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Abstract

Space-based robotic arms are a versatile element of a manned space program. They
act as “force multipliers” to allow completion of many tasks more rapidly, cheaply,
and safely, by reducing or eliminating time spent by astronauts in Extra-Vehicular
Activities (EVA). One class of manipulators are the macro arms such as the Shuttle
Remote Manipulator System (SRMS). These large (50 foot) anthropomorphic arms
offer the ability to move capture, deploy, and maneuver massive payloads. However,
mass budgets dictate that the manipulators be built lightly and as a result are struc-
turally flexible. Fundamental vibration modes occur well within the bandwidth of
the human operator, forcing a setting period at the end of each move.

High-performance global control of flexible manipulators has been an active topic
of research for two decades. Experimental results on ground-based flexible arms have
shown that such control algorithms can reduce residual vibration of the manipulator
end-point. However, on-orbit implementation has been complicated by the ad hoc
gain-scheduling approaches generally used to account for configuration changes. Such
approaches offer minimal guarantees of stability and require a separate controller for
each operating point and payload. Recently, however, a number of time-varying
robust control algorithms, based on linear robust control methodologies, have been
investigated in the controls literature. These algorithms parameterize the plant as a
Linear Time-Invariant (LTI) system and a structured time varying operator. Linear
algebra tools can then be brought to bear on the LTI plant model. Among the
advantages over competing nonlinear control design approaches are the ability to
formulate performance objectives in the frequency domain, and the experimentally
demonstrated ability of linear design tools to account for parametric uncertainty in
the plant.

Time-varying robust control requires a suitable parameterization of the nonlinear
dynamics of the manipulator. The current thesis presents an approach for deriving
the dynamics in a Linear Fractional form directly suitable for small-gain control de-

sign. The method is also analytically advantageous, being applicable to arbitrary



configurations and numbers of flexible links. Additionally, the resulting model offers
run-time computational advantages over other formulations of the equations of mo-
tion, and is naturally parallelizable. The method is demonstrated by modeling the
SRMS. Modeling accuracy is shown to be comparable to a standard modeling ap-
proach, and the parameterized model enables the direct application of time-varying

robust control tools.
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Chapter 1

Introduction

1.1 Motivation

Space-based robotic arms are a versatile element of a manned space program. They
act as “force multipliers” to allow completion of many tasks more rapidly, cheaply,
and safely, by reducing or eliminating time spent by astronauts in Extra-Vehicular
Activities (EVA). They also enable many tasks which are beyond the capabilities of
an unassisted human, such as manipulation of massive payloads. Among the tasks
which benefit are space construction, inspection and repair, experiment manipulation,
satellite capture, station-keeping, and release, and EVA during which the astronaut
is supported by the SRMS.

Many types of arms have been studied: long-reach “macro” arms, such as the
Shuttle Remote Manipulator System (SRMS), “dextrous” arms such as the Japanese
Small Fine Arm, and free flying arms. The macro arms form an interesting class, both
due to their utility, and due to the challenge presented by achieving high-precision
positioning in the face of strict structural constraints. Their utility lies in the ability
to maneuver payloads into, out of, and around the Shuttle payload bay, and to anchor
the Shuttle to other orbital structures. Structural constraints arise from operational
requirements such as long reach and high payload mass, as well as mass budgets
dictated in part by launch costs. Such design constraints necessarily result in a

structurally flexible manipulator, generally with frequencies within the bandwidth
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of the human operator. These dynamics lengthen the time required for any given
task, and thus reduce astronaut effectiveness and adversely affect safety. A study by
Newsom et al. estimates that 30% of the operational time of the arm is spent waiting
for the arm vibrations to settle out[1].

Recent studies of high-precision controlled structures have demonstrated that
modern control algorithms offer a realizable means to achieve performance objec-
tives in the presence of tight structural constraints. However, the design of high-
performance flexible manipulator controllers is complicated by geometric nonlinearity
and large changes in payload mass (up to two orders of magnitude). The controlled
arm is also subject to strict requirements on safety (and thus closed loop stability).
The solution has been to implement low performance, high stability margin con-
trollers. The first, and currently the only, operational space-based manipulator, the
Shuttle Remote Manipulator System (SRMS), uses independent joint-rate feedback.
The resulting closed loop system is stable for a wide range of payload masses and
dynamics. However, the control system cannot control flexible link deformations that
lead to end-effector oscillation. The operational solution is to wait for the system
damping to reduce residual oscillation to an acceptable level before completing a fine
positioning maneuver. This waiting period will become significant for large payloads;
the SRMS holding a 60,000 pound payload will have a period of oscillation of about
100 seconds, and the residual damping is low enough that many cycles will be required
for any oscillation to damp out.

Much work has been done in the years since the SRMS came online. Theoret-
ical research into nonlinear and flexible structure control has pointed the way to
implementable high-performance control of flexible arms. Numerous experimental
demonstrations have shown that these techniques can dramatically improve flexible
arm performance(2, 3, 4, 5, 6, 7, 8]. For example, reductions of 70 — 85% in settling

time, compared to joint proportional-derivative (PD) control, are typical.
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Table 1.1: Flexible Structure Design Approach

Structural Uncertainty Control
Modeling Modeling Design
Linear Structures | [FEM]9, 10] Measured Small Gain[17]
Suspension and | | | bounds[13] Polytopic[18]
Gravity[9, 10] Uncertainty Robustified[19]
Measurement projection[14,
Models|[11, 12] 15, 16]
Geometrically Kinematics[20, Uncertainty Re-| | |Polytopic[18]
Nonlinear 2] alization? Observer[27]
Structures Symbolic Order Small
Modeling(21] Reduction[25, | || Gain[28, 18]
Nonlinear FE[22, | | | 26]
23]
Measurement
Modeling[24]

1.2 Objectives

The primary objective of the current work is to create a modeling framework which
enables the application of modern robust and time-varying control design algorithms
to the control of flexible spaced-based manipulators. Robust control approaches have
been experimentally demonstrated on high order ground and space based flexible
testbeds. As shown in Table 1.1, the application of such algorithms requires three
key steps: creation of a state space model of the structure, identification and modeling
.of the uncertainties, and application of the control synthesis algorithm.

The process begins with a linear structural model. The process used to create the
model, represented in the upper left block of Table 1.1, may incorporate a physical
model with model updating[9, 10]. Alternatively a measurement model can be cre-
ated, if the physical system exists and can be measured [11, 12]. The latter restriction

exists because such measurements must be done in situ, for example in space.
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The modeling process returns a linear dynamic model of the physical system. The
model will contain deviations from the true system. Deviations can arise, for example,
from parameter errors, modeling simplifications, or time-variations and nonlinearities.
The next step in creating the control is to quantify the “location” and magnitude
of the errors. This will be called the uncertainty model. The “location” of the
uncertainty indicates which model parameters are considered to be uncertain. The
uncertainty modeling further breaks down into two steps. First, the uncertainties
must be measured[13]. This requires identification of measurable parameters which
uniquely determine the uncertain model parameters. Examples are modal frequencies
and modal amplitudes. Next, the measured variations must be realized as a variation
in the structural model parameters. Different approaches will be used to capture
errors in a physical model and in a measurement model. For a physical model, the
measured uncertainties must be projected onto the physical model parameters[14, 15].
Measurement models may simply require uncertainties on the system modes[16].

The final step in the control design process is the application of the design al-
gorithm. The design algorithm will typically be chosen based on the statement of
performance objectives and on the types of uncertainty expected in the system. The
design algorithm will generally be distinguished by the form of the uncertainty model.

A natural parallel exists between the control of linear flexible structures and geo-
metrically nonlinear structures. Specifically, the static uncertainties which lie within
some bounds can be replaced by bounded time-varying quantities. Once in the robust
control design framework (upper right block), extensions allow the application of the
control design algorithms to time-varying plants (lower right block). In recent years
many time-varying design algorithms, differing mainly in the parameterization of the
time-varying model, have been proposed|[29, 27, 28, 30]. The common characteristic
is that the design algorithms use linear design tools. This places a constraint on the
dynamic model and the uncertainty model. Specifically the dynamic model must be
linear, with a specific paramecierization for the uncertainty.

The proposed geometrically nonlinear control design process will follow the same

steps as the linear design process. First the system to be controlled is modeled.
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This generally takes the form of a physical model, due to the necessity of capturing
the time-varying parameter dependence of the model. However, measurement based
models have been studied. Demeo et al.[24] create an Observer Kalman Filter Iden-
tification (OKID) model of the Manipulator Development Facility, a full size mockup
of the SRMS.

Next the parameter dependence must be expressed as a time-varying “uncertainty”
on a linear system. In the controls literature this is typically done with a polynomial
fit to the model parameter trajectories, as a function of the time-varying uncertainties.
Note that an important difference from the uncertainty model for the linear system
is that the time-varying parameters are known. That is, not only their absolute
bounds but their current value are known. The trajectories of the system parameters
(the state matrices) are correlated via the uncertainties, and an accurate model must
capture the correlation. The uncertainty model may therefore be generated at the
same time as the structural model.

Finally, the robust/time-varying control synthesis algorithm is applied. It is worth
noting that the typical sample problem in the controls literature is a flight control
problem. The characteristics of the sample plant often differ significantly from the
characteristics of a flexible manipulator. Specifically the flight dynamics are normally
low order, with wide variations in modal damping as well as frequency (unstable
dynamics at some flight regimes are common). In contrast, manipulators are most
often conservative (the eigenvalues lie on the imaginary axis of the s-plane) but of high
order. This has implications for the numerical tractability of the synthesis algorithm,
as well as the run-time complexity of the resulting controller.

A side note must be made regarding the uncertainty model. As noted for the
linear design process, the uncertainty model is driven by the control design algo-
rithm. Hence the algorithm must be known in order to perform the modeling. The
current work will therefore specialize at the outset, in Chapter 3, to a particular
design algorithm. However, connections exist between the different uncertainty pa-
rameterizations. With simple manipulations it will be possible to move between the

uncertainty model appropriate for the current control algorithm, and that appropriate
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for many other time-varying robust control design algorithms.

1.3 Survey of Previous Work

1.3.1 Flexible Multibody Dynamics

The field of modeling for flexible multibody dynamics has received a great deal of
attention since the advent of the Shuttle Remote Manipulator System (SRMS) in the
late 1970’s. The need to determine loadings, simulate specific operations, and design
specialized control algorithms for macro arms, has driven a great deal of interest in
the generation of accurate, numerically efficient dynamic models.

Accuracy has been addressed in part by investigating which terms in the equations
of motion are dynamically significant. Book[21] has examined various assumptions
used in the generation of flexible multibody models, to determine their suitability
and the limitations they impose. The same work discusses the utility of symbolic
mathematics programs for the creation of nonlinear models. Similarly, Padilla[20] and
Oakley[2] have examined methods to account for large flexible deformations in the
kinematics and dynamics. The latter citation also discusses the appropriate form for
spatial shape functions used in assumed modes modeling. Sincarsin and Hughes[23]
have generated perhaps the seminal form for the flexible dynamics, in terms of time
varying mass and Coriolis matrices.

Numerical integration approaches for accurate time simulations of structural sys-
tems have also received much attention. Standard techniques such as Runge-Kutta
schemes have been applied. Stiff equation solvers for systems with wide time scales, or
for contact dynamics, have been studied. Similarly, perturbation methods have been
used to sequentially solve for fast dynamics such as stiction effects, followed by slower
structural flexural motions. Park notes that stability of the integrated equations of
motion is a function of the integration method and of the structural equations[22].

Numerical efficiency has also received attention. Book[31] describes a recursive

formulation for manipulator dynamics. Liu[32] derives a recursive Lagrangian for-
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mulation which simplifies the derivation of a 19 DOF model of the SRMS. Parallel
computational architectures[33, 22] have been examined to speed computation. Com-
ponent Mode Synthesis has been studied as an approach to create low order models,
driving the understanding of the linkage of multiple component models[34].

Of particular interest are the models which are generated for the purposes of
control design. Accuracy is important in achieving stability of the model-based con-
troller. Computational efficiency is necessary if the model forms part of a nonlinear
observer[2, 24]. Many researchers have used Lagrangian methods as a flexible manipu-
lator framework[35, 36, 37, 38]. Schmitz[35] has derived a model of a two link planar
manipulator testbed, at Lockheed-Martin’s Research and Technology Department.
Gebler[36] has determined the dynamics of a two-link, three dimensional manipu-
lator. In both cases the elements of the system matrices are evaluated numerically.
Khorrami[37] has determined the dynamics of a planar link symbolically, and analyzed
them via asymptotic expansions to determine a feedback-linearizing controller.

Kane’s equations are also widely used[2, 39]. Oakley[2, 40] used an assumed modes
model to create a series of endpoint controllers for a planar arm. Both controllers
were experimentally validated. Ramey[39] uses an assumed modes model for the
Lockheed-Martin planar arm, to implement an LQR controller.

Newtonian methods are generally restricted to Finite Element Model (FEM) for-
mulations. Carusone[41] uses a FEM model of a two link, planar manipulator. Menq
and Chen[42] develop a beam element incorporating rigid body rotations to model a
single flexible link. Other modeling packages have been used. Schmitz and Ramey[4]
use TREETOPS to model the Lockheed-Martin Arm.

Another large class of modeling methods are based on system identification con-
cepts. Rovner[43] used a linear fractional parameterization to identify an uncertain
payload on a single flexible link. Similarly, Alder and Rock[44] used a subspace-
fitting technique to determine lightly damped poles in a closed region of the S-plane
which were associated with a lightly damped payload mode. Yurkovich et al. at
Ohio State have done extensive experimental work in system identification of flexi-

ble manipulators, including time-domain Auto-Regressive Moving Average (ARMA)
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models[3], and frequency domain transfer function estimation[45]. Demeo et al.[24]
used an Observer/Kalman Filter Identification (OKID) procedure to implement ro-
bust LQG control on the Systems Engineering Simulator mockup of the SRMS at
Johnson Space Center. A current area of research is in the area of multidimensional

system realization[46].

1.3.2 Uncertainty Modeling

A substantial body of literature exists concerning uncertainty modeling for linear
systems. Classes of uncertainties are defined, for example, by Doyle and Stein in
1981[17].

Parametric uncertainties on linear systems have been estimated from measurements|[15,
14, 13]. Crawley et al.[13] measure modal parameter variations due to laboratory
suspension effects, disassembly/re-assembly, 0-g/1-g effects, etc. to determine mean
variations. Campbell[14] uses the Discrete Extended Kalman Filter to estimate modal
parameters and their covariance, then uses a projection method to map the modal
uncertainties to FEM mass and stiffness matrices. Douglas[15] uses a small gain un-
certainty description in a coupled system/uncertainty description. It is worth noting
that the latter work is motivated by the desire to apply small gain control methods.

Linear parameterizations of time-varying systems have been used in the flight con-
trols literature[47, 18]. A polynomial representation of the parameter variations in a
physical model is often used[30, 47, 18]. Bennani et al.use a polynomial description
of the aircraft parameter variation to control the short period mode of an aircraft[30].
Bodenheimer et al.[47] create a polynomial iit to the parameter-varying system ma-
trices of a ducted fan testbed. Beck[25, 46] presents an LMI approach to the order

reduction of such polynomial fits.

1.3.3 Flexible Manipulator Control Design

The costs associated with manipulator flexibility have motivated investigations into

a wide range of control algorithms. Cetinkunt and Book[48] investigate the perfor-
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mance limitations imposed by joint feedback, motivating the use of non-colocated
sensors. Similarly, Schmitz[4, 35], Oakley[2], and Scottet al.[49] experimentally ver-
ify the performance advantages of non-colocated feedback. This motivates a search
for control design approaches which can accommodate the phase losses inherent in
non-colocated feedback.

Typically, endpoint position, or its temporal derivatives, are included in the sensor
suite to enhance performance. The simplest class of endpoint controllers use constant
gain or proportional-derivative (PD) loops. Schmitz[4] uses a lead-lag controller to
stabilize the Lockheed-Martin arm around a nominal position. Kotnik[50] uses con-
stant gain acceleration feedback to damp oscillations in a single link arm.

The largest class of control methods to be validated experimentally are the Linear
Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG). Scottet al.[49)]
use a robust Multiple Model LQG controller, using tip accelerometers, to actively
damp the Systems Engineering Simulator. Ramey[39] uses an LQR design to control
the endpoint of the Lockheed-Martin planar testbed. The flexible state measurements
are provided by a series of strain gauges located along the link.

Nonlinear and time-varying extensicns to LQR and LQG have also been demon-
strated. Carusone[41] implements a gain-scheduled LQR design on a two link planar
robot, in which a series of fixed gain controllers are designed for many set points in
the workspace. The gains are interpolated at run-time based on the joint positions.
Again, strain gauges are used to measure the flexible states. Oakley[2] uses a robust,
constant gain LQR design, coupled to a Constant Gain Extended Kalman Filter state
estimator, to control a two link, planar arm.

Direct applications of nonlinear control theory are not prevalent in the literature.
However, many instances can be found of nonlinear control for rigid body motion,
with Linear Quadratic control for the flexible states. Aoustin and Chevallereau(5]
and Siciliano and Book[51] use singular perturbation theory to separate the (closed
loop) rigid body dynamics from the flexible dynamics, then apply LQR control to the
fast flexible dynamics. Madhavan and Singh[52] use a variable structure (switching)

controller to guide a single link manipulator to the vicinity of the desired rest point,
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then use an LQR controller to achieve final positioning. Khorrami[53] applies the
feedback-linearizing controller for a rigid planar manipulator with equivalent mass
parameters to a planar testbed with a rigid inner link and flexible outer link. Then
an LQR controller is used to stabilize the system.

Adaptive control is the one of the most demonstrated direct nonlinear control
design algorithms. Yurkovich et al.[3] demonstrate a one-step ahead self-tuning con-
troller on a two flexible link, planar arm. The same group uses a Time-varying
Transfer Function Estimate (TTFE) approach to identify pole locations in order to
tune controller parameters(54]. Askew and Sundareshan[55] use a neural network
to identify a payload on a single link beam, and schedule a varizble structure con-
troller based on the parameter. Clarke et al.[56] proposes a time-domain adaptive
control algorithm called Generalized Predictive Control which is robust to nonmini-
mum phase behavior. Zaki[38] uses an implementation of Model Reference Adaptive
Control (MRAC) to stabilize a two-link, three degree of freedom simulation.

Feedforward techniques also merit some attention, based on the number of ap-
proaches which have been used. Singer and Seering[57] use impulse prefiltering to
reduce residual motion at the end of a commanded move of the Draper RMS Sim-
ulator (DRS), a high fidelity simulation of the SRMS. Khorrami[53] uses a feedback
linearizing inner loop to minimize natural frequency changes with configuration, then
applies impulse prefiltering to the closed loop system. Gebler[36] feeds forward an
estimate of the tip deflection to the joint position servo, improving trajectory tracking
performance. Bayo[58] and Pfieffer[59] use a computed torque approach to improve
trajectory tracking. These methods offer improved command-following performance,

generally at low computational cost, without compromising system stability.
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1.4 Summary of State of the Art

1.4.1 Modeling State of the Art

Flexible multibody dynamics have been actively investigated for many years. Nu-
merous modeling approaches have been investigated in the literature. Four groupings

emerge:
(i) Lagrange methods, which derive the EOM from a system energy function

(ii) Kane’s Equations, a highly formalized way to solve for inertial forces from ex-

pressions for the inertial velocities

(iii) Finite Element Modeling (FEM), a subset of Lagrange methods which spatially

discretizes the system energy function using a simplified set of functions

(iv) Simplified modeling packages which use high-level parameters (lumped masses,

etc.) to arrive at approximations to the system dynamics

These approaches must be examined in more detail.

Lagrangian methods employ the system energy function, or Lagrangian[60]. The
energy function is written in terms of a set of assumed degrees of freedom (DOF).
Then Lagrange’s equation is applied to the energy function to determine the EOM.
The primary advantage is accuracy. The Lagrangian model will be as accurate as
the energy function allows it to be. Generally the system energy function is straight-
forward to formulate. That is, all of the “important” forces for a particular system
can be included in the energy function. The source of the flexibility, however, is also
the cause of the greatest drawback. The greatest disadvantage is the difficulty of
evaluating Lagrange’s equations. In most cases there are many possible choices for
assumed DOF, and few clues as to which will lead to the most compact model. The
consequences of choosing the wrong DOF can range from an inaccurate model (by not
accurately capturing system motions), to unnecessarily complex system dynamics, up
to being unable to muster the analytical power to perform the evaluation. In many

cases the energy function is complex enough that symbolic modeling packages (such
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as Mathematica) must be used. For realistic systems, such as three-dimensional ma-
nipulators, the evaluation may be too intensive and the package may fail to provide
an answer. Even if this is not the case, such packages cannot adequately manipulate
the resulting EOM to reflect any structure which might be present. For all practical
purposes this structure is lost to the controls designer who attempts to use the model.

Kane’s equations are essentially a highly formalized version of F' = mal[61l]. A
force balance is written in terms of generalized coordinates, between inertial forces
produced by generalized accelerations and externally imposed forces. The velocities of
a point on the flexible structure are defined in terms of motions in various reference
frames, and differentiated to determine accelsrziions. The accelerations are then
integrated over the mass to determine inertial forces. Inertial forces are then equated
to external forces to determine the system EOM. The advantage is that the process is
highly formalized, so it can be generalized to highly complex systems. The primary
disadvantage is that the computations necessary to determine the accelerations are
demanding, similar to the Lagrangian form.

It is worth noting that Kane’s method has been advanced as a means to produce
a more compact set of EOM. However, flexible manipulator models derived using
Kane’s method have been of the same order complexity as Lagrangian models. See,
for example, the 2 link planar arm model of Reference [2], derived using Kane’s equa-
tions, compared to the dynamics for the same type of system derived using Lagrange’s
equations[37]. Both approaches capture the nonlinear kinematics of a structure un-
dergoing flexible deformation and large angle, large rate rigid body motion, thus are of
comparable accuracy (given appropriate model parameters). This indicates that the
complexity of the dynamics of such structures is a result of the nonlinear kinematics.

FEM is a subclass of Lagrangian methods, in that the EOM are derived from a
system energy function. However, the energy function is spatially discretized, using
a set of simplified DOF. As a result there is a systematic method for determining the
DOF and resulting EOM. Further, for a linear structure, the system dynamics reduce
to a set of constant matrix equations. For geometrically nonlinear structures, there

are extensions which can account for joint rotations (although they are not widely
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used).

FEM has the advantage of being widely available, in a variety of packages. There
is a large body of understanding of how to represent many engineering structures. The
main disadvantage is that the simple shape functions used in the spatial discretization
cannot accurately capture the strain distribution in a complicated structure unless
many are used. The resulting model is much larger than necessary and must be
truncated to a lower order in order to allow the control design algorithms to succeed.
Further, the matrix equation form of the solutions can obscure the physical nature of
the forces being modeled. Again any structure may be lost to the user of the model.

Simplified modeling packages such as Simulink are engineering modeling packages
in which rigid body modes, flexible states, and nonlinear blocks such as friction, are
combined to produce the correct input/output behavior. The advantage is that the
package is a high-level system, allowing rapid generation of models. Many nonlinear
elements are simple to incorporate. The major disadvantage is that the states of
the model are not related to physical quantities. As a result, the simplified model
is only as good as the engineering insight used to create it. This makes it prob-
lematic to generate a model without physical measurements to judge it against. If
such measurements are available, it may be difficult to use them to tune the model
parameters.

The clear implication is that modeling of geometrically nonlinear structures is
still a fertile area to research. Two primary requirements emerge from the study of
common methods in use at the present time. First, the structure of the manipulator
dynamics is in general not preserved. The mass matrix for a geometrically nonlinear
structure is a function of a set of rotation matrices. These rotation matrices are,
for example, the rotations of the joints for a revolute joint robot, and may also be
revolutions due to flexible deformations. These rotation matrices multiply into the
linear mass matrices for each link of the robot. As a result the mass matrix is a
complex function of the rotation variables (thus sines and cosines of the joint angles).
A useful extension to any of the above techniques would be to separate out the

rotation matrices which are the largest nonlinear terms in the EOM. In this form,
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the model would be directly amenable to control using modern state space methods.
This will be discussed further.

The next point is that modeling effort is an issue; it is conceivable that a particular
modeling method may not return an answer for a particular problem (time constraints
may be a factor). There is a continuum between a simple formulation of the problem,
with a computationally demanding evaluation of the dynamics (Lagrange) and a
relatively complex formulation stage, but with a straightforward evaluation of the
dynamics (FEM). In other words, the modeling effort may be front-end loaded, or
may appear in the later stages of the modeling process. Model accuracy adds a
third axis, so that modeling effort increases with accuracy. While there is no reason
to believe that one c~.. get off that continuum, there is reason to believe that for
“iie manipulator modeling problem, there is a way to trade a moderate amount of
additional work later (back-loading the effort) for a slightly more complex but still
straightforward modeling formulation.

It must be stated that each of the above modeling methods has their place. It
is not the intent of this work to advocate a specific choice for use in all cases. For
this work, the Lagrangian framework will be used. The primary reason is that the
derivation of the EOM remains in terms of physical quantities, which makes the
terms in the EOM somewhat more intuitive. In addition, an assumed modes model
can be fairly accurate with a fairly low system order. This will be important when
the model is used for control design. The choice of the energy method over Kane’s
method is primarily one of computational simplicity - as will be shown, evaluation
of Lagrange’s equations can be highly automated. It is noted, however, that to be
of general use, a finite element framework would be strongly of interest. This would
enable maximum utility to the largest number of potential users. All of the concepts

used in the modeling framework could be applied to a suitable finite element model.

1.4.2 Robust Control State of the Art

Robust control, and time-varying control strategies derived from it, have been well-

studied in the literature. Of primary interest for the control of variable-configuration
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flexible structures are the time-varying control strategies in which the variations are
measurable. This thesis will be specifically concerned with time-varying robust con-
trol; that is, the time variations of the plant are known to some degree, and used to
modify the controller gains in real time. The alternative, using a single fixed con-
troller for the entire range of configurations, has the disadvantage of achieving lower
performance at a given configuration, due to the necessity of being stable over the
entire workspace.

Several general categories of time-varying control have been studied in the litera-

ture. These include:

(i) ad hoc time-varying implementations of fixed gain controllers
(ii) adaptive control
(iii) feedback inversion
(iv) variable structure/sliding mode control

(v) linear robust control for time-varying parametrically uncertain systems

Each of these broad categories encompasses a range of ideas.

Ad hoc time-varying control is generally built around a linear controller, such
as Linear Quadratic Regulator (LQR) or Linear Quadratic Gaussian (LQG). A set
of controllers is designed using standard techniques, for a set of operating points,
which is deemed to give suitable stability margins and performance. Time variation
of the controller is achieved by combining the controller gains[41] or the controller
outputs[62], or by using a nonlinear state observer with constant gain regulator and
observation matrices[2].

The principle advantages are the availability of LTI design tools, and the need for
only a few, LTI design models. Difficulties include the lack of techniques for showing
stability for the combined system, necessitating exhaustive simulation to determine
stability; lack of techniques for determining how many design models are needed,
resulting in a highly iterative and labor-intensive design process; and difficulties with

determining how to combine controller parameters stably.
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Adaptive control uses real-time error estimates to tune controller parameters.
Classes of adaptive control include direct, and indirect. Direct adaptive control tunes
the controller parameters to decrease a measured error. Indirect control tunes an
adaptive plant model, which is then used to derive a controller.

The primary advantage to adaptive control is that an exhaustive modeling and
model updating procedure is not needed. In effect, it is automated. Secondarily,
the self-tuning nature of the control means that unexpected changes (such as a new
payload being added) can be accounted for on-line (an off-line controller redesign is
not needed). The primary difficulty is that of showing stability of the closed loop.
The two general means are to show the existence of a Lyapunov function, which is
non-trivial and often depends on restrictive assumptions such as collocation of the
sensor and actuator (rarely the case in robotics since the objective is to control one
end of a link with a torque at the other end); and via exhaustive simulation. Since
the entire controller can vary, exhaustive simulation may not be feasible.

Feedback inversion techniques use time-varying state transformations to form an
LTI input/output representation for the nonlinear system, by canceling nonlinear
dynamics. The transformed system can then be controlled with a simple proportional-
derivative (PD) controller.

Far and away the biggest restriction is that there is no systematic approach to de-
termining the proper state transformation. In addition, as in all inversion techniques,
exact knowledge of the system parameters is crucial. Stability robustness to param-
eter uncertainty has only begun to be addressed. Finally, the robotics problem is
typically non-minimum phase, leading to an unstable inverse for which work-arounds
must be sought.

Variable structure/sliding mode techniques attempt to force the system states
onto a sliding manifold; that is, a hyperplane in the state space which represents
some desired trajectory. Once the state is on the manifold, it is in sliding mode, and
will generally be forced to move toward the origin of the state space.

Variable structure controls offers the advantages of robustness to certain kinds

of modeling errors (of interest to the robotics engineer is friction). Again, stability
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robustness remains to be addressed. In addition, the ability to control flexible modes
is a topic which requires more study.

Linear robust control is perhaps the most highly studied category, since it allows
for many interesting structures to be represented faithfully. The system is represented
by a linear state space system matrix, and an unknown, uncertain, or time varying
element. “Unknown” elements refer to unstructured uncertainties, where nothing is
known except the frequency-domain characteristics. These are of little use to the con-
figuration dependent system. Structured uncertainties refer to parametric variations
in the system model; that is, a nominal value for a parameter such as a mass is known,
but the actual parameter may have a fixed error (an “uncertain” parameter). With
proper choice of representation, the uncertain element may in fact be allowed to vary
with time; this is of particular interest to the robotics engineer. Within the parametric
uncertainty field, many analysis frameworks exist; small gain, polytopic, Lyapunov,
and so on. In many cases connections exist between the frameworks. This is inter-
esting because it also creates the hope that, given a model parameterization which is
suitable for a given control technique, simple manipulations can re-parameterize the
model into a form suitable for many other control design techniques.

The advantage to linear robust control is the proven ability to control high-order
flexible systems. Also, since the system model is linear, numerical matrix algebra
tools can be used; the computational burden can be shifted to a computer, leaving the
controls designer to contend with higher-level criteria, and avoiding complex variable
math, Lie derivatives, and the other tools of the nonlinear control world. Finally,
linear design tools, such as frequency domain specifications, are second nature to
most controls engineers.

The primary disadvantage to linear robust control is conservatism, in which a
controller may be returned which sacrifices too much performance in return for a
guarantee of stability (or no controller may be found at all). Specifically, conservatism
results from the inability to create a linear system model which accurately captures
the relationships in the nonlinear dynamic body. For example, the time-varying

parameters may be system states. This connection is lost in most design algorithms.
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Included in this assessment is the fact that a suitable parametric representation of

the dynamic system may not be simple to derive.

1.4.3 Flexible Multibody Dynamics for Control

The flexible multibody dynamics modeling problem is a fairly mature field. Applica-
tions exist in many areas, thus much insight into the nature of the field is available
in the literature. Control of such systems is a relatively new field. However, in the 20
years since the Space Shuttle Remote Manipulator System (SSRMS) came on-line,
bringing the issue of control of flexible manipulators into the forefront, a reasonable
database of what works in a laboratory setting has been built up.

A useful cut into the problem of control of flexible multibody dynamics may be

taken by listing the instances of experimental work in the literature. These include
(i) LQG[35, 44, 63, 2, 40, 43]
(ii) adaptive variable structure control[55]
(iii) gain scheduled LQR[41]
(iv) rigid body feedback linearization with input preshaping[53]
(v) acceleration feedback[50]
(vi) Multiple Model LQG[49]
(vii) indirect adaptive control[64]

The preponderance of experimental results take the form of ad hoc implementations
of LTT control. In addition, with the noted exceptions, all experimental work was per-
formed in a 2D, planar configuration. The noted advantages and disadvantages of each
control category notwithstanding, the primary difficulty in control for configuration-
dependent flexible systems is the sheer complexity of generating controls solutions for
realistically sized control problems. As of this writing, ad hoc solutions offer the best

way to meet performance and stability criteria. However, ad hoc solutions fail for
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more complex systems (such as three-dimensional arms) because the modeling and
control design effort increases dramatically.

On the other hand, the most notable absence from the above list are time-varying
robust controllers. This is especially true since the problems being addressed by such
control design algorithms often explicitly include flexible dynamics. In many cases
these take the form of extensions to the LTI controllers which have proven to work
quite well. Thus there is the implication that such methods will offer good perfor-
mance at a reasonable design cost. The primary barrier which has so far halted the
implementation of time-varying robust contro! is the lack of deriving a properly pa-
rameterized model for the design of said controller. Typically such a form is assumed
in the controls literature[29]; however, few papers in the modeling literature address
the necessary parameterizations. In the few cases where the issue is addressed, ad
hoc modeling approaches such as curve fits to Lagrange model system matrices are
used to derive the parameterized model[47].

Given such a model, robust control offers the hope of designing a single controller
which offers performance and stability guarantees with a finite but useful degree of
conservatism. Further, with the amount of research in this area, driven by such fields
as robotics and aerodynamics, many of the current disadvantages of the robust control

framework for time-varying control may be ameliorated in a reasonable time frame.

