MIT
Libraries | D>pace@MIT

MIT Open Access Articles

A work-efficient parallel breadth-first search algorithm
[or how to cope with the nondeterminism of reducers]

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Charles E. Leiserson and Tao B. Schardl. 2010. A work-efficient parallel breadth-first
search algorithm (or how to cope with the nondeterminism of reducers). In Proceedings of the
twenty-second annual ACM symposium on Parallelism in algorithms and architectures (SPAA

'10). ACM, New York, NY, USA, 303-314.

As Published: http://dx.doi.org/10.1145/1810479.1810534
Publisher: Association for Computing Machinery (ACM)]
Persistent URL: http://hdl.handle.net/1721.1/100925

Version: Author’s final manuscript: final author’'s manuscript post peer review, without
publisher’'s formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

I I I .
I I Massachusetts Institute of Technology

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/100925
http://creativecommons.org/licenses/by-nc-sa/4.0/

A Work-Efficient Parallel Breadth-First Search Algorithm
(or How to Cope with the Nondeterminism of Reducers)

Charles E. Leiserson
Tao B. Schardl

MIT Computer Science and Atrtificial Intelligence Laboratory
32 Vassar Street
Cambridge, MA 02139

ABSTRACT Keywords

We have developed a multithreaded implementation of breadth-first Breadth-first search, Cilk, graph algorithms, hyperobjects, mul-
search (BFS) of a sparse graph using the Cilk++ extensions to C++.tithreading, nondeterminism, parallel algorithms, reducers, work-
Our PBFS program on a single processor runs as quickly as a stanstealing.

dard C++ breadth-first search implementation. PBFS achieves high

work-efficiency by using a novel implementation of amultisetdata 1 INTRODUCTION

structure, called a “bag,” in place of the FIFO queue usually em-
ployed in serial breadth-first search algorithms. For a variety of
benchmark input graphs whose diameters are significantly smaller
than the number of vertices — a condition met by many real-world

Algorithms to search a graph in a breadth-first manner have been
studied for over 50 years. The first breadth-first search (BFS) al-
gorithm was discovered by Moore [26] while studying the problem
1tof finding paths through mazes. Lee [22] independently discov-
ered the same algorithm in the context of routing wires on circuit
boards. A variety of parallel BFS algorithms have since been ex-
plored [3,9, 21, 25, 31, 32]. Some of these parallel algorithms are
work efficient meaning that the total number of operations per-
formed is the same to within a constant factor as that of a com-
parable serial algorithm. That constant factor, which we call the
work efficiency can be important in practice, but few if any papers
actually measure work efficiency. In this paper, we present a paral-
lel BFS algorithm, called PBFS, whose performance scales linearly
with the number of processors and for which the work efficiency is
nearly 1, as measured by comparing its performance on benchmark
graphs to the classical FIFO-queue algorithm [10, Section 22.2].

Given a graplG = (V, E) with vertex se/ =V (G) and edge set
E = E(G), the BFS problem is to compute for each vertex V
the distancer.dist thatv lies from a distinguishedource vertex
. . . Vo € V. We measure distance as the minimum number of edges on
Categories and Subject Descriptors a path fromvg to vin G. For simplicity in the statement of results,

F.2.2 [Theory of Computation]: Nonnumerical Algorithms we shall assume th& is connected and undirected, although the

processing cores.

Since PBFS employs a nonconstant-time “reducer” — a “hyper-
object” feature of Cilk++ — the work inherent in a PBFS execution
depends nondeterministically on how the underlying work-stealing
scheduler load-balances the computation. We provide a general
method for analyzing nondeterministic programs that use reduc-
ers. PBFS also is nondeterministic in that it contains benign races
which affect its performance but not its correctness. Fixing these
races with mutual-exclusion locks slows down PBFS empirically,
but it makes the algorithm amenable to analysis. In particular, we
show that for a grap® = (V, E) with diameteD and bounded out-
degree, this data-race-free version of PBFS algorithm runs in time
O((V +E)/P+DIg3(V/D)) on P processors, which means that it
attains near-perfect linear speedupi& (V +E)/DIg3(V/D).

and Problems-Gomputations on discrete structures; D.1.3 algorithms we shall explore apply equally as well to unconnected
[Software]: Programming TechniquesSencurrent program- graphs, digraphs, and multigraphs.
ming, G.2.2 Mathematics of Computing): Graph Theory— Figure 1 gives a variant of the classical serial algorithm [10, Sec-
Graph Algorithms. tion 22.2] for computing BFS, which uses a FIFO queue as an aux-
iliary data structure. The FIFO can be implemented as a simple ar-
General Terms ray with two pointers to the head and tail of the items in the queue.
) Enqueueing an item consists of incrementing the tail pointer and
Algorithms, Performance, Theory storing the item into the array at the pointer location. Dequeueing
This research was supported in part by the National Sciencedation consists of removing the item referenced by the head pointer and
under Grants CNS-0615215 and CCF-0621511. TB Schardl is @ M incrementing the head pointer. Since these two operations take only
Siebel Scholar. ©(1) time, the running time of SRIAL-BFS is©(V +E). More-

over, the constants hidden by the asymptotic notation are small due

to the extreme simplicity of the FIFO operations.

Permission to make digital or hard copies of all or part of thaknfor Although efficient, the FIFO queu® is a major hindrance to
personal or classroom use is granted without fee providatidbpies are |

not made or distributed for profit or commercial advantage aatidbpies para”e!lzatlon.Of BFS.' .Para”e“ZIng BFS while leaving the FIFO
bear this notice and the full citation on the first page. Toyouierwise, to queue intact yields minimal parallelism feparsegraphs — those
republish, to post on servers or to redistribute to listgyi@s prior specific for which |E| =~ [V|. The reason is that if eachN®UEUE operation

permission and/or a fee. must be serialized, thepan* of the computation — the longest
SPAA' 10, June 13-15, 2010, Thira, Santorini, Greece. - —)
Copyright 2010 ACM 978-1-4503-0079-7/10/06 ...$10.00. 1Sometimes calledritical-path lengthor computational depth

8 T
SERIAL-BFS(G, Vo) FEFS+comp & 1
1 for eachvertexie V(G) —{vo} 7 | SemIBRS *
u.dist = o
vo.dist = 0
Q= {vwo}
while Q # 0
u = DEQUEUEQ) 5r
for eachv € V such thatu,v) € E(G)
if v.dist==0c0
v.dist = u.dist+1
ENQUEUE(Q,V) 3

Speedup
S
T

COwWwoo~NOUR~WN

=

Figure 1: A standard serial breadth-first search algorithm operatimg
graphG with source vertexg € V(G). The algorithm employs a FIFO
queueQ as an auxiliary data structure to compute for eachV (G) its
distancev. dist from vg.

serial chain of executed instructions in the computation — must Processors

have lengthQ(V). Thus, awork-efficient algorithm — one that

uses no more work than a comparable serial algorithm — can haveFigure 2: The performance of PBFS for the Cage15 graph showing speedup
parallelism— the ratio of work to span — at mo&X((V +E) /V) = curves for serial BFS, PBFS, and a variant of PBFS where thepata-
O(1) if |E| = O(V).2 tional intensity has been artificially enhanced and the gpe@ormalized.

Replacing the FIFO queue with another data structure in order
to parallelize BFS may compromise work efficiency, however, be-
cause FIFO’s are so simple and fast. We have devised a multise
data structure called laag, however, which supports insertion es-
sentially as fast as a FIFO, even when constant factors are consid
ered. In addition, bags can be split and unioned efficiently.

We have implemented a parallel BFS algorithm in Cilk++ [20,
23]. OurPBFS algorithm, which employs bags instead of a FIFO,
uses the “reducer hyperobject” [14] feature of Cilk++. Our im-
plementation of PBFS runs comparably on a single processor to a
good serial implementation of BFS. For a variety of benchmark

E = E(G), diameterD, and bounded out-degree, this “locking”
{version of PBFS performs BFS i@((V +E)/P + DIg3(V/D))
time on P processors and exhibits effective paralleli§h(V +
E)/DIg3(V/D)), which is considerable whel < V, even if the
graph is sparse. Our method of analysis is general and can be ap-
plied to other programs that employ reducers. We leave it as an
open question how to analyze the extra work when the race condi-
tion is left unresolved.

