

using the matrix Frobenius norm.
For brevity, we shall refer to (4.1) simply as the approximation error when it is

clear from the context what M , p, {Bj}, and D are.
Then, using matrix probing, we will recover a coefficient vector c close to ct,

which gives an approximation M̃ =
∑p

j=1 cjBj to M . We now define the probing

D
ow

nl
oa

de
d 

01
/1

1/
16

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2456 R. BÉLANGER-RIOUX AND L. DEMANET

error (which depends on q and the random vectors used) for the block M .
Definition 4.4 (probing error of block M). Let c = (c1, c2, . . . , cp) be the

probing coefficients for M obtained with q random realizations z(1) through z(q). Let
M̃ =

∑p
j=1 cjBj be the probing approximation to M . The probing error of M is

(4.2)
√
n(M)

‖M − M̃‖F
‖D‖F

.

In order to get a point of reference for the accuracy benchmarks, for small prob-
lems only, the actual matrixM is computed explicitly by solving the exterior problem
4N times using the standard basis as Dirichlet boundary conditions, and from this
we can calculate (4.2) exactly. For larger problems, the only access to M might be
through a black box that outputs the product ofM with some input vector by solving
the exterior problem. We can then estimate (4.2) by comparing the products of M

and M̃ with a few random vectors different from those used in matrix probing.
Again, for brevity, we refer to (4.2) as the probing error when other parameters

are clear from the context. Once all distinct blocks of D have been probed, we can
consider the total probing error.

Definition 4.5 (total probing error). The total probing error is defined as the

total error made on D by concatenating all probed blocks M̃ to produce an approximate
D̃:

(4.3)
‖D − D̃‖F

‖D‖F
.

Distinct blocks might of course require completely different basis matrices, and
also a different number of basis matrices, to achieve a certain accuracy. Hence we
define the total number of basis matrices P .

Definition 4.6 (total number of basis matrices P ). Given D̃ obtained from

concatenating probed blocks M̃ , the total number of basis matrices P is the sum, over
all distinct blocks M̃ of D̃, of the number of basis matrices p used for probing M̃ .

Probing all the distinct blocks might also require more than q solves of the exterior
problem, in particular if distinct blocks are in distinct block-columns of D. Hence we
define the total number of solves Q.

Definition 4.7 (total number of solvesQ). Consider the subset of the four block-
columns of D that contain the chosen representative blocks of D that will be probed.
The total number of solves Q is defined as the sum, over this subset of block-columns,
of the maximum number of the exterior problem solves needed for each distinct block
of D contained in that block-column.

For example, in the uniform-medium case, because of symmetries, D has three
distinct blocks, which can all be taken in the same block-column: (1, 1), (2, 1), and
(3, 1). Hence those can all be probed using the same random vectors and thus the
same exterior solves, and Q would be simply the maximum of the number q of random
vectors needed for each block. This is in contrast to a generic medium where all blocks
on or below the diagonal would need to be probed, and so Q would be the sum of the
maximum number of solves needed for each of the four block-columns.

Presented in section 4.1 are results on the approximation and probing errors,
along with related condition numbers, and then it is verified that using D̃ as an ABC
gives an accurate solution to the Helmholtz equation using the solution error from
probing.
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Definition 4.8 (solution error from probing). Once we have obtained an ap-

proximation D̃ to D from probing the distinct blocks of D, we may use this D̃ as an
ABC in a Helmholtz solver to obtain an approximate solution ũ and compare that to
the true solution u using D in the solver. The solution error from probing is the 
2
error on u inside Ω:

(4.4)
‖u− ũ‖2
‖u‖2

in Ω.

4.1. Probing tests. As seen in section 3.2, randomness plays a role in the value
of cond(Ψ) and the probing error. When we show plots for those quantities, we show
10 trials for each value of q used. The error bars display the minimum and maximum
of the quantity over the 10 trials, and the line is plotted through the average value.

4.1.1. Uniform medium. For a uniform medium (c(x) ≡ 1, Figure 1) we have
three blocks with the following multiplicities: n((1, 1)) = 4 (same edge), n((2, 1)) = 8
(neighboring edges), and n((3, 1)) = 4 (opposite edges). Note that we do not present
results for the (3, 1) block: this block has negligible Frobenius norm11 compared to D.
Regarding the conditioning of blocks (1, 1) and (2, 1), as expected κ = 1, λ remains
on the order of 50, and cond(Ψ) increases by a few orders of magnitude as p increases
for a fixed q and N (results not shown). This will affect probing in terms of the
accuracy (taking the pseudoinverse will introduce larger errors in c). We notice these
two phenomena in Figure 7, where we show the approximation and probing errors in
probing the (1, 1) block for various p and q. As expected, as p increases, the probing
error (always larger than the approximation error) becomes farther away from the
approximation error, but using a larger q allows us to use a larger p to attain smaller
probing errors. To obtain these satisfactory results, it was sufficient to use only the
first arrival traveltime (as described in section 3.4) in the construction of the basis
matrices. However, in order to reach higher accuracies, it was necessary to use all of
the first four arrival traveltimes as described in the first scenario of section 3.4. These
higher accuracy results are not shown here, but do appear as the last two rows of
Table 2 (results of rows 2 to 5 of Table 2 are from Figure 7).