1.5 Thesis Roadmap

The thesis is organized as follows: the potential for space-based manipulator perfor-
mance improvement is investigated in Chapter 2. In Chapter 3, a particular Time-
Varying Robust Control approach is identified from the literature and developed.
Next, motivated by the need to generate a suitable representation for application of
the control algorithm, a nonlinear flexible multibody dynamics modeling algorithm is
presented in Chapter 4. In Chapter 5, a model for a flexible manipulator link, suit-
able for the aforementioned dynamics modeling approach, is created. In Chapter 6,

the modeling and control algorithms are verified on a high fidelity simulation of the
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SRMS. Finally, in Chapter 7 the conclusions of the thesis, and recommendations for

future work, are presented.
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Chapter 2

Benefits of Control

The field of flexible robot control has received increasing attention in recent years.
Space based robotic systems, such as the Shuttle Remote Manipulator System (SRMS),
are prominent drivers of this research; up to 30% of SRMS mission time is estimated
to be spent waiting for the arm to settle out. Numerous linear and nonlinear con-
trol algorithms have been investigated to reduce the impact of arm flexibility. In
many cases, experimental results have demonstrated the possible performance im-

provements. The next step is to determine:
(i) Can these algorithms be applied to the SRMS?
(i) What are the benefits?
(iii) What are the associated costs?

An approach to answering these questions is in the form of a comparison between
the various approaches. The present chapter will examine the results of such a com-
parison. It will be shown that gain-scheduling achieves the best overall performance
among the controllers tested. However, certain deficiencies in the gain-scheduled con-
troller will be noted, in the areas of stability, real time computation requirements,
and design effort. The results motivate the search for a controller which retains the
performance advantage of gain-scheduling, while overcoming the noted shortcomings.

The remainder of the thesis will detaii such a controller.
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This chapter will detail such a comparison on a simulation of the SRMS. To
begin, the basis for comparison is defined. The candidates are selected. The SRMS
simulation is described. Then the results are presented and analyzed. Finally the

possibility for extension of the results to the SRMS itself is examined.

2.1 Cost versus Performance Comparison

It then becomes natural to ask, “How much will these controllers cost?”. That is,
what is the cost incurred by each controller for additional sensors, computing power,
et cetera, and what is the relative performance. The resulting cost versus performance
curve would be useful in selecting, from among the candidates, which best meets the
needs and financial constraints of the end users.

The present chapter discusses a preliminary comparison of advanced controllers
on a simulation of the SRMS. The objective of the research was to demonstrate
the performance improvement possible by using advanced controllers on the SRMS.
Additionally, some insights on the relevant metrics of cost for an SRMS-like system
were desired. The approach to reach the objectives began with creating a general 3D
flexible manipulator modeling capability. The formulation was used to create a linear
model of the SRMS suitable for control design, and a nonlinear model suitable for
performance analysis. Then, a test matrix was defined to capture the performance
requirements of the SRMS in a form which could be tested in simulation. Cost metrics
were also defined. Controllers were designed on the linear model, then tested on the
nonlinear simulation. The chapter concludes with some observations about advanced

control for flexible manipulators, and with a discussion of future work.

2.2 Flexible Arm Modeling

The project required an accurate 3D flexible arm modeling capability. There are
pre-existing models such as the Draper RMS Simulator (DRS), which is a validated

simulation of the SRMS. There are also computer packages which allow general mod-
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Figure 2-1: 3D manipulator model showing lumped stiffness at base and gears,
lumped mass at armature, gearbox, and payload. Links are modeled
with assumed modes. Arrows mark rotation axes of the three joints.

eling of 3D flexible-chain bodies, such as Simulink and TREETOPS. Such models can
run time simulations of nonlinear plants, as well as provide linearized models suitable
for control design.

It was decided to develop an in-house modeling capability. This approach allowed
flexibility in tailoring arm parameters. The modeling formulation which was used
allows the derivation of the sensitivities of the equations of motion, which will con-
tribute to model updating. Model updating will be crucial to the design of stable
high performance controllers. Ease of parameter tailoring will also facilitate the de-
sign of the hybrid arm. The method also contributes to control design, by producing
a parameterized linearized model. The parameterized model allows controllers to be
designed and tested at arbitrary arm configurations and payloads, without requiring
re-linearization of the equations of motion.

The modeling procedure uses a recursive Lagrangian formulation of the fully 3-
dimensional flexible manipulator equations of motion (EOM). The EOM are derived

from the Lagrange equation:

d (0L oL . .67
a(5)_4)___2151,-—_1? (2.1)
where L = T—V, T is kinetic energy, V is potential energy, F; are nonconservative
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Figure 2-2: SRMS model (solid) vs DRS (dotted) at (0°,90°, —90°): shoulder
yaw to tip Y (left), elbow pitch to tip Z (right).

forces, and g are the modal degrees of freedom. As the model order increases, the
complexity of Equation 2.1 increases drastically. The recursive formulation splits
Equation 2.1 into a sum over two flexible bodies, plus a constraint equation that

describes how the motion in body 2 couples into the motion in body 1:

L(q1, 01,92, 82) = Li(q1, 1) + La(4ec, 42, 42) (2.2)
g = G(q1) (2.3)

where ¢; and ¢, are generalized coordinates for body 1 and body 2, respectively,
and g, are the constraint degrees of freedom (for example the displacement and rota-
tion at the end of the first link). Each body can be analyzed separately to find the
components of the EOM:

d c’)Ll 3[41 T d aL2
dt 8¢, Oq +VaG dt 94, *
., 0VuGqT oLy
VG- —5 5. = Fi (2.4)
ddL, 0L, _
dt 8¢, Ogqy F (25)

where V,, G is the gradient of the constraint with respect to ¢;. The first two
terms in Equation 2.4 are the free-body EOM of body 1, and the second two are
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coupling terms. Equation 2.5 is the free-body EOM of body 2. To analyze multiple
bodies, the first two are analyzed and assembled, then treated as the new body one.
The next body is then analyzed as body two (with its constraint equations dependent
on both the previous links).

The nonlinear EOM are then converted to Fortran format and incorporated into
a Fortran routine for numerical integration. The payload mass and inertia are left in
symbolic form, to represent any rigid payload which the SRMS can carry. The sym-
bolic EOM are also linearized in Mathematica, creating a linear model parameterized
by joint configuration and payload. The linearized model is ported to a Matlab M-file
for control design.

For the work presented here, the recursive formulation was used to create a full
three-dimensional model of the SRMS. The model included link bending and torsion
degrees of freedom, joint and base lumped stiffnesses, and payload mass and inertia
(Figure 2-1). Two bending modes per direction and one torsion mode per link were
included, to capture the SRMS dynamics to about 20 Hz. The Fortran code calculated
joint forces, consisting of Coulomb friction, motor back-EMF, and a simplified model
of the SRMS rate controller which included torque limiting (saturation). By changing
physical parameters, the same model can represent the Space Station Remote Ma-
nipulator System (SSRMS), the proposed mid-deck manipulator, and ground-based
test hardware.

The SRMS model was verified against the DRS. Figure 2-2 compares the SRMS
model to the DRS. The left axis plots the transfer function from shoulder yaw torque
to tip lateral displacement for the SRMS model (solid) and the DRS (dotted). The
arm configuration is (0°,90°, —90°), where the first angle is shoulder yaw, second is
shoulder pitch, and third is elbow pitch. First mode is captured within a percent,
and there is a 20% mismatch in second mode. The overall gain and features of the
transfer functions are very close. The right axis plots the transfer functions from
elbow torque to tip vertical displacement. As before, the overall features are close.

Given the modeling simplifications used in the SRMS model, the degree of match

was fairly good. Further, the first mode, which the was captured very well, has the
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greatest impact on arm performance. Since the DRS has been shown by extensive

flight testing to be an accurate model, the SRMS model was considered acceptable

for the preliminary testing.

2.3 Controller Design

In the fifteen years since the original SRMS control design, many approaches have
been proposed. Both feedforward and feedback schemes have been investigated. The
primary advantage of feedforward control is that stability is not an issue. However,
there is no possibility of rejecting unknown disturbances. On the other hand, feedback
control can improve performance i1 the przssence of unknown disturbances, but stabil-
ity is an issue. It has been suggested that it may be best to use these complementary
techniques in conjunction. However, research into how to combine the techniques is
not well-developed. The results presented here will consider ouly feedback control.
Proposed flexible manipulator feedback control techniques include most of the
currently available linear and nonlinear design tools. Broadly categorized, they fall

into four groups, based on the degree of nonlinear information used in real time:

1). linear robust control, in which geometric nonlinearities are framed as
dynamic uncertainties[4, 65].

2). adaptive control, typically by estimating plant and/or controller parameters[2,
3, 44, 38].

3). output linearization/plant inversion, sometimes applied to the “rigid
body” degrees of freedom, with linear controllers to account for flexibility(8,
52]. Singular perturbation is a formal approach for coupling the lin-
ear and nonlinear controllers[5]. Tracking has also been achieved by
inverting outputs with stable zero dynamics[66].

4). gain-scheduling, often using linear controllers designed at a finite num-
ber of set points which are interpolated across the workspace[6, 18].

More recent formulations return a single, parameterized controller[28].
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These categories are arranged in order of increasing real-time usage of knowledge
of the nonlinearities. Linear control uses knowledge of parameter changes in the
design process, but the controller dynamics are fixed. Adaptive control assumes a
structure for the model, but does not use known information. Many of the nonlinear
techniques use nonlinear control for rigid body states which are measurable, but use
linear controllers for the flexible states. Gain scheduling allows controllers to be
tailored for both flexible mode and rigid body (inertia) changes. These approaches
were down selected to arrive at a reasonable number for comparison.

The preliminary down select for feedback controllers included ratings in four main
categories. First and foremost, maturity, with experimental results showing applica-
tion to two-link manipulators. Second, formulation complexity, to ensure that the
derivation of controllers for the three-dimensional arm would be tractable (analyti-
cally and numerically). This was a concern since most studies have been done in only
two dimensions. Third, implementation complexity, which included real-time compu-
tational requirements, special actuation hardware (e.g. link piezoelectric actuators),
and number and type of sensors (where simple sensors such as link strain are rated
higher than sensors such as 3D tip position). Finally, the ability to assess closed loop
stability was considered.

The results of the down select were a linear robust control technique, a variation of
rigid arm feedback linearization which used a robust linear outer loop controller, and
a gain-scheduled controller. These selections captured three of the four categories
shown above. Adaptive control was not selected, primarily due to the problem of
showing controller stability. The SRMS rate controller was used as a baseline for
comparison. It was not designed to add damping to the system, but to reject flexible
mode forces at the joints[67]. However, it can be evaluated as a separate controller
to represent the performance of the current system.

Note that the objective of the research is not to show that each controller is the
“best” within its category. For example, linear robust control design tools include
robust pole placement, robust Hs, H,, pu-synthesis, and so on. The performance

of the linear controller need only be representative of that group. Rather, the axis
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this work explored was down the groupings, in the direction of increasing real-time
knowledge of the nonlinearities.

The advanced controllers were all designed as outer loops to the SRMS rate con-
troller. This would be done on the Shuttle to ensure a safe mode in the event of
control system component failure, such as sensor failure. In addition, the rate con-
troller linearizes out joint friction, which can limit advanced controller performance.
They were designed to use the same sensor suite, consisting of angle encoders for
each joint and one strain gage per link to sense flexible mode response. The strain
gage is necessitated by the high gain on the SRMS rate controller, which makes link
modes unobservable at the joints. The metric used in the design process was average
settling time across the workspace, as evaluated on the linear model. The closed loop
eigenvalues of the linear model were used to assess stability of the closed loop system

across the workspace.

2.3.1 Linear Controller

The linear robust controller was designed using a combination of Sensitivity-Weighting
and Multiple Model (MM) robustification techniques{16]. The design procedure min-
imizes the H, position error of the end-effector. Sensitivity Weighting augments the
LQG weighting matrices to improve robustness. Multiple Model design applies the

same compensator to the arm at several angles:

o o0 R::z Rzui 2
J = ;ai J{ [ xz.T'u,T ] Rg‘ui R, :.1; dt (2.6)

where z; are the plant states, u are the commands to the rate controller, R,
and R,,, represent the desired performance level and control effort, respectively, at
the design point ;. R, is a cross-weighting. There is a coupled estimator problem
which is not reproduced for conciseness. Each plant model is created by evaluating

the linearized model at a different configuration:
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yi = C(6;)z; + D(6;)u (2.8)

The design models consist of the eighteen states in the pitch axes (nine generalized
coordinates).

The controller is designzd using a continuation procedure in which a Sensitivity
Weighted controller is designed for an initial angle. It is fed to the MM numerical
design procedure, iwith the nominal model and models on each side which are near
instability. As che MM algorithm stabilizes the outer models, they are moved to
greater angles. Additional models are placed at intermediate angles where modes
begin to go unstable. Once the controller is stabilized for the entire workspace, the
state weights (the R;;,’s) and o;s are iteratively tuned to give the best time domain
performance.

A drawback of this design procedure is that stability is only guaranteed for a linear
time invariant (LTI) plant, and is only guaranteed at the design points. In order to
stabilize the nonlinear robot model for all intermediate angles, many design points
may be needed. This will increase the time needed for the controller calculation. The
controller designed for the SRMS simulation using this technique will subsequently be
referred to as MMLQG or the MMLQG controller. It had 12 states, and was designed

on five models.

2.3.2 Anoproximate Feedback Linearization

The feedback linearization approach follows a procedure suggested by Khorrami[53].
The exact feedback linearizing controller for the flexible arm is not realizable without
bending and torsion actuation in the links. The Approximate Feedback Linearization
(AFBL) approach involves zeroing out the flexible terms in the equations of motion

to get an “equivalent” rigid manipulator under independent joint rate control:

M@©)d +C(9,6) = Ky (u - é) (2.9)

where the rigid states 6 are joint angles, and K, is the diagonal matrix of rate
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gains. The exact feedback linearizing controller for the rate controlled rigid system

is realizable as[68]:

u=0+Kj! (M(B)v +C(6, é)) (2.10)

Note the positive feedback of # and the K factor in Equation 2.10. The effect of
this term is to “undo” the rate control so that torques instead of rates are commanded
by the feedback linearizing controller. Applied to the rigid arm, Equation 2.10 creates
a system whose poles are integrators driven linearly by the new input v. The AFBL
method applies this controller to the flexible arm. This may reduce the dependence
of dynamic frequencies on configuration[53]. Note also the term C(6, ) which for the
SRMS is primarily the Coulomb joint friction model. Joint friction proved to be a
strong contributor to flexible mode vibration, since it prevented disturbances from
getting to the joints to be damped by the servos. Under rate control, the high gain
linearizes joint response in the presence of Coulomb friction. Under AFBL control,
the joint friction term had to be identical to the SRMS model’s joint friction to achieve
good performance. An accurate friction model will be difficult to achieve in practice.

A linear robust controller (solved using Equation 2.8), was designed around the
arm and feedback linearization controller to produce the input v. This controller will
be referred to as AFBL. It was designed using the continuation procedure, using four

plant models, and also had twelve states.

2.3.3 Gain-Scheduled Controller

The gain-scheduled controller consists of several individual MM /SW LQG controllers,
again solved using Equation 2.8, designed for the linearized arm at several design
points. The controllers are run in parallel. Between design points, the command to
the arm is generated from a linear interpolation of the commands generated by the

nearest controllers:

6 —0; 4_0i+1—0

Oiy1 — 6 v Oir1 — 6; it (211)

u=
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where the design points are at 6; and 6;,;, and u; and u;;; are the commands
generated by the controllers at those design points (the structure was suggested by
an adaptive aircraft flight controller described by Athans et al.[62]). Because each
linear controller need be stable for a smaller range of angles (#;_; to 6;,, rather than
+2° to —161°), each controller can achieve higher performance. The gain-scheduled
controller will be denoted as GSLQG. It consisted of six controllers designed at +2.4°,
—40°, —80°, —90°, —120°, and —140°. Each is twelve states.

The controllers were discretized and written to Fortran code, which was interfaced

with the nonlinear model.

2.4 Test Matrix

Once the controllers were designed and validated, the test matrix for comparison was

developed. Three considerations drove the selection of test moves:

1). minimize the number of free variables.
2). results should be as general as possible (maximum traceability to the
SRMS).

3). test moves should capture the essential features of operational moves.

These factors drove the preliminary testing to consider moves only in the pitch
axes, with a single payload. This configuration captured the fundamental geometric
nonlinearity of flexible manipulators, while resulting in dynamics which vary with
a single parameter, elbow angle. The specific moves during test were selected by
considering operational tasks of the SRMS.

The operational tasks of the SRMS break out into three main groupings. Tasks
like inspection, payload deployment, or payload retrieval and berthing in the bay,
require an accurate path to be followed. Tasks such as payload capture or parts
mating during construction require accurate placement of the tip. There is another
group of tasks which require rejecting tip disturbances, such as support an astronaut
performing manual assembly. This latter group was not considered in the tests being

reported.
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The path following performance of the closed loop system was evaluated by per-
forming a 25 foot vertical move out of the payload bay. The root mean square tip
position error was used as a performance metric. The mating performance was as-
sessed by measuring tip rise and settling times in response to a step command, at
many points through the workspace. Rise and settling times were calculated as the
period from the initial command to, respectively, the the end-effector entering, and
remaining within, a ball centered around the desired position. The ball had a radius
of 2% of the total move distance. A .05° step command was used, to avoid saturat-
ing the motors. All controllers were stable for larger steps, but the torque limiting
became the dominant effect in determining rise and settling times.

It was desirable to choose appropriate metrics for hardware, software, and human
factors costs. Hardware costs would normally include additional sensors. Since all
controllers in the current test use the same sensors, the figure is not relevant here.
Computational requirements also add hardware costs, representing GPC usage or
additional computer hardware needed by each controller. Computer requirements
were quantified using the number of operations per second executed by the controller
code. Since the absolute numbers are only meaningful for a given computer platform,
they are normalized by the MMLQG requirements to indicate usage relative to one
another. Software costs are expected to be primarily for debugging and validation,
and should be roughly proportional to the number of lines of code. Human factors
costs are nearly impossible to assess in a simulation study. The only cost quantified
was time delay. This plays a role in perceived arm responsiveness. The effect is
quantified in the rise time metric above.

These cost metrics were less than perfect, in that they did not allow the absolute
cost of each controller to be assessed. In the ideal case, a scale factor for each metric
would be found, to allow the total cost to be considered. For example, scale factors
of $X per line of code and $Y per instruction per second would allow the costs to
be combined and the total cost of each controller to be predicted. Nonetheless the

numbers do give an indication of relative costs.
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Figure 2-3: Settling time versus elbow angle for the tested controllers.
2.5 Simulation Results and Discussion

This section presents the results of the test matrix performed on the SRMS simulation.
For conciseness, the terms rate, MMLQG, AFBL, and GSLQG will refer both to the
controller and to the closed loop system with that controller applied. The meaning
will be evident from context. Figure 2-3 shows the settling times for the feedback
controllers as a function of elbow angle. Note that the SRMS joint coordinates are
defined such that 0° is straight, and a bent arm corresponds to a negative angle. The
rate controller settling times are shown with circles. The MMLQG times are plotted
as “x”’s. The pluses show the AFBL controller performance, and the asterisks show
the GSLQG controller. Discontinuities occur where slight changes in damping ratio
cause a cycle which is just grazing the target ball to move across the boundary.

The rate control settling times decreased substantially as elbow angle increased.
The MMLQG controller performed best near full extension, where it matched the
AFBL controller, with settling times increasing with elbow angle. AFBL had fairly
consistent performance across the workspace, but is only as fast as GSLQG near
—70°. GSLQG had the best and most consistent performance.

These results can be explained by looking at the tip position error at representative
angles. Rate, MMLQG, and AFBL control showed significant changes in performance
between —20° and —160°. Figure 2-4 is a plot of tip position errors in end-effector X
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Figure 2-4: X and Z tip position errors, for rate, MMLQG, AFBL, and GSLQG,
at —20° (solid) and —160° (dashed).

and Z (on the left and right respectively), under (from top to bottom) rate control,
MMLQG, AFBL, and GSLQG. The solid line shows the error at —20°, and the dashed
line the error at —160°. The 2% settling time criterion is shown by the shaded area.

The rate control error shows that settling time decreased with elbow angle because
the flexible mode frequency increased. This in turn occurred because the effective
inertia decreased. The damping ratio decreased at the same time, slightly negating
the gains. The LQG controller at —20° had a frequency of about 0.11 Hz and nearly
optimal overshoot. At the larger angle, the overshoot and slow settling indicate a
much lower frequency dominant mode. The AFBL controller at —20° did not have
a single dominant mode; there was a 0.22 Hz resonant mode and a real pole. At
—160°, there is larger overshoct but the frequency has not significantly increased.
The GSLQG plots show damped resonances from 0.19 Hz (at —20°) to 0.29 Hz (at
—160°), however the envelope of the responses remains similar, resulting in similar

settling times.
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Figure 2-5: Root loci, as elbow angle varies, of the linearized closed loop system
under rate control (top left), MMLQG (top right), AFBL (lower left),
and GSLQG (lower right). Roots at —20° are triangles, —160° are
circles.

An analysis of the closed loop poles of the linearized model can also help explain
Figure 2-3. In Figure 2-5, the loci of the dominant poles of the controlled system
are plotted for 5° increments in elbow angle, from 0° to —160°. The pole frequencies
are in Hz to enable comparison with Figure 2-4. Dotted lines show constant natural
frequency. Clockwise from the top left are the root loci of the system under rate
control, MMLQG, AFBL, and GSLQG. On each curve, poles at —20° are shown with
triangles, and at —160° with circles.

The rate control poles clearly show the change in frequency and damping ratio with
elbow angle. The time constant increases slightly as elbow angle increases, bending
the locus to the left. This corresponds to the decrease in settling time evident in
the time response. The MMLQG root loci are more intricate, showing two branches
corresponding to two pole pairs. The first branch goes vertically up as angle increases.

The second remains on the real axis except near maximum elbow deflection where the
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poles coalesce into a complex pair. The first branch contributes the resonant response
and fast rise time seen in the time response. The second branch contributes a very
slow component to the response, whose magnitude varies with elbow angle. At small
angles, the slowest real pole lies near a real transmission zero in the command to tip
position transfer function and is therefore almost unobservable. As angle increases,
the real pole moves away from the zero (and eventually into the complex plane),
which increases its observability and thus increases the tip position settling time.

The locus for the AFBL controller is yet more intricate. There are now three
branches. The first branch is isolated in the complex plane, while two pairs of modes
split and coalesce along the real axis. The additional branch is due to the positive
rate feedback in Equation 2.10. The rigid body poles of the plant which the rate
controller had pushed out to higher frequency, are now within the bandwidth of the
AFBL controller. The first branch, which contributes the fast resonance to the time
response, is leftwards and upwards compared to the corresponding MMLQG branch.
This gives AFBL higher damping and a faster settling time. At the same time, poles
on the two branches near the real axis remain “near” transmission zeros (close enough
to make them unobservable in the output).

The GSLQG locus shows even more complexity. There is a branch far into the
left half plane, corresponding to the complex branches in MMLQG and AFBL. A
second complex branch clusters near 0.1 Hz, and two branches lie near the real axis.
The first branch is the dominant component of the time response. It moves vertically
with elbow angle, showing how the time constant, and thus the settling time, remain
fairly constant, while the damped frequency changes. The 0.1 Hz branch moves with
the locus of a complex zero pair, making it unobservable. Again, the real axis zeros
are close enough to real zeros to make them unobservable also.

Taken in aggregate, the four root loci in Figure 2-5 show how increased controller
complexity allows finer ability to locate the closed loop poles. The rate controller poles
do not vary drastically, but the controller is not pushing for the best performance.
The MMLQG poles vary considerably with elbow angle. The AFBL poles cluster
more tightly, showing that AFBL has better ability to place the closed loop poles.
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Figure 2-6: Tip trajectory of the 3D model, under GSLQG control.

The GSLQG poles show the tightest clustering. The ability to place the closed loop
poles in the face of elbow angle changes is crucial to achieving good tip positioning
performance. In order to achieve good average performance, the MMLQG controller
necessarily has too small a gain at small angles and too large a gain at larger angles.
Additionally the compensator dynamics must be robust to large plant pole shifts.
The AFBL controller compensates for inertia changes, but since the dynamics are
fixed, it cannot move closed loop modes on top of zeros - it must add damping to
all modes. The GSLQG controller can vary its dynamics, so it can place closed
loop modes over zeros to make them unobservable. This allows higher damping and
increased frequency in the observable modes.

For the sake of completeness, the controllers were applied to the 3D nonlinear
model for comparison with the 2D model. Only the pitch degrees of freedom were
fed back. Due to the complexity of the model, the step response test would take
significant computation time and was not repeated. The slew test was repeated, and
the performance agreed with the 2D nonlinear simulation. The performance during
the slew test is plotted for the best controller, GSLQG, in Figure 2-6. The vertical
axis is distance in feet over the payload bay. The horizontal axes are tip position
errors in inches. Note the gain-scheduled controller keeps the tip within one-half inch

of the desired path.
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Table 2.1: Feedback Controller Performance and Cost on the SRMS Simulation

Controller ts tr | €rms # Reomp

[sec] | [sec] | [in] || lines | [sec/sec]
Rate 372} 5.8]|16.10 0 0.0
MMLQG || 100| 65| 1.25] 181 1.0
AFBL 56| 39| 065 212 1.3
GSLQG 43| 24| 058 512 4.0

2.6 Summary and Discussion of Results

The test results are summarized in Table 2.1. The performance results are reported as
average settling and rise times in seconds (ts and ¢, respectively) for the step inputs,
and RMS error in inches (e,ns) for the path-following maneuver. Costs are reported
as number of lines of code, and normalized real-time computational requirements
(Reomp).

The settling times for the mating maneuvers show that performance improved
as more information about the nonlinearity was used. The baseline rate controller
settled in an average time of 37 seconds. The average settling time for the MMLQG
controller was about 26% of the baseline time. AFBL performed about twice as well
as MMLQG, averaging 15% of baseline. GSLQG averaged 12% of baseline.

Differences in rise time are not as dramatic. The MMLQG controller actually
showed 12% slower response than the baseline. The AFBL controller was 33% faster
than baseline, and GSLQG was 58% faster. These improvements were not inconse-
quential, but the baseline controller already had reasonably fast response. The rate
controller is high gain, so the arm joints move rapidly to the correct angles.

The positioning error in the path following test also attests to the value of addi-
tional nonlinearity information. The baseline error was 16 inches (this was mostly
lag error along the move direction). The MMLQG controller error was 8% of the
baseline error. AFBL error was 4% of baseline. GSLQG was slightly better, at 3.6%
of baseline.

These results show that the greatest performance is achieved for the greatest

amount of real-time knowledge of the nonlinear terms. GSLQG had the highest per-
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formance, followed closely by AFBL. Both were roughly twice as good as the MMLQG
controller. However, performance improvements are only part of the story. The cost
metrics show a dramatically different aspect. The cost increase from MMLQG to
AFBL was minimal, consisting of 17% more code and 1.33% more calculation. The
cost of GSLQG was much greater than either MMLQG or AFBL, requiring 2 to 2.8
times as much code and 1.3-4 times as much real-time computation.

Based on these results, it is clear that given unlimited resources, a gain-scheduled
controller offers the best absolute performance among the controllers tested. Unfor-
tunately, there is a stiff penalty to be paid in terms of computer resources. If the goal
is to maximize the performance achieved per unit cost, the AFBL controller appears

to offer the best return.

2.7 Conclusion

Advanced control can improve the performance of structurally flexible manipulators.
However, sensor and computer integration and software validation necessary to im-
plement such controllers on space based manipulators such as the SRMS will be
expensive. The present research has shown that there is an element of decreasing re-
turns, and that the costs for a more advanced controller can increase drastically. The
present investigation showed that a 30% increase in cost (from MMLQG to AFBL)
gave a factor of 2 improvement, but implementing GSLQG at triple the cost of MM-
LQG gave only a factor of 2.2 improvement. This improvement may not warrant the
extra expense. In general, it would be greatly beneficial to compare controllers, and
quantify the cost as well as performance, so that the best controller per unit cost can
be determined. One can picture a graph with perfcrmance on one axis, and cost on
the other, and the various algorithms as data points.

In addition, only one testing axis was explored (degree of elbow angle information
used in real time). In actuality, there are many other axes to be tested, such as
different sensors and interfaces. For example, tip position feedback has long been

recognized to be the best sensor, however, one can measure tip position several ways:
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using vision sensors, integrated tip accelerometers, or distributed sensors. Each has
different advantages and penalties. If the performance benefit of each sensor could
be determined without actually installing it on the SRMS, a better use of resources
could be made.

In summary, the gain-scheduled LQG controller is found to have the best perfor-
mance of the controllers evaluated. However, the design approach which was used
involved a number of setpoint controllers. This increased design effort, as many con-
trollers were needed. In addition, a stable scheduling scheme must be created in an
ad hoc manner. Stability for the closed loop must be tested in an exhaustive fashion
using time simulations of the controller applied to the nonlinear plant. Finally, the
controller real time computation requirements were increased by the multiple setpoint
controls, which needed to be run concurrently.

The next chapter will examine an approach to gain-scheduled controller design
which addresses these issues. First, a single controller is designed using linear algebra
tools. Stability for the joint workspace is assured using multivariable stability criteria
\specifically, small gain theory). Finally, real-time computation is reduced due to the

availability of a parameterized, time-varying controller.
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Chapter 3

Control Design

The previous chapter has demonstrated that there are performance advantages to
be gained by implementing a gain-scheduled controller for geometrically nonlinear
flexible structures. It then becomes necessary to examine hew best to design such
a gain-scheduled control. The present chapter addresses this topic. First, a suitable
framework for gain-scheduled design is identified from the robotics control and robust
control literature. Next, the appropriate description of the manipulator performance
objective is studied. This motivates the development of a specific control design
algorithm, which is the subject of the bulk of the chapter. Finally, the proposed
method is evaluated on a simple example to identify its characteristics and determine

its suitability for control of flexible manipulators.

3.1 State of the Art

Numerous approaches to the control of manipulators have been examined in the
literature. Most of the experimental results for two link manipulators which are
reported, involve the use of some type of modern linear state space design technique.
Either a single robust controller is designed for the entire workspace[49, 2, 40, 4, 39],
or a set of linear controllers are designed for various design points, and an ad hoc
scheduling scheme is used to gain-schedule between the controllers[41].

Many factors contribute to the attractiveness of linear design tools for configuration-

o7



dependent systems. First, linear state space controllers have been shown experimen-
tally to work well with high-order flexible systems. State space design tools offer
a consistent and well-understood means of stating performance objectives; in other
words, modern control design algorithms offer useful “handles” to the controls en-
gineer. Also, linear techniques offer many useful analysis tools, including frequency
domain tools, to determine stability as well as indications on how to modify the
controller parameters to achieve stability.

Finally, control of parametrically uncertain systems has been widely studied in the
linear controls literature. Configuration-dependent nonlinearities can be described as
parametric uncertainties, opening up the entire field of linear robust conti:* == poten-
tial candidates for design. The previous chapter has described one method for writing
the EOM of the geometrically nonlinear structure in a linear form with a recogniz-
able parametric “uncertainty” block. The present chapter will discuss approaches
to determining the control design algorithm for such a system, with emphasis on a
particular algorithm.

The primary disadvantage of such linear methods is the lack of a simple, sys-
tematic linear design tool to compute the single controller, or the set of controllers.
Such questions as “how many controllers are needed” remain open. As a result, the
design process is a highly iterative process. Typically an inner automatic iteration
loop is used to solve for the robust controller. Then an interactive outer loop must
be performed by the designer to determine if the number of set points and linear
controllers is sufficient. There is no simple check to determine beforehand whether
the resulting controller will be computationally feasible in real time. Finally, there is
no systematic way to determine stability of the resulting closed loop system (short of
exhaustive simulation).

Recent extensions to robust contro! offer the opportunity to use linear design tools
in achieving specified levels of performance with time-varying systems. The remain-
der of the chapter will discuss one such approach. First, the manipulator performance
objective will be examined using a simplified model, and found to be amenable to

expression in a small-gain framework. This suggests the use of a small-gain robust
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Figure 3-1: Flexible manipulator typical section.

control method to account for the stability objective. One such algorithm from the
current literature is developed[28, 29]. The algorithm consists of a system of Linear
Matrix Inequality (LMI) conditions, whose feasibility can be checked using standard
Matlab©tools. If the conditions are feasible, a numerically reliable algorithm for
determining a controller which produces that closed loop system exists. Some ex-
tensions to the basic algorithm are discussed. Finally, the algorithm will be verified
on the sample problem. Characteristics of the solution method and of the resulting

gain-scheduled controller for the manipulator will be discussed.

3.2 Performance Metric

The control problem is to accurately position the endpoint of the manipulator. Gen-
erally, the desire is to move the endpoint to the desired position as quickly as possible,
with as little residual motion as possible. This is a transient time domain metric. An
appropriate metric is the difference between the desired and the actual tip positions.
A simple single degree of freedom model of a flexible manipulator can be used to
illustrate the problem. Such simple models, sometimes referred to as typical section
models[69] after those used in aerodynamics, are commonly used to give insight into
the behavior of complex systems[70, 71, 72, 18].