The remainder of this paper is divided into two parts. Part | con-
sists of Sections 2 through 5 and describes PBFS and its empirical

graphs whose diameters are significantly smaller than the numberPerformance. Part |l consists of _S(_ections 6 throug_h 9 and descr_ibes
of vertices — a common occurrence in practice — PBFS demon- how to cope with the nondeterminism of reducers in the theoretical

strates high levels of parallelism and generally good speedup with analysis of PBFS. Se(_:tion 10 concludes by discussing thread-local
the number of processing cores. storage as an alternative to reducers.

Figure 2 shows the typical speedup obtained for PBFS on a .
large benchmark graph, in this case, for a sparse matrix called Part | — Parallel Breadth-First Search
Cagels5 arising from DNA electrophoresis [30]. This graph has The first half of this paper consists of Sections 2 through 5 and

‘\;‘D:E 154 ?_ig veréicele| =99,199 5|51 cledges, §17nd a drilgmete_rh describes PBFS and its empirical performance. Section 2 provides
ol h = 50. € code was run on an nte fCore : mc?c ine wit background on dynamic multithreading. Section 3 describes the
eight 253 GHz processing cores, 12GB of RAM, and two 8MB ;- ppFg algorithm, and Section 4 describes the implementation

L_3-caches, each shared among 4 cores. As can be seen from th%f the bag data structure. Section 5 presents our empirical studies.
figure, although PBFS scales well initially, it attains a speedup of

only about 5 on 8 cores, even though the parallelism in this graph is

nearly 700. The figure graphs the impact of artificially increasing 2. BACKGROUND ON DYNAMIC

the computational intensity— the ratio of the number of CPU op- MULTITHREADING

erations to the number of memory operations, suggesting that this Tnis section overviews the key attributes of dynamic multi-

low spgedup is due to I!mita}tions of thg memory system, rather than threading. The PBFS software is implemented in Cilk++ [14, 20,

to the inherent parallelism in the algorithm. _ 23], which is a linguistic extension to C++ [28], but most of the va-
PBFS is a nondeterministic program for two reasons. First, be- gayies of C++ are unnecessary for understanding the issues. Thus,

cause the program employs a bag reducer which operates in Nonyye gescribe Cilk-like pseudocode, as is exemplified in [10, Ch. 27],

constant time, the asymptotic amount of work can vary from run \yhich the reader should find more straightforward than real code to

to run depending upon how Cilk++'s work-stealing scheduler load- ngerstand and which can be translated easily to Cilk++.
balances the computation. Second, for efficient implementation,

PBFS contains a benign race condition, which can cause additionalMultithreaded pseudocode
work to be generated nondeterministically. Our theoretical anal-
ysis of PBFS bounds the additional work due to the bag reducer
when the race condition is resolved using mutual-exclusion locks.
Theoretically, on a grapls with vertex setv = V(G), edge set

The linguistic model for multithreaded pseudocode in [10, Ch. 27]
follows MIT Cilk [15, 29] and Cilk++ [20, 23]. It augments ordi-
nary serial pseudocode with three keywordsspawn, syng and
parallel — of which spawnandsyncare the more basic.

2For convenience, we omit the notation for set cardinalithimiasymptotic ~ Parallel work is created when the keywaspawn precedes the
notation. invocation of a function. The semantics of spawning differ from a

1 x=10 1 x=10 1 x=10
2 X++ 2 X++ 2 X++
3 x+=3 3 x+=3 3 x4+=3
4 X4=-2 4 X4=-2 X =0
5 X+=6 5 X+=6 4 X 4= -2
6 X—— X =0 5 X +=6
7 x+=4 6 X—— 6 X——
8 Xx+=3 7 X +=4 X'=0
9 X++ 8 X +=3 7 X' +=4
10 x+= -9 9 X++ 8 X' +=3
10 X += -9 9 X'4++
X += X 10 X' += -9
X 4= X
X+:X”
(@) (b) (©)

Figure 3: The intuition behind reducers. (a) A series of additive upsga
performed on a variablg. (b) The same series of additive updates split
between two “views'x andx’. The two update sequences can execute in
parallel and are combined at the end. (c) Another valid smijtof these
updates among the viewsx', andx”.

C or C++ function call only in that the parecbntinuation — the
code that immediately follows the spawn — may execute in par-
allel with the child, instead of waiting for the child to complete,
as is normally done for a function call. A function cannot safely
use the values returned by its children until it executegrec state-
ment, which suspends the function until all of its spawned children
return. Every function syncs implicitly before it returns, preclud-
ing orphaning. Togethespawnandsyncallow programs contain-
ing fork-join parallelism to be expressed succinctly. The scheduler
in the runtime system takes the responsibility of scheduling the
spawned functions on the individual processor cores of the mul-
ticore computer and synchronizing their returns according to the
fork-join logic provided by thespawnandsynckeywords.

Loops can be parallelized by preceding an ordirfarywith the
keyword parallel, which indicates that all iterations of the loop
may operate in parallel. Parallel loops do not require additional
runtime support, but can be implemented by parallel divide-and-
conquer recursion usirgpawnandsync

Cilk++ provides a novel linguistic construct, calledreducer
hyperobjec{14], which allows concurrent updates to a shared vari-
able or data structure to occur simultaneously without contention.
A reducer is defined in terms of a binary associateDuCE
operator, such as sum, list concatenation, logical AND, etc. Up-
dates to the hyperobject are accumulated in lagaWs which
the Cilk++ runtime system combines automatically with “up-calls”
to REDUCE when subcomputations join. As we shall see in Sec-
tion 3, PBFS uses a reducer called a “bag,” which implements an
unordered set and supports fast unioning as &sRCE operator.

Figure 3 illustrates the basic idea of a reducer. The example in-
volves a series of additive updates to a variabl&/hen the code
in Figure 3(a) is executed serially, the resulting value is 16.
Figure 3(b) shows the same series of updates split between two
“views” x andx’ of the variable. These two views may be eval-
uated independently in parallel with an additional stepetduce
the results at the end, as shown in Figure 3(b). As long as the va
ues for the viewsc andx’ are not inspected in the middle of the
computation, the associativity of addition guarantees that the final
result is deterministicallx = 16. This series of updates could be
split anywhere else along the way and yield the same final result, as
demonstrated in Figure 3(c), where the computation is split across
three viewsx, X, andx”. To encapsulate nondeterminism in this
way, each of the views must be reduced with an associatire R

PBFSG, Vo)

parallel for each vertex € V(G) — {vo}
v.dist = o

vo.dist =0

d=0

Vo = BAG-CREATE()

BAG-INSERT(Vp, Vo)

while =BAG-1S-EMPTY (Vy)
Vd+1 = new reducer BAG-CREATE()
PrOCESSLAYER(revert Vy,Vg1,d)
d=d+1

QWO ~NOUBRWNE

=

PROCESSLAYER(in-bag, out-bag, d)

11 parallel for k = Oto |Ig(BAG-SizE(in-bag)) |
12 if in-bag[k] # NULL
13 PROCESSPENNANT(in-bag(k], out-bag, d)

PROCESSPENNANT (in-pennant, out-bag, d)
14 if PENNANT-SIZE(in-pennant) < GRAINSIZE

15 for eachu € in-pennant

16 parallel for eachv € Adj[u]

17 if v.dist==00

18 v.dist =d+1 // benign race
19 BAG-INSERT(out-bag, v)

20 return

21 new-pennant = PENNANT-SPLIT(in-pennant)

22 spawnPROCESSPENNANT(new-pennant, out-bag, d)
23 PROCESSPENNANT(in-pennant, out-bag, d)

24 sync

Figure 4: The PBFS algorithm operating on a graBlwith source vertex
Vo € V(G). PBFS uses the parallel subroutinedZESSLAYER to process
each layer, which is described in detail in Section 4. PBR#aios a benign
race in line 18.