4.1.2. The waveguide. For a waveguide as a velocity field (see Figure 2), we
have 5 distinct blocks: n((1, 1)) = 2, n((2, 2)) = 2, n((2, 1)) = 8, n((3, 1)) = 2,
n((4, 2)) = 2. Note that block (2, 2) will be very similar to block (1, 1) from the
uniform-medium case, and so here again using the first two traveltimes (thus four
different types of oscillations, as explained in section 3.3) allows us to obtain higher
accuracies. Also, blocks (3, 1) and (4, 2) have negligible Frobenius norm compared to
D. Hence we only show results for the approximation and probing errors of blocks
(1, 1) and (2, 1), in Figure 8. Results for using probing in a solver can be found in
section 4.2.

4.1.3. The slow disk. Next, we consider the slow disk of Figure 3. Here, we
have a choice to make for the traveltime upon which the oscillations depend. We
may consider interfacial waves, traveling in straight line segments along ∂Ω, with
traveltime τ . There is also the first arrival time of body waves, τf , which for some
points on ∂Ω involve taking a path that goes away from ∂Ω, into the exterior where

11We can use probing with q = 1 and a single basis matrix (a constant multiplied by the correct
oscillations) and have a probing error of less than 10−6 for that block. Again, we expect blocks
further from the diagonal of D to have smaller norm than blocks on or near the diagonal.
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Fig. 7. Approximation error (line) and
probing error (with markers) for the blocks of
D, c(x) ≡ 1. Circles are for q = 3, squares for
q = 5, stars for q = 10.
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Fig. 8. Approximation error (line) and
probing error (with markers) for the blocks of
D, c(x) is the waveguide. Circles are for q = 3,
squares for q = 5, stars for q = 10.

Fig. 9. Probing error for the (1, 1) block of
D, c(x) is the slow disk, comparing the use of the
normal traveltime (circles) to the fast marching
traveltime (squares).

Fig. 10. Probing error for the (2, 1) block of
D, c(x) is the slow disk, comparing the use of the
normal traveltime (circles) to the fast marching
traveltime (squares).
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Fig. 11. Approximation error (line) and
probing error (with markers) for the blocks of D,
c(x) is the vertical fault. Circles are for q = 3,
squares for q = 5, stars for q = 10.

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

p

E
rr

or

 

 

(1,1) sub−block
(2,2) sub−block
(2,1) sub−block

Fig. 12. Approximation error (line) and
probing error (with markers) for the subblocks
of the (1, 1) block of D, c(x) is the vertical fault.
Circles are for q = 3, squares for q = 5, stars
for q = 10.

D
ow

nl
oa

de
d 

01
/1

1/
16

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPRESSED ABCs VIA MATRIX PROBING 2459

c(x) is higher, and back towards ∂Ω. We have approximated this τf using the fast
marching method of Sethian [45]. For this example, it turns out that using either
τ or τf to obtain oscillations in our basis matrices does not significantly alter the
probing accuracy or conditioning, although it does seem that, for higher accuracies at
least, using the body waves traveltime makes convergence slightly faster. Figures 9
and 10 demonstrate this for blocks (1, 1) and (2, 1), respectively. We omit plots of the
probing and approximation errors and refer the reader to section 4.2 for final probing
results and using those in a solver.

4.1.4. The vertical fault. Next, we look at the case of the medium c(x) which
has a vertical fault (see Figure 4). We note that this case is harder because some
of the blocks will have a 2 × 2 or 1 × 2 block structure caused by the discontinuity
in the medium. Ideally, each subblock should be probed separately. There are 7
distinct blocks: n((1, 1)) = 2, n((2, 2)) = 1, n((4, 4)) = 1, n((2, 1)) = 4, n((4, 1)) = 4,
n((3, 1)) = 2, n((4, 2)) = 2. Blocks (2, 2) and (4, 4) are easier to probe than block
(1, 1) because they do not exhibit a substructure. Also, since the velocity is smaller
on the right side of the fault, the frequency there is higher, which means that blocks
involving side 2 are slightly harder to probe than those involving side 4. We first
present results for the blocks (1, 1), (2, 2), and (2, 1) of D. In Figure 11 we see the
approximation and probing errors for those blocks. Then, in Figure 12, we present
results for the errors related to probing the 3 distinct subblocks of the (1, 1) block
of D. We can see that probing the (1, 1) block by subblocks helps achieve greater
accuracy. We tried splitting other blocks to improve the accuracy of their probing
(for example, block (2, 1) has a 1 × 2 structure because side 1 has a discontinuity in
c(x)) but the accuracy of the overall DtN map was still limited by the accuracy of
probing the (1, 1) block, so we do not show results for other splittings.