The robot typical section consists of a spring-mass system (Figure 3-1). The spring
represents the flexibility of the link, and the mass the combined mass of the link and
the payload. The left end of the spring moves a commanded distance §, representing

the angle command fed to the manipulator joint servo. The EOM is

PRLINNLY, (3.1)
m m
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Figure 3-2: Tip position error vs frequency for the typical section: nominal (solid

line), low mass (dotted line, higher frequency pole), high mass (dotted
line, lower frequency pole).

The performance metric which is being proposed consists of the error e between the

commanded and the actual position:
e=z—9 (3.2)

The frequency response function from the command to the error is shown in Figure 3-
2. It is small at low frequency, because the mass follows the command. At the natural
frequency the error is large since the mass is oscillating about the desired position. At
high frequency, the inertia of the mass holds it in place, so the error transfer function
goes to unity. The mass is essentially isolated from the command by the spring.
The transfer function from command to error is in fact the sensitivity[73]. Note

that Bode’s integral must hold:

/ ” log(S(yw))dw = const (3.3)
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That is, decreasing the error over some frequency range will increase it over other
ranges (“push-pop”). In other words, performance cannot be arbitrarily improved.
A frequency domain performance criteria allows the error to be reduced over some
reasonable working bandwidth, perhaps set by the bandwidth of the human opera-
tor. At the same time the controller can be forced to roll off at high frequency, to
avoid unstable interaction with unmodeled structural modes (“spillover”[69]). Note
also the well-understood role of non-minimum phase zeros in limiting the achievable
performance(74].

The robot control problem therefore resolves into minimization of the sensitivity.
Performance can be improved by increasing the damping in the system, which de-
creases the large error at the natural frequency. The settling time for the system will
likewise decrease. Once the mode reaches critical damping, time domain performance
can only be improved by shifting the mode higher in frequency. This will cause rise
(and settling) times to decrease.

The robot manipulator performance metric therefore is reasonably expressed as
a frequency domain metric. Caution is required about which inputs and outputs are
used to capture the motion of the tip. Often in the literature[74], the performance
outputs are the positions of the end of each link, relative to the base of that link. This
is convenient since the performance inputs and outputs are independent of configura-
tion. However, a 3D manipulator can rotate in torsion at the elbow. Such a motion
is not observable to an elbow position sensor, and is not controllable by the elbow.
Hence the link end-point positions are not appropriate metrics for a 3D manipulator.
The set of performance outputs must include the torsion at the end of each link.

The choice of performance metrics for the 3D manipulator will be explored further
in Chapter 6. The remainder of this chapter will be devoted to a time-varying robust
control approach. The algorithm will be applied to the typical section problem of this

section, with the proposed sensitivity metric.
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3.3 Mathematical Preliminaries

This section defines some terms and mathematical operations which will be needed
to develop small-gain time-varying robust control design method. The terminology
will be consistent with Apkarian and Gahinet[29].

The general form for a Linear Time-Varying (LTV) plant is

& = A(t)z + B(t)u (3.4)

y = C(t)z + D(t)u (3.5)

In certain cases the dynamics depend linearly on a set of time-varying parameters.

Such plants are termed Linear Parameter-Varying (LPV), and have the form
z = A(0(t))x + B(0(t))u (3.6)

y = C(6(t))x + D(6(t))u (3.7)

where A, B, C, and D are linear fractional functions of 8. Such systems allow the use
of small gain LTI techniques. Nothing of 8 is known except its range of variations.
The Linear Fractional Transformation (LFT) is defined for appropriately dimen-

sioned matrices M ana K. The lower LFT is

Fi(M,K) = My, + MjpK(I — My K)™' My, (3.8)
and the upper LFT is

Fu(M,K) = My + My K(I — M K) ™' My, (3.9)

Note that the LFT essentially denotes a feedback to M through K.

The H,, norm for a stable, real rational transfer function is defined as
1G(5)llo = suPud(G(jw)) (3.10)

where &(M) denotes the largest singular value of the matrix M. The H;induced norm

of a general operator T will also be denoted

Tu
“T”oo = SUpuELz ””u”” (3.11)
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Figure 3-3: Gain scheduled controller setup, with disturbances w, performance
outputs z, measurements y, and control inputs u. Parameter varia-
tions © are also measured by controller K.

For real symmetric matrices M, M > 0 stands for ”positive definite” and denotes that

all eigenvalues are positive. M < 0 is "negative definite” and indicates all eigenvalues
T

are negative. For M = MT > 0, M 2 =M:2 > 0is the unique positive definite

square root. The Schur complement of the matrix inequality

P R
>0 (3.12)
RT Q
is
P>0 (3.13)
P—RQ'RT >0 (3.14)

Finally ker(P) denotes the null space of the linear operator associated with P.
With these concepts and definitions, the small-gain design framework can be de-

veloped.

63



3.4 LPV Gain Scheduled Control Setup

The gain-scheduled closed loop system which is desired is shown schematically in
Figure 3-3. The linear plant model, P(s), has disturbance inputs w, performance
outputs z, control inputs u, and sensors y. The time variation of the plant arises
from the feedback of the auxiliary variables ¢ through a time-varying matrix operator
©. The operator impinges on P through the inputs p.
The time-varying operator © is a function of a set of parameters (0,(t),...,0.(¢)).
O has a structure associated with it, which describes how the time-varying parameters
appear. Typically the structure will be block diagonal, with the parameters appearing
on or near the diagonal of ©. In the present work, © will be restricted to be diagonal:
0.I,, --- 0
o= Do (3.15)
0 - 61,
where I, denotes an identity matrix of size r;. In other words, each parameter 6;
is repeated r; times. This restriction will simplify the representation of some of the
matrix variables in the control design algorithm. It does not reduce the generality of
the result as the plant model P can always be rearranged to produce a diagonal ©
block. The set of operators with structure 3.15 is denoted by
01, --- 0
A= : ..k ,0, €R (3.16)
0 - 6,I,
Adopting the terminology of linear time invariant (LTI) robust control, A is referred
to as the uncertainty structure, and © is the uncertainty block.
The time-varying plant model consists of the linear system coupled to the time-

varying parameters, and is written

q Py Py Py P
z| = | Po Pu P w (3.17)
Y Py P, Py u

p = Og (3.18)
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Note that this is an upper LFT, F, (P, ©). Equivalently it is a feedback of the outputs
g to the inputs p, through a time varying gain.

The gain-scheduled controller which is sought, K, is also operated on by the
uncertainty block ©. The parameter variations operate on the controller signal gy,

and impinge on the controller through the input p;. The time varying controller has

the form
u K, K
— 11 16 ) (3_1 9)
qk Ko Koo Pk
pr = Ogy (3.20)

The signals to the gain-scheduled controller, py and gk, will be referred to as the
parameter measurements.

In the absence of the controller parameter measurements p; and gx, the setup is the
same as for conventional LTI small gain control design (except for the time-varying
nature of the uncertainty block). However, the presence of what is essentially a
measurement of the disturbance, changes the problem. The gain-scheduled controller
consists of an interconnection of K with ©. Due to this interconnection the controller
is time-varying (due to the time variation of ©) and thus is not amenable to LTI
analysis. It is necessary to restate the problem in a form which allows the use of LTI
tools.

The modified design plant is generated based on an augmented uncertainty block.
The system block diagram is re-drawn as in Figure 3-4. The original delta block is
augmented with a copy which interconnects with K. Note that the same disturbance,
control, and uncertainty signals (w, u, and p respectively) act on the plant P, and
the same performance outputs, measurements, and uncertainty signals (z, y, q) are
created. However, the parameter measurements p; and g are now represented in the
plant model, with a direct feedthrough path from the measurements to the controller
inputs and outputs (the dashed lines leading to and from the lower block of the
uncertainty block). The dotted line around P and the feedthrough path represents the
LPV design model P,. It has been augmented with inputs and outputs representing

the uncertainty measurements. The input/output relationship for the augmented
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K(s)

Figure 3-4: The re-drawn plant for the gain-scheduled controller design problem,
showing the design plant (dotted box) augmented with the parameter
measurements (dashed lines).

plant is L L
q p
k 0 0 I Pk
z |=10 PO w (3.21)
i I 0 0 u
| Pk | | 9k

From Figure 3-4, the controller for the augmented plant is LTI, and can be treated as
a standard small-gain design problem. Further, as will be shown, the block-repeated
structure of the augmented uncertainty block alleviates certain convexity problems
associated with the solution of the scaled H., design problem. Specifically, for the
gain-scheduled controller the design equations can be shown to be equivalent to a set
of Linear Matrix Inequalities (LMIs) in a set of design variables. The implication
is that the equations are convex, and a globally optimal solution can be found in a

straightforward manner.
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3.5 State Space Realization

The nominal design plant can be realized as the state space system

T A By B, B, T
- Cp Dy Dy, D,
q _ 6 Lge Lp Lg2 p (3.22)
z C, Dy D, D w
| Y | C2 Dy Dy Dy | | u |

with state variables x € R, ¢ € R", , u € R™, y € RP?. Following Apkarian
and Gahinet[29], the performance inputs w and outputs z are the same dimension
(z,w € RP'), p; being equal to the larger dimension of the two. This is not gen-
erally the case for the original plant model, but may be achieved by zero-padding
the plant appropriately. As with the restriction to the diagonal A block, this step is
taken to reduce the notational burden in carrying through the scaling matrices. The

augmented plant realization is

(i| [A 0B B B o|[z]

o 00 0 0 o0 I||m

7| _ Co 0 Dgg Dg Dy 0 p (3.23)
z Ci 0 Dy Dy Dy O

Yy C2o 0 Dy Dy Dy 0 u
| 07 0 0o 0 0]|a]

with the parameter measurements py,qx € R™. The parameter measurement di-
mension 7. is unknown, and will be determined during the problem solution. The

controller is realized as

Tk Ak Byki Bke Tk
u = | Ck1 Dgu Dk Yy (3'24)
qx Cko Dker Dkog Pk

with z € RF, where again k is unknown and will be determined in the course of the

problem solution.
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3.6 Scaled Bounded Real Lemma

The Scaled Bounded Real Lemma is used in a mathematical framework termed small
gain theory[75]. The framework hinges on the ability to bound the input to output

gain of a closed loop system. The bound is expressed as an H, norm. Given

V(z) >0 (3.25)
and given a scalar 7 for which
V4272 —~vwTw<0 (3.26)
then
”i“ < (3.27)

Proof: Integrate Equation 3.26 from 0 to oo, then
lzll; = 7? llwllz < 0 (3.28)

That is, v is an upper bound on the worst-case norm of the system.

Small gain theory allows an H., bound to be used to analyze the stability as
well as the performance of a system|[76]. Small gain theory states that if the ., gain
through the uncertainty block is bounded, the closed loop system will always be stable
in the presence of appropriately bounded uncertainties[75]. Through appropriate
malipulations, the same tool can be used to synthesize a controller which meets
the performance criteria while stabilizing the plant under all allowable uncertainties.
Since the bound on the size of the uncertainties is set by the smallest value of the
Ho norm <, matrix-valued scalings L on z and w can be used to reduce the size of
the minimum ~ which can be found[77]. The criteria for these scalings is that they

lie in the set La, defined as
La={L>0:LO=0OL,vO € A} (3.29)

In other words, the quantities 27 Lz and wT Lw are always positive, and the scalings
commute with the A block. These concepts are captured in the Scaled Bounded Real

Lemma.
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Lemma 1 Bounded Feal Lemma:

Given a transfer function with state space realization as in Equation ¥.22, a pa-

rameter structure A, and an associated scaling set La, the following statements are

equivalent:

1. A is stable, and there ezists L € Lp such that

|LY? (C(sI = A)"'B+ D) L2 <«

2. there exist positive definite solutions P and L to the matriz inequality

ATP+PA PB cT
BTP —-yL DT <0
C D —yL!
Proof: Assume A is stable. Given the Lyapunov function
V(z) =2TPz >0

By Equation 3.26, vy represents a bound on the norm if

V+2Tz2- v?wTw < 0

Since
) z
i=[4 B] .
'rx-
:=|c D] H

the inequality can be written

T -
T ATP + PA PBL-: N
w -3BTp 0

CTLC CTLDL-% |
L=:DTLC L™:DTLDL™% |

o) (o]
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Pre-and post-multiplying by a positive definite matrix does not change the validity

of a matrix inequality. Pre- and post-multiplying Equation 3.36 by
I 0
. (3.37)
0 Lz

ATP+PA+C"LC PB+C'LD |
(PB+CTLD)T DTLD —~2I

produces the inequality
(3.38)

Using Schur complements this can be rewritten
ATp PB (7
(PB)YT —4*L DT [ <O (3.39)
C D L

Redefining the scaling matrix L to be ,—lyL, the result holds:

ATp PB (T
(PB)YY —yL DT <0 (3.40)
C D —yL!
The Scaled Bounded Real Lemma can be used to analyze the block-repeated
uncertainty structure in Figure 3-4, and equivalently Equation 3.23. The result will
hinge on identifying the uncertainty scalings which commute with the block-repeated

uncertainty structure. This set can be defined as

L, L
Laga = { l: ; 2 :I >0:L;,L3 € La and L,© = OL,, VO € A} (341)

where the aggregate scaling matrix Laga must be positive definite. The off-diagonal

block L, need not itself be positive definite, thus may not be in the set La.

3.7 Scaled H,, Synthesis

The treatment by Apkarian and Gahinet[29] is straightferward. The following deriva-

tion will be presented consistent with the notation in that work, with an error in the
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sufficiency conditions rectified. Given a plant with disturbances w, performance out-

puts z, controller inputs « and sensor outputs y with state space realization:

& = Az + Byw + Byu (3.42)
z = Ciz + Dyyw + Dyu (343)
Yy = CQQI + D21'U) + D22u (344)

The Scaled Bounded Real Lemma can be used to formulate a controller which
achieves a given level of performance (if one exists). Start with a realization for the

(currently unknown) closed loop system

Agq Bu _ Ag + BQC By + BQD», (3 45)
Ca Da Co +D122C D1y + D120Dy .
where the plant is composed of the open loop plant, augmented by appropriately

dimensioned zero and identity matrices:

[ 4 0
A, = (3.46)
00
W
Bo=| ' (3.47)
0
G = | ¢ 0] (3.48)
T
B = 2 (3.49)
| L o
(0 I, |
C= ¢ (3.50)
L 02 O .
D=0 Dm] (3.51)
[ 0o
Dy, = (3.52)
I Dy

The subscript & denotes the compensator order, which is unknown, as is the compen-

sator realization

Ax B
Q= K Dk
Ck Dk
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These quantities must be determined by the synthesis algorithm.

The problem is to find a compensator for which
|L72(C(sI — A)'B+ D) L2 < (3.54)

in other words, for which the norm from disturbance to performance is below some
specified value. The Scaled Bounded Real Lemma can be applied to the plant data,

such that if there is a symmetric positive definite X,; for which

Az;Xcl + XclAcl Xcchl CT

cl
BIX, -yL DT | <0 (3.55)
Ccl Dcl —7L—1

there is a closed loop system for which Equation 3.54 is true. This can be re-written

ATX g+ XaAo XuBy, CF

BT X, —-vL DI +

Co Dy —yL™!
X.B
0 |e[c pu o] +
Dy

CT

DL, |07 [ BTX. 0 DE, | <0 (3.56)

0

Defining the matrices ¥, P, and @, Equation 3.56 can be written
U+ PIOQ+QTQTP, <0 (3.57)

This is a matrix inequality in the unknowns X, L, and Q. It is nonlinear in L, X,

and €. The dependence on 2 can be removed using the Elimination Lemma, which
states that Equation 3.57 has a solution if and only if

WE IWp, < 0 (3.58)

Wa¥Wo < 0 (3.59)
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with Wp, and Wy the null spaces of P, and @, respectively:

PWp, =0
QWo =0
Note that the matrix P; is
Xa 00
P.=[8" 0 DL ]| 0 10
0 01

so that Equation 3.60 can be written

Xa 00
PWp,=P| 0 I 0|Wp, =PWp=0
0 0 I
Equation 3.58 can be written
X310 0 X' 0 0
WEl o 1 0|¥| 0o 10]|<0
0 01 0 01

and with the definition
AXG '+ XJ'AT Xa X3'CT

¢ = By —-vL  Dfj
CoXc_ll Du —’}’L—l

the conditions Equations 3.58-3.59 can be rewritten

WISWp < 0
Wg\IlWQ <0

where the outer factors are now functions of known plant data.

(3.60)
(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)
(3.67)

The closed loop Lyapunov matrix (and its inverse) can be partitioned conformably

with the closed loop plant

s N| [ r M
Xcl= ,Xc[+
NT E MT F
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Equations 3.66 and 3.59 become

[ AR+RAT AM B, RCT |
o MTAT 0 o0 M'CcT
WP WP < O (3.69)

BT 0 —yL DY,

| CiR CiM Dy -—")’L—l ]

[ ATS+SA ATN SB, CT |
NTA 0 NTB, 0

w3 Wo<0 (3.70)
BTS BfN —-yL DY
| Cl 0 Du —’YL_I
Turning to the null spaces Wp and Wy, the plant data imbues them with a particular
structure:
0 A
0 I 0 O 0 0
PW, = =0 (3.71)
BT 0 0 D% I 0
0 P,
0 @
0 I 0 O 0 0
QWq = =0 (3.72)
C> 0 Dy O 0 I
| @5 0]

The zero rows in the null spaces appear conformably with the compensator states.
Essentially the zeros arise because the compensator states are known. Applying
Equations 3.71 and 3.72 to Equations 3.69 and 3.70 amounts to cancelling the second

row and column. Re-ordering rows and columns, and defining
J=L" (3.73)

these become

AR+RAT RCT B,

NI CiR ~vJ Du |Nr<O (3.74)
Bf DY —4L
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ATS+SA SB, CT |

NT| BTS —4L DT, |Ns<o (3.75)
C, Dy, —vJ ]

| BY D o|Ne=0 (3.76)

[ Co Dy 0 Ng =0 (3.77)

The matrices R and S must be related such that there is a matrix X, for which

Equation 3.68 holds. This can be insured with the matrix constraint

R I
I S

These conditions are identical to Equation 3.57. However, while the latter is not

>0 (3.78)

linear in the matrix unknowns X, and L, the above are linear in R and S. However,
the inequality condition in Equation 3.73 is non-convex since it is nonlinear in the
matrix variables. However, as the next section will show, if the parameter variations

are measurable, the problem reduces to a convex one.

3.8 Gain Scheduled H., Synthesis

The augmented plant defined in Section 3.5 is considered. Perform the following

substitutions, from the augmented plant data,

0
Ci—= | G |, Bl‘*[ﬂ By Bl]
G

Cg—)lczjl, B2—+[32 0]

0
0 0 0 0 I
Dll - 0 Dag Dol ) Dl2 — Dog 0
0 Dla D11 D12 0
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0 Dy D Dy, 0
D21_’i: 20 21:|, Dﬂ_)[ 22 ]

I 0 0 0 0

L, L, 0 Jo J 0
Lo | Ly 0|, J=|JF 4 0

0 0 I 0 0 I

Again partition the null space

[ P, ]
[Bg" 0 DI D};] o | _, .19
0 I O 0 Py
L P22 .
- o :
[Cz 0 Dq D21:l 0 | _ 0 (3.80)
0 I 0 0 Q21
| Q2 |
where
P
| B D DL || Pu| =0 (3.81)
P |
@ |
[Cz Dy D21] Qa | =0 (3.82)
Q22 |
(3.83)

Turning to Equations 3.74-3.75, Schur Complements are used to reduce them to

NI | AR+ RAT + 1B,JB, RCT +1B,JDY, | Ny <0 (5.84)
| (RCT +1BJDN)T —4J+1DyJDY |

T | ATS + SA+1CTLC, SBi+1CTLDy | Ne <0 (3.85)
| (SBi+1CTLDy)T  —yL+iD{|LDy |
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Performing the substitutions 3.79 and deleting the row and column which are multi-

plied by zero produces the following LMIs

AR+ RAT+
},(BoJ;;Bo + B, BT)
CoR+
%(D99J3B{ + Dy BT)
CiR+
:l;(DstBg' + D BY)

ATS + SA+
S(CTLsCy + CTCh)
B S+
L(DJLsCy + DT,Ch)
CTS+
L(D}LsCy + DL, CY)

sym.

—yJa+
:ly-(DgoJ;gDZ; + Dang‘l)
—yI+

5(D19J3Dgg + Du D)) 2(DreJs DYy + DuDYy) |

sym.

—vL3+
%(D%L;;Daa -+ D%Dw)
—yI+

5(Dg1LsDgo + DI\ D1g) 3(DjyLsDer + D, Dur) |

where the matrices are symmetric. The condition

Ly I
>0
I U

Nr <0

(3.86)

Ng <0

(3.87)

R I
>0

(3.88)

(3.89)

ensures that a matrix L can be constructed such that Equation 3.73 holds[29)].

The inequalities in Equations 3.86-3.89 are sufficient conditions for the closed loop

inequality, Equation 3.57, to be satisfied. The matrix variables are R, S, L3 and J3,

each of which appears linearly in the inequalities. The feasibility of these conditions

can be readily determined using available Matlab®© solvers.

Note that the H,, bound 7 no longer appears linearly in the inequalities, in con-

trast to the conditions given in Reference [29]. One consequence is that the Ho

performance cannot be explicitly minimized.
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3.9 Computation of the Controller

The sufficiency conditions return a quadruple (R, S, L3, J3) for which Equation 3.57
holds. The final problem is to determine a controller realization. The algorithm given
in Reference [29] is straightforward and will be reproduced.

First compute the Lyapunov matrix X. Begin by computing via Singular Value

Decomposition two matrices M, N for which
MNT =1 - RS (3.90)

then compute X as the unique solution of

I R S I
Xcl = (3-91)
0 MT NT 0
Next compute L and J,using the same SVD approach, such that
L, L * ok
L=|""1 ?|s0 L= (3.92)
Lg L3 J3

where the starred elements are matrix-valued variables such that the inverse relation-
ship holds. Note, however, that the SVD must be performed on each block of L3 and
J3, partitioned conformably with the A block.

Next form the matrices

, J=L"1 (3.93)

L 0
L=
I:O I

and solve the LMI Equation 3.57 in the matrix variable Q, with X, and £ known.

The inequality condition is reproduced below.
Xa O Xa O
v+ | 74 T | PTag+qQTaTp | T (3.94)
0 I 0 I

with

A?,"Xd + XaAo XuaBo Cg

v = BIX, —yL DY (3.95)
Co D, —J
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P=|RBT o 'Dg‘l ] (3.96)

-

=loc Dm] (3.97)
Ar By, By,

Q = Cky Dkyu DkyO (3-98)

Cka Dkau Dkoo

Note that, as the condition is an inequality, solutions can range within an entire half-

space. If a particular solution is desired, the least-norm solution can be found[78].

3.10 Special cases

The LMI conditions Equations 3.86-3.89 are existence conditions, with an entire set
of possible solutions. Some particular solutions may in some circumstances be de-
sired. Three particular types are considered: H, optimal control, and constant gain
feedback, and LTI controllers.

The #H, optimal controller may be desired, for example in order to achieve the
minimum state cost for a particular control cost. As noted above, any parameter
which appears linearly in the feasibility conditions can be considered a matrix variable;
that is, can be allowed to vary. The inverse of the Ho, bound -y appears along with ~,
hence it is not a linear parameter and a direct H, optimization cannot be performed.

Reduced order controllers are often of interest. Apkarian and Gahinet identify the
condition

rank {I — RS} <k (3.99)

as a condition for the existence of a controller of order ¥k < n (n is the system
order)[77]. This result follows because the reconstructed closed loop Lyapunov func-
tion, Equation 3.91, will be of order k£ + n. They note that the condition represented
by Equation 3.99 is nonconvex. Nondynamic controllers correspond to solutions R
and S for which

R=8"" (3.100)

In this case X, = S and the compensator order £ = 0. This can be achieved with
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the linear cost constraint

R I
Jeg = tr =tr{R} + tr {S} (3.101)
I s

which makes all the eigenvalues go to 1, if such a solution lies inside the feasible
solution space. Otherwise controller order is minimized. Since this cost is linear in
the matrix variables, it is convex. It does not allow the controller order to be directly
specified. However, in practice it is noted that control and performance weights can
be traded against System order (the tighter the performance bounds, the higher the
system order).
Similarly, the cost
Jorr = tr {Jz} + tr {L3} (3.102)

will move toward feasible solutions for which
J3 = L3! (3.103)

and r, = 0, corresponding to a controller which does not measure the parameter
variations. This is beneficial because the controller calculation involves a matrix

inversion, which is computationally costly.

3.11 Control Design Example

The gain-scheduled design approach is used to control the sample problem discussed
in Section 3.2. The stiffness parameter K is taken to be 1. The mass parameter
m is variable, representing configuration and payload changes. The mass ranges
between 1 and 4. The System natural frequency thus varies by a factor of two, which
is representative of the SRMS fully extended compared to fully retracted. Modal
damping of 5% is added to prevent imaginary axis poles. The performance outputs

T
are chosen as the position error of the mass, and the control effort: z = [ e u ] .

T
The disturbance inputs are the reference command and sensor noise: 1 = [ r v ] .

The control input is the command d. The sensors are the position of the mass, and the
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T
reference command: y = [ T T ] . The reference command is added to the sensor

suite since this allows dramatically higher performance. The state space realization

for the design plant model is therefore:

A

By

B,

Dg,
Dy,

Ci

C,

Dy

0
- [ —k/m —2.05\/k/mq

0

k/mo

= Vom | —k/my —2.05/kmq ]

= dm/my

0

1/m0

|

4

|

1

= Vom | k/mo 0]
=\/c%:k/mo]

-

_ o]
“ o]
(10
00

Il
I L]
=)
—

-1 0
0 0

|

|
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(3.104)

(3.105)

(3.106)

(3.107)

(3.108)
(3.109)
(3.110)
(3.111)

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)



o

Dy, = (3.118)
0
0

Dy = (3.119)
0

(3.120)

with the nominal mass my = 2 and the maximum variation ém = 1.5. The uncertainty
input/output channels are scaled by the mass variation such that the delta block is
bounded by one: |#;] < 1. Note that in this context, the uncertainty inputs p and
g can be given another interpretation: they are “pointing” matrices which pick out
certain combinations of the state matrix.

Figure 3-5 plots the error transfer function for the sample problem, along with
the frequency dependent performance weight. The solid line represents the nominal
sensitivity, while the dotted line with the higher resonant frequency represents the
lowest mass case, and the dotted line with lower frequency represents the highest
mass case. The performance weight represents the maximum sensitivity allowable in
the closed loop system, as a function of frequency.

The desired closed loop behavior is influenced by the choice of performance fre-
quency weightings, such as the performance weight shown above. The frequency
weighting may also be a function of the mass. For example, it may be unreasonable
to require the same tip position settling time for a fully loaded arm as for the unloaded
arm. For space-based manipulators the payload mass to arm mass ratio may approach
1000:1 for some prefabricated elements of the proposed space station[1]. However, for
a given payload it is reasonable to require the same settling time throughout the
workspace. The advantage is that the response of the controlled arm will be the same
at all points in the workspace, reducing operator workload. That is, the weighting
function should be a function of the payload mass, but independent of the configura-
tion.

The desired performance is represented by a weight on the sensitivity (the dashed

line in Figure 3-5, which shows the inverse of the sensitivity weighting). The inverse
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Figure 3-5: Reference input to sensitivity performance output, G, and weight.

weighting is low at low frequencies, to reduce the error where the majority of operator
commands ;will occur. The weighting is such that the open-loop natural frequency
will have to be increased to meet the performance objective. A two-pole rolloff is used
to achieve a low bandwidth crossover. Crossover is at 0.5 Hz. The closed loop system
should have a first mode at approximately 0.5 Hz. The weighting is allowed to increase
above one, since the integral of the sensitivity must remain constant (”push-pop”).
However, the smooth curve will ensure that the first mode is not highly resonant.

The bandwidth of the closed loop system can be influenced with a weight on the
control. The chosen weight is frequency dependent, increasing at high frequency to
penalize high frequency controller dynamics and force the controller to roll off. The
two-pole rolloff starts at the desired closed-loop mode at 0.5 Hz. The control input
to sensor output transfer function, G,,(s), and the control weight as a function of
frequency are shown in Figure 3-6.

The step response of the open loop system is shown in Figure 3-7. The nominal

83
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Figure 3-6: Control input to sensor output, Gy, and control weight.

system is shown as a solid line, while the low-mass case is the faster dotted line and
the high-mass case is the slower dotted line. Note the highly resonant character of the
response, with a long settling time. Use of a manipulator with such a response would
adversely impact the productivity of a human crew, since each commanded motion
would be followed by a long period of waiting to allow the motion to settle out. Note
also that often, crew learn to accommodate such highly resonant responses[49]. For
example, they learn to generate a feedforward command which cancels the vibration in
the arm while positioning the end-effector as desired. The variable period of vibration
in the response as shown would make this more difficult, as the crew have to adapt
to a variable frequency.

The gain-scheduled H, design algorithm is applied and implemented in simula-
tion, as both a continuous time and a discrete time controller. The discrete time
controller repres: uts the computer implementation which would be required on the

SRMS or the SSRMS.
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Figure 3-7: Open loop step response.

3.11.1 Reduced Order/LTI Control Design

The controller order reduction cost, Jp 77, and constant gain cost, Jog, of Section 3.10
are used to design the sample controller. In order to understand the effect of the
minimizations, controllers for the sample problem will be designed using neither cost,
the LTT cost, the CG cost, and then both costs. The effect on compensator order and
A block size will be examined.

The controller order and A block size for each of the four cases are shown in
Table 3.1. From the left, the table shows the cost function used (a dash denotes
that an LMI feasbility problem is solved rather than a cost function minimization
subject to LMI feasibility), weighted plant order n, plant A block size r, controller
order n., and controller A block size r.. From the top, the controllers are full order,
full delta block; reduced order, full delta block; full order, reduced delta block; and
reduced order, reduced delta block. Implicit in the LMI feasibility conditions is the
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Table 3.1: Compensator order and A block size for combinations of the cost

functions.
Design cost {n | 7 | n. | T
-|6|1] 6] 1
Jeg |61 4] 1
Jerr {6(1] 6| 1
Jeg+Jprr | 61| 41 1

requirement that the H, gain v < 1.

Note that the minimum controller order that satisfies the H, criteria is 4. Heuris-
tically, the minimum order is a function of the performance and control weights cho-
sen. Tightening the weights increases controller order. Note that the size of the
controller delta block cannot be reduced. In this case the effect of the cost is to
reduce the norm of the delta block. That is, the compensator variation with respect
to A are reduced. The controller designed with the Jog cost will still be referred to
as a reduced delta block controller, even though the delta block size has not been
reduced.

Note also that the controller order can be reduced regardless of whether the delta
block reduction cost is used. This does not have to be true - the controller order may

be traded off with delta block size in general.

3.11.2 Reduced Order Controller

The reduced order, reduced delta block controller will be examined. The compensator
is 4*" order. Compensator pole locations, frequency and damping ratios, for the
nominal mass, are as shown in Table 3.2. Compensator zeros are shown in Table 3.3.
Note that none of the compensator zeros cancel the nominal open loop mode at
0.635 Hz. Such cancellations are typical of H,, optimal controllers, and are non-
robust to modeling errors. Even though the time-varying model used in the robust

control design accounts for parameter changes, errors in the model may still result in
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Table 3.2: Compensator poles for the typical section sample problem.

Table 3.3: Compensator zeros for the typical section sample problem.

s-plane | freq [Hz] ¢

-0.0171 0.0027 1.0

—10.2198 1.6265 1.0

—34.6941 +20.16177 | 6.3864 | 0.8646

s-plane | freq [Hz] ¢

0.5644 £ 0.90397 0.1696 | —0.5296
—20.8814 3.3234 1.0000
93.1493 | 14.8252 [ —1.0000

Table 3.4: Closed loop poles for the typical section sample problem.

s-plane | freq [Hz] ¢

—0.3340 0.0532 | 1.0000

—2.9465 £ 3.8586) 0.7358 | 0.5508
—5.4629 0.8694 | 1.0000

—34.5664 + 18.5086 6.2404 | 0.8816

mismodelling of system frequencies for a given value of the parameter. The absence
of pole/zero cancellations in the gain-scheduled compensator gives reason to think
that such designs may succeed even in the presence of modeling error. Closed loop
poles, again for the nominal mass, are given in Table 3.4. Again it is apparent that
the frequency and damping of the plant mode has been increased.

The closed loop error is shown in Figure 3-8, for the nominal and maximum and
minimum payload cases, along with the inverse of the sensitivity weighting. Note
that the error has been pushed below the desired level represented by the weight.
This indicates that below 0.03 Hz, the payload positioning error is below 1% for all

payloads. Note also the increase in sensitivity around 0.5 Hz. This is a consequence

87



Closed loop Gzw, nominal (-) and +/- (:), and performance weight (—-)
10° ¢ ey — — . S— . e

10

(=]

sy
(=]

Magnitude
-
°0

10 s " PR aaal " " o a2l " " t a2l " P WY .
10° 10' 10
Hz

Figure 3-8: Closed loop reference input to sensitivity performance output.

of enforcing small error at low frequency. Finally, note that the closed loop natural
frequency has increased over the open loop, and that the frequency is the same for
all payloads.