DUCE operator (addition for this example) and intermediate views
must be initialized to the identity for ouck (0 for this example).
Cilk++'s reducer mechanism supports this kind of decomposi-
tion of update sequences automatically without requiring the pro-
grammer to manually create various views. When a function
spawns, the spawned child inherits the parent’s view of the hyper-
object. If the child returns before the continuation executes, the
child can return the view and the chain of updates can continue. If
the continuation begins executing before the child returns, however,
the continuation receives a new view initialized to the identity for
the associative RDUCE operator. Sometime at or before thync
that joins the spawned child with its parent, the two views are com-
bined with REDUCE. If REDUCEIs indeed associative, the result is
the same as if all the updates had occurred serially. Indeed, if the
program is run on one processor, the entire computation updates
only a single view without ever invoking theERUCE operator, in
which case the behavior is virtually identical to a serial execution
that uses an ordinary object instead of a hyperobject. We shall for-
malize reducers in Section 7.

3. THE PBFS ALGORITHM

PBFS usesayer synchronization3, 32] to parallelize breadth-
first search of an input grapgh. Letvp € V(G) be the source vertex,
and defindayerd to be the se¥y C V(G) of vertices at distance
fromvp. Thus, we hav®y = {vo}. Each iteration processes layer
by checking all the neighbors of verticesvig for those that should
be added t&g, 1.

PBFS implements layers using an unordered-set data structure,

18.1 if TRY-LOCK(V)

18.2 if v.dist==0c0

18.3 v.dist =d+1

18.4 BAG-INSERT(0Ut-bag, v)
18.5 RELEASE-LOCK(V)

Figure 5: Modification to the PBFS algorithm to resolve the benign race

called abag which supports efficient parallel traversal over the
elements in the set and provides the following operations:

e bag = BAG-CREATE(): Create a new empty bag.

e BAG-INSERT(bag, x): Insert elemenxk into bag.

e BAG-UNION(bag,bag,): Move all the elements frorbag,

to bag,, and destroyag,.

As Section 4 shows, B5-CREATE operates inO(1) time, and
BAG-INSERT operates irD(1) amortized time an@®(Ign) worst-
case time on a bag withelements. Moreover, &B-UNION oper-
ates inO(lgn) worst-case time.

Let us walk through the pseudocode for PBFS, which is shown in
Figure 4. For the moment, ignore trevert andreducer keywords
in lines 8 and 9.

After initialization, PBFS begins thenhile loop in line 7 which
iteratively calls the auxiliary function ROCESSLAYER to pro-
cess layed = 0,1,...,D, whereD is the diameter of the input
graphG. Section 4 walks through the pseudocode abRESS
LAYER and RROCESSPENNANT in detail, but we shall give a high-
level description of these functions here. To procéss- in-bag,
PROCESSLAYER extracts each vertex in in-bag in parallel and
examines each edde, V) in parallel. Ifv has not yet been visited
— v.dist is infinite (line 17) — then line 18 setsdist = d+ 1 and
line 19 insertss into the level{d + 1) bag.

This description skirts over two subtleties that require discus-
sion, both involving races.

First, the update of. dist in line 18 creates a race, since two ver-
ticesu andu’ may both be examining vertexat the same time.
They both check whetherdist is infinite in line 17, discover that
it is, and both proceed to updatedist. Fortunately, this race is

benign, meaning that it does not affect the correctness of the al-

gorithm. Bothu and U’ setv.dist to the same value, and hence

At A= 5 2

Figure 6: Two pennants, each of siz&,Zan be unioned in constant time
to form a pennant of sizé??.

the attempt, because we know that some other processor has suc-
ceeded, which then setsdist = d + 1 regardless. Thus, there is

no contention onv's lock, because no processor ever waits for an-
other, and processing an edgev) always takes constant time.
The apparently redundant lines 17 and 17 avoid the overhead of
lock acquisition wherw. dist has already been set.

4. THE BAG DATA STRUCTURE

This section describes the bag data structure for implement-
ing a dynamic unordered set. We first describe an auxiliary data
structure called a “pennant.” We then show how bags can be im-
plemented using pennants, and we provide algorithms #&-B
CREATE, BAG-INSERT, and BaG-UNION. We also describe how
to extract the elements in a bag in parallel. Finally, we discuss some
optimizations of this structure that PBFS employs.

Pennants

A pennantis a tree of ¥ nodes, wheré is a nonnegative integer.
Each nodein this tree contains two pointersleft andx.right to
its children. The root of the tree has only a left child, which is a
complete binary tree of the remaining elements.

Two pennantsc andy of size X can be combined to form a
pennant of size'?! in O(1) time using the following BNNANT-
UNION function, which is illustrated in Figure 6.

PENNANT-UNION(X,Y)

1 vy.right = x left
2 xleft=y
3 return X

The function ENNANT-SPLIT performs the inverse operation of
PENNANT-UNION in O(1) time. We assume that the input pennant

no inconsistency arises from both updating the location at the sameCONtains at least 2 elements.

time. They both go on to inserinto bagVy. 1 = out-bagin line 19,

which could induce another race. Putting that issue aside for the

moment, notice that inserting multiple copieswihto V.1 does

not affect correctness, only performance for the extra work it will
take when processing layer+ 1, because will be encountered
multiple times. As we shall see in Section 5, the amount of extra
work is small, because the race is rarely actualized.

Second, arace in line 19 occurs due to parallel insertions of ver-

tices intoVy 1 = out-bag. We employ the reducer functionality to
avoid the race by making, 1 a bag reducer, whereAg-UNION is

PENNANT-SPLIT(X)

y = X.left

x.left = y.right
3 y.right = NULL
4 returny

Each of the pennantsandy now contains half the elements.

Bags
A bagis a collection of pennants, no two of which have the same

the associative operation required by the reducer mechanism. Thesize. PBFS represents a b8gsing a fixed-size arrag0..r],

identity for BAG-UNION — an empty bag — is created byaB-
CREATE. In the common case, line 19 simply insevtinto the

called thebackbone where 21 exceeds the maximum number of
elements ever stored in a bag. Each effkyin the backbone con-

local view, which, as we shall see in Section 4, is as efficient as tains either a null pointer or a pointer to a pennant of stzeFig-

pushingv onto a FIFO, as is done by serial BFS.

Unfortunately, we are not able to analyze PBFS due to unstruc-

ure 7 illustrates a bag containing 23 elements. The functiea-B
CREATE allocates space for a fixed-size backbone of null pointers,

tured nondeterminism created by the benign race, but we can ana-which takesO(r) time. This bound can be improved @(1) by
lyze a version where the race is resolved using a mutual-exclusionkeeping track of the largest nonempty index in the backbone.

lock. The locking version involves replacing lines 18 and 19 with
the code in Figure 5. In the code, the caliYFLocK(v) in line 18.1
attempts to acquire a lock on the vertexIf it is successful, we

The Bac-INSERTfunction employs an algorithm similar to that
of incrementing a binary counter. To implemem® INSERT, we
first package the given element as a penmanitsize 1. We then

proceed to execute lines 18.2-18.5. Otherwise, we can abandorinsertx into bagS using the following method.

\S;\\\
Figure 7: A bag with 23=01011% elements.

BAG-INSERT(S x)

k=0

while Sk] # NULL
X = PENNANT-UNION(SK],)
Sk++] = NULL

Sk = x

The analysis of BG-INSERTmIrrors the analysis for increment-
ing a binary counter [10, Ch. 17]. Since evergNNANT-UNION
operation takes constant timeA8-INSERTtakesO(1) amortized
time andO(lgn) worst-case time to insert into a bagroélements.

The BaG-UNION function uses an algorithm similar to ripple-
carry addition of two binary counters. To implememd@& UNION,
we first examine the process of unioning three pennants into two
pennants, which operates like a full adder. Given three penmants
y, andz, where each either has sizk @ is empty, we can merge
them to produce a pair of pennarttsc), wheres has size boris
empty, anct has size 81 or is empty. The following table details
the function FAX,y,z) in which (s,c) is computed from(x,y, z),

abhwN Pk

where 0 means that the designated pennant is empty, and 1 mean

that it has size'?