4.1.5. The diagonal fault. Now, we look at the case of the medium c(x) which
has a diagonal fault, as in Figure 5. As in the case of the vertical fault, some of the
blocks will have a 2× 2 or 1× 2 structure. There are 6 distinct blocks: n((1, 1)) = 2,
n((2, 2)) = 2, n((2, 1)) = 4, n((4, 1)) = 2, n((3, 2)) = 2, n((3, 1)) = 4. Again, we split
up block (1, 1) in 4 subblocks and probe each of those subblocks separately for greater
accuracy, but do not split other blocks. We use two traveltimes for the (2, 2) subblock
of block (1, 1). Using as the second arrival time the geometrical traveltime consisting
of leaving the boundary and bouncing off the fault, as mentioned in section 3.4, allowed
us to increase accuracy by an order of magnitude compared to using only the first
arrival traveltime, or compared to using as a second arrival time the usual bounce off
the corner (or here, bounce off the fault where it meets ∂Ω). We omit plots of the
probing and approximation errors and refer the reader to section 4.2 for final probing
results and using those in a solver.

4.1.6. The periodic medium. Finally, we look at the case of the periodic
medium of Figure 6. There are 3 distinct blocks: n((1, 1)) = 4, n((2, 1)) = 8,
n((3, 1)) = 4. We expect the corresponding DtN map to be harder to probe because
its structure will reflect that of the medium; i.e., it will exhibit sharp transitions at
points corresponding to sharp transitions in c(x) (similarly as with the two previous
discontinuous media). First, note that, in all the previous media we tried, plotting
the norm of the antidiagonal entries of diagonal blocks (or subblocks for the faults)
shows a rather smooth decay away from the diagonal, as expected from the DtN map.
However, that is not the case for the periodic medium: it looks like there is decay
away from the diagonal, but variations from that decay can be of relative order 1
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(results not shown). This prevents our usual strategy, and so we replace the term
decaying term (h+ |x− y|)−j1/α of (3.9) by Pj1(|x− y|).

It is known that solutions to the Helmholtz equation in a periodic medium are
Bloch waves with a particular structure [35]. However, using that structure in the
basis matrices is not robust. Indeed, using a Bloch wave structure did not succeed
very well, probably because our discretization was not accurate enough and so D
exhibited that structure only to a very rough degree. Hence we did not use Bloch
waves for probing the periodic medium. For these reasons, we tried basis matrices
with no oscillations, so without the term eiωτ in (3.9), and obtained the results of
section 4.2.

Now that we have probed the DtN map and obtained an approximation D̃ of D,
we use this D̃ in a Helmholtz solver as an ABC.

4.2. Using the probed DtN map in a Helmholtz solver. In Figures 13,
14, 15, 16, 17, and 18 we can see the standard solutions to the Helmholtz equation
on [0, 1]2 using a large pPML for the various media we consider except the uniform
medium, where the solution is well known. We use those as our reference solutions.
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Fig. 13. Real part of the solution; c is the
slow disk.
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Fig. 14. Real part of the solution; c is the
waveguide.
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Fig. 15. Real part of the solution; c is the
vertical fault with source on the left.
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Fig. 16. Real part of the solution; c is the
vertical fault with source on the right.
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Fig. 17. Real part of the solution; c is the
diagonal fault.
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Fig. 18. Imaginary part of the solution; c
is the periodic medium.

Table 2

c(x) ≡ 1.

p for (1, 1) p for (2, 1) q = Q
‖D− ˜D‖F

‖D‖F
‖u−ũ‖F
‖u‖F

6 1 1 2.0130e-01 3.3191e-01

12 2 1 9.9407e-03 1.9767e-02

20 12 3 6.6869e-04 1.5236e-03

72 20 5 1.0460e-04 5.3040e-04

224 30 10 8.2892e-06 9.6205e-06

360 90 10 7.1586e-07 1.3044e-06

Table 3

c(x) is the waveguide.

p for (1, 1) p for (2, 1) q p for (2, 2) q Q
‖D− ˜D‖F
‖D‖F

‖u−ũ‖F
‖u‖F

40 2 1 12 1 2 9.1087e-02 1.2215e-01

40 2 3 20 1 4 1.8685e-02 7.6840e-02

60 20 5 20 3 8 2.0404e-03 1.3322e-02

112 30 10 30 3 13 2.3622e-04 1.3980e-03

264 72 20 168 10 30 1.6156e-05 8.9911e-05

1012 240 20 360 10 30 3.3473e-06 1.7897e-05

We have tested the solver with the probed D̃ as an ABC with success. See Tables
2, 3, 4, 5, 6, and 7 for results corresponding to each medium. We show the number p
of basis matrices required for some blocks for that tolerance, the number of solves q of
the exterior problem for those blocks, the total number of solves Q, the error in D, and
the relative error in Frobenius norm between the solution ũ using D̃ and the solution
u using D. As we can see from the tables, the error ‖u − ũ‖F /‖u‖F in the solution

u is no more than an order of magnitude greater than the error ‖D − D̃‖F/‖D‖F
in the DtN map D. Grazing waves, which can arise when the source is close to the
boundary of the computational domain, will be discussed in section 4.3.