The closed loop step response is shown in Figure 3-9. As desired, the highly
resonant response of the open loop system has been replaced with a faster, more
highly damped response for all cases. Note also that the response time (settling and
rise time) is nearly identical for all payloads. This will allow the operator to more
easily input the correct feedforward commands, so as to avoid exciting oscillations.

The compensator FR from sensor to control is shown in Figure 3-10. Note that
the compensator is essentially providing rate feedback to the first mode at 0.5 —1 Hz.
The effect of gain scheduling manifests itself in the variation of the rolloff pole of the
compensator, and in the gain at the natural frequency.

The FR from command to control input is plotted in Figure 3-11. One might

expect that the compensator might place a zero in the command input channel,
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Figure 3-9: Closed loop step response.

Compensator FR, u/y, nominal (~) and +/- (:)
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Figure 3-10: Compensator sensor input to control output.
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Compensator FR, u/r, nominal (-) and +/- ()
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Figure 3-11: Compensator reference input to control output.

canceling the open loop mode. This would explain the higher performance that can
be achieved when the reference command is fed to the compensator. However, it is
clear that this is not the case.

The control loop FR is shown in Figure 3-12. Note that the loop gain is high
at low frequencies, and at the modal frequency of the plant. The low frequency
gain is needed to control the error at low frequencies, so as to push as close to the
performance bound as possible without exceeding it. The result is to minimize the
sensitivity improvement to just what was asked for. Due to “push-pop”, additional
error reduction would have to be made up at high frequencies. This characteristic (of
pushing up to the performance bound) is generally associated with the H,, optimal
compensator. In this case, it is due to the “minimum rank” controllers produced by

the trace-minimization procedure discussed in Section 3.10.
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Figure 3-12: Loop transfer function.

3.12 Conclusion

The present chapter has discussed the utility of a parameterized nonlinear model of
geometrically nonlinear systems. Such a model would allow the use of modern ro-
bust control design techniques for the control of flexible manipulators. As shown in
this chapter, appropriate metrics exist in the modern control framework to describe
the manipulator performance objective. A specific control design algorithm was pre-
sented, which accounts for the time-varying nature of the system. Application of
the method to a representative simplified model demonstrated its ability to create
desirable performance improvements.

Next, attention must be paid to the creation of a suitably parameterized nonlinear
model. The model must be an accurate representation of the true system, while
maintaining a parameterization which allows for the use of linear time-varying robust
control tools. Motivated by the results of the manipulator typical section control
design study, a linear fractional (feedback) representation will be developed. The

LFT model will allow the use of the small gain time-varying #, control technique
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presented in this chapter.
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Chapter 4

Modeling

The proposed control method requires a model of the manipulator, in a specific form.
Dynamic modeling of flexible manipulators has been studied in depth. However, the
issue of modeling for control has only recently begun to receive attention. For the
purpose of this work, modeling for control should be understood as the process of
producing a model which is of appropriate accuracy, complexity, and structure for
the control design algorithm. Accuracy is required in order that the model-based
controller be stable, and meet performance requirements. Accuracy may refer to
correct modeling of all dynamic components (gear drives, flexible elements, etc),
inclusion of all “strong” forces (friction), and geometries (offsets). Complexity refers
to the run-time complexity, so that the controller can be implemented in real time.
Complexity may refer to system order, or to the form of the equations which must be
solved in real time. Structure refers to the fact that the model should be suitable for
use with the desired control algorithms. It is clear that by these metrics the control
design algorithm will affect the modeling algorithm.

Accuracy and complexity have been widely studied. Accuracy is constrained by
the need for stability and performance on the true system. Complexity is constrained
by the computer power available for control. It is the third property, structure, which
may deserve more attention than it has received to date.

It is clear that by these metrics the control design algorithm will affect the mod-

eling algorithm. The control algorithms studied in this thesis rely on a small gain
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approach which is linear-algebra based. As such the system model must be linear.
Conventional approaches to linearizing a geometrically nonlinear model can be un-
desirable, for reasons which will be addressed. This fact motivates the search for
a technique which automatically “breaks out” the nonlinear terms into a separate
block. The remainder, which is linear, is directly suitable for use in a linear algebra
based control framework.

The approach presented in this chapter is intended to build on previous model-
ing methods, not to replace them. Many modeling approach use a component-level
description which separates the multibody system into multiple subsystems. The
subsystems are typically then kinematically constrained to remain together at at-
tachment locations (such as joints) by appending the constraints with Lagrange mul-
tipliers. The multipliers then represent the constraint forces. The key innovation
which is proposed in the current work is the use of an input/output description of the
interconnection of the links of a manipulator at each joint. The attachment of two
components, such as links, at a joint is then described as a feedback interconnection
between the two subsystems. Again uniquely to the current work, time-varying joint
rotations are represented as a time-varying feedback gain between the components.
As will be shown, the feedback interconnection results in a system realization which
leads directly to a Linear Fractional linear system model. This model is shown to
be exactly that required for the application of certain types of Time-Varying Robust
Control.

The proposed approach builds on previous methods because it is structured so
as to allow the component models to be generated using any of the four common
modeling approaches: Lagrange’s equations, Kane's equations, FEM, or simplified
packages.

The chapter is organized as follows: the use of acceleration feedback to model
time-varying boundary conditions is motivated by demonstrating its equivalence to
mass-coupling. The modeling algorithm is outlined, and the method is presented as
a series of “black box” steps which take specific input information from a previous

step, operate on it, and output information to the following steps. The elements of
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Figure 4-1: Mass-loading a beam is equivalent to feeding back acceleration to
force through the static gain m,,.

b.

the algorithm are then examined.

4.1 Proposed Modeling Approach

4.1.1 Acceleration Feedback

The choice of acceleration feedback is a natural one for the configuration nonlinearities
inherent in manipulators. These manifest themselves in the system inertia matrix.
Adding mass to a structure can be seen as acceleration feedback, since a mass produces
a reaction force which is proportional to acceleration.

A natural demonstration takes the form of a cantilevered beam which is loaded
with a payload mass m, (Figure 4-1a). The beam represents the flexible link of a
manipulator under joint position control. Taking the beam to be Bernoulli-Euler
with uniform mass per unit length pA and bending stiffness EI equal to one, and

unit length, the kinetic energy of the beam with payload is

2

where 7 is the distance along the link, and w(r,t) is the transverse velocity. Using a

T(t) = 1/1 w(r,t)2dr + %m,,,u')(l,t)2 (4.1)
0

standard assumed modes approach in which the transverse displacement is separated

into spatial and temporal components,
w(r,t) = ¢(r)Tq(t) (4.2)
the kinetic energy becomes

1
7= 30 ([ er)oar + mpysu)?) d (4.3)
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1, .
= 50 (Ma+mp$(1)9(1)7) d (44)
for the unloaded mass matrix M,. Potential energy is given by
14 [ T 1 7
P=3a | ¢(r)e(r) drg = 5" Kq (4.5)
with K the stiffness matrix. Lagrange’s equation then gives the unforced dynamics
(M, + mypp(1)6(1)7) G+ Kg =0 (4.6)

This is compared to acceleration feedback of gain m, at the tip of the same beam,

unloaded, with a tip force (Figure 4-1b):
M,j+ Kq = BF (4.7)
The feedback is proportional to tip acceleration a(1):
F = —mya(l) (4.8)

The force influence vector is given by

E=¢(1) (4.9)
The acceleration is
a(1) = ¢(1)7§ (4.10)
Therefore the closed loop EOM is
Mg+ Kq = —¢(1)my¢(1)7§ (4.11)
or
(My +m,0(1)o(1)1)G+ Kqg=0 (4.12)

which is identical to Equation 4.6.

From a conceptual viewpoint, the technique describes inertial reaction forces as
acceleration feedback. This is the justification for posing motion boundary conditions
as accelerations rather than position or rate. From a mathematical point of view, the

“motion” outputs must be invertible with the input forces of the same type and
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location (type describes the action of the input, i.e.. force or moment). There will be
a feedthrough term (D term) in the corresponding transfer function. Simply stated,
if there is no feedthrough, the transfer function rolls off with frequency (goes to zero),
so the inverse increases with frequency (i.e. goes to infinity). Acceleration outputs
contain the necessary feedthrough term.

By extension, the mass can be replaced with a dynamic system, for example
another link. The static feedback gain m, is replaced with a dynamic system. The
link example above only imposed a transverse acceleration on the end mass. In
the general case, the end component will have different dynamics depending on the
orientation between it and the link. This must be captured in a rotating boundary

condition.

4.2 System Modeling Algorithm

The proposed modeling approach has the following steps: system configuration defi-
nition, component modeling, component input/output inversion, boundary condition
definition, and the final collection and computation of the system model. The steps

are presented in Figure 4-2. Briefly, the steps are:
(i) Determine the number, type, and arrangement of components.

(i) Model each component as a free-free body, with force inputs and acceleration

outputs at each attachment location.

(iii) Invert the force input and acceleration output of one attachment point per

component.
(iv) Define the boundary conditions between attached components.
(v) Assemble the system model.

The same sequence of steps can be used to produce a nonlinear structural model for
simulation, and a parameterized linear model for control. Each of the steps will be

discussed in the present section. Then, in the following sections the steps will be
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Figure 4-2: Modeling algorithm.

further broken down into the information which must be provided as input, and the
information which results as output.

The configuration step consists of defining the number, type, and location of
each component (shown in cartoon form in Figure 4-3). Type refers to the physical
component - link, gearbox, etc. Location determines which components are attached
and where. Configuration definition will also determine the location and type of time-
varying boundary conditions. For example, a gearbox will involve a time-varying
rotation (the dotted semicircles).

The free-free models of each component are created in the component model step.
The component model can be of arbitrary complexity, from linear to nonlinear in
rigid body rates, to fully nonlinear in deflections. The essential elements are that all
rigid body modes be represented, and that force influence matrices, and acceleration

output equations (in terms of the component states) be created at all attachment
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Figure 4-3: Cartoon showing elements of the configuration.

Figure 4-4: Cartoon showing free-free component.
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Figure 4-5: Inversion of the interface boundary conditions for one component
allows two components to be connected via feedback.

points (Figure 4-4). Note that other physical outputs (for example, the outputs of
other sensors such as strain gauges) can be solved for on a component level. In
addition, the configuration will flow down to component model requirements. For
example, the required component states will be identified. Component attachment
locations identify the locations of influence and output equations.

The input/output inversion is the means by which acceleration and force bound-
ary conditions (BCs) between components are equated. The free-free model has all
component DOF independent. Forces act on the component and accelerations result.
In order to “attach” two components, the forces and accelerations of each must be
equated. However, the accelerations are functions of forces, which are in turn func-
tions of acceleration, and so on. One approach to solving for the accelerations and
forces in one step is to invert the force/acceleration map of one of the components
at the interface (Figure 4-5). Now the component is constrained in acceleration at
that location and produces a force in response. Thus the acceleration output of the
original component drives the acceleration input of the second link, and the force
output of the second link drives the force input of the first (Figure 4-6a). However,

the joint angle varies, and the forces which impinge on the second link vary with the
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Figure 4-6: Inversion of the interface boundary conditions for one component
allows two components to be connected via feedback.

joint angle. It is necessary to rotate the acceleration outputs of one link into the
reference frame of the second, and similarly for the forces (Figure 4-6b).

The system model consists of
(i) the homogeneous dynamics of each component

(ii) the boundary condition equations which represent the rotations between com-

ponents

See Figure 4-7. The homogeneous dynamics are solved first, and used to calculate
the contribution of each component to the boundary conditions. Next the rotation
boundary condition is formed and solved as a single matrix equation. Finally the
contributions of the boundary conditions to the component EOM are calculated.
Note that the component models are independent, but the boundary conditions are
not. The term “system model” thus refers to the collection of component models and
the boundary condition equation, i.e. the coupled system. For the nonlinear system

these equations are solved at run time. The parameterized linear model is created

101



Boundary je—
Conditions

an.Fy

a, K F.a,

comp,

P
N o,

Figure 4-7: The system model consists of /V independent component models, and
a global boundary condition solution which relates the components
via feedback. u are exogenous commands.

by coupling the component models. The boundary condition equation is evaluated

separately, as a structured block matrix.

4.3 Configuration

The configuration of the system is set by the physical structure being modeled. The
important items of information are the number, type, and location of components.
Specifically, the input to the configuration step is the system model to be created,

which includes:
(i) global DOF
(ii) physical system parameters
(iii) joint locations
The outputs of the configuration definition are
(i) component model DOF, reference frames, and boundary locations

(ii) boundary condition coupling (rotation) conditions
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The output information is used in the component model step and the boundary
condition step, respectively.

For the manipulator problems which motivate the current work, two types of
components are of interest: links and revolute joints. A link will refer to a long,
thin, fiexible member. The link will generally have a length parameter, transverse
bending mass and stiffness, and possibly torsional flexibility. A revolute joint will
refer to a mechanism for producing a commanded rotation about a single axis. The
manipulators under consideration use a geared torque motor to produce rotation.
The specific component used to capture this will be called a gearbox. The gearbox
will have mass and inertia parameters, a gear reduction, and a commanded torque
input. Typically the links will be attached to one or more gearboxes. The systems to
be considered will be fully three-dimensional.

These components will be enough to represent the manipulator systems to be
investigated. Extensions to these components could include, if necessary; linear joints,
which extend and contract; additional flexibility, such as the ovalization modes of a
hollow link with circular cross-section, in which the cross-section deforms to an oval
shape; and arbitrary, possibly flexible, payloads. Each of these could be included in

the modeling framework.

4.4 Component Models

The component models are inputs to the modeling algorithm. In order that the
modeling algorithm be as general as possible, the component models are input in a
standard form which can be created using any of the modeling approaches described in
Chapter 1. The succeeding chapter, Chapter 5, will present one approach for deriving
component models in a suitable form. For each component, the input information

consists of:
(i) The basis for the component DOF.

(ii) Reference frames in which attachment boundary conditions must be expressed.
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(iii) Attachment locations where forces and accelerations must be calculated.

The first specifies the rigid body and flexible motions which must be accounted for.
For example, planar systems will need only a subset of the full six rigid body DOF.
Flexible motions may include transverse vibration, torsion, or shear modes, depending
on the kinematic DOF of the system being simulated (planar, etc) as well as the mass
and stiffness properties and the bandwidth of the input. The output information

produced by the component modeling step consists of
(i) The homogeneous dynamics of each component.
(ii) State-dependent coupling forces.

including the influence of input forces at the attachment locations, and the result-
ing accelerations at the attachments. It should be noted that typically the reference
frames will be body fixed at the attachment locations, so that the attachment loca-
tions define the reference frames. State-dependent coupling forces are those which
occur between two or more components, as a function of the free component DOF,
for example, gearbox stiffnesses or joint friction.

It should be emphasized that the term location is a potentially misleading one.
The constrained accelerations and free forces may be colocated. For example, the
gearbox component model which will be presented in Chapter 5 has no spatial offsets
(these are captured in the link model). In this case, recourse must be made to the
physics of the attachment. The constraint model is such that a constrained location
produces an inertial reaction force. The free force which acts at the same physical
location will simply sum into the reaction force. The corresponding force/acceleration
input/output pair in the model will have a direct feedthrough, from free location
force input to constrained location output force. This is in fact the case for offset
constrained/free locations as well, although it is not as apparent.

The general form of the component models will be
Mg = (-V(q,q) + Byu) + B.F, + BsFy (4.13)
a. = H,(q,q) + G4
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as = Hs(q,q) + Gy

This would apply to systems with multiple attachment points (tree structures as well
as closed chains). For notational reasons, however, each independent attachment lo-
cation should be broken out separately. As a result, in this work, the above system
should be read as having a single constrained end, a single free end, and as a compo-
nent in an open chain. Again, this is purely notational. Note that the acceleration
output functions will typically have terms proportional to the generalized accelera-
tions, as expected. The generalized displacement and rate terms, H., and Hj, are

essentially centripetal acceleration terms.

4.5 Model Inversion

The component models are in a free-free form. That is, using the link component as an
example, the forces at each end are specified, and the link is free to move in response.
The corresponding transfer function matrix of the component, from boundary forces

to boundary accelerations, is

@ | _ Gu(s) G (s) F (4.14)

ar Gri(s) Grr(s) F,
with accelerations and forces as defined in previous sections. The component will be
attached in a feedback fashion to preceding and succeeding components. To this end,
one pair of inputs and outputs are inverted. The resulting component model has the
Fil_| G ~Gu' G “ (4.15)
ar GnGy' G — GuG Gy, F,
In this form, the outputs can be fed to an attached component, and the inputs driven
by the attached component.
The BC input/output inversion is performed on the component state space sys-
tem matrices derived above. The inversion involves constrzining the motion of the

boundary. That is, specific combinations of model DOF will be specified. In effect,
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these DOF are deleted from the model. The inversion begins by partitioning the
states into those which will be constrained, ¢., and those which will remain free, g;.

The free-free model, with force inputs, in second order form is

MC MC "C % BCC BC FC
- == + d (4.16)
Mg My ds Vs Bjs. Byy Fy
de
Qc =Hc+{Gcc Gcf] .
dy
e
af =Hf+[ch fo] )
gr

The inputs and outputs are partitioned conformably with the constrained locations
(subscripted c) and free locations (subscripted f) on the element. By convention, the
base (left) end of each link will be constrained, except for the base local y axis. The
base y axis is by convention the gearbox shaft axis and is free to rotate.

Note that each force or acceleration is either a driving quantity, if it acts as an
input to the component, or an output quantity, if it is a component output. Driving
quantities occur in pairs with output quantities. So a driving force is paired with an
output acceleration at the same location. A driving acceleration is paired with an
output force.

The inversion is performed on the second-order state space system by solving for
the constrained state accelerations ¢, in terms of the constrained boundary accel-
erations a.; using that expression to solve for the constrained force outputs F, and
accelerations ay; and using g, and F, to write the EOM of the free DOF. The resulting

dynamics in the states ¢ = gs can be expressed as

Mg =V + Bya. + BpF; (4.17)
F, = Hp + Greac. + GrpFy + Gpg (4.18)
ay = H, + Goaae + Goi (4.19)
with
M = My; - Br B! (M}, — MG} Gof) — My GGy, (4.20)
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V = —Vj + ByB3! (V. — MG H,) + M; .G H,, (4.21)

~

B, = ByB'M.G;} — M;.G;}, (4.22)
3F = Bf_f - chBc—cchf, (4.23)
Hr = B! (V. - M..G;'H,), (4.24)
Gro = B'M,. .G}, (4.25)
Grr = —B'By, (4.26)
Gr = B! (M}, - M.G.'G,;), (4.27)
ﬁa = Hf - chGc_cch; (428)
CA;'aa = chGc_cla (429)
Go = Gy; — GGGy (4.30)

where the subscript ¢ refers to an input or output (BC) at the constrained end, and
f refers to a BC at the free end, as before, and the new subscripts F' and a denote a
“force” or “acceleration” BC, respectively.

Note the presence of the B_;! and G;;! inverse terms in the constrained model. B,
represents the influence of the forces at the constrained location, on the “constrained”
DOF'. B, is invertible whenever the number of force inputs is equal to the number
of constrained states (i.e.. is square) and the forces are independent. G, represents
the “observability” of the constrained DOF to the acceleration at the constrained
location. Since the attachment forces and accelerations are fixed vy the configuration,
the modeler must choose the correct “constrained DOF” to ensure the invertability
of these two matrices. Generally the correct choice of DOF will be readily apparent.

These equations hold for a general system of the form of Equation 4.16. Intelligent
choice of generalized coordinates can reduce the complexity of the constrained system
representation. By choice of rigid body DOF, the left end (constrained) forces act
directly on the constrained states. In addition, the cantilevered flexible mode shapes
have zero displacement and rotation at the root, leading to a zero force influence

matrix at the left end. Similarly, the accelerations at the left end of the link are
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functions only of the rigid body modes. Thus

B =1, (4.31)
B;. =0, (4.32)
H. =0, (4.33)
Gee =1, (4.34)
Gs=0 (4.35)

and the standard model representation simplifies to

M = My, (4.36)
vV = -V;, (4.37)
B, = —Mje, (4.38)
Br = Byy, (4.39)
Hp =V, (4.40)
Gro = Me, (4.41)
Grr = —Bef, (4.42)
Gr = M}, (4.43)
H, = H;, (4.44)
Goa = Gye, (4.45)
G. = Gys (4.46)

Careful choice of generalized coordinates is therefore necessary, as it has the potential
to simplify the modeling and simulation cost. Symbolic inversion of B and G, may
be difficult, and each additional matrix expression in the system EOM corresponds
to additional real-time computational load.

The expression of the final model will depend on the desired use. The free mass
matrix Myy is, in its most general form, a function of the deflection variables (thus
time). Inverting it off-line is computationally intensive, and the storage and compu-
tation requirements may be as high as those needed to numerically invert it on-line.

Hence these equations may be used essentially as presented above.
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4.6 Boundary onditions

The boundary condition definition step consists of assembling the system force and
acceleration boundary conditions at the joints. The input information, for each joint,

consists of
(i) The relative motion across the joint, between the coupled components.

(ii) The independent and dependent forces and accelerations for the components

coupled at the joint.

The first item consists, for example, of the rotation of a revolute joint as a function of
the states of the coupled components. The second consists of the output forces and
accelerations, and the driving forces and accelerations, for the coupled components.

The output consists of

(i) the global coupling condition for the components, which equates the accelera-

tions and forces at the coupling locations

The global coupling condition takes the form of a linear matrix equation.

The boundary conditions equate forces and moments, and linear and angular
accelerations across the joint. The boundary conditions which relate generalized
forces and accelerations will be developed separately. Then the relations can be used
as building blocks to assemble the global coupling matrix.

The rotation across the joint consists of the angular difference between the “out-
board” component’s rotation around the shaft axis, and the “inboard” component’s
rotation about the same axis. Note that the shaft axes for both components are con-
strained to be collinear. Since the rotations of each component, at the attachment
location, are expressed in a frame body-fixed to the attachment location, the joint
rotation is a function of a single angle. For a given link 7, the rotation to the previous
link, towards the base of the manipulator, is R;.

Across each joint, each constrained quantity is paired with a free quantity. The

component boundary conditions are developed with the constrained quantity on the
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Figure 4-8: The joint rotation between links ¢ — 1 (left) and ¢ (right). The origins
of the frames coincide, and the y axes are in the same direction. Link
1 — 1 has force inputs F;_; and acceleration outputs a;_i, link 7 has
inputs a;, outputs F;.

left, and the free quantity on the right. The attachment between link a given link
and the link inboard to it, link 2 — 1, consists of a generalized force input F,, equated
with a force output Fj,, and a generalized acceleration input a., equated with an
acceleration output ay, (see Figure 4-8). In general the constrained accelerations will
include linear as well as angular terms. For the purposes of exposition, linear terms
will be represented as the vector §, and angular terms as 6.

Linear accelerations are equated with the boundary condition
ﬁci = Riﬁf,‘_1 (447)

Note that the left hand side, p,, represents an input to link ¢. The term on the right,
Dy._,, represents an output of the previous link.
Angular acceleration boundary conditions are found by equating the angular ve-

locity components at the interface:

éca’ = R'iefi—1 (4.48)
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From this,

O, = Ri©,_, + RO;,_, (4.49)
©; is a known function of the state variables of links ¢ and i — 1. The force condition
is

Fs_, = -R{F, (4.50)
Therefore the input BCs are related to the output BCs by

Fy, 0 -RT as, 0 {.
fl—l — 1 fl—l + ) @fi—l (4.51)
a'cz' Rl 0 FC.' Izz

Each joint will contribute such a block term to the global coupling matrix.

Note also that the coupling term between any two components is a linear matrix
equation in the constrained forces and accelerations. As a result the system coupling
matrix will also take the form of a linear matrix equation, as follows. The input

BCs for each component can be stacked into the vector ugc, and the outputs into

the vector ypc. The rotation matrices are collected into a matrix with the following

form: ) _
0 —-RT ... 0 0
R, O 0 0
R=| : : (4.52)
0 0 0 -R%_,
| 0 0 --- Ry U

for N — 1 joints in an N-component open chain body. Collecting the known outputs
into the vector H, the joint angular rates into the vector H,, and the BC-dependent

parts into the block diagonal matrix G, the inputs are related to the outputs by
upc = Rypc + RH, | (4.53)
Using the global vector representation for the output BCs,
ysc = H + Gupce (4.54)
the BC equation, Equation 4.53, becomes
upc = RH + RGupc + RH, (4.55)
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which has the solution
(I — RG)upc = RH + RH, (4.56)

This is a linear matrix equation which can be solved numerically using readily avail-

able algorithms.

4.7 System Model

The system model is created by appending the subsystem equations of motion to-
gether, solving for the inter-system constraint forces and accelerations, and summing
in the contributions of the constraints to the dynamics. For both the linear and

nonlinear model, the inputs are
(i) Component models.
(ii) Component boundary condition equations.
(iii) State dependent coupling terms.

The output of the system modeling step is slightly different for the nonlinear model
and for the linear control form model. In each case the output is the system model.

However, the simulation form of the model consists of
(i) Second-order state space component models.
(ii) State dependent coupling terms.
(iii) System boundary condition.

The simulation form is assembled at run time to produce the generalized accelerations

from the state and inputs. The control form consists of
(i) Coupled first order component EOM.

(ii) The parameterized system boundary condition.
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The system model for a particular joint configuration is determined from a linear
fractional transformation on the component EOM through the boundary condition
at the joint configuration.

The simulation form allows the mass matrix and stiffness dependent forces to
be time varying. The homogeneous component dynamics are determined indepen-
dently, the attachment forces determined, and resulting motion summed into the
homogeneous dynamics. This sequential solution allows for streamlined calculation.
The control form is used in conjunction with the robust time varying control de-
sign algorithms discussed in Chapter 3. The dynamics must be in the form of a linear
time-invariant state space model, with a time-varying linear fractional block. This re-
striction imposes additional computational burden, compared to the simulation fbrm.
For this reason the control form will generally be based on a linearized version of the

mass matrix and state dependent forces. The simulation form will be presented first.

4.7.1 Simulation Form

As previously noted, the system model consists of the homogeneous dynamics of
each component, plus the boundary condition equations which relate components.

Re-writing the component EOM in their general form,

Mg, = Vi + Ba,-ac.- + BF.'Ffi (457)
Fci = Hp, + Gpa,.aq + GFFiFfi + Gg.g; (4.58)
af, = Hai + Gaa;aq + Ga,ﬁi (459)

for i = 1..N, for N components. The boundary condition equations consist of

Ffi-—l 0 —-R,T afl._l 4 0

|6 (4.60)
Ac; R! 0 Fc,‘ Rt

Il

for N — 1 interfaces, assuming an open chain manipulator (that is, each interface
connects only two components). It is seen that the EOM consist of a known portion
M-V, and boundary-condition dependent contributions. Note also that the state

accelerations appear in the output BCs. Since the state accelerations consist of a
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homogeneous portion and a contribution from the attachment forces, the output BCs

also consist of a “homogeneous” portion and a contribution from the attachment

forces:
~1 ar;
F., = (Hr,+GrM Vi) + | Gro +GrBo Grr +GrBr, | (4.61)
F;
-1/ ar;
af, = (Ho, + Go, M Vi) + [ Gao; + Go;Be; Go, B, ] (4.62)
F;

where by extension of the terminology for the dynamics, Hp, + G, M 'V; and H,, +
Ga; M 'V; are the homogeneous output BCs.
Simulation Form Dynamics Solution Algorithm

The following solution algorithm is used to calculate the system accelerations Z at

each solution time step.
(i) Calculate forces which depend on the global state z and %, such as

(a) gearbox stiffnesses
(b) friction

" (c) control forces

Note that global state dependent forces include those which act between any two
components, such as gearbox stiffness. In other words, they need not depend

on the entire state; only more than a single component.
(ii) For each component:
(a) Solve the homogeneous dynamics
Mg =V (4.63)

This is the most computationally intensive step of the component dynamics
calculations. Note that M is in general a full matrix. It is also in general

a time-varying function, so such common steps as diagonalizing the mass
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matrix via a state transformation are not straightforward. Also note that

the homogeneous dynamics V' include state-dependent forces calculated

earlier.

(b) Compute the homogeneous output BCs

ek 12
H; = = +l Gu
H, G,

ags;
(iif) For the global system, collect the component output vectors:

1

Hal + Galinl
sz + Gleiyz
H = Haz + Gadez

i HFN +GFN6HN |

(iv) Collect the inhomogeneous portion as the block-diagonal matrix

Ga, O O - 0

0 G Fas G FF; 0

G = 0 Gaa2 Ga FZ 0
0 0 0 - Gray

(v) Compute the system rotation matrix

0 —RF .. 0 0
R, 0 0 0
Rl
0 0 0 -R%_,
0 0 - Ry 0

(vi) Solve the boundary condition equation
(I - RG)u = RH + RH,
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(vii)

Calculate the BC contribution to the component dynamics via

ac

Ff.‘

¢i = qu; + [ B,, Bp, ] (4.69)

with the BC accelerations and forces a., Fy, the appropriate elements of the

column vector u.

Notes on the solution procedure:

(1)

(i)

(i)

(iv)

The BC equation matrix I — RG can often be block-multiplied out to reduce

storage requirements.

A symbolic solution to the BC equation in terms of the inverse of I — RG may
reduce computation time. However, due to the I/O size of a typical flexible
manipulator, a symbolic inversion is not always possible, and will arguably not

reduce storage and computation costs.

The BC equation will, for open chain bodies, be sparse, since each component
interacts with only two others. The largest block size on the diagonal will thus
be two times the number of interface DOF. The utility of sparse matrix inversion

methods is worthy of exploration.

The computational efficiency of the component modeling procedure depends on
the state size of the components versus the number of interfaces and interface
DOF. The relative cost is, roughly, inversion of a single mass matrix with di-
mension equal to the full state size, versus inversion of a number of smaller
mass matrices and the boundary condition. If the components are high order
(such as a typical flexible manipulator) with a relatively few interfaces, the set
of inversions will be performed faster than inversion of a single large matrix
(since inversion algorithms generally have cubic dependence on size). This does
not take into account sparse matrix inversion algorithms. Since the component
model will generally become sparse, while the global mass matrix will remain
nearly full, the component model with sparsity may be significantly less com-

putationally intensive.
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4.7.2 Control Form
The linear control form is assembled in a highly structured manner:
(i) Linearize the component models.
(ii) Calculate the second order state dynamics as a function of the linearized models.
(iii) Assemble the component matrices into a global, first order state space model.
(iv) Calculate state dependent coupling terms (friction and gearbox stiffness).
(v) Calculate the system influence matrix from commanded torques.

(vi) Determine any system outputs as a function of component states and boundary

forces and accelerations.

The linearized model, for a particular joint configuratjon, is determined in the follow-

ing way:
(i) Create the joint rotation matrices corresponding to the current configuration.
(ii) Form the system rotation matrix from the joint rotation matrices.

(iii) Calculate the dynamics by an LFT on the system model through the global

rotation matrix.

Note that state dependent coupling terms may depend on configuration. In this
case, the global rotation matrix must be augmented with the necessary configuration-
dependent terms. The state-dependent coupling terms forces will then become a
function also of the boundary conditions.

Note also that the system rotation matrix takes the form of a block skew-symmetric
matrix. The control design of Chapter 3 requires a block diagonal form. The ap-
proach taken in this work to diagonalize the system rotation matrix will be to factor
the matrix into a diagonal matrix and a pair of rectangular “pointing” matrices. The

pointing matrices are then incorporated into the system model.
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The constrained model is given by

Z = Az + Bu + B,a. + BrF, (4.70)
F. = Cpz + Dru + Dpqa. + DppF, (471)
af = Coz + Dou + Dgsa. + D,pF, (472)

with 27 = [ g’ ¢* ] Using the notation

A=-M'K (4.73)
B = M™'Byy (4.74)
B, = -M™'M}; (4.75)
Br = M~ 'By; (4.76)
Cr = M A (4.77)
Dp = —Bpe+ M B (4.78)
D, = M.+ M B, (4.79)
Dpp = —Bgs + M By (4.80)
C, = G,A (4.81)
D, = G4B (4.82)
Doy = Goe + GosB, (4.83)
D,r = G.;B;g (4.84)

Note that these equations are in second order form. This is for consistency with the
nonlinear model. The rate states will be accounted for later, for the aggregate system.

The system EOM are created by appending the component EOM:

i = ‘g AiT+ ‘tes By,u+ was By,p (4.85)
q = ‘trag Coux+ ‘tens Dygyu+t ‘dias Dgp,p (4.86)
(4.87)

where the states, inputs and outputs are the column-wise aggregation of the compo-
nent variables. The inputs u contain the commanded torques 7 as well as the gearbox

torques.
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The gearbox stiffness forces are calculated from the gearbox stiffness matrix K,

which relates base, armature, and shaft angles to torques on those components:

mp 03
ma | = _Kg 04 (4.88)
mg 93

The gearbox stiffness torques are incorporated into the system matrix by creating the

appropriate observation matrix for the base, armature, and shaft angles:
fp
B4 | =Cyx (4.89)
0s

where z is the global state vector, and by determining the correct global influence

matrix to actuate the global DOF:
mp
.'1:+ B Bg ma (4.90)

ms

The gearbox stiffness is then accounted for in the global state matrices by incorpo-

rating the gearbox torques through the observation and influence matrices defined

above:
mp
T =Az+ By | my (4.91)
ms
= Az — ByK,Cyx (4.92)
= (A - B,K,Cy)x (4.93)
= A,z (4.94)

Note that the gearbox stiffnesses take on the form of output feedback torques.
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Using Equation 5.127 along with the appropriate observation matrix for joint j,

Cj, to pull off the correct angles from the system state vector,

the gearbox torques can be described:

mp;

ma, | =4y (Kgear;Cj) (4.96)
mg.