X y z S c

0 O Of NuLL NULL

1 0 O X NULL

0 1 0 y NULL

0 0 1 z NULL

1 1 O NULL PENNANT-UNION(X,Y)
1 0 1| NuLL PENNANT-UNION(X,2)
0 1 1| NuLL PENNANT-UNION(Y,2)
1 1 1 X PENNANT-UNION(Y, 2)

With this full-adder function in hand, Bs-UNION can be im-
plemented as follows:

BAG-UNION(S,)

1 y=NuLL / The “carry” bit.

2 fork=0tor

3 (S1[K,y) = FA(SLK], $2[K],y)

Because every BENNANT-UNION operation takes constant time,
computing the value of Ff,y, z) also takes constant time. To com-
pute all entries in the backbone of the resulting bag t&egtime.

This algorithm can be improved ©(lgn), wheren is the num-
ber of elements in the smaller of the two bags, by maintaining the

largest nonempty index of the backbone of each bag and unioning

the bag with the smaller such index into the one with the larger.
Given this design for the bag data structure, let us now walk
through the pseudocode forRBCESSLAYER and FROCESS
PENNANT in Figure 4. To process the elements\gf= in-bag,
PROCESSLAYER calls ROCESSPENNANT on each non-null pen-
nant inin-bag (lines 11-13) in parallel, producing;, 1 = out-bag.
To processn-pennant, PROCESSPENNANT uses a parallel divide-
and-conquer. For the recursive case, line 21 spiigennant, re-

moving half of its elements and placing thenmiew-pennant. The
two halves are processed recursively in parallel in lines 22—-23.

This recursive decomposition continues urititpennant has
fewer thanGRAINSIZE elements, as tested for in line 14. Each
vertexu in in-pennant is extracted in line 15, and line 16 examines
each of its edgeéu, V) in parallel. Ifv has not yet been visited —
v.dist is infinite (line 17) — then line 18 setsdist = d + 1 and
line 19 inserts into the level{d + 1) bag.

Optimization

To improve the constant in the performance ofdBINSERT, we
made some simple but important modifications to pennants and
bags, which do not affect the asymptotic behavior of the algorithm.
First, in addition to its two pointers, every pennant node in the bag
stores a constant-size array ®RAINSIZE elements, all of which
are guaranteed to be valid, rather than just a single element. Our
PBFS software uses the valg&AINSIZE = 128. Second, in addi-
tion to the backbone, the bag itself maintains an additional pennant
node of sizeGRAINSIZE called thehopper, which it fills gradu-
ally. The impact of these modifications on the bag operations is as
follows.

First, BAG-CREATE must allocate additional space for the hop-
per. This overhead is small and is done only once per bag.

Second, BG-INSERT first attempts to insert the element into
the hopper. If the hopper is full, then it inserts the hopper into
the backbone of the data structure and allocates a new hopper into
which it inserts the element. This optimization does not change
the asymptotic runtime analysis oRB-INSERT, but the code runs
much faster. In the common casea® INSERTsimply inserts the
element into the hopper with code nearly identical to inserting an
element into a FIFO. Only once in eveBRAINSIZE insertions
does a BG-INSERT trigger the insertion of the now full hopper
into the backbone of the data structure.

Third, when unioning two bagS; andS,, BAG-UNION first de-
termines which bag has the less full hopper. Assuming thai,is
the modified implementation copies the elementsSg$ hopper
into S's hopper until it is full orS;’s hopper runs out of elements.
If it runs out of elements ir5; to copy, BAG-UNION proceeds to
merge the two bags as usual and uSgs hopper as the hopper
for the resulting bag. If it fillsS,’s hopper, however, line 1 of 85-
UNION setsyto S’s hopper, and;'s hopper, now containing fewer
elements, forms the hopper for the resulting bag. Afterward; B
UNION proceeds as usual.

Finally, the parallel for loop in PROCESSLAYER on line 11
also calls ROCESSPENNANT on a unit-sized pennant containing
the hopper ofn-bag.

5. EXPERIMENTAL RESULTS

We implemented optimized versions of both the PBFS algorithm
in Cilk++ and a FIFO-based serial BFS algorithm in C++. This sec-
tion compares their performance on a suite of benchmark graphs.
Figure 8 summarizes the results.

Implementation and Testing

Our implementation of PBFS differs from the abstract algorithm in
some notable ways. First, our implementation of PBFS does not
use locks to resolve the benign races described in Section 3. Sec-
ond, our implementation assumes that all vertices have bounded
out-degree, and indeed most of the vertices in our benchmark
graphs have relatively small degree. Finally, our implementation
of PBFS setssRAINSIZE = 128, which seems to perform well in
practice. The FIFO-based serial BFS uses an array and two point-

ers to implement the FIFO queue in the simplest way possible. This |Name VI Work SERIAL-BFST;
array was sized to the number of vertices in the input graph. Description Spy Plot ‘E' Par?ﬁ?ism PEEE%T;TB
These implementations were tested on eight benchmark graphs, ~
as shown in Figure 8. Kkpower, Cagel4, Cagelb, Freescalel, Kkt _power \\ \ 2.05M 241M 0.504
Wikipedia (as of February 6, 2007), and Nlpkkt160 are all from the | Optimal power flow, F \ 176M 23M 0.359
University of Florida sparse-matrix collection [11]. Grid3D200 is | "onfinear opt. — 81 1085 5.983
a 7-p_oin_t finite difference mesh generated using the Matlab Mesh | <01 343M 349M 0.985
Partitioning and Graph Separator Toolbox [16]. The RMat23 ma- | circuit simulation 17IM 2.3M 0.327
trix [24], which models scale-free graphs, was generated by using 128 15272 5.190
repeated Kronecker products [2]. Paramefets0.7,B=C=D =
0.1 for RMat23 were chosen in order to generate skewed matrices. | 29614 . L5IM - 390M 0.262
. DNA electrophoresis 2IM 1.6M 0.283
We stored these graphs in a compressed-sparse-rows (CSR} forma 23 24570 5.340
in main memory for our empirical tests.
Wikipedia 24M 606M 0.914
Links between 4BM 3.4M 0.721
Results Wikipedia pages 460 1783 6.381
We ran our tests on an Intel Core i7 quad-core machine with a to- _
tal of eight 253-GHz processing cores (hyperthreading disabled), 235'"73552? 52’;\/' 117(2’%“" ll-ggj
12 GB of DRAM, two 8-MB L3-caches_each shared between 4 |p o e oon 598 77 4.862
cores, and private L2- and L1-caches with 256 KB and 32 KB, re-
spectively. Figure 8 presents the performance of PBFS on eight |RMat23 23M 1,050M 1.100
different benchmark graphs. (The parallelism was computed using | Scale-free 7BM - 113M 0.936
the Cilkview [19] tool and does not take into account effects from [8raph model 8 922 6.500
reducers.) As can be seen in Figure 8, PBFS performs wellonthese | ¢5qe15 515M 1410M 1065
benchmark graphs. For five of the eight benchmark graphs, PBFS | bnA electrophoresis @M 21M 1.142
is as fast or faster than serial BFS. Moreover, on the remaining X 50 67465 5.263
three benchmarks, PBFS is at most 15% slower than serial BFS. NIDKKL160 \ 8350 3060M 1969
. . p . X .
Figure 8 shows that PBFS runs faster than a FIFO-based serial | <o optimization ™ 1 oomM 92m 1.448
BFS on several benchmark graphs. This performance advantage AN 163 33145 5.983

may be due to how PBFS uses memory. Whereas the serial BFS
performs a single linear scan through an array as it processes its
queue, PBFS is constantly allocating and deallocating fixed-size Figure 8: Performance results for breadth-first search. The vertexdod
chunks of memory for the bag. Because these chunks do not changéounts listed correspond to the number of vertices and edgésated by

in size from allocation to allocation, the memory manager incurs SERIAL-BFS. The work and span are measured in instructions. All run-
. ; . times are measured in seconds.

little work to perform these allocations. Perhaps more importantly,

PBFS can reuse previously allocated chunks frequently, making
it more cache-friendly. This improvement due to memory reuse
is also apparent in some serial BFS implementations that use two
gueues instead of one.