We note again that, for the uniform medium, using the second arrival traveltime
as well as the first for the (1, 1) block allowed us to achieve accuracies of 5 and 6 digits
in the DtN map, which was not possible otherwise (see Figure 7). Similarly for the
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Table 4

c(x) is the slow disk.

p for (1, 1) p for (2, 1) q = Q
‖D− ˜D‖F

‖D‖F
‖u−ũ‖F
‖u‖F

40 2 3 1.0730e-01 5.9283e-01

84 2 3 8.0607e-03 4.5735e-02

180 12 3 1.2215e-03 1.3204e-02

264 30 5 1.5073e-04 7.5582e-04

1012 132 20 2.3635e-05 1.5490e-04

Table 5

c(x) is the vertical fault.

Q
‖D− ˜D‖F

‖D‖F
‖u−ũ‖F
‖u‖F , left source

‖u−ũ‖F
‖u‖F , right source

5 2.8376e-01 6.6053e-01 5.5522e-01

5 8.2377e-03 3.8294e-02 2.4558e-02

30 1.1793e-03 4.0372e-03 2.9632e-03

Table 6

c(x) is the diagonal fault.

Q ‖D− ˜D‖F
‖D‖F

‖u−ũ‖F
‖u‖F

4 1.6030e-01 4.3117e-01

6 1.7845e-02 7.1500e-02

23 4.2766e-03 1.2429e-02

Table 7

c(x) is the periodic medium.

Q ‖D− ˜D‖F
‖D‖F

‖u−ũ‖F
‖u‖F

50 1.8087e-01 1.7337e-01

50 3.5714e-02 7.1720e-02

50 9.0505e-03 2.0105e-02

waveguide case, block (2, 2). Using a second arrival time for some blocks or subblocks
in the cases of the vertical and diagonal faults was also useful. Those results show
that probing works best when the medium c(x) is rather smooth. For nonsmooth
media such as a fault, it becomes harder to probe the DtN map to a good accuracy,
so that the solution to the Helmholtz equation also contains more error.

4.3. Grazing waves. It is well known that ABCs often have difficulties when a
source is close to the boundary of the domain, or in general when waves incident to
the boundary are almost parallel to it. We wish to verify that the solution ũ using
the result D̃ of probing D does not degrade as the source becomes closer and closer
to some side of ∂Ω. For this, we use a right-hand side f to the Helmholtz equation
which is a point source, located at the point (x0, y0), where x0 = 0.5 is fixed and
y0 > 0 becomes smaller and smaller, until it is a distance 2h away from the boundary
(the point source’s stencil has width h, so a source at a distance h from the boundary
does not make sense). We see in Figure 19 that, for c(x) ≡ 1, the solution remains
quite good until the source is a distance 2h away from the boundary.

In particular, the better the solution is for a source in the middle of the domain,
the less it degrades as the source gets closer to the boundary. We obtain similar results
for the waveguide, slow disk, and faults (for the vertical fault we locate the source
at (x0, y0), where y0 = 0.5 is fixed and x0 goes to 0 or 1). This shows the probing
process itself does not significantly affect how well grazing waves are absorbed.

4.4. Variations of p with N . We now discuss how the number of basis matrices
p needed to achieve a desired accuracy depends onN . To do this, we pick 4 consecutive
powers of 2 as values for N (128, 256, 521, 1024) and find the appropriate ω such that
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Fig. 19. Error in solution u, c(x) ≡ 1, moving point source.

the finite discretization error remains constant at 10−1, so that in fact N ∼ ω1.5 as
mentioned at the end of section 2.2. We then probe the (1, 1) block of the DtN map,
letting ω vary with N and fixing all other parameters, and observe the required p to
obtain a fixed probing error (1, 2, or 3 digits). The worst case we have seen in our
experiments came from the slow disk, where p seems to follow a very weak power law
with N , close to p ∼ 15N .12 for a probing error of 10−1 or p ∼ 15N .2 for a probing
error of 10−2. In all other cases, p is approximately constant with increasing N , or
seems to follow a logarithmic law with N .

5. Convergence of basis matrices for probing the half-space DtN map.
This section presents theoretically why p should indeed depend weakly on N or ω
(as our numerical results show in section 4.4 for the exterior problem) in the special
case of the half-space DtN map in a uniform medium. The goal of this paper is to
approximate D in more general cases, but the result in Theorem 5.1 confirms that a
geometrical optics expansion as done in section 3.3 makes sense.

5.1. Statement and proof. Recall from section 3.3 that the form of basis
matrices suggested is motivated by a geometrical optics expansion of the Green’s
function and relating the DtN map to this Green’s function. In the half-space case,
for the Helmholtz equation Δu(x, y) + k2u(x, y) = 0 in y > 0 with the Sommerfeld
radiation condition and c(x) ≡ 1 (thus in this section, ω = k), the DtN map is

(5.1) ∂yu(x, y)|y=0 =

∫ ∞

−∞
K(|x− x′|)u(x′, 0) dx′,

where

(5.2) K(r) =
ik

2r
H

(1)
1 (kr),

with H
(1)
1 the Hankel function of the first kind, of order 1. The expression for K(r)

is obtained by taking the mixed normal derivative

∂νx∂νyG(x, y)

of the half-space Green’s function, which we call G here, as explained, for instance, in
[26, p. 92]. (Green’s representation formula involves ∂νyG(x, y) to map Dirichlet data
to the solution inside the domain; then the DtN map is asking to take an additional
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2464 R. BÉLANGER-RIOUX AND L. DEMANET

∂νx .) For this section, let D be the operator mapping u(·, 0) to ∂yu(x, y)|y=0 in the
half-space, uniform-medium case.