J

The commanded torques impose a differential force between the motor armature and

the base:
0
ui=| -1 0 .. |7=Tj (4.97)
0 1

In other words the commanded torque pushes back on the base component of joint j
with equal and opposite force to the armature. These “pointing” matrices T}, which
describe how the command influences the states, are used to map the commanded
torque (one for each joint), into the component models (where the torques will act

on two components). Stacking the pointing matrices,
u=TT (4.98)

gives the component-level torques from the system input torques.
Combining the spring forces and the commanded torque “pointing” matrix, the

linearized EOM become:

T = Az + Byu+ Bpp (4.99)
g = Cg& + Dgyu + Dgpp (4.100)
with
0 I 0
A= block T ok sy Kyear;C; (4.101)
daag A; 0 diag By,
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Figure 4-9: Feedback interconnection of the rotation matrices with the linearized
system model.

e e

0
Bu = block (4'102)
i diag B-u‘)T)

B, = [ Yt B, ] (4.103)

c, = [ e, ] (4.104)

Dy, = ‘aas Dy, (4.105)

D,y = iag Dy, (4.106)

with the geometric terms (p and g) calculated as

p=Rq (4.107)

Note that that in effect the linearized system model consists of the aggregate of
the linearized component models. That is, they are no longer independent. This is

represented in the Figure 4-9

4.7.3 Friction

The resulting manipulator model does not incorporate friction. The scope of the
thesis is limited to an accurate and simple representation of configuration-dependent

nonlinearities. Friction takes the form of a (possibly nonlineai) function of the joint
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rates and is not configuration dependent, and as such does noi fall within the bounds
of the research. However, this is not to suggest that friction is not of concern to the
manipulator controls engineer. In fact, friction may end up being a strong determi-
nant of the ability to close high-authority loops around a robotic system. Thus it is
important be aware of the standard ad hoc methods for accounting for friction which
are available in the literature. Friction can affect two areas: the ability to model the
system, and the ability to perform control.

The ability to model the system may be compromised due to friction. This is
partly due to the difficulty in accurately capturing the effects of friction; witness
the literature extant on determining linear friction. In addition, the presence of
nonlinear friction may distort the transfer function or time domain data needed for
identification and model updating to such an extent that the model parameters cannot
be determined. Of particular interest are Coulomb friction and stiction.

Coulomb friction refers to a friction force which has a constant magnitude, with

a sense that resists the motion of the joint:

F. = —c sign() (4.108)
where ¢ is the magnitude of the friction force and @ is the joint rotation rate. Stiction
takes the form of a static friction force which “freezes” the joint in place whenever
the joint rate goes to zero and the inertial force is not sufficient to break the joint
loose.

Modeling of stiction is currently not well understood, since its effect is to constrain,
and then release, a subset of the EOM. In effect the model order varies dynamically.
One of the few approaches uses a multiple-time-scale simulation approach to resolve
high bandwidth (step function) friction forces, then solve for lower bandwidth vibra-
tion and rigid body motions. The work does not address experimental determination
of the stiction parameter.

It is assumed that the above model is a representation of a physical system.
Further, in keeping with the scope of the thesis, the model must be of sufficient

accuracy to allow the use of control. In general, as asserted above, friction will be a
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strong element of the system dynamics. Thus a friction model may be required; this
may further entail experimental determination of the friction model parameters.

Many approaches to identifying the Coulomb friction parameter have been pro-
posed, in the time domain[2] as well as in the frequency domain[79]. The time domain
technique involves a pendulum test in which the envelope of the time response is fit-
ted with a friction parameter, using a numerical cost evaluation and finite difference
search function. Alternatively, for higher corhputational cost, a time domain model
simulation in response to various inputs can be performed, with a similar numerical
cost function created from time domain simulations of the model with friction im-
posed at the joints and data from the actual system. The frequency domain approach
uses transfer function measurements of joint commanded torque and motor angle,
along with the first term in the Fourier series of the square wave function sz'gn(é),
to derive a numerical cost function representing the error between the modeled and
actual friction forces. The parameter is then further used to modify the experimen-
tally determined transfer function, to reduce the distortion caused by friction in the
measurement.

Four approaches for implementing control in the presence of nonlinear friction are

commonly used. A fifth may be considered, in addition, although it has apparently

not been implemented to date:

(i) dither: high frequency torque command which breaks the joint free, while being

far enough above the fundamental mode that the structural response is low.

(ii) feedforward of a torque which opposes friction (based on the identified model

above).

(iii) joint position servoing, using the property that feedback rejects disturbance

forces.

(iv) joint torque servoing, in which strain measurements on the base of the link
(which are proportional to moment in the link) are used to servo a commanded

torque into the link.
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(v) nonlinear feedback of joint rate, via a nonlinear delta block similar to that used

for the configuration dependence.

The first option may excite structural modes in the rolloff region, and may thus
be unacceptable since it is an additional disturbance source. In addition, the step
nature of the friction response to the dither command may excite frequencies beyond
the sampling frequency of the active control[49], with resulting aliasing.

The major difficulty of numbers two and five is that an accurate model of the
friction is needed. If the feedforward torque is larger than the friction force it opposes,
the feedforward torque will be destabilizing (as it is a function of the joint angular rate,
thus in fact is a positive feedback term). This is problematic because the magnitude
of the friction can vary over a wide range as a function of joint angle, and in fact is
not generally repeatable for any given angle (this is due to the bearings not moving
in a repeatable way in the ball race).

In addition, feedforward only works for a joint which is being commanded. For a
linear system, a torque in for example any pitch joint, will cause some motion at all
the other pitch joints, due to being communicated through the structure. This will
not occur when the torque carried by the structure is less than the breaking torque
of the stiction in the other joints. If the input torque is always less than the breaking
torque at the other joints, the robot will respond as if it is a “locked joint” structure.

The joint servoing techniques, options three and four, both rely on the well-known
property that feedback rejects disturbances and decrease the effect of model errors
(thus obviating the need for an accurate friction model). Difficulty may arise in get-
ting sufficiently high gain, in the presence of strong friction force (or slow commanded
movements, in which inertial forces are small compared to friction). Servo bandwidth
is limited by loop phase loss, due to motor dynamics time delay. Digital control
implementations are particularly of concern. Motor dynamics may appear when the
torsional rotation of the motor shaft becomes important. For the torque servo, there
is geartrain (or belt reduction) flexibility between the motor input and the sensed
torque output. This takes the form of a second order roll-off and is amenable to

rate compensation. However, the rolloff frequency changes as the manipulator inertia
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changes with configuration. Torque servoing is often fairly simple to implement in
analog, as the motor is often driven by a voltage controlled current amp. Adding a
loop which modulates the voltage input to the amp based on sensed beam n.oment
error is straightforward to do in analog, which bypasses the potential bandwidth
restrictions of a digital loop.

The first four approaches may be implemented independently of the high authority
control. The final approach may be amenable to the type of control proposed in the
following section for the configuration dependent term:s in the dynamics. This would
require a measurement of the friction force. Alternatively a model-based control
approach may be possible in the same framework. This is a topic which requires

further research and will not be developed in this thesis.
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Chapter 5

Component Modeling

The proposed manipulator modeling approach relies on an existing set of component
models. The accuracy of the system model is set by the accuracy of the component
modeis. The component boundary conditions preserve all forces and accelerations
across the interconnection, so do not degrade accuracy. Thus, all “important” terms
in the EOM must be present, where the importance is a function of the system
being modeled, the expected rates of motion, and so on, and must remain in the
province of engineering insight. In addition, the representation of the component
models can facilitate (or hinder) the system modeling algorithm. In this chapter,
the modeling of two important flexible manipulator components is considered: the
link, and the gearbox. These two components will be sufficient to capture many
flexible manipulators, such as the SRMS. A Lagrange-based derivation will be used.
As will be seen, the approach leads to a closed form model for the link. This allows
the system model to be written in closed form. That is, an open chain manipulator
(of any number of links) can be modeled using the results of the previous chapter
combined with this chapter. In addition, the EOM are in a form which requires
minimal on-line calculation.

The chapter is laid out is follows: in Section 5.2, a set of generalized coordinates,
which leads to a simplified form for the link EOM, is proposed. The proposed co-
ordinates are used to derive the EOM for the link component. Next the gearbox

component EOM are derived.
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5.1 Modeling Framework

The Lagrangian framework is used to derive the free-free EOM of the link and gearbox
components. Lagrangian methods employ the system energy function, or Lagrangian.
The energy function is written in terms of a set of assumed degrees of freedom (DOF)

collected in the vector g:
L(g,4) =T(q,4) — P(g,9) (5.1)

where L is the Lagrangian, T is the kinetic energy, and P is the potential energy.

Then Lagrange’s equations, given by

doL 0oL -

are evaluated to determine the equations of motion (EOM). The matrix B is the
influence matriz which maps external forces F' to the states.

The general form of the resulting model will be

M(q)§ = ~V(g,9) + B(q)F (5.3)
a = H(q,q) +G(q)F

where as before, M is a time-varying inertia matrix, V' are state dependent forces,
and B is the influence matrix (including boundary forces). a are the boundary ac-
celerations, which are functions of the states H and the boundary forces through G.
Component models of the above form will be sought for the link and the gearbox.
The local modeling result of Section 5.2 will be used in the derivation of the link
model. Some further notational conventions will be made to facilitate the process.
First, note that the Lagrangian is linear in the energy functions T and P, thus
Lagrange’s’ equation can be evaluated in terms of a summation of contributions from

various sources:

N N
T=YT,P=) P (5.4)

i=0 1=0
Multiple contributions can exist; for example, kinetic energy due to translational

velocity, and due to angular velocity. Noting that Lagrange’s equation is a function
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of time only, not space, the summation above can be extended to an integral over a

body (conceptually, as an infinite sum of differential elements)

T, = /OL T!dr (5.5)
where r is a length parameter, the prime denotes differentiation with respect to r,
and the differential element is dr. The length parameter could in fact be a vector of
lengths, and the integral be a body integral. For notational convenience, the body
will be considered to be “long and thin”, so that the integration is carried out over
a scalar length parameter (e.g. the distance along the link). Note that T is then an
energy per unit length.
Note that the EOM which result from evaluating Lagrange’s equation for the body
can be written
MG+V =BF (5.6)
where M is the mass matriz, V is the vector of state-dependent forces, and again B is
the influence matrix for the external forces F'. Note that if the Lagrangian is broken
out into contributions T;, each 7; will result in corresponding M; and V; terms in
the EOM. Taking advantage of this fact, the evaluation of Lagrange’s equation will
proceed as follows: determine the contributions T; and P,, apply Lagrange’s equations
to each contribution, integrate over the link, and sum the resulting mass matrices and

state dependent forces:

N L
M=) /0 M!dr (5.7)
=0

N L
V = z / Vidr (5.8)
j=0 70

Using the results of Section 5.2, the components M and V; will fall out of the defi-

nition of the link component.

5.2 Local Equations of Motion

One of the keys to a successful model for a nonlinear structure is the correct choice

of assumed DOF. It is the aim of this section to present a particular set of DOF
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Figure 5-1: The position of the particle is represented in the frame O,, which is
moving with respect to the inertial frame Oy.

which may be said to be “natural” for a flexible link. The argument will be made by
using the proposed DOF to derive the EOM for a particular system. The resulting
EOM will be compared to a more standard representation to determine if there is an
advantage to the former.

The present section discusses the generation of the EOM of a single point. The
point may represent a true point mass, or a differential mass which can be integrated
over the body to produce the body EOM. The initial step is to define an inertial
reference frame Oy, and a moving coordinate frame O,. O; can translate and rotate
in the inertial frame. The point of interest can in turn translate and rotate within
0,. O, will be referred to as the local frame. Vector quantities will be referred to as
local coordinates when they are expressed in the local frame.

In order to use Lagrange’s equation, the inertial velocity of the point is required.

Let the velocity of the point in inertial space be denoted p, which can be written
p=12o+ Riy (5.9)

where %, is the velocity of the local frame, and 7, is the velocity of the point ezpressed
in the local frame, that is, in local coordinates. R is the rotation from local to global
coordinates. Let the assumed DOF which represent motion in the local frame be
denoted gq;,. The DOF ¢q;, for a manipulator will typically consist of rotations @ and

translations w. Partitioning for convenience,

6
q = (5.10)
w
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Assume that a linear relationship between the assumed DOF and the local velocity

exists, which is independent of rotations:
&L = A(w)qL (5.11)

An expression for the EOM in terms of the local velocities ¢, and the frame velocity
T, can be found from Lagrange’s equation.

The energy per unit mass of the point is given by

T = %pT;a (5.12)

| . . .

= -2-(x0 + Ri1)T (30 + Riy) (5.13)
1, . . . .

= 5(1‘0 + RAqL)T(xo + RAqL) (514)

T
L I RA )

_ 1] % o (5.15)

2 q.L ATRT ATA QL

T
Applying Equation 5.2 and using the notation ¢ = [ =y qf ] ,

dor | 1 Ra ][ .
dtaq ATRT ATA g

0 RA+RA ] [ %o ] 65,16

(RA+ RA)T ATA+ ATA dr
- -aT
T 1| %o 0 R/A Zo
i | d | | (RiA) 0 qr
F AT r
or 1 To 0 RA; To (5.18)
oo 2la | | RAY ATA+ATA] | | G |

where the notation R} = 2&, 6; is the i*» component of 8, and similarly A, = 24,

These equations are a force balance expressed in the inertial frame. They are functions
of orientation, through the rotation matrix R. The dynamics are thus functions of the
orientation of the point. This is intuitively over-complicated. A simpler expression is

desired, in which the dynamics are independent of orientation.
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The EOM can be expressed in the local frame using the substitutions for the frame

velocities and accelerations

Rqo = o, RGo = Zo (5.19)

This is not a state transformation. Rather, the given vector quantities are being ex-
pressed in the local frame. The force balance corresponding to the inertial translation

DOF must also be rotated into the local frame, by pre-multiplying by RT. The EOM

become
d oT' r A do
—_— = +
dt 9q i AT ATA iL
[ 0 RTRA+A | [ g
o " (5.20)
I (RTRA+ A)T ATA+ ATA I qr
- -T r -
/ ] 0 RTR'A 7
o _Ll|® S (5.21)
96; 2 a | | (RTRA)T 0 | [u
- aT
' ] 0 Al j
QT_. = _1_ %o . , t . % (5,22)
Qi 2 g | | AT ATA+ATAT || @

Equations 5.20-5.22 are not of interest in themselves, since the rotation matrix, and
its derivatives in ¢t and 0, still appear. However, the following relationship can be
used to express the rotation matrix terms in Equation 5.20 in terms of the angular

rates 0 only:

0o -6, 6,
RTRv=0xv=| 6, 0 -6, |v=QW (5.23)
-9, 6, 0

where the elements of Q are the angular rates of the local frame, expressed in the

local frame. Further, the following expansion for 2 can be written:
Q= RTR= RT(R,0, + R,9, + R.9.) (5.24)

from which the following relation can be determined

Q= gf;l. = RTR, (5.25)
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which is a constant matrix, consisting of zeros and ones in the appropriate locations.
Using these relationships, Equations 5.20-5.22 can be re-written in a form which is

independent of orientation:

dor 11 A ||
dt Bq I AT AT A q.L
0 QA+ A do (5.26)
| (QA+A)T ATA+ATA || q '
- aT r
or _ 1 4o 0 A 4o (5.27)
% 2a| | @aT o ||a
- 2T
or' _ 1| do 0 A do (5.28)
Owi 2| g | | AT ATA+ATAT || @

These equations represent the EOM of a particle of unit mass, expressed in the local
frame. The rotation to ground, R, does not appear. The implications are that the
dynamics are independent of the orientation of the frame. This is intuitively pleasing.
A link freely floating in space should have the same dynamics whether it is vertical
with respect to the observer, or horizontal. Note that the angular DOF are specified
by Equation 5.23. In particular, the rotation rates are referred to a rotating coordinate
system. As a result the rotation DOF will not in general be physically meaningful. In
many instances this will not matter. In some cases (such as in a gravity field) it may.
In this case the inertial orientation is determined as the integral of Equation 5.19. In
addition, the relation in Equation 5.11 must hold, so that the mapping A(w) from

DOF to inertial velocity does not depend on orientation.

5.3 Link Modeling

Links are modeled as thin, flexible beam elements (Figure 5-2). Transverse and
torsional vibrations are supported. Axial stiffness is assumed high enough to neglect
axial deformation. A Bernoulli-Euler beam model is used to represent the transverse

link stiffness and mass, based on the assumption of thin cross-section. The parameters
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Figure 5-2: Link component overview.

describing the link are length L, bending stiffness EI, torsional stiffness GJ, linear
density pA, and cross-sectional inertias of I, Iyp, and I,,. The flexible portion of
the link is offset from the axis of rotation by a distance a (which may represent the
distance from the motor axis to the gearbox case and the link attachment fixture).
The link is loaded with an end mass of mass m; and inertias I,, I,, and I,,. The end
mass is offset from the end of the bending portion of the link by a vector of offsets
b= [ b, b, b, ]T. The length L refers to the bending length of the link. Thus
the total distance from the base of the link to the center of mass of the end mass is
Li=a+ L +b,.

In accordance with the local modeling results, the link model states are defined
as follows: the link frame of reference is affixed to one end of the beam, referred
to as the base (Figure 5-3). The link frame translates and rotates with the link,
in three dimensions. The z axis of the frame points along the link. The z posi-
tion variable is r. The translation of the base of the link is captured with the DOF
[ z(t) y() z(t) ]T, expressed in the rotating link frame. The rotation of the link

T
frame (thus the base of the link) is expressed with the DOF [ 6:(t) 6,(t) 0.(2) ] )
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z
Figure 5-3: Link axis system, affixed to base of link. Deflections w are defined
in a coordinate system which rotates about ‘he local z axis due to
torsion in the link.

again referenced to the link frame. The bending deflection of the beam is denoted
w = [ we(r,t) wy(r,t) w,(r,t) ]T, where w,(r,t) is in fact a torsional vibration
variable, and w,(r,t) and w,(r,t) are transverse bending deflections. These can
be thought of as place-holders for an assumed modes expansion. Dependence on
r and ¢ will be suppressed. Following the notation in the local modeling section, the
translational variables are denoted ¢qq, the rotations as 6, and the local variables as
qr = [ 0T T ]T-

The link modeling algorithm is to 1. determine the differential mass matrices and
state-dependent forces by decomposing the energy terms, and evaluate Lagrange’s
equation for each, 2. choose a set of assumed modes and integrate over the links, 3.
sum the contributions, 4. evaluate the force influence matrix, and 5. determine the
boundary accelerations as functions of the model DOF. The link kinetic energy will
be decomposed into translational and rotational contributions. The link potential

energy will be evaluated due to centripetal forces, and due to material stiffness.

5.3.1 Link Kinetic Energy Terms

The link kinetic energy exists in the form of of transverse and rotational velocity of

the differential elements. Denoting these contributions as 1, and 2, the link kinetic
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energy is

L L
T= / Tldr + f Tidr (5.29)
0 0
which leads to the following terms in the component dynamics:
L L
/ M{dr,/ Mydr (5.30)
0 0
and
L L
/ V{dr,/ V,ydr (5.31)
0 0

Transverse motion is considered first. A relation between the local variables and the

inertial velocity is sought. Using the notation ¢, = cos(w;), s; = sin(w;) leads to the

expression
T r
TL = | cowy — Sgw, | = | Wy (5.32)
Cz W, + SzWy W,

where the variables w, and @, are the deformations projected onto the base. The

total time derivative of Equation 5.32 in the rotating coordinate frame is found from

dfdt() = 2() +w x ():

0 0o -6, 86, r
gr=| @, |+| 6. 0 -6, b, (5.33)
D, -6, 6, 0 D,

6
2

o @, —-w, 0 0 0 P

ir=|-w, 0 1 —, ¢ —S : (5.34)

Wy

wy -r 0 Wy Sz Cx
Wy
W,

thus A is determined. Calculating A, ATA, A; = gwA , Ay aw ,and A, = 24 and

their time derivatives, the differential mass matrix M; and state dependent forces V;
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are known from Equations 5.26-5.28:

1A
M! = AT (5.35)
ATA
Vi = 0 QA+ A do (5.36)
QA+ AT ATA+ATA | | ¢

These will be high order in the deflection variables (up to 6** order) with trigonometric
terms representing rotations. Small angle approximations for the deflection variables

will be used throughout this work:

sin(z) =z , cos(z) =1 (5.37)

2

sin(z)? = 2 , cos(z) = 1 — 22 (5.38)

which preserves the relationship sin(x)2+cos(z)? = 1. Note that the full equations for
the link EOM will not be presented in this chapter, for reasons of clarity and brevity.
The full EOM, to second order in deflection variables, can be found in Appendix B.

Next the energy in rotation of the differential element is evaluated. Note that the
magnitude of the energy in rotation may be much smaller than that in transverse
motion, and may be neglected if appropriate. Care must be taken to include at
least the torsional rotational energy (about the z axis), otherwise the torsional mass
matrix will be zero and the component mass matrix will be non-positive definite.
An expression for velocity as a function of local variables is defined, similar to the

translational velocity:

6, 1 0 0 Wy
O=|6, |+]|0 ¢ -5 || - (5.39)
92 0 s; ¢ w,

/

y and ; are differ-

where again ¥, is torsion rate (already an angular rate). w
ential rotations associated with transverse deflections. Using the notation w' =

T T T
[w, w, w, ] and by extension ¢} = [GT w' ] , ¢ = [qg" qr ] , the ro-
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tation rate can be written

1001 0 0

©=(0100 —-s, —c, |d (5.40)
0010 ¢ -sg
=0 4 ]¢ (5.41)

where I, is the matrix of cross-sectional rotational inertias (akin to the linear density
pA):
Iz Ly I,
L=|1, I, I, (5.42)
L. I, L.
It is noted in passing that often the inertia coupling terms are zero and I, is diago-
nal (this arises when the neutral bending axis coincides with the modulus-weighted

centroid of the link). The kinetic energy associated with rotation of the differential

element is .
T
T = / g [ 0 A ] I [ 0 A ] §'dr (5.43)
0
Lagrange’s equation applied to Equation 5.43 gives
d 8T2’ T .y T r <!
ALy — riir r{éir 44
or; ., 70ATLA, ,
dw, = qr _—sz ar (5.45)
By inspection,
0 0
M, = (5.46)
0 ATIA,

and V2 = (AZ"f,A,)qL plus a contribution in the EOM of the torsional deflection w;.

5.3.2 Link Potential Energy Terms

The link potential energy includes link bending stiffness and centrifugal stiffening.

Again the energy has two components
L L
P= / Pldr + / Pydr (5.47)
0 0
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which lead to the following terms in the link dynamics

L L
/ Vidr, f Vidr (5.48)
0 n

note that the indices start at 3 to align with the kinetic energy contributions.
Centrifugal stiffening is calculated using the work done to move the differential

element away from the centerline against the tension exerted by centrifugal force T'(r).

The distance the force is applied over is equal to the length of the displaced element,

ds, minus the length of the undisplaced element, dr:
P =T(r)(ds — dr) (5.49)

The “stretched” distance ds is related to the distance along the x-axis by the differ-

ential rotation (due to bending) of the link:

ds® = dr? + (w'dr)? (5.50)
or
ds = V1 + wdr (5.51)
Using the approximation
V1+w?dr =~ (1+ %w'z)dr (5.52)

allows the distance term in the work equation to be written as a quadratic term:
1 2 1 2
ds—dr~(1+ S Ydr —dr = ¥ dr (5.53)

With two transverse bending axes, w' is the hypotenuse of a triangle with w} and w,
on the sides. By Pythagoras’ Theorem,

ds —dr ~ %(w;2 + w?)dr (5.54)

which is a quadratic term in the deflection DOF.
Tension is created by the radial acceleration, a,, of the sections of the link outboard

of the differential element:
L+a
T(r) = pA / @ (r)dr -+ meay (L) Le (5.55)
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where L; = a + L + b is the distance from the joint axis to the center of mass of the
tip mass. Radial acceleration can be found to be (zeroing deflection terms to avoid

carrying two spatial integrations)
ar =& — (02 +6%)r (5.56)
which leads to the following expression for the tension in the link:
T(r) = (pA(a+ L — 1) + meLo)i + (—;—pA(r2 @+ D)) - mL)(@ + ) (5.57)

Substituting Equation 5.57 and Equation 5.54 into Equation 5.49, and adding
in the link stiffness terms, produces the following expression for the link potential

energy.

1
P = §(mt + pA(a + L — r))i(wy + w?) —

(meLi+ 5pA(a+ LY - )@ + )W +u?)  (5:59)

With a symmetric cross-section of bending stiffness EI and torsional stiffness GJ.
Collecting terms, applying Lagrange’s Equations, and linearizing the result in the

deflection terms,

OP]
o = 0 (5.59)
oP| 1 L1 iz . a2 ,
OO 2 (me+ pAa+ D))~ FmuLe + pA(a+ L) +62) ) ), (5.60)
y
— pArw,i + %pA(Gg + 6)r2w, (5.61)
OP] 1 L1 2 (A2 4 A2 /
08 = 2 (et pA(a+ )i — F(miLi+ pAGa+ DG + ) ) w), (5.62)

— pArw.i + i—pA(OS + ) r?w,s (5.63)

The energy in bending simply consists of the strain energy in the link:

P; = EI(w)? + w}?) + GJw (5.64)
which leads to
OP; _ .
dw, GJw,; (5.65)
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P!

Yy
/
gf: l = EIw’ (5.67)

these terms all contribute to the state-dependent force on the differential element.
There is no inertia matrix contribution from the potential energy.
The result of the evaluation of the decomposed energy functionals is the unforced

dynamics of the differential element on the link:

M'(g)§+V'(g,9) =0 (5.68)
where
M = M, + M, (5.69)
and
Vi=Vi+Vo+Va+V, (5.70)

The next section will present the evaluation of the link unforced dynamics from the

dynamics of the differential element.

5.3.3 Assumed Modes and Spatial Integration

As of this point the deflections are in the form of spatially distributed functions
w(r,t) = [ we(r,t) wy(r,t) wy(r,t) ]T. A finite order model is desired. An as-
sumed modes approach is used to approximate the flexible deformations. The as-
sumed modes appreach factors the deflection into a set of functions of time only and

a set of functions of space only:

wy(r, 1) = ¢2(r) g2(t) (5.71)
wy(r,t) = ¢y (r) gy (t) (5.72)
wz(rv t) = ¢z(r)TQz(t) (5.73)

The assumed modes carry through the application of Lagrange’s Equation by the

application of the chain rule:
or'  oT'ow;  oT'

Og; T Oy 0g; - 3wi¢i’ (5.74)
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’ ’
% - %@ (5.75)
Note that ¢; and ¢; are vector quantities, while w; are scalars. The transformation
between the EOM in terms of the distributed functions and the assumed modes
expansion will involve an increase in order.

The assumed modes expansion can be written as a state transformation on the

distributed deflection coordinates:

(2] [1000000 0 o0]]z]
y 0100000 0 O y
z 0010000 0 O z
9, 0001000 0 O 9,
6, |=l00o0010 0 0 O 9, (5.76)
9, 000001 0 0 O 0,
Wy 0000O0O0G®W 0 O sz
wy 000000 0 ¢f 0 y
| w, | | 000000 0 O d)f__qz_

For the purposes of exposition, the above transformation is defined as the matrix T

and used to transform the system state vector. The mass matrix becomes
M =T"MT (5.77)
the state dependent forces becomn:e
V=TTV (5.78)
the force influence matrix becomes
B=T"B (5.79)
and the acceleration output function becomes

G=GT (5.80)

Note that the above terminology will not be used in the sequel. The state transfor-

mation from distributed coordinates to assumed modal coordinates will be implicit.
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Note also that the transformation is rank-deficient. That is, there are more
columns than rows. As a result the mass matrix is apparently singular. This is
true because for a single point at a location r on the link, the deflection w, is the
same as base motion y. However, the mass matrix is actually full-rank because of the
spatial distribution of the deflection mode shapes. Essentially the rigid body shape is
a constant deflection along the link, and the fiexible shapes can be decomposed into
a complete orthogonal set (to each other and the rigid body modes). Hence when the
differential mass matrix is integrated over the link (or in fact evaluated at any two
points with non-zero mass) the mass matrix will be full rank.

Choice of the mode shapes ¢;(r) is an important step in creating an accurate
model. Oakley[2] has analytically determined transverse vibration mode shapes for
a cantilevered BE beam with a tip mass and inertia. She experimentally verifies
that the mass-loaded mode shapes produce a more accurate model than unloaded
cantilevered beams, which need to capture a non-zero strain distribution at the tip
with a zero strain mode shape. Thus accuracy is greater for the same number of
mode shapes. Alternatively, fewer modes need be used for the same accuracy. The
same mode shapes can be determined numerically (see Appendix A).

Note that the mass loaded mode shape does not obviate the need for engineering
insight into the mode shape selection. The correct system loading varies as a function
of configuration (as the attached inertia varies). A reasonable average mass must be
chosen to approximate the true system throughout the workspace. Such an average
may need to account for varying payloads, and should also take into account the par-
ticular structure. A “floppy” manipulator may not completely transfer configuration
varying moments back to the link, leading to a lower apparent load than simply the
total mass attached outboard of that link.

The choice of a cantilevered base is also an approximation. The link will generally
be attached to a compliant base, thus w(0,¢) and w'(0,¢) will not be zero. A non-
cantilevered base could be included in the mode shape selection, by changing the base
boundary condition. Stiffness loading may be appropriate.

The mode shapes can then be numerically integrated. The integrated mode shapes
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can then be incorporated into the component M and V. This is facilitated by noting
that the differential mass matrix is integrated over the lumped mass at the base of
the link my, the link with area density pA, and the tip mass m;. The resulting mass

matrix has the form
L L
M= / M'(r)dm = moM(0) + / pAM(r)dr + mM (L) (5.81)
0 0
Therefore, for the (i, 5)** element of M’(r) which is a function of ¢;(r),
M;;(r) = ¢i(r) (5.82)
M will contain the term
L
Mij = m0¢,(0) + A pAész + mth,(L) (583)

Similarly for products of the mode shapes. In effect the mass matrix and inertia
forces can be integrated by inspection (given the integrals of the mode shapes). The
mode shape integrations are done off-line.

The result of the mass matrix and state-dependent force integration is an expres-

sion for the unforced, free boundary condition dynamics for the link component:
M(q)i+V(g, 4) =0 (5.84)

Note that the mass matrix and the state dependent forces are both functions of the
model DOF. M(q) is generally specifically a function of the deflection DOF only. V
is generally a function of rigid body DOF as well as flexible DOF. In the next section,

the forcing functions needed for the attachment model are calculated.

5.3.4 Boundary Force Influence Matrices

The present section discusses how to determine the force influence matrices on the
link. The attachment forces are taken to act at the left, or base end of the link,
and the right, or free end. Two types of generalized forces act: linear forces F'
and moments M. These generalized forces act in distinct ways on the rigid body

translations, the rigid body rotations, and the deflections. The force influence matrix
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Figure 5-4: Boundary force inputs.

will be determined for each type of force, for each of the three types of generalized

coordinates
Bor Bom
B(r)= | Byr B, (5.85)
BwF BwM

where again the force influence matrix is a function of the distance along the link.
The first subscript, 0, 8, or w, denotes which set of generalized coordinates is affected.
The second denotes the type of the generalized force (force or moment).

The attachment boundaries for the link will be at the left and right ends. The
generalized forces which act at those locations will be denoted F; and F;., respectively,

with the force and moment components as follows:
T
F=|F, F, F, My M, M,] (5.86)
T
F=|FR, F, F, M, M, M, | (5.87)
The linear components of F; act along the base axis system, and the moment com-
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ponents act around the same axes (Figure 5-4). The components of F, act along the
axes of a system fixed to the far end of the link, which translates and rotates with
respect to the base as a function of the flexible deflection. Thus the influence matrices
are functions of the deflections.

The general force influence matrix for a point on the link at a distance r from the
base will be established. The components for the translational DOF ¢q, rotations gy,
and flexible DOF ¢, will be determined separately. Beginning with the translational
DOF, forces act along the axes fixed to the link at point . Defining R,, as the rotation

from link to base axis systems, the force on gp is

Fo = R F (5.88)
= BorF (5.89)

Moments do not drive the translational DOF'.

Next the influence of the generalized forces on the rotational DOF gy are consid-
ered. The linear forces produce a moment on the base by acting through a moment
arm d = [ T oy, W, ]T, where the deflections are again rotated back out from the
torsionally rotated frame to the base frame. Using the matrix form of the expression

M = d x F, with forces rotated into the base frame,

0 —b,

Fo=| %, 0 -—r|R,F (5.90)
—Wy T 0

= BgpF (5.91)

The moments at r are rotated into the link frame

My = R,M (5.92)
= BoyM (5.93)

where they directly act on the rotational DOF.