induces redundant work. On none of these benchmarks does PBFS
examine more than 1% of the vertices and edges redundantly. Us-
ing a mutex lock on each vertex to resolve the benign race costs a

substantial overhead in performance, typically slowing down PBFS
Although PBFS generally performs well on these benchmarks, by more than a factor of 2.

we explored why it was only attaining a speedup of 5 or 6 on 8 “vyiong He [18], formerly of Cilk Arts and Intel Corporation,

processor cores. Inadequate pqrallelism is not the answer, as Mostised PBFS to parallelize the Murphi model-checking tool [12].
of the benchmarks have parallelism over 100. Our studies indicate Murphi is a popular tool for verifying finite-state machines and is

that the multicore processor's memory system may be hurting per-yiqely used in cache-coherence algorithms and protocol design,
fom_‘ance in two ways. . . link-level protocol design, executable memory-model analysis, and

First, the memory bandwidth of the system seems to limit per- on5ysis of cryptographic and security-related protocols. As can be
formance for several of these graphs. For Wikipedia and Cagel4, seen in Figure 9, a parallel Murphi using PBFS scales well, even
when we run 8 independent instances of PBFS serially on the 8 pro-, iserforming a version based on parallel depth-first search and at-

cessing cores of our machine simultaneously, the total runtime is attaining the relatively large speedup of.B%imes on 16 cores.
least 20% worse than the expectéd .8This experiment suggests

that the system’s available memory bandwidth limits the perfor- L.

mance of the parallel execution of PBFS. Part I — Nondeterminism of Reducers
Second, for several of these graphs, it appears that contention The second half of this paper consists of Sections 6 through 9

from true and false sharing on the distance array constrains theang describes how to cope with the nondeterminism of reducers in

speedups. Placing each location in the distance array on a differ-the theoretical analysis of PBFS. Section 6 provides background

ent cache line tends to increase the speedups somewhat, althougB, the theory of dynamic multithreading. Section 7 gives a formal

it slows down overall performance due to the loss of spatial local- ,odel for reducer behavior, Section 8 develops a theory for analyz-

ity. We attempted to modify PBFS to mitigate contention by ran- jng programs that use reducers, and Section 9 employs this theory
domly permuting or rotating each adjacency list. Although these g analyze the performance of PBFS.

approaches improve speedups, they slow down overall perfoenanc

due to loss of locality. Thus, despite its somewhat lower relative

speedup numbers, the unadulterated PBFS seems to yield the bes@- BACKGROUND ON THE DAG MODEL

overall performance. This section overviews the theoretical model of Cilk-like parallel
PBFS obtains good performance despite the benign race whichcomputation. We explain how a multithreaded program execution

continuation sync
strand

strand

spawn
strand

Speedup

Figure 10: A dag representation of a multithreaded execution. Each ver-
tex represents a strand, and edges represent parallebicdapendencies
between strands.

0 ! ! ! ! ! ! !
0 2 4 6 8 10 12 14 16

Number of Cores Detel’minacy
We say that a dynamic multithreaded progrardéserministic(on

Figure 9: Multicore Murphi application speedup on a 16-core AMD pro- . : - S .
cessor [18]. Even though the DFS implementation uses a patefiéh-first a given input) if every memory location is updated with the same

search for which Cilk++ is particularly well suited, the Bi8plementa- §equence of .Vz.ilu_es n every_ e_xeputlon. Otherwise, the program

tion, which uses the PBFS library, outperforms it. is nondeterministic A deterministic program aIWayS behaves the
same, no matter how the program is scheduled. Two different mem-
ory locations may be updated in different orders, but each location

can be modeled theoretically as a dag using the framework of Blu- always sees the same sequence of updates. Whereas a nondetermin-

mofe and Leiserson [7], and we overview assumptions about the jstic program may produce different dags, i.e., behave differemtly,

runtime environment. We define deterministic and nondeterminis- deterministic program always produces the same dag.

tic computations. Section 7 will describe how reducer hyperobjects

fit into this theoretical framework. Work and span
The dag model admits two natural measures of performance which
The dag model can be used to provide important bounds [6, 8, 13, 17] on perfor-

mance and speedup. Therk of a dagA, denoted by WorfA),

is the sum of the lengths of all the strands in the dag. Assuming
for simplicity that it takes unit time to execute a strand, the work
for the example dag in Figure 10 is 19. Thearf of A, denoted

by SpariA), is the length of the longest path in the dag. Assuming
unit-time strands, the span of the dag in Figure 10 is 10, which is
realized by the patkl,2,3,6,7,8,10,11,18,19). Work/span anal-
ysis is outlined in tutorial fashion in [10, Ch. 27] and [23].

Suppose that a program produces a8aytime Tp when run on
processors of an ideal parallel computer. We have the following
two lower bounds on the execution tirfig:

We shall adopt the dag model for multithreading similar to the
one introduced by Blumofe and Leiserson [7]. This model was
designed to model the execution of spawns and syncs. We shall
extend it in Section 7 to deal with reducers.

The dag model views the executed computation resulting from
the running of a multithreaded progréms adag (directed acyclic
graph) A, where the vertex set consists stfands— sequences
of serially executed instructions containing no parallel control —
and the edge set represents parallel-control dependencies betweeB
strands. We shall uskto denote both the dag and the set of strands
in the dag. Figure 10 illustrates such a dag, which can be viewed
as a parallel program “trace,” in that it involves executed instruc- To > Work(A)/P, (1)
tions, as opposed to source instructions. A strand can be as small To > SpariA) ?)
as a single instruction, or it can represent a longer computation. P = P ’

We shall assume that strands respect function boundaries, meaningnequality (2), which is called th&ork Law, holds in this simple

that calling or spawning a function terminates a strand, as does re-performance model, because each processor executes at most 1 in
turning from a function. Thus, each strand belongs to exactly one struction per unit time, and henBgprocessors can execute at most
function instantiation. A strand that has out-degree 2 spawvn P instructions per unit time. Inequality (2), called tBpan Law
strand, and a strand that resumes the caller after a spawn is calledholds because no execution that respects the partial order of the dag
a continuation strand A strand that has in-degree at least 2 is a can execute faster than the longest serial chain of instructions.
sync strand We define thespeedumf a program a31 /Tp — how much faster

Generally, we shall dice a chain of serially executed instructions the P-processor execution is than the serial execution. Since for
into strands in a manner that is convenient for the computation we deterministic programs, all executions produce the samé\dag
are modeling. Théength of a strand is the time it takes for a pro- have thafl; = Work(A), andT. = Spar{A) (assuming no overhead
cessor to execute all its instructions. For simplicity, we shall as- for scheduling). Rewriting the Work Law, we obtal/Tp < P,

sume that programs execute onideal parallel computer where which is to say that the speedup Brprocessors can be at mdat
each |qstructlon takes unit time to execute, there is ample memory |f the application obtains speed@pwhich is the best we can do in
bandwidth, there are no cache effects, etc. our model, we say that the application exhiblitear speedup If

the application obtains speedup greater tRgwhich cannot hap-
pen in our model due to the Work Law, but can happen in models

SWhen we refer to the running of a program, we shall generallyrasshat
we mean “on a given input.” 4The literature also uses the terdpth[4] andcritical-path length[5].

that incorporate caching and other processor effects), we say thatO(P- SparfA)). This bound is important, since the number &-R
the application exhibitsuperlinear speedup DUCE operations needed to combine reducer views is bounded by
The parallelismof the dag is defined as Waik) /Spar{A). For the number of steals.
a deterministic computation, the parallelism is therefoféTe.
The parallelism represents the maximum possible speedup on any/, MODELING REDUCERS
number of processors, which follows from the Span Law, because g section reviews the definition of reducer hyperobjects from
T1/Tp < T1/SpariA) = Work(A) /SpariA). For example, the par- 1141 and extends the dag model to incorporate them. We define
allelism of the dag in Figure 10 is 190 = 1.9, which means that e notion of a “user dag” for a computation, which represents the
any advantage gained by executing it with more than 2 processorsgrangs that are visible to the programmer. We also define the no-
is marginal, since the additional processors will surely be starved 4o of a “performance dag,” which includes the strands that the
for work. runtime system implicitly invokes.
Schedulin A reducer is defined in terms of an algebraionoid a triple
g . . AT