Note that in the case of the uniform medium c ≡ 1, there is only one arrival time
τ(x,x′) between any two points x = (x, 0) and x′ = (x′, 0) on the boundary, and this
traveltime is τ(x,x′) = |x− x′|. In fact, because the medium is uniform, interactions
between x and x′ depend only on the distance |x − x′| between the points, as can
be seen from the form (5.2) of the kernel K(|x− x′|). Coming back to the proposed
(3.8) and (3.9) of section 3.3, the following choice of basis functions makes sense in
the present case:

(5.3) βj(x, x
′) = eiω|x−x′|(h+ |x− x′|)−

j
α .

Since K(r) is singular at r = 0, we only study the representation of K in the
range r0 ≤ r ≤ 1, with r0 on the order of 1/k. Let

K̃(r) = Kχ[r0,1](r).

Denote by D̃ the corresponding operator with integral kernel K̃(|x−x′|). Simplifying
the basis functions of (5.3) by removing the h in the denominator (which had been
put in to avoid the singularity in the first place), we prove the following theorem,

showing that indeed the set
{
eikrr−j/α

}
makes a great basis for expanding K̃(r).

Theorem 5.1. Let α > 2
3 , and let K̃p(r) be the best uniform approximation of

K̃(r) in

span

{
eikr

rj/α
: j = 1, . . . , p, and r0 ≤ r ≤ 1

}
.

Assume that r0 = C/k for some C > 0 independent of k. Denote by D̃p the operator

defined with K̃p in place of K̃. Then, in the operator norm,

(5.4) ‖D̃ − D̃p‖ ≤ Cα p
1−	3α/2
 ‖K̃‖∞

for some Cα > 0 depending on α.
The proof of Theorem 5.1 is below, and a numerical illustration of the theorem is

in section 5.2.
Growing α does not automatically result in a better approximation error, because

a careful analysis of the proof would show that Cα grows factorially with α. This
behavior translates into a slower onset of convergence in p when α is taken large, as
the numerics show in section 5.2, which can in turn be interpreted as the result of
“overcrowding” of the basis by very similar-looking matrices.

Notice that D is not bounded in L2, but D̃ is after the diagonal is cut out. It is
easy to see that the operator norm of D̃ grows like k, for instance, by applying D̃ to
the function e−ikx. The uniform norm of K̃, however, grows like k2 (see (5.10)), so
the result above shows that an additional factor k is incurred in the error (somewhat

akin to numerical pollution) in addition to the factor k gotten from ‖D̃‖.
The important point of the theorem is that the quality of approximation is other-

wise independent of k; i.e., the number p of basis functions does not need to grow
like k for the error to be small. In other words, it is unnecessary to “mesh at the
wavelength level” to spell out the degrees of freedom that go in the representation of
the DtN map’s kernel.
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Proof of Theorem 5.1. K(r) has a leading oscillatory factor of eikr caused by the
Hankel function. For this reason it will be easier to begin by analyzing the smoother
counterpart of K:

(5.5) J(r) =
ik

2r
H

(1)
1 (kr)e−ikr .

The domain of interest for the r variable is [r0, 1]. Since the proof details will not
depend on the constant C in r0 = C/k, we let r0 = 1/k without loss of generality.

Expanding K(r) in the system of Theorem 5.1 is equivalent to expanding J(r) in
polynomials of r−1/α over [r0, 1]. It will be useful to perform the affine rescaling

ξ(r) =
2

r
−1/α
0 − 1

(r−1/α − 1)− 1 ⇔ r(ξ) =

(
ξ + 1

2
(r

−1/α
0 − 1) + 1

)−α

so that the bounds r ∈ [r0, 1] turn into ξ ∈ [−1, 1]. Further write ξ = cos θ with
θ ∈ [0, π]. Our strategy is to expand J(r(ξ)) in Chebyshev polynomials Tn(ξ) [9]. By
definition, the best p-term approximation of J(r) in polynomials of r−1/α (best in
a uniform sense over [r0, 1]) will result in a lower uniform approximation error than
that associated with the p-term approximation of J(r(ξ)) in the Tj(ξ) system. Let Jp
for the p-term approximant of J in our Chebyshev system. Write out the Chebyshev
series for J(r(ξ)) as

(5.6) J(r(ξ)) =

∞∑
j=0

cjTj(ξ), cj =
2

π

∫ 1

−1

J(r(ξ))Tj(ξ)

(1− ξ2)1/2
dξ,

with Tj(ξ) = cos (j(cos−1 ξ)) and the cj alternatively written as

cj =
2

π

∫ π

0

J(r(cos θ)) cos jθ dθ =
1

π

∫ 2π

0

J(r(cos θ)) cos jθ dθ.