Finally, the deflection influence matrices are considered. The forces act directly
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on the flexible DOF. The force influence matrix is

0 0 O
Fypb=10 ¢, 0 |F (5.94)
0 0 ¢,
= ByrF (5.95)

The moment influence matrix acts proportional to the slope of the deflection:

My=10 0 ¢|M (5.96)
0 ¢, 0
= ByuM (5.97)

The general expression for the force influence matrix B(r) is found by collecting all
the above matrices. Before this can be done, the deflection into the base frame (R,,)
must be known.

The rotation of the end of the link is a function of torsion w, and of the slopes of
the transverse deflections wy, and w;. The rotation can be decomposed into a sequence
of three rotations about each axis; for example, rotation about the local z, the (now

rotated) axis y, and the torsion axis z:

Ru = R.R,R, (5.98)
with
(1 0 0
R; = | 0 cos(w;) sin(w,) (5.99)

|0 sin(w;) cos(w;)

cos(—w,) 0 —sin(—wl)
R, = 0 1 0 (5.100)

sin(—w},) 0 cos(—w)

cos(wy) —sin(w,) 0
R, = | sin(w}) cos(w)) O (5.101)
0 0 1
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However, this rotation is not consistent with the definition of the deflection DOF (in
which the transverse deflections are independent). In effect the above choice for R,
defines the deflection DOF in terms of Euler angles for the point on the link.

This difficulty can be addressed by assuming infinitesimal deflection rotations.
Small angle assumptions hold; further, products of deflections vanish, leaving only
the linear terms in flexible deformations. In this case, the deflection rotation matrix

Equation 5.98 becomes

1 —w, w,
—-w!,  wg 1

As can be seen, for infinitesimal rotations, the order of the sequence of rotations does
not matter.

The force influence matrix as a function of r can now be assembled:

Byr 0
B(r)= | Byr By, (5.103)
Byr Bum

where the block elements are as described above. The dependence on r arises from an
explicit dependence, for example as a moment arm of a linear force on the rigid body
rotations. An implicit dependence also arises from the dependence on the deflections
w. The left and right influence matrices are then evaluated at r = 0 and r = L,

respectively.

5.3.5 Boundary Acceleration Functions

The outputs used in the system model are the linear and rotational accelerations
at both ends of the link. These can be easily calculated in terms of the velocity
functions defined during the unforced modeling process. The translational velocity

as a function of r, expressed in the base frame, is

p=[1 Aw)]d (5.104)
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and the angular velocity is
6=[0 4)]d (5.105)

Expressing the velocities in the frame which lies on the rotated link produces the

following expression:

; RT RTA
Pl ™ ™% |y (5.106)
e 0 RTA,
Differentiating,
7 RT RTA 0 (RTA)+QA
Pl=1" ™" |4+ ( ). q (5.107)
6 0 RTA, 0 (RTA,)
which has the form
a=H(g,9) +G(g,9)d (5.108)

Substituting r = 0 for the left end, and r = L, for the right end, gives the corre-

sponding accelerations:

a = H + G(’] (5.109)
a, = H, +G,.§ (5.110)

These are the acceleration BCs of the link.

5.3.6 Link Component Model

Collecting the link homogeneous dynamics, the forcing matrices, and the output

observation functions, the free-free component model for the link can be written

Mg = (-V(q,q) + Byu) + Bi/Fi + B, F, (5.111)
a; = Hi(q,q) + Gig
ar = H,(q,9) + G,

with the matrix elements known from the above equations. Note that the control
forces u have been lumped into the homogeneous dynamics of the component since

they are independent of the BCs. In fact, in the system model these torques may be
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Figure 5-5: Joint model consisting of case, armature, gear ratio, lumped stiffness,
and output shaft.

G

functions of the system states; the salient feature is that they are known in advance
(either being externally imposed, or by being known functions of the states in the

same way that V is kaown).

5.4 Gearbox Component Model

Joint motors are modeled with a single shaft degree of freedom, in a unit which
will be termed a “gearbox”. Multiple articulations (such as the pitch and yaw at
the base of the SRMS) are modeled with two separate gearboxes attached together.
The gearbox is modeled in three sections: a case, an armature, and an output plate.
The case is mounted to a supporting structure, either the end of a link, or the base
of the structure. The armature is the free-spinning portion of the motor to which
commanded torques are applied. The armature is connected through a gear reduction
unit to the output shaft. The output shaft is in turn connected to the base of a link
member, and applies torque to it. The gearset will typically have flexibility all through
the load path, due to deflection of the gear teeth, and torsion of the gear shaft. For
the present work, the gearbox flexibility will be reflected outboard of the gearbox.
Note that a gearbox has a single shaft degree of rotational freedom. In all translation
axes, and in the other two rotations, the gearbox reacts as a lumped mass.

The joint Lagrangian has two components: kinetic energy from an armature degree

of freedom, and a potential energy term arising from strain in the gearbox stiffness
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due to the motion of the armature, the joint casing, and the joint output plate.
The potential energy term will cause torques on the joint degree of freedom and on
the links to which the gearbox is attached. Note that an independent component
model is desired. The stiffness forces depend on other components, thus they will
be represented separately. The gearbox model will consist only of the inertial forces
introduced by gearbox elements. The stiffness forces will be introduced as a state-
dependent feedback in the system model. The parameters in the gearbox model are
case mass and inertia, armature mass and inertia, output plate mass and inertia, gear

ratio n, and stiffness K.

5.4.1 Gearbox Kinetic Energy

The DOF of the free gearbox are translational displacements of the center of mass
(C.M.) #,9, z, rotations about the gearbox z and z axes 6, and 9,, and rotations of
the base, armature, and output shaft 65,64, 6s. By convention the y axis is the shaft

axis. The kinetic energy function for the gearbox is
1 - - . ' - . . .
Tg = §(mga:2 + mgy2 + mgz2 + IBOZB + IAOi + Isé% + Jué?f, + Jzz0f) (5.112)

with m, the total mass of the case, armature, and output, J;; and J,, the angular
inertia about the center of mass, and I, I, Is are the base, armature, and shaft
inertias.

Because the gearbox translates as a unit (independent of configuration), the terms
in the EOM which arise from translational velocity of the gearbox C.M. are best dealt
with by associating them with the EOM of the base link (that is, the link to which

the base of the gearbox is attached). The C.M. inertial velocities are given by
p=Zo+ Ry(Zr + Qw x b) (5.113)

where (2, is the rotation rate of the base link endpoint due to deflection:

Q= | - (5.114)



and b = [ b: b, b, ] is the offset of the gearbox center of mass. The last term

in Equation 5.113 can be re-written in terms of an offset matrix B; and deflections

T
w= [ Wy Wy W, ] , as before:
Qy X b= By (5.115)

where the offset matrix is the cross-product matrix formed from the elements of b

and the differential operators which act on w, and w,:

0 b —b 1 0 0
B:=|-b, 0 b 00 -2 (5.116)
b, —b, O 02 o
The C.M. inertial velocity vector is then written
A=A+ [0 B, | (5.117)

where A(L) is given by Equation 5.34 evaluated at the link endpoint. The velocity
term A, is then evaluated in Equations 5.26-5.28.
Considering the rotational DOF, the Lagrange’s equation gives the gearbox EOM

as
A 1lés] [o1o0]
Ja 64 000 M,
Js s | =000 ]| | +
J. 0 6, 100 M. |,
i L || 6 | 001
[0 0 0]
000]|]| M
010]|]| M, (5.118)
100]|| M|,
00 1
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000 10]|]é,
a=110000 b (5.119)
0 01 0,
| - |
[ G,
00010 ‘A
a&=100100 b (5.120)
00001 0,
| 6: |

where the boundary accelerations are simply the states. There is no state-dependent
component to the outputs. Note that the “right” and “left” designations R and L are
not physically meaningful, as they are for the link, since the forces act at the same
physical location. The notation is used for consistency, and does represent distinct
forces. In the parlance of the link component modeling section, the generalized forces
and accelerations represent the force and acceleration BCs of the gearbox model.
Note also that the rotational component model has the same form as the link model,

Equation 5.111.

5.4.2 Gearbox Potential Energy

Next, the torques exerted by the gearbox stiffness on the base, shaft, and armature are
determined. The torques exerted by the spring are found by evaluating Lagrange’s
equation using the potential energy stored in the spring. The potential energy is
formulated by defining the intermediate variables 67 and 6, which are the rotation of
the armature and the output shaft, 84 and 65 respectively, with respect to the casing
0p:

6, =04—0p,0, =05 — 6p (5.121)
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The potential energy is a function of the armature motion, ], reflected through the

gear ratio, and the output motion:
2
p=1 (o; _ -71;0;) (5.122)
1 1 2
— 5 (6 05) - 204 - 6w)) (5.123)

Calculating the contributions of base, armature, and output rotation to the respective

balance of forces,

OP  (n—1)? n—1 1-n

90, = ~ Kog + = Ko, + - Kb (5.124)
orP n—1 1 1

a—gl; = 2 KQB -+ ;"EKGA —_ ;Kos (5125)
oP 1-n 1

6—03 = Kog — ;KOA + K6 (5.126)

Collecting all the terms, moving them to the left hand side of the EOM, and solving

for the forces exerted on the gearbox base Mg, armature M4, and output shaft Mg,

—1)2 —n
Mp el N
My |=K| =3t L 1 64 (5.127)
Ms 22— 1 Os

The gearbox torques are functions of the base link tip angle 6, armature DOF 6,,
and output shaft angle 5. As a result they are functions of the states of several
components. They can be calculated as a state-dependent feedback matrix, where
the state vector is the global, system state, and lumped into the appropriate state

force vectors V.

5.5 Conclusion

The preceding chapter has developed the component EOM for a flexible link and a
gearbox with flexible drive train. The EOM are found in closed form. These two
components can be used in the modeling framework of Chapter 4 to capture many

interesting geometrically nonlinear flexible structures. One of specific interest is the
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SRMS. The following chapfer will develop a model of the SRMS using the component
modeling approach. The model will be compared to a model developed using standard
tools (Lagrange’s equation applied to the entire manipulator). Next the component
model will be used to develop a gain-scheduled controller for the SRMS, which will
be evaluated on the Lagrange SRMS model.
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Chapter 6

Verification

The modeling algorithm is verified against a standard Lagrange modeling approach.

The verification has two separate purposes:

(i) Confirm that the model is of comparable accuracy to the standard approach,
and compare on the basis of modeling effort and run-time computational re-

quirements.

(ii) Use the model to create a controller, to be implemented in simulation on the

Lagrange truth model.

The Lagrangian SRMS model developed for Chapter 2 is used as the truth model for
the first aspect of verification. In the second stage of verification, the SRMS truth
model plays the role of a “testbed” for application of control using the linearized
component model, in conjunction with the design algorithm of Chapter 3.

The chapter road map is as follows: first the SRMS is described. The physical
characteristics of the model, along with the parameters used in the truth model, are
used to develop the component model configuration. The component models are
described. The boundary conditions are derived. Finally, the nonlinear simulation
form, and linearized control form are assembled. Next, the models are verified on the
basis of frequency and time domain metrics. Finally, a gain-scheduled controller is

designed and implemented on the truth model.
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Figure 6-1: Space Shuttle Remote Manipulator System.

6.1 SRMS Component Model

6.1.1 SRMS Overview

This section gives an overview of the Shuttle Remote Manipulator System. The
Shuttle Manipulator System is a seven joint, two link flexible manipulator[80] (see
Figure 6-1). Its length at full extension is 50 feet. Links are carbon fiber tubes.
Joints consist of servo motors with planetary gear reducers. Tachometers are used as
feedback sensors to accurately control each joint’s rate independently{67]. Each joint
is also fitted with a mechanical brake. A locking end-effector is mounted at the end of

the arm, to deploy, capture, and maneuver payloads. Movable cameras at the elbow

and end-effector assist in positioning the end-effector.

Following standard robotics terminology, the prozimal link is the link closest to
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the Shuttle. The second link s referred to as the distal link. Turning to joint nomen-
clature, the base swingout joint deploys the arm from its stowed configuration along
the Shuttle cargo bay wall. Once the arm is deployed, the swingout joint is locked
in position. The next joint along the arm is the shoulder yaw joint, which actuates
the arm around the shuttle local vertical axis. The shoulder pitch joint is attached to
the shoulder yaw Joint, and actuates pitch motion of the first link. The elbow pitch
joint is located at the elbow, between the proximal and distal links, and actuates
the pitch of the distal link. The wrist roll, pitch, and yaw Jjoints are located at the
end of the distal link, and control the roll, pitch, and yaw rotations, respectively,
of the end-effector. The end-effector consists of a grappling fixture with a rigidizing
mechanism that locks the end-effector to the payload grapple fixture.

A number of simplifications are made at the system level to reduce the modeling
effort for this verification model. The Shuttle is assumed to be inertially fixed. The
swingout joint is locked in the deployed position. A suitable base compliance is
chosen to represent both the compliance of the swingout joint as well as the Shuttle
wall. The wrist joints are also assumed locked and rigid (that is, no wrist rotation or
flexibility is incorporated into the model). Therefore, three joint degrees of freedom
are to be included in the model. Each joint is modeled with a flexible gearbox, whose
barameters are an armature inertia, a reduction ratio, and a single lumped stiffness.
The payload is assumed to be arigid, lumped mass at the tip of the end-effector. The
SRMS as it is to be modeled is shown in Figure 6-2.

The next section will evaluate the simplified SRMS to determine the parameters

necessary for the component modeling method.

6.1.2 Configuration

The simplified SRMS presented above must be reduced to a set of parameters suitable
for the component modeling algorithm. Some conventions and terms will be defined
before proceeding. The joints are referred to with the indices 1, 2 and 3, starting at the
Shuttle and moving outwards. The nomina] configuration for the system, (6, 6,,0;) =

(0,0,0), will be fully extended, with the links parallel to the Shuttle wall. In the
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Figure 6-2: Simplified 3-joint model of the SRMS, used to verify the modeling
algorithm. Arrows mark rotation axes of the joints.

tl
Figure 6-3: Mass and flexibility distribution of the 3D SRMS model. Joint rota-
tions are shown by the arrows, labeled 6,, 65, and 0;.
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Figure 6-4: SRMS component models, and associated axis systems: (a) base
swingout joint, (b) shoulder yaw joint, (c) proximal link, (d) distal
link.

nominal configuration, all component axis systems have the z axis pointing along
the manipulator, and the z axis downwards. The y axis completes a right-handed
coordinate system. This definition is consistent with the Shuitie body-referenced
coordinate system[80]. The left or base end of either link is the end nearest the
Shuttle. The right or free end is nearest the end-effector.

The SRMS system model is shown in Figure 6-3. Each circle denotes a lumped
mass. Jagged lines denote a lumped stiffness. Parallel lines denote a gear reduction.
Single lines represent flexible links. Axis systems are positioned at all joint rotations,
with the axis of rotation for joint ¢ denoted with the symbol #;. Note that the
orientation of each axis system varies with the motion of the joint to which it is
attached. For example, the elbow pitch axis orientation is a function of the proximal
link rigid body rotations and deflections. Commands to each joint of the manipulator,
u;, enter as torque couples between the base and the armature of each gearbox. The
task of the configuration definition process is to realize the system model as a set of

independent components, and a set of coupling rotations.
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The components which comprise the system model are determined first. The
components must be suitable for independent modeling. Because the joint rotations
require coupling between two systems, components generally will be comprised of all
elements between any two joints. In the case of the SRMS model, each axis system is
associated with a component. Noting that the swingout joint DOF are defined in the
Shuttle inertial frame, the components which make up the SRMS model are shown in
Figure 6-4. From left to right, the first component is the base swingout joint, defined
in the inertial O reference frame\. The second component is the shoulder yaw joint,
modeled with a gearbox in the 1 frame. The third component consists of the proximal
link and the lumped masses and inertias of the shoulder pitch joint and the elbow
pitch gearbox base. The proximal link is modeled with a mass-loaded flexible link,
in the 2 frame. The fourth and final component consists of the armature and shaft
inertia of the elbow pitch joint, the distal link, and the payload mass and inertia.
The distal link is modeled in the 3 frame.

It must be emphasized again that the gearbox stiffnesses act to couple compo-
nent models, as shown in Chapter 5. In order to preserve the independence of each
component model, the stiffnesses will be treated at a system level, not at the compo-
nent level. The component models will not include the stiffness terms. As a result,
the gearbox armature dynamics are not coupled to the links as shown in Figure 6-4.
Considering the armature DOF to be independent components will modestly reduce
the computational requirements of the system dynamics (by splitting a single mass
matrix into two smaller matrices) at the cost of some additional notational cost for
carrying extra component models.

Next the free and constrained DOF associated with each component are identified:
(i) swingout joint: all DOF are free.

(ii) shoulder yaw gearbox: the free, z; axis of rotation is aligned vertically. The z;

and y, axes are constrained (representing the rigid case of the gearbox).

(iii) proximal link: free DOF consist of the armature rotation, link rigid body y,
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rotation, and flexible deformations. The constrained DOF are rigid body z,

and 2z, rotations.

(iv) distal link: The free DOF of the distal link are, again, armature rotation, link
y3 rotation, and flexible deformations. The constrained DOF are z3, y3, and 23

translations, and z3 and 23 rotations.

Consistent with Chapter 5, the flexible deformations are represented with assumed
modes DOF. The proximal link flexible DOF are ¢, in torsion, g, in y, translation,
and q,» in 2z, translation. Similarly, deformations of the distal link are represented
with gz3, gy3, and ¢,3. For consistency with the Lagrangian truth model, one assumed
modes DOF is used to capture torsional vibration, and two each for translational
vibration. The free DOF are listed in Table 6.1. Note that the notation a : b refers
to a range of indices from a to b, i.e. (a,a+1,---,b)

Note that armature inertias for the shoulder pitch and elbow pitch armatures are
split out of the proximal link and distal link components, respectively, for modest
computational gains. In contrast the shoulder yaw gearbox component includes the
motor armature inertia. This is a matter of notational convenience in capturing the
rigid body rotations of the shoulder yaw gearbox.

The constrained DOF are listed in Table 6.2. Each set of constrained DOF,
for each component, is assigned a vector-valued variable a.; which denotes an input
to that component at the constrained location. The index denotes the component
number. The a indicates that the quantity is an acceleration input. Note also that
each of the constrained rotations has an associated reaction force, which is also listed
in the table. Again, the reaction force is assigned a variable F; representing the force
BC output, at the constrained location, for component i.

Next the free acceleration outputs and force inputs, for each component, are spec-
ified. This is done using knowledge of the attachment locations between components.
Beginning at the shoulder, the swingout joint couples to the shoulder yaw gearbox.
The shoulder yaw z; and z; rotations must be driven by the swingout joint. Since

the swingout joint z; axis is coincident with the shoulder yaw rotation axis y,, the
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swingout joint driving axes are the z¢ and yp axes. The swingout joint component has
corresponding angular acceleration outputs, as listed in Table 6.3. The component
BC outputs are denoted as ajo, referring to the free location acceleration outputs
from component 0. The swingout joint must also accept the reaction forces from the
gearbox. The BC force inputs to the swingout joint are also listed in the table, and
denoted Fiyo.

Moving to the proximal link, the constrained z, and z rotations are driven by
the shoulder yaw gearbox z; and y; rotations. Finally, the distal link z3, y3, 23
translations and z3 and z3 rotations are driven by the proximal link.

The required information from the configuration definition is now available. The
component models can be derived in suitable fashion, knowing the necessary DOF,
and the force inputs and acceleration outputs. The model inversion can be completed
knowing the constrained DOF. The component boundary conditions can be defined in
terms of joint rotation matrices, and used to assemble the global boundary condition

equation.

6.1.3 Component Models

The components to be captured include the swingout joint, three gearboxes, and two
links. The swingout joint is a simple spring-mass system. The gearboxes and links
are captured with the models presented in Chapter 5. Any suitable modeling method

can be used, which returns:

(i) the component models in terms of inertially referenced DOF, which include the
free DOF in Table 6.1 and the constrained DOF Table 6.2. The component

exogenous inputs are also identified.

(ii) the reaction forces in Table 6.2 and the free forces in Table 6.3, as force inputs

to the model, in the frame cttached to the link.

(iii) the acceleration output functions corresponding to the constrained DOF in Ta-
ble 6.2 and the free accelerations in Table 6.3, again in the frame attached to

the link.
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Table 6.1: SRMS model states

Component | DOF(s) # | Name Physical
Swingout joint 1 0z, base z rotation
2 Oy, base y rotation

3 0., base z rotation

Shoulder yaw 4 04, | shoulder yaw armature
5 0., shoulder yaw output

Shoulder pitch 6 04, | shoulder pitch armature
Proximal Link 7 6y, rigid body y rotation
8 Gz, torsional deflection

9:10 gy, | v transverse deflection

11:12 g., | = transverse deflection

Elbow pitch 13 04, elbow armature
Distal Link 14 0y, rigid body y rotation

15 Qzs torsional deflection

16:17 Qys transverse y deflection

18:19 g., | transverse z deflection

Table 6.2: SRMS model constrained DOF

Component | Name Physical | BC Input | Reaction force | BC Output
Shoulder pitch (5 z rot. ac, M,
0y, y rot. M,
Proximal Link 6., | RB z rot. e, M,
6., | RB z rot. M,,
Distal Link z3 | RB z disp. F;,
ys | RB vy disp. E,
z3 | RB z disp. Qcy F,,
0:, | RB z rot. M,
0., | RB z rot. M.,
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Table 6.3: SRMS model free forces and accelerations

Component | Acceleration | BC Output | Force | BC Input
Swingout joint [ agp, | Mg, Fy,
6, M,
Shoulder pitch 0z, ap, | Mg, Fy,
6., M.,
Proximal Link z3 F;,
Ys Fy,
Z3 af, F,, Fy,
0z, M.,
0z M.,

The restriction on the frame in which inputs and outputs are expressed is necessary
in order that rigid body rotations and translations are expressed correctly at the
attachment location. In addition, the exogenous inputs are generalized forces which
act on the free degrees of freedom. When the system model is assembled, some
of these forces will contain state-dependent terms (such as gearbox stiffness terms).
In addition the commands will be generated by a feedback controller. So the term
“exogenous” describes forces at the component level, but not necessarily at the system

level.

Base Swingout Joint

The swingout joint takes the SRMS from its stowed configuration along the side of the
payload bay, to its deployed configuration. The SRMS model simplifies the swingout
joint to a deployed and locked configuration. The flexibility parameters model both
the swingout joint and the Shuttle cargo bay wall. The x and y inertia parameters
include the inertia of the shoulder yaw gearbox. The swingout joint exogenous input
consists of the reaction torque from the shoulder yaw command, —u,;, and the base

torque from the shoulder yaw gearbox, mp;. Both torques act around the z axis.
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The swingout joint EOM are

0z0
M, | 6,0 | = Vo+ BrFo, (6.1)
6.0
Oz0
ag, = GaryFey + Gao | g (6.2)
620

The swingout joint parameters are given in Table 6.4. The notation is chosen consis-
tent with the SRMS Lagrangian model. Note that the swingout joint EOM are given

in the component model standard form, Equation 4.57:

In, 0 O
My=1|0 I, 0 (6.3)
0 0 I
[ _Kﬂexo
Vo = — K310y, (6-4)
_K].ezu - u + mp,
10
BFo = :I (65)
01
[ 0
H,, = (6.6)
0
- L
GaFo = fo 1 } (67)
0
1 00
Gao = (68)
010

Terms in the acceleration input (B,, G, etc.) are zero since the swingout joint is

inertially fixed. Reaction force outputs (Hp, ...) are likewise zero.
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Table 6.4: Base Swingout Joint Parameters

Parameter | Value Units Description | Reference
I 4.0 | slug-ft? | base z inertia [81]

K, | 161510 | ft-1b/rad | base z stiffness

Iy 4.0 | slug-ft? | base y inertia

K3, | 493280 | ft-1b/rad | base y stiffness

I 1.0 | slug-ft> | base z inertia

K, | 443320 | ft-lb/rad | base z stiffness

Shoulder Yaw Gearbox

The shoulder yaw gearbox actuates around a vertically oriented axis. The gearbox

is modeled as a motor armature inertia, an output shaft inertia, lumped flexibility

reflected to the output side of the reduction, and a gear ratio. The gearbox mass is

ignored since the shoulder joint does not translate. The inertias orthogonal to the

shaft are lumped into the swingout joint parameters.

The z axis exogenous torques are the shoulder yaw command, u;, and the shoulder

yaw gearbox torques my, and mg, on the armature and output shaft, respectively.

The y axis inputs consist of the shoulder pitch command reaction torque, —u;, and

the shoulder pitch gearbox base torque mp,.

The component model form for the EOM in standard form is

with

b

Ml v = ‘/1 + Ba1a61 + BF1F01 (69)
fs1
] i
op o= }IF1 + Gpalacl -+ Gppchl + G):'1 . (610)
Os1
éAl
a5, = Goa8e, +Ga, | .. (6.11)
fs1
I 0
My=| ™ (6.12)
0 Is
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Table 6.5: Base Yaw Parameters

Parameter Value Units Description | Reference
I 0.000271 | slug-ft? | armature inertia [81]
I3 | 0.9092447917 | slug-ft? output inertia
K; 1180000.0 | ft-1b/rad stiffness
n 1842.0 gear ratio

Vi Uy + My,
mg,
00
B,,
00
00
Bpg,
01
0
Hp,
—Uz +mp,
I, 0
GF01
0 I,
-1 0
GFr,
0 O
Gr,
00
10
Gaa1
00
00
Ga,
01
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rotation of the swingout joint, indicated by the feedthrough in G, .

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

Note the feedthrough of the z axis torque in Ggp,. The rigid case acts to carry

the input torque directly to the base. Similarly, the z axis rotation output is the z



Table 6.6: Base Pitch Parameters

Parameter Value Units Description | Reference
I 0.000271 | slug-ft? | armature inertia [81]

I5 1 0.9092447917 | slug-ft? output inertia

K, 2110000.0 | ft-1b/rad stiffness

Ny 1843.0 gear ratio

Base Pitch Gearbox

The base pitch gearbox model consists of an armature inertia, output shaft inertia,
lumped stiffness, and gear reduction. The orthogonal base inertias are captured in
the swingout joint model.

The exogenous forces on the base pitch gearbox include the armature command,
ug, and the stiffness torques m4, and mg,. Note the base reaction force has already
been incorporated into the base yaw joint model.

Since the gearbox shaft is rigidly fixed to the proximal link, the output inertias
will be captured in the proximal link model. In addition, exogenous forces will act
on the proximal link. The base pitch model therefore consists only of the armature
DOF:

IiBa, = ug +ma, (6.22)

The component model standard form is

Mg, = I (6.23)
VA2 = Uz + My, (624)

Note however that the model does not need to be written in standard form, since
none of the rotational boundary conditions acts directly on the armature. Instead,

torques with joint angle dependence act through the gearbox stiffness torque my,.
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Elbow Pitch Gearbox

The elbow pitch gearbox is modeled with three lumped masses, representing the
gearbox casing, the armature, and the output shaft. The geartrain is represented
with a stiffness and a gear reduction. Exogenous forces arise from the elbow pitch
command, u3, and the gearbox torques mpg,, m4, and mg,.

Similarly to the shoulder pitch gearbox, the elbow gearbox base is rigidly fixed to
the proximal link. Therefore, the base inertias will be captured as lumped tip masses
on the proximal link. The output shaft is fixed to the distal link, so the output
inertias will be modeled as lumped masses at the base of the distal link. The base
torque acts directly on the proximal link, and the shaft torque acts directly on the
distal link.

As a result the gearbox dynamics are again independent of joint angle:
IyGéA3 = Uz + My, (6.25)

so that a standard form representation is not needed.

Payload

A moderately massive payload was desired to represent operational use of the SRMS
in space construction. The Shuttle Pallet Satellite 01 (SPAS-1) was chosen due to
the availability of inertia parameters for the payload, and the presence of SPAS-1
payload parameters in the DRS database[81], which allowed the Lagrange model to
be validated. Since the end-effector is modeled as a rigid link, the payload mass and

inertia can be modeled as a lumped tip mass on the end-effector.

Proximal Link

The proximal link is modeled as a Bernoulli-Euler beam with finite cross-sectional
rotational inertias. The bending portion of the link is offset from the base axis of
rotation due to the radius of the gearbox case and the link attachment fixture. The

elbow center of mass is offset from the tip of the bending portion of the link, due
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Table 6.7: Elbow Pitch Parameters

Parameter Value Units Description | Reference
Ls | 0.15703125 | slug-ft? base z inertia [81]
I | 0.31406250 | slug-ft® base y inertia
Ls 0.15703125 | slug-ft? base z inertia
me 2.5000 slug base mass
I7 | 0.0002590025 | slug-ft? | armature z inertia
Iz 0.0002905 | slug-ft? | armature y inertia
I.7 | 0.0002590025 | slug-ft? | armature z inertia
my 0.2 slug armature mass
I3 | 0.2180989583 | slug-ft? shaft z inertia
Is | 0.4361979166 | slug-ft? shaft y inertia
Is | 0.2180989583 | slug-ft? shaft z inertia
mg 2.5 slug shaft mass
K, 19000C9. | ft-1b/rad stiffness
ng 1260. gear 1.tio

to the radius of the elbow case and the elbow attachment fixture. The offsets, mass

properties, and distributed stiffness parameters are given in Table 6.9.

The EOM are

Gz2

..z = V2 + By, a., + Br, Fo,

qy2

q'z2 ]
0,2
ijz2

Ffz = sz +Gpaza,;2 +GFF2F62 +GF2 )
Qy2
| ijz2
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Table 6.8: Payload Parameters

Parameter | Value Units Description | Reference
Ig | 1928. | slug-ft? | payload z inertia [82]
I | 7063.5 | slug-ft? | payload y inertia
I | 7843.5 | slug-ft? | payload z inertia
mg | 238.66 slug payload mass
Table 6.9: Proximal Link Parameters
Parameter Value Units Description | Reference
a 0.5 ft base offset [81]
b, 0.5 ft tip offset
L, 20.0 ft bending length
EIL 5365100.0 | 1b-ft> | bending stiffness
GJ, 2727400.0 | 1b-ft? | torsional stiffness
pA; 0.4 | slug/ft linear density
pI,;, | 0.0013046821802 | slug-ft? z linear inertia
pl,1 | 0.0006523410901 | slug-ft? y linear inertia
pI,, | 0.0006523410901 | slug-ft? z linear inertia

ag = Haz + Gaazacz + GanFcz + Gaz

Note again that the state accelerations appear in the output equations.

(6.28)

In addition, the parameters necessary to determine the mass-loaded assumed mode

shapes are required. The beam length, linear density, and bending stiffness are as

above. The mass and inertia loading are taken to be the total mass of the elbow

and the total y axis inertia (base, armature, and output) for the transverse z mode

shapes. The transverse y mode shape is calculated with the total elbow mass and

the z axis inertia of the elbow. In both cases the offset is the z displacement of the
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Table 6.10: Proximal Link Transverse Mode Shape Parameters

Parameter Value Units
L 20 ft

pA 0.4 | slugs/ft

EI 5365100 1b-ft?

my | mg + m7 + mg slugs

b 0.5 ft

Iy | Le+ Iz + Is | slug-ft?

1, I | slug-ft?

elbow center of mass from the end of the link. These parameters are summarized in
Table 6.10.

Note that the mass of the distal link and payload (and their inertias) are ignored
in the mode shape calculation. Incorporation of the distal link would preclude a
numerical solution for the mode shape parameters, as the mode shape would be a
trigonometric function of the joint angle. However, the numerical mode shapes will
not accurately capture the strain distribution as the elbow angle varies. The standard
method for compensating for the fixed mode shapes, and the approach taken in this
work, is to “over-parameterize” the model, using more mode shapes than are of
interest, in order to provide additional degrees of freedom to capture the system
mode shapes.

The parameters for the torsional mode shapes are as listed in Table 6.11. The

sum of the elbow z inertias are used as the tip inertia parameter.

Distal Link

The distal link is also modeled as a Bernoulli-Euler beam with finite cross-sectional
rotational inertias. As for the proximal link, link model consists of a base offset,
bending section, and tip offset. Offsets, inertia properties, and distributed flexibilities

are given in Table 6.12.
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Table 6.11: Proximal Link Torsional Mode Shape Parameters

Parameter Value Units
L 20 ft

pA 0.4 | slugs/ft

GJ 2727400 1b-ft?

my | mg +mr+ mg slugs

by 0 ft

I; | Ig + I + Ig | slug-ft?

The parameters used in the distal link mode shape determination are given in

Tables 6.13 and 6.14 for the transverse and torsional modes, respectively. The EOM

are
6,3
6:1:3
M| " | = Vs+ Bya, (6.29)
Qy3
s |
0,3
ijz3
Ffz = HFz + GFaaaC3 + GFa . (630)
qy3
| ‘.jz3 ]

(6.31)

where the free end is not loaded, hence forces are zero.