(T,®,e), whereT is a set and® is an associative binary opera-
A randomized “work-stealing” scheduler [1, 7], such as is pro- tion overT with identity e. From an object-oriented programming
vided by MIT Cilk and Cilk++, operates as follows. When the perspective, the satis a base type which provides a member func-
runtime system starts up, it allocates as many operating-systemtion Repuce implementing the binary operatoy and a member
threads, calledvorkers as there are processors (although the pro- function CREATE-IDENTITY that constructs an identity element of
grammer can override this default decision). Each worker’s stack type T. The base typ@ also provides one or moreRHATE func-

operates like aleque or double-ended queue. When a subroutine tions, which modify an object of typ€&. In the case of bags, the
is spawned, the subroutine’s activation frame containing its local Repuck function is BAG-UNION, the QREATE-IDENTITY func-

variables is pushed onto the bottom of the deque. When it returns, tion is BAG-CREATE, and the WDATE function is BAG-INSERT.

the frame is popped off the bottom. Thus, in the common case, As a practical matter, the@ucefunction need not actually be as-
the parallel code operates just like serial code and imposes little sociative, although in that case, the programmer typically has some
overhead. When a worker runs out of work, however, it becomes jdea of “logical” associativity. Such is the case, for example, with
a thief and “steals” the top frame from anotheictim worker’s bags. If we have three bags, Bo, andBs, we do not care whether
deque. In general, the worker operates on the bottom of the dequethe bag data structures féB; U B,) UB3z andB; U (B, UB3) are
and thieves steal from the top. This strategy has the great advantaggdentical, only that they contain the same elements.
that all communication and synchronization is incurred only when o specify the nondeterministic behavior encapsulated by reduc-
a quker runs_out_of_work. If an application exhibits sufficient par- ers precisely, consider a computatidof a multithreaded program,
allelism, stealing is infrequent, and thus the cost of bookkeeping, and letv (A) be the set of executed strands. We assume that the im-
communication, and synchronization to effect a steal is negligible. piicitly invoked functions for a reducer —#UCE and CGREATE-
Work-stealing achieves good expected running time based on the| penTITY — execute only serial code. We model each execution

work and span. In particular, A is the executed dag dPproces- of one of these functions as a single strand containing the instruc-
sors, the expected execution tifiecan be bounded as tions of the function. If an BDATE causes the runtime system to
Tp < Work(A) /P + O(SpariA)) , ®) invoke QREATE-IDENTITY implicitly, the serial code arising from

UPDATE is broken into two strands sandwiching the point where
where we omit the notation for expectation for simplicity. This CREATE-IDENTITY is invoked.
bound, which is proved in [7], assumes an ideal computer, but We partitionV (A) into three classes of strands:

it includes scheduling overhead. For a deterministic computa- e V;: Init strands arising from the execution of REATE-
tion, if the parallelism exceeds the numbernf processors suf- IDENTITY when invoked implicitly by the runtime system,
ficiently, Inequality (3) guarantees near-linear speedup. Specifi- which occur when the user program attempts to update a re-
cally, if P < Work(A) /Spar{A), then SpafA) < Work(A)/P, and ducer, but a local view has not yet been created.
hence Inequality (3) yield3p ~ Work(A)/P, and the speedup is e \;,: Reducer strandsrising from the execution of BOUCE,
T1/Tp~ P. which occur implicitly when the runtime system combines
For a nondeterministic computation such as PBFS, however, the views.

work of aP-processor execution may not readily be related to the e \|: User strandsarising from the execution of code explic-
serial running time. Thus, obtaining bounds on speedup can be itly invoked by the programmer, including calls tcPDATE.
more challenging. As Section 9 shows, however, PBFS achieves e cally, UV, the set ofuntime strands

To(A) < Work(AU)/P+O(12-Spar(AU)) 7 (4) Since, from the programmer’s perspective, the runtime strands

are invoked “invisibly” by the runtime system, his or her under-
whereA, is the “user dag” oA — the dag from the programmer’s standing of the program generally relies only on the user strands.
perspective — and is an upper bound on the time it takes to per- We capture the control dependencies among the user strands by
form a REDUCE, which may be a function of the input size. (We defining theuser dagA, = (W, Ey) for a computatiom in the same
shall formalize these concepts in Sections 7 and 8.) For nondeter-manner as we defined an ordinary multithreaded dag. For example,
ministic computations satisfying Inequality (4), we can define the a spawn strand; has out-degree 2 i, with an edge(vy, V) go-
effective parallelismas WorkAy)/(t? - SparfA,)). Just as with ing to the first strandr of the spawned child and the other edge
parallelism for deterministic computations, if the effective paral- (v;,v3) going to the continuations; if v; is the final strand of a
lelism exceeds the numbé&r of processors by a sufficient mar- spawned subroutine am is the sync strand with whichy, syncs,
gin, the P-processor execution is guaranteed to attain near-linear then we havév,,v,) € Ey; etc.
speedup over the serial execution. To track the views of a reducérin the user dag, Idi(v) denote

Another relevant measure is the number of steals that occur dur-the view ofh seen by a strande V,. The runtime system maintains

ing a computation. As is shown in [7], the expected number of the following invariants:
steals incurred for a dag§y produced by @-processor execution is 1. If ue W, has out-degree 1 ar(d,v) € E,, thenh(v) = h(u).

2. Suppose that € , is a spawn strand with outgoing edges
(u,v), (u,w) € Ey, wherev €V, is the first strand of the
spawned subroutine and € V, is the continuation in the
parent. Then, we havgv) = h(u) and

h(w) = { h(u) if uwas not stolen;

new view otherwise
3. If veV, is a sync strand, theh(v) = h(u), whereu is the
first strand ofv’s function.

When a new vievh(w) is created, as is inferred by Invariant 2, we
say that the old viewh(u) dominatesh(w), which we denote by
h(u) > h(w). For a seH of views, we say that two viewls;, hy €

H, wherehy > hy, areadjacentif there does not exidtz € H such
thathy = hz > ho.

A useful property of sync strands is that the views of strands
entering a sync strand € \,, are totally ordered by the “domi-
nates” relation. That is, ik strands each have an edgebn to
the same sync strande V,, then the strands can be numbered
Ug,Up,...,Ux € Vy such thath(ug) = h(up) > --- = ux. Moreover,
h(uz) = h(v) = h(u), whereu is the first strand of/’s function.

before their predecessors have completed. The purpose of-perfor
mance dags, as Section 8 shows, is to account for the cost of the
runtime strands, not to describe how computations are scheduled.

8. ANALYSIS OF PROGRAMS WITH
NONCONSTANT-TIME REDUCERS

This section provides a framework for analyzing programs that
contain reducers whoseERUCE functions execute in more than
constant time.

We begin with a lemma that bounds the running time of a com-
putation in terms of the work and span of its performance dag.

LEMMA 1. Consider the execution of a computation A on a
parallel computer with P processors using a work-stealing sched-
uler. The expected running time of A is Tp(A) < Work(Ar)/P+
O(Spar{An)).

PrROOF The proof follows those of [7] and [14], with some
salient differences. As in [7], we use a delay-sequence argument,
but we base it on the performance dag.

The normal delay-sequence argument involves only a user dag.

These properties can be proved inductively, noting that the views This dag is augmented with “deque” edges, each running from a
of the first and last strands of a function must be identical, becausecontinuation on the deque to the next in sequence from top to bot-
a function implicitly syncs before it returns. The runtime system tom. These deque edges increase the span of the dag by at most a
always reduces adjacent pairs of views in this ordering, destroying constant factor. The argument then considers a path in the dag, and

the dominated view in the pair.

If a computationA does not involve any runtime strands, the
“delay-sequence” argument in [7] can be applieddo bound the
P-processor execution tim@p(A) < Work(A,)/P+O(SparfAy)).

it defines an instruction as beiggtical if all its predecessors in the
augmented dag have been executed. The key property of the work-
stealing algorithm is that every critical instruction sits atop of some
deque (or is being executed by a worker). Thus, whenever a worker

Our goal is to apply this same analytical technique to computations steals, it has a /P chance of executing a critical instruction. With

containing runtime strands. To do so, we augmenthevith the
runtime strands to produceperformance dagAn = (Vir, Exr) for
the computatio\, where

o Vp=V(A) =WUV UV,,

e Ex=E,UE UE,,
where the edge seks andEp are constructed as follows.