The expansion will converge fast because we can integrate by parts in θ and afford
to take a few derivatives of J , say m of them, as done in [49]. After noting that the
boundary terms cancel out because of periodicity in θ, the coefficients cj for j > 0
are, up to a sign,

cj = ± 1

πjm

∫ 2π

0

sin jθ
dm

dθm
J(r(cos θ)) dθ, m odd,

cj = ± 1

πjm

∫ 2π

0

cos jθ
dm

dθm
J(r(cos θ)) dθ, m even.

It follows that, for j > 0 and for all m > 0,

(5.7) |cj | ≤
2

jm
max

θ

∣∣∣∣ dmdθm J(r(cos θ))
∣∣∣∣ .

Let Bm be a bound on the mth order derivative in (5.7). In order to bound the
uniform error ‖J − Jp‖L∞[r0,1]

of truncating the Chebyshev series to Jp =
∑p

j=0 cjTj ,
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combine (5.6) and (5.7), knowing that Chebyshev polynomials are uniformly bounded
by 1:

‖J − Jp‖L∞[r0,1]
≤

∞∑
j=p+1

|cj| ≤ 2Bm

∞∑
j=p+1

1

jm
≤ 2Bm

(m− 1)pm−1
, p > 1.

The final step is an integral comparison test [7].
The question is now to find a favorable estimate for Bm, from studying successive

θ derivatives of J(r) in (5.5). The following bound for the derivatives of Hankel
functions, from [18], will be of use. Given any C > 0,

(5.8)

∣∣∣∣ dmdrm (
H

(1)
1 (kr)e−ikr

)∣∣∣∣ ≤ Cm(kr)−1/2r−m for kr ≥ C.

The change of variables from r to θ results in

dr

dθ
=
dξ

dθ

dr

dξ
= (− sin θ)

⎛⎝−α
(
ξ + 1

2
(r

−1/α
0 − 1) + 1

)−α−1

(
r
−1/α
0 − 1

)
2

⎞⎠
= (− sin θ)

(
−α r1+1/α k1/α(1− r

1/α
0 )

2

)
= r(kr)1/α

α sin θ(1− r
1/α
0 )

2
.

Derivatives of higher powers of r are handled by the chain rule, resulting in

d

dθ
(rn) = nrn−1 dr

dθ
= nrn(kr)1/α

α sin θ(1 − r
1/α
0 )

2
.

Hence the action of a θ derivative is essentially equivalent to multiplication by (kr)1/α.
As for higher derivatives of powers of r, it is easy to see by induction that the product
rule has them either hit a power of r or a trigonometric polynomial of θ, resulting in
a growth of at most (kr)1/α for each derivative:∣∣∣∣ dmdθm rn

∣∣∣∣ ≤ Cm,n,α r
n(kr)m/α.

These estimates can now be combined to bound

(5.9)
dm

dθm

(
H

(1)
1 (kr)e−ikr

)
.

One of two scenarios can occur when applying the product rule in (5.9):
(i) d

dθ hits

dm1

dθm1

(
H

(1)
1 (kr)e−ikr

)
for some m1 < m. In this case, one negative power of r results from d

dr , and

a factor r(kr)1/α results from dr
dθ .

(ii) d
dθ hits some power of r, or some dm2r

dθm2
for somem2 < m, resulting in a growth

of an additional factor (kr)1/α.
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Thus, there is a (kr)1/α growth factor per derivative in every case. The situation is
analogous when dealing with the slightly more complex expression

dm

dθm

(
1

r
H

(1)
1 (kr)e−ikr

)
.

The number of terms is itself at most factorial in m; hence∣∣∣∣ dmdθm k

r

(
H

(1)
1 (kr)e−ikr

)∣∣∣∣ ≤ Cm,α
k

r
(kr)

m
α − 1

2 ≤ Cm,αk
2(kr)

m
α − 3

2 .

Let m = �3α/2�, so that the max over θ is realized when r = 1/k, and Bm is on
the order of k2. It follows that

‖J − Jp‖L∞[r0,1]
≤ Cα

k2

p	3α/2
−1
, p > 1, α > 2/3.

The kernel of interest, K(r) = J(r)eikr , obeys the same estimate if Kp is the p-term
approximation of K in the Chebyshev system modulated by eikr.

Now, consider the operator norm of D̃ − D̃p with kernel K̃ − K̃p, where K̃(r) =
K(r)χ[r0,1](r). Namely,

(D̃ − D̃p)g(x) =

∫ 1

0

(K̃ − K̃p)(|x − y|)g(y) dy.

Use the Cauchy–Schwarz inequality to bound

‖(D̃ − D̃p)g‖2 =

⎛⎝∫
0≤x≤1

∣∣∣∣∣
∫
0≤y≤1, |x−y|≥r0

(K −Kp)(|x − y|)g(y) dy
∣∣∣∣∣
2

dx

⎞⎠1/2

≤
(∫

0≤x≤1

∫
0≤y≤1, |x−y|≥r0

|(K −Kp)(|x − y|)|2 dydx

)1/2

‖g‖2

≤
(∫

0≤x≤1

∫
0≤y≤1, |x−y|≥r0

1 dy dx

)1/2

‖g‖2 max
0≤x,y≤1, |x−y|≥r0

|(K −Kp)(|x − y|)|

≤ ‖g‖2 ‖K −Kp‖L∞[r0,1].