6.1.4 Model Inversion

The model inversion is carried out following Equations 4.36-4.46, presented in the pre-
vious chapter. Note that by choice of rigid body generalized coordinates (coincident
with the constrained location), the terms in the inversion become trivial. Specifically,
B.=1,B;.=0,H . =0,G., =1, Gy =0. As a result the inversion equations can

be evaluated off line, as inversion of symbolic matrices is not required.
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Table 6.12: Distal Link Parameters

Parameter Value | Units Description | Reference
az 0.5 ft base offset (81]
by 4.8 ft tip offset
L, 23.0 ft bending length

EIL 3980100.0 | 1b-ft> | bending stiffness
GJ, 2107300.0 | 1b-ft? | torsional stiffness
pAs 0.1522 | slug/ft linear density
pl.2 | 0.0005771695478 | slug-ft2 |  z linear inertia
pl,2 | 0.0002885847739 | slug-ft? y linear inertia
pl,5 | 0.0002885847739 | slug-ft? z linear inertia

Table 6.13: Distal Link Transverse Mode Shape Parameters

Parameter Value Units
L 23 ft

pA | 0.1522 | slugs/ft

ET | 3980100 1b-ft?

my me slugs

by 4.8 ft

Iy, I9 | slug-ft?

I, I | slug-ft?

6.1.5 Boundary Conditions

The boundary conditions are determined using the axis systems defined in the con-
figuration section. The joint angle is expressed in terms of model DOF. The rotation

matrices relating component BC inputs to component BC outputs, for each joint in

turn, are found in terms of the joint rotation.

Beginning with the shoulder yaw joint, the rotation around the joint axis, 6, is

equal to the difference between the output shaft inertial angle 8, and the base z
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Table 6.14: Distal Link Torsional Mode Shape Parameters

Parameter Value Units

L 23 ft
pA | 0.1522 | slugs/ft
GJ | 2107300 1b-ft?

my mg slugs
b, 0 ft
I: Io | slug-ft?
x1
yl
zl
x0
Cis
77
v
z0

Figure 6-5: Shoulder yaw rotation matrix.

inertial angle 6,, (Figure 6-5):
6, =6, —6,, (6.32)

The rotation matrix to go from the base frame to the yaw axis frame, in terms of the

joint angle, is

T 5 Ty Zo
= = R1 (6.33)
21 -8 G Yo Yo

with ¢; = cos(#;) and s; = sin(f;). The shoulder yaw input angular accelerations
consist of the swingout joint output accelerations, rotated up into the shoulder yaw

frame:

ac, = Ryap, + Rﬂ‘fo (6.34)

where the angular rates for the base swingout joint, ry,, arise as shown in Section 4.6.

The angular rates are functions of the component state (there is no dependence on
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x1 x2

z2

zl
Figure 6-6: Shoulder pitch rotation matrix.

accelerations):
T = Hpo(q,4) (6.35)

The swingout joint input moments are related to the shoulder yaw outputs by
F,, = —RTFy, (6.36)

where the negative sign arises from “sum of forces is zero” and the transposition of
the rotation arises due to reflecting the moments in the 1 frame down into the 0
frame.

The shoulder pitch angle 6, is the difference between the proximal link y rotation

and the shoulder yaw gearbox y angle(Figure 6-6):
6, =0,, — 06, (6.37)

Note that 6,, is a function of the orientation of the base and shoulder yaw angle.
Indeed, it cannot be reconstructed from the base angle and the shoulder yaw angle,
as it depends on past values of those variables. In fact, 8,, is the time integral of a rate
which is a rotated version of the base rotation rates. The practical consequence is that

the rotated base rates must be tracked and integrated to determine the correct rate.
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xt2
yt2 O y3
zt2 23 X3
A

Figure 6-7: Elbow pitch rotation matrix.

Note that 6,, is not a free DOF. It is one of the constrained DOF. The implication is
that the angle must be explicitly tracked with a “placeholder” DOF:

fp, = 0, (6.38)

0,, is calculated as an element of ry,.
Given the shoulder pitch angle, the rotation between the shoulder gearbox and

proximal link can be found:

T c s T T
2 | _ 2 2 1 _R, -1 (6.39)

-~

2 —S2 C2 hn (71

with ¢; = cos(6;) and s; = sin(#;). The proximal link base inputs and outputs are

related to the shoulder gearbox inputs and outputs by
ac, = Raay + Rgrﬁ, F., = —RIFy, (6.40)
where again the angular rates of the shoulder yaw gearbox are required:

rn = H, (g, 4) (6.41)

Note that the vector function H,, is a function of the base swingout joint rates.
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The elbow pitch rotation angle is defined in terms of a frame attached to the end

of the proximal link, and the distal link frame (Figure 6-7):
65 = 0y, — O, (6.42)

The rotation matrix between the axis systems is

Z3 c3 0 s3 Zot Zou
U3 | = 0 10 Yo | = R; U2t (6.43)
23 -s3 0 c3 2ot Zo4

Additionally, the angular acceleration BCs require the rotation matrix

T3 c3 83 Tot Toy
= Ry (6.44)

23 —83 €3 2o Za4

The frame attached to the end of the proximal link is, in fact, the frame in which the
boundary accelerations of the link are expressed. Again, the y rotation is not in the

free DOF, so a placeholder DOF is required to track the joint base rotation:
O, = Oya: (6.45)

which is integrated along with the free DOF to determine the angle as a function of
time.

The force and acceleration relationships between the proximal and distal links are

then
R3 0 0 ' —R{ 0
Uc, = ap, + | . Thy Fep= r Fy, (6.46)
0 Ry R3 ] 0 —Rj
and _
0
T = . (6.47)
| H;,(g,9)

This completes the component boundary conditions.
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The component boundary conditions are assembled into the global condition:

- 0 T -
(R, | | R o asp |
Qc, 0 -RY Fg,

F,, _ R, O as
ac, - -RT 0 Fy,

F,, 0 -E% agr
| ac | R; O 0 Fys |

_ 0 Ru J
(6.48)
which is written
upc = Rypc (6.49)

Note that upc are BC inputs to the components. ygc are BC outputs from the

system. This completes the boundary condition definition.

6.1.6 Systemm Model

The system model consists of the dynamics of the components coupled by the rota-
tional boundary conditions. The inputs to the system model are the current state
(generalized coordinates and their rates), and any external commands. The outputs
are the accelerations of the generalized coordinates. The system model can be treated
as an Ordinary Differential Equation (ODE). State trajectories can be determined us-
ing standard numerical integration techniques[83].

The state consists of the free DOF and the placeholder DOF needed in the eval-
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uation of the dynamics:

QF - q12

qz;
q!/s
UEN

Gp =

(6.50)

The system model returns the generalized accelerations of both sets of coordinates.

The SRMS system model consists of the independent component models, the

coupling forces arising from joint stiffnesses, and the boundary condition equation.

The accelerations for a given state are determined using the following algorithm.

The notation “+=" is an operator which acts like the C language operator: the

right hand side is added to the left hand side, and the result is stored in the left hand

side. The expression “a += b” is equivalent to “a = a + b”. The operands may be

matrix valued. The operator is used in the evaluation of the homogeneous compo-

nent dynamics: the (possibly time dependent) system matrices in standard form, as

presented above, are evaluated first. Then the contribution from the homogeneous

accelerations are added in.
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Evaluation of the EOM

(1) Solve for the gearbox stiffness torques:

- - 2 o1 -
mp, (mnf ) n:z"l' ln:q 920
1-n 1
| mg, i i n:l —E 1 1L 0;1 |
- : e ) 3t :
mp, @Z;’L n“znz‘l IT;u Os,
ma, | = K nzn;l Fl';’ _an 04, (6.52)
| mgs, ] | 1;: —n]'_g 1 1L 0.'/2 j
i ] [ (ns=1)2 ng—1 1-n3 | [ ]
mp, %3-)— "—*3;%— o 0B,
ma, | = K nn;l ;1§ _;1; 04, (6.53)
| ™ss | Bl - N B
(i1) Solve for the homogeneous portion of the component dynamics:
(a) swingout joint: evaluate My, Vo, Bro, and G, then compute
MoGy, = Vo (6.54)
B, = My'Bp, (6.55)
H,, = GayGu, (6.56)
GaFo = GaoBFo (657)

(b) shoulder yaw gearbox: evaluate M, Vi, B,,, Br,, Hr,, Gr,, GFa,, GFF,,

Goq,, and G, then compute

Mgy, = W (6.58)
B., = M[B, (6.59)
Br, = M[‘Bp, (6.60)
Hp, + = Grdn, (6.61)
Gra, + = Gp,Ba, (6.62)

Grr, + = Gp,BF, (6.63)
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Ha; = dH]
Gaay, + = Ga, By,
GaF1 = GalBF1

(c) shoulder pitch gearbox:

I4§A2 = U2 + My,

(6.64)
(6.65)
(6.66)

(6.67)

(d) proximal link: evaluate My, Vo, B,,, Br,, Hp,, GFa;s GFFyy GFyy Hayy Gaa,,

G.r,, and G,,, then compute:

Mg, = V2
B,, = M;'B,,
Br, = M;'Bp,
Hp, += Grgn,
Gro, + = Gp,B,,
Grp, + = GFg,Bp,
Hy, = Googn,
Gaa, += GayBa,
Gur, + = G4, BFR,

(e) elbow pitch gearbox:

Iy60A3 = Uz +mau,

(6.68)
(6.69)
(6.70)
(6.71)
(6.72)
(6.73)
(6.74)
(6.75)
(6.76)

(6.77)

(f) distal link: create the time dependent system matrices M3, Vi, B,3, HFs,

GrFa3, and Ggs, then calculate the homogeneous dynamics:

Mgy, = V3
B,y = M:i_lBas
Hg, += Grn,
Gro; + = Gp By,
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(iii) assemble the global output matrices

H,,
Hp,

Hp,
H.,
Hp,

0

0

0 0 0 Ga
o 0 0 0

where ygc = H + Gugc

(iv) create the rotation matrices R;, Rz, R3, and the global rotation matrix:

0 -RT
R, 0
0 -R
R, 0

R; O
I 0 Rs

H

0
H,, H,,
0

H,

0

0 0 Gra, GFr

Gan

|

0

—Rg
0

o O O o O

GFa3

0

_pT
39

(v) Solve the boundary condition equation upc = Rypc for upc:

(I — RG)upc = RH

(vi) update the component dynamics:
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(a) swingout joint:

ézO
éyO = ijﬂo + BFoFco (686)
ézO
(b) shoulder yaw gearbox
Oa | .
. = qH, + Baxacl + BFI FC1 (6.87)
fs1
(c) proximal link )
b,
63:2 .
.| =Gu + Bo,Fe, + Bp,Foy (6.88)
Qy2
| iizZ ]
(d) distal link ) )
0,3
| =+ Bua, (6.89)
qy3
| 623 i

(vii) calculate the derivatives of the placeholder variables, where the subscript [a : b]

denotes the elements in rows a to b of the vector:

(a) shoulder pitch base:

05, = 0,, (6.90)
(b) elbow pitch base:
fp, = by, (6.91)
(c) proximal link accelerations:
[ :: } = UBCprg (6.92)
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(d) distal link accelerations:

T3
Y3
Z3 = UBCpa.19) (6'93)
é:cS

923

This completes the calculation of the system accelerations.

6.1.7 Numerical Solution of the Dynamics

The system dynamics are evaluated using time simulations. As a result the accuracy
of any analysis is dependent on the accuracy of the numerical integration procedure,
as well as that of the EOM. A useful metric for determining the overall accuracy of

the simulation is to track the internal energy of the system, for example:
E(t)=¢"Mi+q"Kq (6.94)

The non-dissipative nature of the manipulator EOM will require that the energy E(t)
remain constant over time. Note that in general the time-integrated system will not
be perfectly conservative. If the change in energy becomes substantial over the length
of the simulation, a smaller stepsize (or tolerance, when using an adaptive stepsize

routine) must be used.

6.1.8 Linear Fractional Control Design Model

The linear fractional control design model is the inout data to the control design model
in Chapter 3. The major steps in creating the model are linearizing the component
models, appending the linearized systems, and adding gearbox stiffness terms. The
global rotation matrix becomes the structured uncertainty (A) block. The control
design approach requires a diagonal uncertainty structure, while the rotation matrix
has a block-diagonal structure. An additional step is required to diagonalize the A

block. The block is factored into a diagonal part and a pair of “pointing” matrices.
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These matrices are then folded into the plant to create the control design model. To

summarize, creation of the linear fractional model proceeds as follows:
(i) linearize the component models
(ii) append the component models
(iii) incorporate the gearbox stiffnesses
(iv) incorporate the A block factorization

The resulting model can be examined at a particular joint configuration by fixing the

A block.

6.1.9 Component Modei Linearization

The component models will be linearized about go = 0, go = 0. The notation F|, will
denote the vector- or matrix-valued quantity, F(g, q), evaluated at ¢ = 0,4 = 0. For
space reasons the dependence on g and ¢ will be suppressed. Note that this will zero

the placeholder DOF g,, which only appear as quadratic terms:
Hplo=0, Hgylo=0 (6.95)

The state size will reduce to the size of the free DOF (19 in this case). The state

dependent forces, V' (g, ¢) will reduce to:
V(gi, ¢:)ilo = Kigi + Biu; (6.96)

where K is the stiffness matrix. Note also that linearized homogeneous dynamics can

be written:

dn; = Kigi + By, u; (6.97)

which can be substituted into the homogeneous boundary condition expressions, as

will be shown.
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(i) swingout joint: the state matrices are already linear in the states. Breaking out

the free DOF input influence matrix, the linearized component model is

go = Aoqo + By,70 + Br Fg,

agp, = Coqo + DauoTO + DaFoFco
with 75 = [ —u; + mp, ] and

Ay = Mj 'K,
B., = M;'B,
Br, = M;'Bp,

Co = GapAo
Douy = Gy By,

D.p, = GopBry

(ii) shoulder yaw gearbox:

g = Aiqp + Bu;Tl + Balacl + BFfox
F.,, = Crqi + Dpy, 11 + Dpg,ac, + Dfr, Fy,

afp, = Caiq1 + DaulTl + Daal ac, + Dan Ffl

T
with 1, = [ u+my, ms, mp, ] and

A = (Myo) 'Ky
B,, = (Mo)™'B
B,, = (Milo)™'Bulo
Br, = (Mi]o)™'Br, o
Cr = Gr o4

Dry, = GrloBuy,

Dro, = GFa,lo + GrloBa,

Drr, = Grrlo + Gr,loBr
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(6.99)

(6.100)
(6.101)
(6.102)
(6.103)
(6.104)
(6.105)

(6.106)
(6.107)
(6.108)

(6.109)
(6.110)
(6.111)
(6.112)
(6.113)
(6.114)
(6.115)
(6.116)



Co, = Ga,lod
Dgy, = Gq,|0By,
Dya; = Gaaylo + Ga, 0B,
Dor, = Garlo + Ga,loBr,

(iii) shoulder pitch gearbox:

9142 = BAzTAz

with 74, = [ ug + Moy, ] and

(iv) proximal link:

G = Axqa + By,7s + Ba,ac, + Br, Fy,
Fcz = CszIZ + DFu2T2 + DFazacz + DFFzFfz

asg, = Lg,q2 + DauzT‘Z + Daagacg + DanFfz

T
with 7 = [ ms, —uz+mp, ] and

Ay = (Ma)o) ™' Ko
B,, = (Mso)™'B;
Ba, = (Mz}o) ™' Ba,lo
Br, = (Mso)™'Br, o
Cr, = GRloA:
Dfpy, = GR,loBuy,
Dra; = Graylo + GR,loBa,
Drr, = Grrlo+ Gr,loBr,
Co, = Gg,loA2
Dy, = Go,loBu,
Daa, = Geazlo + GayloBa,
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(6.120)
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Dan = Gan IO + Gag IOBF2

(v) elbow pitch gearbox:
5,43 = BA;;TA:;
with 74, = [ uz + ma, ] and

BA2 = T—
Ye

(vi) distal link:

63 = A3Q3 + BusT3 + Baaaca

F., = Cpyq3 + DFpyy3 + DFayac,

T
with 73 = [ ms, 0 ] and

Ay = (Mso) ' K3
Bu, = (Ms)o) ™' Bs
B,y = (Mslo) ™' Baslo
Cr, = GRloAs
Dpus = GFyloBus
Dray = GFaslo + GrsloBag

6.1.10 System Model Form

(6.138)
(6.139)

(6.140)

(6.141)

(6.142)
(6.143)
(6.144)

6.145)
6.146)
6.147)
6.148)
6.149)
6.150)

A~ o~ o~ o~ o~ o~ o~

6.151)

For consistency with the control design chapter, the global state will be denoted

T
T = [ gt ¢T ] . The appended dynamics have the form:

t = Az + Byu + Byugc

ysc = Cz+ Dy u+ Dyupe
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with the state matrices, partitioned conformably with the component models, having

the form:

(0 0 0 0 0 0 I000O0O]

0 0 0 0 0 0 070000

0 0 0 0 0 0 007000

0O 0 0 0 0 0 00O0TZO00O0

0 0 0 0 0 0 0000T 0

4_|0o 0 0 0 0 0000001

A4, 0 0 0 0 0 0000 00O

0 A4, 0 0 O 0 000O0GOO

0 0 A4, O O 0 000O0GO

0 0 0 A 0 0 000000

0 0 0 0 Asq 0 0000 0O

000 0 0 0 A4 0000 00|
(0 0o o0 o o0 0| [0 0o 0 0o o0 o0
0 0 0 0 0 o0 0o 0 0 0 0 0
0o 0 0 0 0 o0 O 0 0 0 0 0
0o 0 0 0 0 0 0o 0 0 0 0 0
6o 0 0 0 0 0 6o 0 0 0 0 0
po| 0 0 0 0 0o o Lo 0 0 0 0 0
B, 0O 0 0 0 0 B, 0 0 0 0 0
0 B, 0 0 0 0 9 By Br, 0 0 0
0 0 Bw, 0 0 0 0o 0 0 0 0 0
0 0 0 B, 0 0 0 0 0 B, Br 0
0 0 0 0 Bu 0 0O 0 0 0 0 0
0 0 0o 0 0 B,)| 0 0 0 0 0 By
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(C,b 0 0 0 0 0 00000 O]
0 0Cr 0 0 0 000000
o_|00C. 00 0000000
00 0 0C, 0 000000
00 0 0C, 0 000000
| 00 0 0 0 Crp 000000 |

[ Dewy 0 O ] (D, 0 0 0 0

0 0
0 O Dpa Der, 0 0 0

Dy, 0 O O D, Dap, 0 0 0
0 Dr,, O 0 0 0 Dp, Dpr, 0
0 Da, 0 0 0 0 Dy, Dup 0
0 0 0 D, 0 0 0 0 0 Dry|

Note that these block-diagonal matrices are simply created by placing the component
matrices along the diagonal of the system matrix. In its current form, the component

models are independent.

6.1.11 Gearbox Stiffness

The observation and influence matrices are as follows. The shoulder yaw, shoulder

pitch, and elbow pitch gearbox rotations are, respectively,

020 032 033
0A1 ] 0A2 ) 0A3 (6-154)
0., 0, 0y,

The observation matrices for these angles are

(0 0100000000000 0
Cp,=(000100000O0O0GO0O0O0 0 0339 (6.155)

| 00001000000000O00Q0

[ 5, ¢, 0000000000000 1
Co=] 0 0 0001000O0O0O0O0O0 0 0350 (6.156)

| 0 000001060000000




000000100¢T 00000
Ci;=|00000000O0 0 1000 0 0350 (6.157)
0000000O0OO0 0O 01000

where 0,,,., is a zero matrix of dimension m X n.

Note that the base pitch motion of the shoulder pitch gearbox is a function of the
yaw angle. The configuration dependent terms must be broken out into a constant
factor times a sub-block of the A block. This will be done at a later time.

The influence matrices for the gearbox stiffness torques are found in terms of the

global torque inputs:
Bg, = By1:3)s Bg, = Bu,ja6], Bgy = Bu,7:9] (6.158)

where the subscripted ranges denote columns of B,. The system matrices are then

& = Ayx + Byu + Biupc (6.159)
Ype = ng + Dyuu + DyIUBC (6.160)
with
Ay = A— B, K, Cy — By K,Cyy — By Ky Cly (6.161)
Cy = C— Dy Ky Cy — Dg, Ky, Cg, — Dy, K, 0, (6.162)

with the gearbox stiffness matrices as given in Equations 6.51-6.53.

6.1.12 Control inputs and outputs

The control problem requires sensor and performance outputs, and control inputs.
Since the states of the model are created in a physical basis, the state observation
matrices can be created based on knowiedge of the component states.

The output vectors which will be used for the control problem include the per-
formance sensors, which will be the end-effector rate in end-effector coordinates, and
the control sensors which will consist of joint motor encoders, joint output encoders,

and end-effector accelerometers. The control inputs will consist of joint torques.
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The angles measured by the joint encoders are the difference between the motor

angle and the respective base angle:

eml 0A1 320
0m2 = 9A2 - 032 (6163)
omz 9.43 083

The corresponding observation matrix is

0 0 -1100 0 00 O 0O0O0O0O
Cn=1|5s —¢ 0 001 0 00 0 000 O 0 O3 (6.164)
0 0 0 000 -100-¢7 10000

Similarly, the output encoders measure the difference between the shaft angle and

the base:
68 1 0!]1 920
b, | =16, | —| 05 (6.165)
032 aya 033

with the observation matrix:

06 0 -1 010 0 00 0 0O00O0O0O
Cs=|s —¢¢ 0 000 1 00 0 00O O 0 O30 (6.166)
0 0 0 000 -100-¢T 01000

The feedthrough matrices for these outputs are zero: Dp,, =0, Dy, = 0.
The tip acceleration observation matrix is found from the linearized tip accelera-

tion boundary condition for the distal link:

C.=[0000 0 c, Ozans | (6.167)

with C,, = Gg,loA43. Note that the acceleration will have a feedthrough term from

the free moment input:
D,y = Dgyy = GryloBus (6.168)

and also from the boundary acceleration input:
Daas = Gaa3 + GG3B03 (6169)
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The tip acceleration is expressed in the end-effector frame.
The system control inputs enter as a torque couple between each motor base and

armature. Defining the pointing matrix T, from command inputs to system torques,

[ 1 0 o ]
1 0 0
0 0 0
0 -1 0
T, = (6.170)
0 1 0
0o 0 O
0 0 -1
0 0 1
The system inputs are given by
B, = BTy, Dy, = Dy, T, Dgy = DT, (6.171)
6.1.13 A Block Factorization
Now attention is turned to the rotational boundary condition:
0 —RT ]
) 0
0 -Rj
R> 0
R = (6.172)
0 -RT 0
0 —Rg;,
R; O
3 0
0 Rgy
with
¢ S
R=| (6.173)
—81 G
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(& S
Rz _ 2 2
—89 C9
C3 0 S3
Ry=1| 0 10
—S83 0 C3
C3 S3
R3p = }
—S3 C3

(6.174)

(6.175)

(6.176)

This is a block diagonal matrix (in fact it is skew symmetric). Note that the third ro-

tation has an element equal to unity. The corresponding elements of the input/output

BCs are not functions of orientation. This cannot be represented in the factorization

for A, and indeed is not desired to be included since it increases the input/output

order. Since it is a known function, it can be solved for off-line and included in the

system matrix. Splitting the BCs into known portions, u; and yx, and leaving the

unknown portions in upc and ypc, the known portions are solved for:

T = Ag.'L' + B,u + Biugc + Bruy

YBc = CgIII + Dyuu + DyluBc + Dykuk

Yr = CxZ + Diyu + Dryupc + Dirus

With u; = yi, the system dynamics become:

and

T = Az + Byu + Byupc

Ypc = Cq.’II + unu + quugc

A = A, + Bi(I - D) 'Cy
B, = B, + Bi(I - D) Dy,
= (By + Bx(I — D)™ Dia)
C, = C,+ Dy(I — D)™ Ci

B

b

un = Dyu + Dyk(I - Dkk)—leu
qu = Dyl + Dyk(I - Dkk)_lel
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Next the time-varying elements of the A block are captured.

The skew symmetric block matrix

0 —-RT co3(fd) sin(f
, R= ©) (©) (6.188)
R 0 —sin(#) cos(6)
can be factored as
cos(0) 14,
S, (0) sz S (6.189)
Sin(9)1434
with _ -
I 0
0 -1 0 J 0 I
S = , Sy = (6.190)
I 0 J o I0
0 I
0
where the matrix J = ] , and the zero matrices are 2 x 2. Using the square
-1 0

symmetric transformation

00

0

I 0
00710
0 0

I 0
00

I

(6.191)

the lower left block of the rotation matrix can be put into the block form of Equa-

tion 6.188:

-

0
R

0

0

~RT 0
c 0
0 0
0 R;

0
0
—-Rg;,

0

d

0 0
0 0
Ry 0O

| 0 R;

__Rg‘
0
0
0

0

_pT
30
0

0

F (6.192)

Since the F' transformation is square, it does not change the block size.
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Using Equation 6.188 as a building block, the A block can be factored into

COS(01 )I 4z4

St

with

and

sin(01)I4x4
COS(92)14I4
sin(ﬂz)I4x4
cos(63)14z4
[ 5, 0 o
I 00
0 S 0
St=101 0
S 0
0 0 F 0 O
0 S
[ 5. 0 c
I 00
0 S, 0
Sr = 071 O
S, 0
6 O 0 0 F
0 S,

Note that the diagonalization increases the size of the A block.

Noting that

upc = Rysc = SLASrYBC

Sk

sin(93)I4z4
(6.193)

(6.194)

(6.195)

(6.196)

the boundary conditions are redefined to include the pointing matrices:

UBc = SrYBC, UBc = SLipc

The pointing matrices are then folded into the system matrices:

z = Az + Byu + B,Sripc

gBC = SRCQJI + S’Runu -+ SRquSL'&BC

(6.197)

(6.198)
(6.199)

The new BC inputs and outputs, igc and ygc, become the parameter feedback

channels of the LFT system model. In the notation of Chapter 3:

z = Az + Byu + Bpp
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g = Coz+ Dgyu+ Dyyp (6.201)

Note that the performance outputs z, sensor outputs y, and disturbance inputs w,
have not been defined. These channels are defined based on the desired performance
goals. Once they are known, the appropriate observation and feedthrough matrices
can be determined based on the linear system modes. That is, the system model can
be developed without carrying through the performance and sensor channels.

This concludes the SRMS model development.

6.2 Linear Fractional Model Comparison

In this section, the Linear Fractional control design models derived from the La-
grangian truth model, and from the component model, are compared to determine
relative modeling effort, run-time computation requirements, and system/uncertainty
realization order. To this end, an LFT realization of the Lagrange model must be
created.

Following the standard practice in the flight controls/robust control literature, the
LFT model is realized by creating polynomial fits to parameter-varying elements of

the system matrix S:

si5(0) Z a;jx0"° (6.202)
k=0

with s;; the 7, j** element of the system matrix. The scheduling parameters are taken
to be the joint angles. The system matrices are sampled across the parameter space,
and Least-Squares polynomial fits to each element in the system are created. The
order of the polynomial fit is varied until the error is less than a tolerance.

Once polynomial representations in the joint angles are created for each element,
a heuristic reduction procedure is carried out. The polynomial representations are
compared to identify elements which have the same trajectory. Care must be taken

to compare only the elements which multiply the same states:

n
i‘i = 84X = Z a,-jkﬁk:c,- (6203)
k=0
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because the state z; will be carried through the uncertainty realization. That is, only
elements in the same column j are compared.

Finally, the polynomial fit is realized as a LFT. The polynomial consists of a
constant term which becomes an element of the nominal system matrix, and an

observation matrix on the uncertainty:

0

o= Qein s 2 = QT T
Tr; = a,Jol‘J =+ [ aijl aij2 ] ] 9 .CIJJ = a,JO:L'J + Cij’U;J (6.204)

with ¢;; the vector of coefficients and v;; the vector of polynomials times z;. The
uncertainty itself is realized as a repeated scalar feedback through an augmented

system feedthrough matrix:

1 0
0 1 00

Ui = Z; + Vij (6205)
0 0 10

with the driving term in the above equation a feedback term:
Vi; = Hu,-j (6206)

The constant terms in Equation 6.205 are folded into the system matrix, as an obser-
vation matrix on the states and a feedthrough matrix. The polynomial coefficients
c;j are folded in as an influence matrix. The feedback terms in 6 are collected into
a single block, with @ repeated along the diagonal, which becomes the structured
uncertainty A block.

The polynomial realization is carried out on the 2D Lagrange SRMS model. The
fit tolerance is set to 1%. This leads to polynomial terms up to 5% order. The system
observation matrix is independent of 6, so that the only elements which contribute
to the uncertainty realization are from the system A and B matrices.

A comparison of the truth model and the component model is shown in Table 6.15.

The first column showing development time represents a gauge of modeling effort. The
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Table 6.15: Analytical and numerical efliciency metrics for the planar Lagrange
and component models.

Development | Code Size | Run time | Delta block

time[mo] [Kb] | [sec/sec] size

Lagrange 12 40 10 191
Component 3 17 2 18

next, code size, gives relative compactness of the two forms of the EOM. Run time,
given as CPU time (on a Sparc 20) neeued to get one second of simulated time, shows
the run-time computational effort of the two forms. Note that the time needed will
vary as a function of the forces exerted on the manipulator model. Delta block size
gives the number of additional input/output channels needed to capture parametric
variations. The table shows that the component form of the EOM is easier to develop,
more compact, and runs faster.

Note also that the run time for the component model approaches real time. This

capability would enable an observer-based controller[27, 24].

6.3 Model Comparison

The component model is compared to the Lagrangian model on the basis of frequency

domain metrics and time domain metrics.

6.3.1 Frequency Domain Comparison

Frequency domain metrics consist of natural mode frequency errors between the com-
ponent model and the Lagrangian model, and root mean square (rms) errors between
the transfer functions from specified torque inputs to sensor outputs. The latter met-
ric accounts for mode shape errors in the Lagrangian model. The models are linearized
about a configuration of (0, 45°, —60°), corresponding to a “low hover” position of the

payload over the payload bay.
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Table 6.16: Normal mode frequencies for the component model, compared to the
Lagrangian truth model.

Component | Lagrangian Error
Freq [Hz] | Freq [Hz] %
0.6126 0.6126 | 3.5510e — 08
1.0833 1.0833 | 5.4701e — 08
1.5981 1.5981 | 6.0242e — 08
2.0079 2.0079 | 3.9907e — 09
2.6868 2.6868 | 1.0650e — 09
3.0658 3.0658 | 2.6584e — 08
4.7254 4.7254 | 2.6225e — 08

16.3091 16.3091 | 3.0375¢ — 08
16.6829 16.6829 | 4.6683e — 09
33.2310 33.2310 | 6.6544e — 07
53.0269 53.0269 | 3.8667e — 08
54.4273 54.4273 | 1.6630e — 08
71.5410 71.5410 | 9.9241e — 09
76.6820 76.6820 | 8.5766e — 09
146.4416 146.4416 | 3.8786e — 11
221.0153 221.0153 | 6.7193e — 11

The component model normal mode frequencies are compared to the Lagrangian
truth model frequencies in Table 6.16. The component model frequencies are given in
the first column, the Lagrangian frequencies are given in the second, and the difference
in frequencies, given as a percentage difference to the Lagrange model, are shown in
the last column. Note that the largest percentage error is on the order of 10~7. This
is to be expected as the physical parameters for both models are identical.

The accuracy of the component model mode shapes, compared to the Lagrangian

model, are evaluated by calculating the rms error between the transfer functions
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Figure 6-8: Transfer functions from joint torques to motor positions for the La-
grangian truth model (solid) and the component model (dotted).

from the shoulder yaw motor (ShY), shoulder pitch motor (ShP), and elbow pitch
motor (EIP) to: SkY, ShP, and EIP motor position (the motor encoder outputs), ShY,
ShP, and EIP output shaft position (output encoders), and end-effector X, Y, and Z
accelerations (in the end-effector frame). These transfer functions will be presented
first. Then the rms errors will be examined.

The transfer functions from motor inputs to motor encoders are given in Figure 6-
8. The first column contains transfer functions from the ShY motor input, the second
column shows the transfer functions from the ShP input, and the third shows transfer
functions from the EIP input. Likewise the first row shows transfer functions to the
ShY encoder, the second row transfer functions are to the ShP encoder, and the third
row is to the EIP encoder. In each plot, the transfer function is shown with a solid

line for the Lagrange truth model, and as a dotted line for the component model.
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Figure 6-9: Transfer functions from joint torques to output shaft positions for the
Lagrangian truth model (solid) and the component model (dotted).

Note that the pitch and yaw axes nearly decouple, as shown by the difference
in magnitude from the ShY torque to ShY encoder, and to ShP and EIP encoders.
Similarly the ShP and and EIP encoders are excited at a low level by the ShY torque.

Note also that the high magnitude transfer functions for the component model
essentially overlay the truth model. This indicates a high degree of correspondence
between the mode shapes. The yaw to pitch and pitch to yaw transfer functions,
on the other hand, show a large relative error. However, these “off-axis” transfer
functions are at an extremely low magnitude, hence the absolute error is actually
very small.

The transfer functions from motor inputs to output encoders are given in Fig-
ure 6-9. Again, the inputs are ranged column-wise from shoulder yaw outwards, and

the outputs are ranged row-wise. Again note that the yaw to yaw, and pitch to
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Figure 6-10: Transfer functions from joint torques to end-effector acceleration for

the Lagrangian truth model (solid) and the component model (dot-

ted).
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pitch transfer functions overlay. The off-axis transfer functions are again at a low
magnitude.