The edges ik, are created in pairs. For each init strand V,,
we include (u,v) and (v,w) in E, whereu,w €V, are the two
strands comprising the instructions of the@hATE whose execu-
tion caused the invocation of theREATE-IDENTITY correspond-
ing tov.

The edges ifp are created in groups corresponding to the set of

REDUCE functions that must execute before a given sync. Suppose

thatv €\ is a sync strand, th&tstrandsus, s, ..., ux € Ay join at
v, and that’ < k reduce strandsy, ro,...,r¢ € Ay execute before
the sync. Consider the sbt = {uj,u,...,uc}, and leth(U) =
{h(ug),h(up),...,h(uK)} be the set ok’ + 1 views that must be
reduced. We constructraduce treeas follows:

1 while |h(U)| >2

2 Letr € {r1,rz2,...,r¢ } be the reduce strand that reduces a “min-
imal” pair hj,hj11 € h(U) of adjacent strands, meaning that if
a distinctr’ € {r1,r2,...,r¢} reduces adjacent strantshi;1 €
h(U), we haveh; > h;
LetU; = {ue U :h(u) =hj orh(u) =hj1}
Include inE, the edges in the s¢tu,r) :uc U, }
U=U-UU{r}

Include inE, the edges in the s¢tr,v):rcU}

[20N&) B SN OV]

constant probability? steals suffice to reduce the span of the dag of
the computation that remains to be executed by 1. Consequently,
the expected number of stealsQ§P - Spar{Ar)). A similar but
slightly more complex bound holds with high probability.

This argument can be modified to work with performance dags
containing reducers that operate in nonconstant-time. As instruc-
tions in the computation are executed, we can mark them off in
the performance dag. Since we have placed reduce strands af-
ter strands in the performance dag before which they may have
actually executed, some reduce strands may execute before all of
their predecessors in the performance dag complete. That is okay.
The main property is that if an instruction is critical, it has /@1
chance of being executed upon a steal, and fhateals have a
constant expectation of reducing the span of the dag that remains
to execute by 1. The crucial observation is that if an instruc-
tion in a reduce strand is critical, then its sync node has been
reached, and thus a worker must be executing the critical instruc-
tion, since reduces are performed eagerly when nothing impedes
their execution. It follows that the expected running timeAak
Tp(A) < Work(Ar)/P+ O(SpariAr)). O

We want to ensure that the runtime system joins strands quickly
when reducers are involved. Providing a guarantee requires that we
examine the specifics of how the runtime system handles reducers.

First, we review how the runtime system handles spawns and
steals, as described by Frigbal. [14]. Every time a Cilk func-
tion is stolen, the runtime system creates a firmme.> Although
frames are created and destroyed dynamically during a program ex-

Since the reduce trees and init strands only add more dependen&cution, the ones that exist always form a rocpewn tree Each

cies between strands in the uger that are already in series, the
performance dady is indeed a dag.
Since the runtime system perform&RJCE operations oppor-

frameF provides storage for temporary values and local variables,
as well as metadata for the function, including the following:

5When we refer to frames in this paper, we specifically mean thi¥ “fu

tunistically, the reduce strands in the performance dag may executeframes described in [14].

e a pointerF.Ip to F’s left sibling, or if F is the first child, to
F's parent;
e apointerF.cto F’s first child;
e a pointerF.r to F’s right sibling.
These pointers form a left-child right-sibling representation of the
part of the spawn tree that is distributed among processors, which
is known as thesteal tree

To handle reducers, each worker in the runtime system uses a

hash table called hypermapto map reducers into its local views.
To allow for lock-free access to the hypermap of a framenhile
siblings and children of the frame are terminatikgstores three
hypermaps, denotdél hu, F.hr, andF.hc. TheF.hu hypermap is
used to look up reducers for the user’s program, whileRlne and
F.hc hypermaps store the accumulated values-sf terminated
right siblings and terminated children, respectively.

When a frame is initially created, its hypermaps are empty. If a
worker using a fram& executes an BDATE operation on a reducer
h, the worker tries to gdt's current view from thd-. hu hypermap.

If h's view is empty, the worker performs aREATE-IDENTITY
operation to create an identity view lofn F. hu.

When a worker returns from a spawn, first it must perform up
to two REDUCE operations to reduce its hypermaps into its neigh-
boring frames, and then it mustiminate its current frame. To
perform these RDUCE operations and elimination without races,
the worker grabs locks on its neighboring frames. The algorithm
by Frigoet al. [14] uses an intricate protocol to avoid long waits
on locks, but the analysis of its performance assumes that each R
DUCE takes only constant time.

To support nonconstant-timeeRUCE functions, we modify the
locking protocol. To eliminate a frame, the worker first reduces
F.hu ®= F.hr. Second, the worker reducgslp.hc ®= F.hu or
F.Ip.hr ®= F.hu, depending on whethér is a first child.

Workers eliminating~. I[p andF.r might race with the elimina-
tion of F. To resolve these races, Frigbal. describe how to ac-
quire an abstract lock betwedh and these neighbors, where an
abstract lock is a pair of locks that correspond to an edge in the
steal tree. We shall use these abstract locks to eliminate a ffame
according to the locking protocol shown in Figure 11.

The next lemma analyzes the work required to perform all elim-
inations using this locking protocol.

LEMMA 2. Consider the execution of a computation A on a
parallel computer with P processors using a work-stealing sched-
uler. Thetotal work involved injoining strandsis O(tP- Spar{Ar)),
where T is the worst-case cost of any REDUCE or CREATE-
IDENTITY for the given input.

PROOF Since lines 3—15 in the new locking protocol all require
O(1) work, each abstract lock is held for a constant amount of time.
The analysis of the time spent waiting to acquire an abstract
lock in the new locking protocol follows the analysis of the lock-
ing protocol in [14]. The key issue in the proof is to show that
the time for theith abstract lock acquisition by some worker
is independent of the time fow's jth lock acquisition for all
j >i. To prove this independence result, we shall argue that
for two workersw andv, we have P{v delayswi|v delaySNi} =
Pr{v delaysw;|v does not delay } = Pr{v delaysw; }, wherew
andw;j arew's ith andjth lock acquisitions, respectively.

1 while TRUE

2 Acquire the abstract locks for edg@s F.Ip) and(F,F.r) in an
order chosen uniformly at random

3 if Fis a first child

4 L = F.lp.hc

5 elseL = F.Ip.hr

6 R=F.hr

7 if L==0andR==0

8 if Fis a first child

9 F.lp.hc = F.hu
10 elseF.Ip.hr = F.hu
11 EliminateF

2 break
13 R=RL =L
14 R=0;L=0
15 Release the abstract locks
16 for each reducen € R
17 if he F.hu
18 F.hu(h) @= R(h)
19 elseF.hu(h) = R(h)
20 for each reducen € L
21 if he F.hu
22 F.hu(h) = L(h)®F.hu(h)
23 elseF.hu(h) = L(h)
24

Figure 11: A modified locking protocol for managing reducers, which
holds locks forO(1) time.

ented correctly with a 12 probability, regardless of any previ-
ous interaction between andw. Similarly, suppose that does

not delayw;. Forv to delayw;j, a chain of dependencies must
form from one ofw's abstract locks to one ofs abstract locks
after w; completes. Forming such a dependency chain requires
every edge in the chain to be correctly oriented, which occurs
with a 1/2 probability per edge regardless of the fact thatid

not delayw;. Therefore, we have Bwv delayswj|v delaysw; } =
Pr{v delayswj|v does not delay; } = Pr{v delaysw; }.

For all workersv # w, the probability thav delaysw; is indepen-
dent of whethew delaysw;. Consequently, every lock acquisition
by some worker is independent of all previous acquisitions, and
by the analysis in [14], the total time a worker spends in abstract
lock acquisitions iSO(m) in expectation, wheren is the number
of abstract lock acquisitions that worker performs. Moreover, the
total time spent in abstract lock acquisitions is proportional to the
number of elimination attempts.