Assembling the bounds gives ‖D̃ − D̃p‖ ≤ Cα p
1−	3α/2
 k2. It suffices therefore to

show that ‖K̃‖∞ = ‖K‖L∞[r0,1] is on the order of k2 to complete the proof. Letting
ζ = kr, the following is obtained:

(5.10) max
r0≤r≤1

|K(r)| = k2

2
max
1≤ζ≤k

∣∣∣∣∣H(1)
1 (ζ)

ζ

∣∣∣∣∣ ≥ Ck2.

The last inequality follows from the fact that there exist positive constants d1, d2 such

that d1ζ
−3/2 ≤ |H(1)

1 (ζ)/ζ| ≤ d2ζ
−3/2, shown in [18].

5.2. Numerical confirmation. In order to use Theorem 5.1 to obtain conver-
gent basis matrices, first put back in the oscillations by multiplying

{
r−j/α

}
with eikr
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to get the following forms12 (noting again that c ≡ 1 means k = ω):

βj(x, y) =
eiω|x−y|

|x− y|j/α for x �= y, 0 ≤ x, y ≤ 1, βj(x, x) = 0, j = 1, 2, . . . , p.

Add to this set the identity matrix in order to capture the diagonal of D, and orthogo-
nalize the resulting collection to get the Bj . Alternatively, we have noticed empirically
that using

(5.11) βj(x, y) =
eiω|x−y|

(h+ |x− y|)j/α

works just as well and is simpler because there is no need to treat the diagonal
separately. This different, simpler treatment of the diagonal is used for the exterior
problem as well in (3.8) and (3.9) of section 3.3.
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Fig. 20. Probing error of the half-space
DtN map (q = 1, 10 trials, circle markers, and
error bars) compared to the approximation er-
ror (line), c(x) ≡ 1, L = 1/4, α = 2, N = 1024,
ω = 51.2.
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Fig. 21. Condition numbers for probing the
half-space DtN map, c(x) ≡ 1, L = 1/4, α = 2,
N = 1024, ω = 51.2, q = 1, 10 trials.

The basis matrices in (5.11) have been used for a numerical confirmation of The-
orem 5.1. To obtain the half-space DtN map, instead of solving the exterior problem
with a pPML on all sides, solve a problem on a thin strip, with a random Dirichlet
boundary condition (for probing) on one of the long edges and a pPML on the other
three sides. Figure 20 shows the approximation error, behaving somewhat as in The-
orem 5.1. Also plotted are error bars for the probing error, corresponding to ten trials
of probing, with q = 1. The probing results are about as good as the approximation
error, because the relevant condition numbers are all well behaved, as can be seen
in Figure 21 for α = 2. Back to the approximation error, notice in Figure 20 that
increasing α delays the onset of convergence as expected, because of the factor Cα

(which is factorial in α) in the statement of Theorem 5.1. Also, for small α, very high
inverse powers of r are taken, an ill-conditioned operation. Hence the appearance of
a convergence plateau for smaller α is explained by ill-conditioning of the basis ma-
trices, and the absence of data points is because of computational overflow. Finally,
increasing α from 1/8 to 2 gives a higher rate of convergence, as it should because of

12In contrast to the forms (3.8) and (3.9) of section 3.3, where the more complicated geometry
and media call for taking into account variations across diagonals and more appropriate traveltimes.
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the factor p−3α/2 in the error (5.4), which gives a rate of convergence of 3α/2. This
is roughly what is obtained numerically. As discussed, further increasing α is not
necessarily advantageous since the constant Cα in Theorem 5.1 grows fast in α.

6. Discussion. Probing the DtN map D ultimately makes sense in conjunction
with a fast algorithm for its application. In full matrix form, D costs (4N)2 operations
to apply. With the help of a compressed representation, this count becomes p times
the application complexity of any basis function Bj , which may or may not be advan-
tageous depending on the particular expansion scheme. The better solution for a fast
algorithm, however, is to postprocess the compressed expansion from probing into a
slightly less compressed but more algorithmically favorable one, such as H-matrix [30]
or butterfly [10].

Note that probing an H-matrix directly, without further structure, would be
highly inefficient. Like in the case of low-rank matrices [33], accurate probing of an
H-matrix requires a number of random applications proportional to the maximum
block rank [38], with a big constant. This number could be orders of magnitude
larger than the small q needed in our case, when M is a combination of the Bj .
Hence the feasibility of probing and the availability of a fast algorithm for matrix-
vector multiplication are two different goals that require different expansion schemes.

As for the complexity of solving the Helmholtz equation, compressing the ABC
or AL confers the advantage of making the number of nonzeros in the matrix L of
(2.7) independent of the complexity of the ABC. After elimination of the layer, it is
easy to see that L has about 20N2 nonzero entries, instead of the 5N2 one would
expect from a five-point stencil discretization of the Helmholtz equation, because the
matrix D (part of a small block of L) is in general full. Although obtaining a fast
matrix-vector product for our approximation of D could reduce the application cost
of L from 20N2 to something closer to 5N2, it should be noted that the asymptotic
complexity does not change—only the constant does, by a factor 4 at best. Hence the
discussion about fast algorithms for D is not as crucial as the idea of compressing the
ABC in the first place, when the goal is to apply L fast in an iterative method.