The transfer functions from motor inputs to tip accelerations are given in Figure 6-
10. The inputs are ranged column-wise, and the X, Y, and Z accelerations (in the
end-effector frame) are given row-wise. These outputs are particularly interesting as
they will be used as performance and feedback sensors in the control design stage.
Once again the component model shows a high degree of fidelity to the Lagrangian
mode.

The rms transfer function errors are given in Table 6.17. The largest error is on
the order of 1e — 3 , bearing out the fidelity of the match which was evident from the

transfer function plots.

This concludes the demonstration that the linearized component model is a high
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Table 6.17: Compcnent model rms transfer function error compared to La-

grangian truth model.

ShY torque | ShP torque | EIP torque

ShY motor | 4.2704e —4 | 2.1919¢ -3 | 2.5113e—3
ShP motor | 2.2319¢—7 | 1.1900e —6 | 1.3633¢ — 6
EIP motor | 8.0407¢ —5 | 8.3898¢ —4 | 8.9865¢ — 4
_ShY output | 4.3628¢ — 8 | 4.5522¢ — 7 | 4.8760e — 7
ShP output | 8.550le —6 | 3.9383e¢ —5| 1.326le —4
EIP output | 6.7857e —9 | 3.1209¢ — 8 | 1.0267e — 7
X accel | 3.8107e — 10 | 4.5983e — 7 | 4.5746e — 6

Y accel | 8.0820e — 6 | 4.3529¢ — 10 | 4.3728e — 10

Z accel | 1.6578¢ — 10 | 3.6368¢ — 7 | 8.5835e — 6

fidelity match to the Lagrangian truth model.

6.3.2 Time Domain

The nonlinear component model is compared to the Lagrange model on the basis of
time responses from joint motor encoders, output shaft encoders, and end-effector
acceleration. These sensors are chosen because they are used as feedback sensors in
the control design section. The system is initialized at rest at the hover position. The
models are then excited with impulsive torques to the three joint motors. The time
histories are calculated using a Runge-Kutta fourth-fifth order integration routine
with adaptive stepsize. The response at .01 second intervals for a 10 second run are
recorded.

The following plots show the resulting time histories. The Lagrange truth model
is plotted as a solid line. The component model is over-plotted using dots. Again,
the component model nearly overlays the Lagrange model. Note that the nonlinear

models overlay, confirming the accuracy of the component modeling approach.
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Figure 6-11: Time response of the shoulder yaw joint encoders to simultaneous
ShY, ShP, and EIP torques, for the Lagrange and component models:
motor (top) and output shaft (bottom).
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6.4 Control Design

The LMI gain scheduled H., design equations of Chapter 3 are applied to create a
gain-scheduled controller for the Linear Fractional SRMS model.

6.4.1 Design Model

The design model is created from the 2D SRMS model. The design objective is to
provide accurate positioning of the end effector over the entire workspace. Positioning
will be expressed in terms of end effector rate in end effector coordinates. This
corresponds to the SRMS approach in which operator end-effector commands are
resolved into joint rates, and joint rate servos achieve the commanded rates. The
control requirements for the closed loop system will be stated in the standard Mixed

Sensitivity framework[17]. The performance requirements are:

(i) Steady-state error in response to a step command less than 1%.

(i1) Closed loop damping greater than 30%.
In addition, the following robustness requirements are imposed:

(i) Closed loop magnitude less than .01 at 50H z to provide robustness to unstruc-

tured uncertainty reflected at the plant input.

(ii)) Compensator rolloff after 10Hz to avoid control spillover to higher frequency

modes.

These goals are to be met over the entire elbow angle workspace of —2° to 160°. The
requirements will be expressed in the frequency domain.

The error requirement is enforced with a constraint on the closed loop sensitivity

S(yw), via a frequency weight W;(jw):
7 (S(w)) < |Ws(jw)™!| (6.207)

The weight has a magnitude of 100 at low frequencies, to ensure that the sensitivity

is below .01 whenever the H, performance is below 1. The weight rolls off to below
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unity. The frequency of the rolloff is a design variable. Closed loop damping and

rolloff are enforced with a weight, W, on the complementary sensitivity C(jw):
7 (C(w)) < |We(pw).™Y| (6.208)

The magnitude of the weight is 2 at low frequency, to keep overshoot below 100%,
corresponding to 30% damping. Rolloff of the closed loop system is enforced with a
second order rolloff on W,(s) at 5Hz.

Additional design variables take the form of weights on the control effort K'(s)S(s),
where K(s) is the compensator frequency response, and sensor noise. The control ef-
fort weight rolls up at 10 H z to penalize high-frequency control. The overall magnitude
of the weight is a design variable. The sensor noise is white. Its magnitude is a design
variable.

The control weights are shown in Figure 6-15. To summarize the design variables,
the sensitivity rollup frequency, control effort, and sensor noise are adjustable to reach

the design goals.

6.4.2 Control Design

The following transformation is made to the uncertainty to allow the workspace to be
varied. The range of angles for the manipulator is specified in terms of a maximum
angle,  and a minimum angle §. The A blocks at the extremal values of the parameter

are determined from the trigonometric functions:

sin(f), s = sin(8) (6.209)

S

and
= cos(f), ¢ = cos(8) (6.210)

o

Then the nominal values of the parameter are determined from the geometric mean:
1, 1-
So = '2'(3 —8), ¢ = 5((0) ) (6.211)
and the maximum change in each parameter is known:
bs=5—sp=8 —8 0c=(c)—co=co—¢ (6.212)
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Figure 6-15: Sensitivity and control weights used for the SRMS #, design sample
problem.

At this point the nominal system can be defined as an LF'T of the A block, evaluated
at the nominal value of the parameters, with the system. Then ds and éc are scaled
into the uncertainty channels so that the A block ranges from —1 to 1.

Next the design weights are appended to the plant inputs and outputs. The
feasibility of the gain-scheduled controller can now be evaluated using the LMIs of
Equations 3.86-3.89, from Chapter 3. Given a feasible solution, the procedure in
Section 3.9 can be followed to find the controller.

This procedure can be followed for the 3D, 19 DOF SRMS model. The LMI
conditions have 2830 decision variables. Unfortunately, the memory requirements of
the LMI solution algorithm are relatively high. The feasibility solver in LMI—Lab©,
"feasp.m’, is unable to determine the feasibility of the resulting system of equations

on a Sparc 20 with 192M of memory (64M real, 128M swap space). The projection
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algorithm used to determine feasibility of the LMI conditions uses a relatively large
amount of memory. As a result, the design equations cannot be solved for the full,
3D manipulator.

However, the memory requirements for the 2D, planar arm are tractable (there are
600 decision variables for the particular design weights chosen). The design solution
is found for a range of 0.1° around the nominal configuration. However, the elbow
angle workspace over which the LMI can be solved is less than 10°. That is, the Small
Gain conditions are too conservative to allow a controller with a 10° workspace to be
feasible. It is reiterated that conservatism arises from the Small Gain condition which
does not use phase information, from the non-physical infinite time rates of change
of the scheduling variables allowed by the math, and from the lack of a mathematical
description of the functional connection between the scheduling variables and the
system states.

Note, also, that the controller computation step requires another LMI solution.
The decision variables are the elements of the controller system matrix. This is a
full block, without the symmetry of the feasibility matrix solutions. The number of
decision variables is (g + 7 + ny,) * (ng + 7% + n4,). For the 2D arm with ny = 18,
Ty = 18, n,, = 6, and n;, = 2, there are 1596 decision variables which again is too
large to be solved for. Note in addition that the controller computation LMI involves
the controller states, not simply the controller inputs and outputs. The implication
is that the controller cannot (necessarily) be re-parameterized as a canonical form. A
canonical form such as a tridiagonal Ay matrix would reduce the number of decision

variables, but may not lie within the feasible solution region.

6.5 Conclusions

The preceding chapter has presented a verificaiion of the component modeling method,
as applied to a model of the SRMS. The availability of a standard type of model (de-

rived from the Lagrangian) using identical system parameters allows the accuracy of
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the component model to be strictly assessed. The accuracy of the component model
as compared to the Lagrangian model is found to high, as would be expected.

In the second step of the validation of the modeling algorithm, the gain-scheduled
Hoo design algorithm of Chapter 3 is applied to the linearized SRMS model. It is
noted that this is the first time in the literature that any of the Time-Varying Robust
Control design tools is applied to a flexible manipulator. The ability to apply this
approach is due solely to the availability of the component modeling approach. The
result of the application are that the current LMI solution algorithms are too memory-
intensive to provide a solution to realistic flexible manipulator problems. Further, the
Small Gain condition for stability, as stated in the current work, is too conservative
for application to general manipulator. This statement is based on the fact that the

workspace of the manipulator is unduly limited.
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Chapter 7

Conclusions

7.1 Summary

This thesis has presented some aspects of the application of modern multivariable

control to the high-performance control of flexible space-based manipulators. This

chapter summarizes the results which were presented, and indicates directions for

future work.

7.2 Contributions and Conclusions

The primary contributions lie in the area of modeling for control.

(i)

(i)

A modeling approach was developed to represent a geometrically nonlinear
structure as a Linear Fractional Transformation of a linear plant through a
time-varying structured operator. The primary utility of such a representation
is to enable the use of modern robust control methods. In particular the Linear
Fractional representation is the form needed for the application of small gain

analysis and synthesis methods.

A secondary benefit of the linear fractional representation is the analytical sim-
plification which results. The components with which the model is constructed

are amenable to symbolic evaluation of the dynamics. In particular, for the
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(iii)

(iv)

classes of components considered in this work, a closed form model can be de-
rived. Further, the linear fractional connection approach is a highly structured
process. Therefore, since both the component modeling and the connection
process are essentially closed form (to within well defined numerical opera-
tions), the dynamics of an arbitrary geometrically nonlinear flexible structure
are amenable to modeling for simulation and control. In addition, the approach
is extendible. Other components can be analyzed and put into the modeling
framework. Higher order component models can be readily analyzed. Finally,
the approach is well-suited to allow model updating based on physical test re-
sults. The symbolic form of the dynamics allow the derivation of analytical

sensitivities, which enable updating on a component or system level.

A simplified dynamic model of a single, three-dimensional flexible link was devel-
oped in terms of a set of specific, physically motivated generalized coordinates.
The coordinates, which include rigid body translations and rotations expressed
in a body fixed link, lead to a low-order dynamic model. In addition, the rigid
body coordinates simplify the application of the linear fractional interconnec-
tion modeling approach, since the interconnection variables coincide with the
generalized coordinates. Finally, the availability of the analytical form for the
link model reduces run-time complexity, since time-varying terms which appear

more than once in the EOM need only be evaluated once.

The component modeling approach separates out the dynamics of each compo-
nent. This leads to the inversion of more, smaller matrices (plus a boundary
condition equation). In cases where the number of flexible DOF exceeds the
number of rigid body DOF, the result can be dramatically fewer computations,
and thus faster run time. Additionally, the component models are independent,

raising the possibility of a parallel implementation for additional time savings.

Additionally, contributions to the control of flexible manipulators have been made.
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(1)

(i)

(iii)

A corrected version of the small gain synthesis equations was generated. The

‘corrected version was found to maintain Lyapunov stability of the closed loop

system when the original synthesis equations did not.

The small gain synthesis equations were extended to produce reduced order
controllers, and reduced-size controller uncertainty blocks. The extensions do
not allow a controller order or uncertainty block size to be explicitly specified,
but performance can be traded off against compensator size. The reduced or-
der/reduced uncertainty order controllers ease real-time computational burden
when implementing the controller. In addition, the reduced order LMI solutions
help to alleviate numerical ill-conditioning which can complicate the construc-
tion the controller system matrices from the LMI solutions. The reduced order
solutions are also observed to help limit the gain of the compensator, and pre-
vent the occurrence of pole-zero cancellations which can adversely affect stability

robustness in the presence of parametric uncertainty.

The small gain synthesis approach was applied for the first time to a flexible
manipulator. Based on the approach the following deficiencies were noted: the
present generation of numerical LMI solution algorithms are too resource inten-
sive to be used on “realistically sized” manipulators. The SRMS model used
in the study is low order compared to many flexible structures, since the dy-
namic range of interest encompasses only the lowest few modes. It is therefore
necessary to conclude that for higher-order systems (for example the SRMS
with wrist flexibility included, or for a flexible payload) a solution to the LMI
conditions is currently out of reach. Second, the conservatism of the small gain
approach was found to be too great to allow a single compensator to stabilize
the manipulator over the entire workspace. Means for reducing the conservatism
must be found if the promise of good performance with guaranteed stability is

to be realized.
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7.3 Recommendations for Future Work

The modeling approach can be extended in the following directions.

(i)

(i)

The use of FE modeling to generate the component models should be investi-
gated. FE modeling is a mainstay of commercial engineering, both due to the
ability to model general, complex structures as well as to satisfy other require-
ments such as static and dynamic load testing. Such an extension would involve
two areas: inclusion of the element rigid body modes (so as to capture Coriolis
forces, nonlinear stiffening, and other effects of finite rigid body rotations) and
generation of the “standard form” model, as used in this fhesis. That is, the
proper input/output map could be automated. In many useful cases this latter
step will be trivial. For example, for a boundary between beam elements, the
interface motions are the nodal DOF. For more general structures, specifically
those with flexibility at the interface, the analysis techniques of Component

Mode Synthesis can be brought to bear.

A general modeling aigorithm would include body and surface forces. For exam-
ple, modeling of gravity effects (gravity stiffening, effects of the gravity acceler-
ation vector on accelerometer sensors, and others) is a necessary step for ground
validation of physical models to be used for prediction of on-orbit behavior, to
say nothing of modeling of ground based manipulators. A significant portion
of this work would entail generating the placeholder variables which track the
rotation to the inertial frame (or whichever frame the body forces are expressed
in) as a function of the assumed modes DOF. These placeholder variables (for

example Euler angles) would then be used to compute body and surface forces.

Nonlinear friction effects can become dominant in the dynamics of the manip-
ulator for slow or small motions, and for highly geared systems. Important
classes of friction include stiction, Coulomb friction, and viscous friction. The
primary difficulty presented by friction is the lack of analytical methods for

determining the friction coefficients. Secondarily, the friction forces are often
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(iv)

highly non-deterministic and the simple models used can be greatly in error.
The first difficulty has lead to various means for experimentally estimating fric-
tion coefficients. Coulomb friction and viscous friction may fit well into the
Linear Fractional system representation proposed in this work. In contrast,
stiction is an extremely difficult effect to model. The field for controlling in the

presence of stiction remains open.

A relatively straightforward extension of the configuration modeling algorithm
would be to alternative topologies: tree structures and closed structures. The
latter would be trivial, involving only matching the “outer” boundary conditions
for the components at either end of the chain of bodies. The former extension
would be essentially notational, with the boundary output function for each
component including a single driving acceleration, and multiple external force
outputs. The boundary condition equation would then be written by following
the accelerations around a spatially colocated “ring”, and would lead to a single

coupling condition for all the components at the interface.

The field of modern control offers many possibilities for research.

(i)

(i)

(i)

Increased efficiency of the numerical solution algorithms for LMIs. At present
the solution algorithms are too resource-intensive, precluding their use in many
problems. Alternatively, it may be fruitful to restate the LMI conditions so
as to use other solution approaches such as steepest descent/gradient search,

continuation/homotopy methods, or other iterative solution approaches.

The small gain conditions are excessively conservative because the parameters
are allowed to vary infinitely fast. Incorporation of bounds on the parameter
rates would reduce conservatism, at the expense of increased computational

requirements due to increased system order.

The small-gain framework may be excessively conservative for manipulator
problems. Within the robust/time-varying control framework, alternative ap-

proaches such as nonlinear-observer-based controllers, or polytopic controllers,
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may provide better performance, while maintaining formal guarantees on stabil-
ity and remaining open to the use of methods for accounting for true parametric

or unstructured uncertainty (as contrasted to a known but time-varying quan-

tity).
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Appendix A

Mass-Loaded Mode Shapes

Oakley has determined the mode shapes for a mass-loaded cantilevered beam in closed
form([2]. In some cases it may be advantageous to numerically deterruine the mode
shapes. For example, a stiffness boundary condition at either end can be readily

introduced.

A.1 Mass-Loaded Transverse Mode Shapes

The spatial shape fuunctions of the Bernoulli-Euler beam are determined as the solu-

tions to the partial differential equation

0 dw(z,t)  dw(z,t) _
@El(x) 522 pA P =0 (A1)

The transverse deformations w(z,t) are assumed separable in space and time:

w(z,t) = g(z)e™ (A.2)

where w is the temporal frequency. It is clear that in order for this to be a solution to
the PDE, the fourth derivative of the mode shape must be proportional to the first.

The trial function
#(z) = a; cos(kz) + az cosh(kz) + a3 sin(kz) + a4 sinh(kzx) (A.3)

satisfies this criteria. The PDE holds when x* = w”,ﬁ. The spatial frequency x and

the shape function coefficients a; are determined from the boundary conditions.
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The mode shape parameters can be determined numerically. To proceed, the

mode shape can be defined in terms of vectors ¥ and a:

¢(z) = P(z)To (A.4)
Y(z)T = [ cos(kz) cosh(kz) sin(kz) sinh(kz) ] (A.5)
aT = [ ay a2 az a4 ] (AG)

For the mass loaded cantilevered beam, the displacement and rotation boundary
conditions at the constrained end are set equal to zero. The force and moment
conditions at the mass-loaded end are set equal to the reaction force and moment of

the end mass. In vector form,

w(0) 0
w'(0) _ 0 (A7)
—EIw"(L) myw(Ly) + mybw' (Ly)
i ElIw"(L) ] I myw(Le) + (I + meb2)w' (L) ]

where the lower two elements of the vector on the left are the internal force and
moment of the beam. The trial solution, in terms of space via ¢ = ¥(z)a and time
via e*!, is substituted into the boundary condition equations. The BC must hold

independent of time. Taking the time-independent portion, the following equation

results:
- P(0)T - - 0 -
v(0) . |a= 0 a (A.8)
—EIp(L)" maw?P(L)T + mebwp(L)”
EIp(L)" | | muw?Y(L)T + (I + mb2 (L) |

Note that the right hand side is a function of the temporal frequency w. The mode
number relation can be used to produce a set of equations in terms of the spatial
frequency only. When this is done the right hand side will have E'I in the numerator
and pA in the denominator. Since each of the equations which make up the rows

of the matrix are equal to zero, the EI terms can be divided out and the pA terms
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cleared. The matrix then has the form

¥(0)”
¥(0)”
—pAY(L)"" — mertp(L)T — meborty(L)”
| pAY(L)"™ — mebortyp(L)T — (I + meb2)s*y(L)"

which is a function only of the inertia parameters. The spatial frequencies x are
determined by setting the determinant of the above matrix to zero. The coefficients

a are found from the eigenvector associated with the zero direction.

A.2 Mass Loaded Torsional Mode Shapes

The torsional mode shapes are determined similarly to the transverse mode shapes.

The torsional PDE is

0 00
32 52

which is solved by spatial trial functions of the form

+pI60=0 (A.10)

¢ = a, cos(kz) + agsin(kz) = ¥(z)Ta (A.11)

with Kk = w 517 Setting the root displacement to zero and the tip internal moment

to the inertial reaction moment of the tip mass,

6(0,t 0
0.2) = . (A.12)
GJO(L,t) L6
Substituting the trial function, the following matrix condition results:
0)T 0
:/J( ) a= (A.13)
GIY(LY” - wI(z)T 0
Note that
W Iy(z) = %mzzp(x) (A.14)
and further
K*P(z) = ~y(z)" (A.15)

233



so that the above matrix for the evalulation of the mode numbers k can be written

»(0)”

ey (A.16)
GIY(LY" + LS p ()"

Further, since each row is equal to zero at the solution, the stiffness term GJ can be
canceled and the distributed inertia term pl can be cleared, resulting in the matrix

expression
¥(0)”
pIH(L)" + I (z)

which is solely a function of the inertia parameters of the link. Again the spatial

(A.17)

nT

frequencies are found by setting the determinant equal to zero. The coeflicients are

determined from the associated eigenvector.
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Appendix B

Link Local Equations of Motion

This section presents the full form of the link EOM as presented in Chapter 4.

The following constant scalars and matrices are defined:

Mu=-/(; ¢(r)x¢(r)£dr (B.1)

M,y = / B(r)e(r)Tdr (B.2)
L

M,, = / B(r)ed(r)Tdr (B.3)
L

M,, = /o B(r)y$(r)Tdr (B.4)

M,, = /0 8(r),d(r)Tdr (B.5)
L

M, = /0 (r).6(r)Tdr (B.6)
L

Ny = / r(r)ed(r)Tdr (B.7)
L

Noy = /o ré(r)ed(r)Tdr (B.8)
L

N,, = j{ ré(r)ed(r)Tdr (B.9)
L

N, = /0 ré(r),6(r)Tdr (B.10)
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L
N, = /0 ré(r),d(r)Tdr
L
= \T'
N,, /(; rd(r).$(r), dr
L
My = [ o(r)e(ryTar
L
! T
Mzz —A ¢(T)z¢(r)z dr
L
_ " nT
K= [ o)260)dr
L
Kyy=‘/0‘ ¢(T)Z¢(7);Tdr
L
_ " T
Koo = [ 026 dr
M, = /OL (1) dr
L
My:/ﬁ @(r)ydr
5
. Mz=A ¢(7’)sz
L
N; = /0 o(r)dr
L
Ny = /0 B(r),dr
L
N, = /0 o(r).dr
L
My, = [ sty ptryTar
L
" o__ ; ] T
Mzz _A ¢(r)z¢(r)z d’l‘
L
M= [ oty
L
M, = /0 é(r),dr
L
M= [ atryar
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(B.11)
(B.12)

(B.13)

i (B.14)

(B.15)
(B.16)
(B.17)
(B.18)
(B.19)
(B.20)
(B.21)
(B.22)
(B.23)
(B.24)
(B.25)
(B.26)
(B.27)

(B.28)



L

N = [ rotrydr
0
L

N, = /0‘ ré(r),dr

L
NZ=L ré(r),dr

with () = Z.

And also the quantities:

1
ﬂ=§L27 Y=

Wi

1
L
3

From these define the time varying signals:

my; = my + LpA

Mo = 0.y + Ltmt + ,BPA
m3 = MypA + mydy, + bemd,,

my = szA + mt¢z; + bzmtqs;,

ms =Im+Ix¢

me = Mzplx + I, ¢z,

mq = Iy + I, + b2m; + 2b,Lym, + Lim; + ypA
mg = —(N,pA) — M, pl,, — byms¢,, — Lemu,, — I, @), — bﬁmtd)'zt — b Lymy ¢,
mg=1Iz+1I, + bﬁmt + 2b,Lymy + Lfmt + vpA
My = NypA + M, pI; + bymudy, + Limyy, + 1,8y, + bﬁmtd);t + b Lymu ),

my = Mzszx + Izg‘ﬁzgd’z;

(B.29)
(B.30)

(B.31)

(B.32)

(B.33)
(B.34)
(B.35)
(B.36)
(B.37)
(B.38)
(B.39)
(B.40)
(B.41)
(B.42)

(B.43)

myg = MyypA + M{,'ypfz + mt¢yg¢y¢ + bzmt(¢y¢¢;¢ + ¢;/¢¢yt) + I, ¢;It .:/t + bf-‘mt¢;e¢;z

(B.44)

M3 = MyzpA + Miply + mude be, + bami(82,8,, + 6,,62,) + 1, 8L, 8, + bimid,, &,

b =-b; — L,
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(B.45)
(B.46)



by = @5, (B.47)

bs = by, + bed, (B.48)

by = ¢, (B.49)

bs = ¢, + b4, (B.50)

bs = —¢, (B.51)

vy = 2b,m ¢, (B.52)

vy = NypA + bymydy, + Limudy, + bzmth;c + sztmth;t (B.53)
vz = N,pA + bymud,, + Lymud,, — b2med),, — b Lymyd),, (B.54)
Mz, = (—(MazpA) — Moo bz, ~ bameda 8,)" 0 (B.55)
Mo, = (MaypA + Mg, by, + bamudsz, 8,,) gz (B.56)

Mgy = (-(NzypA) —M;ypfy—bzmtcbz,d)y, —Ltmt¢,t¢yc —Iyt Dz, ¢;t —bimt(z&th};n -sztmt¢1‘g ¢;t )qu

(B.57)
mz4 = (—(NZZPA)—M:::szZ—bzmt¢1‘t¢Zt_Ltmt¢xt¢n—IZQ¢$¢¢;t—b§mt¢It¢;t _sztmt¢:g¢'z¢)qu
(B.58)
Mzgy = (2bzmt¢z¢¢;t)Tq:r (B59)
Mgg = (—2b-'tmt¢.’te¢z't)qu (BGO)

mz7 = (—(N-'CZPA) - bzmt¢z¢ ¢Z¢ - Ltmt¢z¢¢zt +b3_-mt¢z, ¢'2t +b¢Ltmt¢zt ¢’Zt)Tq= (B61)

My = (NoypA + beutpz, by, + Limuds by, + b2y, b, + boLemuge,6,) ¢ (B.62)

Mgy = (_2b;2cmt¢:u¢z¢ - 2bILtmt¢Ig¢2g)qu (B63)
my, = (—(MypA) — mudy, — by}, ) gy (B.64)
My, = (—(bz7nt¢;,,¢;¢))T‘Iy (B.65)

My, = (MyypA + mude,by,) gy (B.66)

my, = (—(NypA) - bzmt(byg - Ltmt¢yg - bi?'nt¢;t - b,Ltmtqﬁ;t)Tqy (B67)
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Myy = (MyzpA + My, bz, + 26,108, 62, + b2t 8,) Ty
Mys = (—(NgypA) — brmidz, dy, — Ltmt¢z¢¢y¢)TQy
my, = -(bzmt¢z¢¢;,))T(Iy
Myy = —(MyypA) — Mety, by, — bane(y, B}, + &), y,) — b2rud, 8,,)7 gy
Myy = NoypA + bamyde, @y, + Limedz, by, + Bimude 8y, + boLimeds, &,,) gy
My,0 = My, pA + M4y, ¢, — bimt¢;,,¢'z,)T(Iy
m,, = (M,pA + mé,, — bzmt¢;¢)qu
m;, = (bzmt¢;t¢'z,)T‘1z
My = (—(Mz2pA) — Mz, 62,)" .
my, = (=(N.pA) — bpmd,, — Lymydd,, + bimt¢,zg + b:rLtmt¢;g)TQz
My = (—(MyzpA) — My, &2, + o), 8,) g
Mag = (—(NezpA) — bemude bz, — Limude,d2,)" az
Mzy = bey @y, ¢;,)T¢Iz
My = —(M;2pA) — M4, &z, + by (9:,8,, + &,,62,) — B2mud, ¢..) a;
Mz = —(NzzpA) — beude, bz, — Limybz, bz, + b2z, 8, + b Limi62,9,) g
mz, = (—(bemuts,8,,)) 4z
M, = (bemuts, b)) 4z
ms, = (—(Mj,ply) — Iy, ¢z, &, — B2y, — b Limitz,&),) Gz
My = (—(MgpL) = Ly 2,8, — Vot 8y, — b Lemiz,8,,) ¢
my, = (—(bsm49,8,,)) 4y
my, = (2MypA + 2mydy, + 2bzmt¢;‘)T(jy
Myy = (“(NyPA) — bymydy, — Lymydy, — bzmt¢;¢ - betmt¢;,)T4y
My, = (2MyzpA + 2muy, ., + 2b:mu8,,6.,)7 dy
mys = (2M, pl, + 21y, 5,8}, + B2mudz, &), + bz Limeds, &,,) 4y
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(B.68)
(B.69)
(B.70)
(B.71)
(B.72)
(B.73)
(B.74)
(B.75)
(B.76)
(B.77)
(B.78)
(B.79)
(B.80)
(B.81)
(B.82)
(B.83)
(B.84)
(B.85)
(B.86)
(B.87)
(B.88)
(B.89)
(B.90)

(B.91)



m;, = (—2b,mud), )74, (B.92)

M, = (b, 87,) g (B.93)

ms, = (=2M.pA — 2m,$.,)7 . (B.94)

m;, = (—(N,pA) — bymsd,, — Lymed,, + b2mud), + b.Limed), )74, (B.95)
My = (—2My2pA — 2medy, s, — 2l b:)7d: (B.96)
Mse = (2M,pl; + 20, 62,8, + b2mu42,8,, + boLemids, 8,)7 ¢ (B.97)
We1 = (=0z.) ¢z (B.98)

Wey2 = (—(bebz,) — Lebz,) ¢ (B.99)

Wy = (—¢},) gy (B.100)

wy,2 = (By, + b0),) gy (B.101)

wy,3 = (—y, + Led),) gy (B.102)

we1 = (¢,) ¢ (B.103)

Wepz = (— @z, + b2d),) (B.104)

W3 = (@, + Lt¢'z,)T(Iz (B.105)

Wiy = (brbz) e (B.106)

Wy = (20y, + bod),) Ty (B.107)

Wg2 = (—2¢y, — 2b20;,) 4y (B.108)

Wy,a = (¢y, + 2628, + Led,,) gy (B.109)

Wyes = (bzBy, + Led),) gy (B.110)

wi = (262, — b:9),) 74 (B.111)

Wiz = (205, + 2b,¢.,)7 4, (B.112)

Waa = (92 — 2626, — Led),)Tq; (B.113)

Wes = (—(b297,) — Ledr,) a: (B.114)

Wy = (B By,) 9y (B.115)
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W7 = (beebye) @y
wy,s = (—(4},95,)) a
Wyo = (—(42.4},)) 4y
Wee = (—(624,))7 ¢
We7 = (—(¢2,92)) ¢z
Was = (~(8y,4:,))7 ¢

Wz9 = (¢x¢¢;, )qu

m7 mys mzs m8
My, M 0 0
Y6 11
M=
my, 0 my9 0
mg 0 0 mis

M70,5 + My, 2

V= —(mz'sé;,-_) - mygég - mi;;éy - Uzézéy - ngézéz + mzséyéz—

—m; 0 moy —My4
0 -m.3 —myz —ms
B, =
—My2 —M3 —Mgz —Mgs
—Mz2 —Mz1 —TMNg —Mys
Wz3 Wg,2 by Wyl Wegel
0 0 0 b 0
Br =

0 0 b O
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0 b3 0 0 b4

0

—My, — My,0; — m;, T — mply — m;, 0,9 — m,, 0,2
. .. - . .. -
—(mgsoy) et m290x0y - ngoy - mz-sez —_ mygozoz - m,90z—

My70, T — M,70,T — M3y + My70,Y — Mae0,y — my1 2+

- . ) .
Mysl; — M0,y — MiaZ + My, 2

. o .. ” . . .
_(mi[‘loz) - mzsoz - m:c70:z:0y - mzsey - m:i:4az - 'U30:toz—

myloéyéz - vlo.yi: - mzso.zi' - milg + vlézy - mz2ézy+

0
—Me
—MMio
—Mgz4

11

0 0
0 0

Ost

(B.116)
(B.117)
(B.118)
(B.119)
(B.120)
(B.121)
(B.122)

(B.123)

(B.124)

(B.125)

(B.126)



Hp =

GF‘F =

= | w,+ wwéz + wngézéy - w,,aég + wy,10, — b,0.0, + wytgéyéz + w,, 562

—(m53éy) - myléxéy - mzé;‘; - my-zéz + m 10,0, — myb?

m,-3éz + mylég + mgézéy + mzléyéz + myléf

. . 20 . . . .

mg3éy + mé4éz - myléyi' + mzléz-'i: - mily - m2éyy - 777'20.;.”é

—My + Mmsaby — mzlﬂyy + mob,z — myleyé

m, 0 0 0 My1
0 my 0 —mz My
Gra=1] 0 0 m  —my 0
0 =My —My ms M2y
| My me 0 Mzq My |

0

Wy, 1 -1 —wy; O 0 0
Wy, 1 Wg,1 -1 0 0 0 0

0

0

0 —Wz2 —Wy2 -1 Wz, 1 —Wy,1

~Wy3 b —wgo w1 -1 Wz, 1

mz 0 My2 My2

GF = —My My3 Mgz My

Mys Mg TMz5 Mys

0 mu Mg Mgy

—Wy,2 + w10, + witléy - blézéy + wy,59§ — wg,20.0, — wztgﬂ'yéz + Wy, 302

0
0
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(B.127)

(B.128)

(B.129)

(B.130)

(B.131)



1 -—wy, 1 — Wz 0 wy,;;

Wye1 1 ~Wz1 Wz2 —b
Gaa = Wzt Wz 1 Wy,2 Wg,2
0 0 0 1 —Wz1

0 0 0 Wz,1 1

w2¢ 3 0 wyg 6 Wze
Wz, 2 Wz 7 b3 0
Ga = bl Wy, 7 0 b5

— wy‘ 1 b2 Wz, 8 wyc 8

W, 1 Wz, 9 b4 0

wz,aéy + wytgé: — Wy 1Y — W12
Wy,1 + b3gy + wztgéz + wnga'y - bléz + Y — wg12
Way1 + b5z + Wy,20z + 016y + w20, + WY + 2
bagz +6:
beg: + 6, — wy, 19,
bady + wy,10, + 0,
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(B.132)

(B.133)

(B.134)
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