In future work, it would be interesting to probe the Green’s function of the
Helmholtz equation directly, since its singularity on the diagonal is less steep than
that of D, as discussed in section 3.3. However, its decay at infinity is slower. The
advantage would be that once this Green’s function was probed, one could simply
apply it to the right-hand side f , without having to solve the Helmholtz equation
again.
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[8] J.-P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, J.
Comput. Phys., 114 (1994), pp. 185–200.

[9] J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed., Dover, New York, 2001.
[10] E. Candès, L. Demanet, and L. Ying, A fast butterfly algorithm for the computation of

Fourier integral operators, Multiscale Model. Simul., 7 (2009), pp. 1727–1750.
[11] W. C. Chew, J. M. Jin, E. Michielssen, and J. M. Song, eds., Fast and Efficient Algorithms

in Computational Electromagnetics, Artech House, 2001.
[12] J. Chiu and L. Demanet, Matrix probing and its conditioning, SIAM J. Numer. Anal., 50

(2012), pp. 171–193.
[13] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley-Interscience,

New York, 1983.
[14] R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. II: Partial differential

equations, Interscience Publishers, New York, 1962.
[15] O. Christensen, Frames, Riesz bases, and discrete Gabor/Wavelet expansions, Bull. Amer.

Math. Soc. (N.S.), 38 (2001), pp. 273–291.
[16] T. A. Davis, Algorithm 832: UMFPACK V 4.3—an unsymmetric-pattern multifrontal method,

ACM Trans. Math. Software, 30 (2011), pp. 196–199.
[17] L. Demanet, P. D. Letourneau, N. Boumal, H. Calandra, J. Chiu, and S. Snelson, Ma-

trix probing: A randomized preconditioner for the wave-equation hessian, Appl. Comput.
Harmon. Anal., 32 (2012), pp. 155–168.

[18] L. Demanet and L. Ying, Scattering in flatland: Efficient representations via wave atoms,
Found. Comput. Math., 10 (2010), pp. 569–613.

[19] J. Diaz and P. Joly, A time domain analysis of PML models in acoustics, Comput. Methods
Appl. Mech. Engrg., 195 (2006), pp. 3820–3853.

[20] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear,
ACM Trans. Math. Software, 9 (1983), pp. 302–325.

[21] B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of
waves, Math. Comp., 31 (1977), pp. 629–651.

[22] B. Engquist and O. Runborg, Computational high frequency wave propagation, Acta Numer.,
12 (2003), pp. 181–266.

[23] B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equation: Hierarchical
matrix representation, Comm. Pure Appl. Math., 64 (2011), pp. 697–735.

[24] B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equation: Moving per-
fectly matched layers, Multiscale Model. Simul., 9 (2011), pp. 686–710.

[25] Y. Erlangga, Advances in iterative methods and preconditioners for the Helmholtz equation,
Arch. Comput. Methods Eng., 15 (2008), pp. 37–66.

[26] G. B. Folland, Introduction to Partial Differential Equations, 2nd ed., Princeton University
Press, Princeton, NJ, 1995.

[27] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Math., 10
(1973), pp. 345–363.

[28] A. Gillman, A. Barnett, and P. G. Martinsson, A spectrally accurate direct solution
technique for frequency-domain scattering problems with variable media, BIT, 55 (2015),
pp. 141–170.

[29] A. Gillman and P. G. Martinsson, A direct solver with O(N) complexity for variable co-
efficient elliptic PDEs discretized via a high-order composite spectral collocation method,
SIAM J. Sci. Comput., 36 (2014), pp. A2023–A2046.

[30] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. I. Introduction to H-matrices,
Computing, 62 (1999), pp. 89–108.

[31] T. Hagstrom and T. Warburton, A new auxiliary variable formulation of high-order local
radiation boundary conditions: Corner compatibility conditions and extensions to first-
order systems, Wave Motion, 39 (2004), pp. 327–338.

[32] T. Hagstrom and T. Warburton, Complete Radiation Boundary Conditions: Minimizing
the Long Time Error Growth of Local Methods, Technical Report, Southern Methodist
University.

[33] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288.

[34] R. Higdon, Numerical absorbing boundary conditions for the wave equation, Math. Comp., 49
(1987), pp. 65–90.

[35] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals:

D
ow

nl
oa

de
d 

01
/1

1/
16

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPRESSED ABCs VIA MATRIX PROBING 2471

Molding the Flow of Light, 2nd ed., Princeton University Press, Princeton, NJ, 2008.
[36] J. B. Keller and D. Givoli, Exact non-reflecting boundary conditions, J. Comput. Phys., 82

(1989), pp. 172–192.
[37] L. F. Knockaert and D. De Zutter, On the complex symmetry of the Poincaré-Steklov
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