Next, we bound the total number of elimination attempts per-
formed in this protocol. Since each successful steal creates a frame
in the steal tree that must be eliminated, the number of elimination
attempts is at least as large as the nuniesf successful steals.
Each elimination of a frame may force two other frames to repeat
this protocol. Therefore, each elimination increases the number of
elimination attempts by at most 2. Thus, the total number of elimi-
nation attempts is no more thaivi3

Finally, we bound the total work spent joining strands using this
protocol. The total time spent acquiring abstract locks and per-
forming the necessary operations while the lock is hel@(s1).
Each failed elimination attempt triggers at most twadR CE op-
erations, each of which takeswork in the worst case. Therefore,
the total expected work spent joining strand®igM). Using the

We shall consider each of these cases separately. First, SUpynqysis of steals from [7], the total work spent joining strands is

pose thatv delaysw;. After w;, v has succeeded in acquir-
ing and releasing its abstract locks, and all lock acquisitions in
the directed path fromv's lock acquisition tov's have also suc-
ceeded. Fow to delaywj, a new directed path of dependen-
cies fromw to v must occur. Each edge in that path is ori-

O(TP- Spar{An)). [

The following two lemmas bound the work and span of the per-
formance dag in terms of the span of the user dag. For simplicity,

assume thah makes use of a single reducer. (These proofs can be
extended to handle many reducers within a computation.)

LEMMA 3. Consider a computation A with user dag A, and
performance dag An, and let T be the worst-case cost of any
CREATE-IDENTITY or REDUCE operation for the given input.
Then, we have Spar{Ar) = O(T- SparfAy)).

PrROOF Each successful steal in the executiomrAahay force
one REATE-IDENTITY. Each GREATE-IDENTITY creates a
nonempty view that must later be reduced usingED&CE op-
eration. Therefore, at most oneeRUCE operation may occur per
successful steal, and at most one reduce strand may occur in th
performance dag for each steal. Each spawfy,iprovides an op-
portunity for a steal to occur. Consequently, each spawn operation
in A may increase the size of the dag hyi2 the worst case.

Consider a critical path id\y, and letp, be the corresponding
path inA,. Suppose thak steals occur along,. The length
of that corresponding path iy is at most Rt + |py| < 21 -
SparfAy) + |pu| < 3t-Spar{Ay). Therefore, we have Spéf,) =
O(t-SparfAy)). O

LEMMA 4. Consider a computation A with user dag Ay, and
let T be the worst-case cost of any CREATE-IDENTITY or RE-
DUCE operation for the given input. Then, we have Work(Ar) =
Work(Ay) + O(T2P- SparfA,)).

PROOFE The work in Ay is the work in Ay plus the work
represented in the runtime strands. The total work in reduce
strands equals the total work to join stolen strands, which is
O(TP - SparfA)) by Lemma 2. Similarly, each steal may cre-
ate one init strand, and by the analysis of steals from [7], the
total work in init strands isO(tP - Spar{fA)). Thus, we have
Work(An) = Work(Ay) + O(TP - Spar{An)). Applying Lemma 3
yields the lemma. [

We now prove Inequality (4), which bounds the runtime of a
computation whose nondeterminism arises from reducers.

THEOREM 5. Consider the execution of a computation A on a
parallel computer with P processors using a work-stealing sched-
uler. Let Ay be the user dag of A. The total running time of A is
Te(A) < Work(Ay)/P+ O(t? - SparfAy)).

PROOF The proof follows from Lemmas 1, 3, and 4[]

9. ANALYZING PBFS

This section applies the results of Section 8 to bound the ex-
pected running time of the locking version of PBFS.
First, we bound the work and span of the user dag for PBFS.

LEMMA 6. Suppose that the locking version of PBFSisrun on
a connected graph G = (V,E) with diameter D. The total work in
PBFSs user dag is O(V + E), and the total span of PBFS's user
dagisO(DIg(V /D) +DIgA), where A is the maximum out-degree
of any vertexinV.

PROOF Consider the pseudocode for the locking version of
PBFS in Figures 4 and 5. First, we shall measure work of PBFS,

PBFS performs additional bookkeeping work in order to store
the vertices within a bag. In particular, PBFS performs additional
work to create a bag for each layer; subdivide a bag G®a.IN-

SIZE pieces, and to insert vertices into a bag. To create a bag for
each layer, PBFS callsA&-CREATE once per layer, totallin®(D)

work. To subdivide a bag inteRAINSIZE pieces, PBFS first subdi-
vides a bag into pennants (line 11) and then recursively splits each
pennant (lines 21-24), which requir€8§Vy) work per layer and
O(V) work over all layers.

The total time PBFS spends executingdINSERTdepends on
the parallel execution of PBFS. Since a steal resets the contents of a

Jdag for subsequent update operations, the maximum running time

of BAG-INSERT depends on the steals that occur. Each steal can
only decrease the work of a subsequenGBINSERT, and there-
fore the amortized running time @f(1) for each B\G-INSERTStill
applies. Because A&-INSERT is called once per vertex, PBFS
spendsD(V) work total executing BG-INSERT, and the total work
of PBFS isO(V +E).

The span of PBFS is dominated by the sum of the spans for
processing each layer @&. The span of a ROCESSLAYER call
on thedth layer is at most the span of tiparallel for loop on
line 11 —O(lgVy) — plus the maximum span of anyRBCESS
PENNANT call on line 13. The total span for any such call to
PROCESSPENNANT is the sum of the span of recursively split-
ting a pennant in lines 21-23, which @&(IgVy), plus the span
to process a single vertex, plus the span to sync all spawned chil-
dren, which is als®(IgVy). The span of processing a single ver-
tex is dominated by lines 16 and 18.4, which have a total span
of O(lgA+1gVy,1). The span of processing thielayer of G is
thereforeO(IgVy + 1gVy.1 +1g4), and the total span of PBFS is
O(Dlg(V/D)+DlgA).

O
We now bound the expected running time of PBFS.

THEOREM 7. Consider the parallel execution of PBFS on a
connected graph G = (V,E) with diameter D running on a par-
allel computer with P processors using a work-stealing sched-
uler. The expected running time of the locking version of PBFS
is To(PBFS < O(V +E)/P+ O(DIg?(V/D)(Ig(V/D) +Iga)),
where A is the maximum out-degree of any vertex in V. If we have
A = O(1), then the expected running time of PBFSis Tp(PBFS <
O(V +E)/P+0O(DIg3(V/D)).

PROOF To maximize the cost of all REATE-IDENTITY
and REDUCE operations in PBFS, the worst-case cost of each
of these operations must b&(Ig(V/D)). Applying Theo-
rem 5 with 1 = O(lg(V /D)), Work(PBFS = O(V + E), and
SparfPBFS = O(DIg(V/D) + DIgA), we get Tp(PBFS <
O(V 4+ E)/P+0(Dlg?(V/D)(Ig(V/D) +IgA)). If we haveA =
O(1), this formula simplifies toTp(PBFS < O(V + E)/P +
o(DIg*(V/D)). O

10. CONCLUSION

Thread-local storagg27], or TLS, presents an alternative to bag
reducers for implementing the layer sets in a parallel breadth-first
search. The bag reducer allows PBFS to write the vertices of a layer

and then we shall examine the span of PBFS. Consider evaluatingin a single data structure in parallel and later efficiently traverse

the dth layerVy of G. PBFS evaluates every vertexc Vy ex-

actly once, and PBFS checks every vertex v's adjacency list
exactly once. In the locking version of PBFS, eadh assigned its
distance exactly once and added to the bag for I&}yef exactly

once. Since this holds for all layers & the total work for this
portion of PBFS iO(V +E).

them in parallel. As an alternative to bags, each ofRheorkers
could store the vertices it encounters into a vector within its own
TLS, thereby avoiding races. The set of elements inRttvectors
could then be walked in parallel using divide-and-conquer. Such
a structure appears simple to implement and practically efficient,
since it avoids merging sets.

Despite the simplicity of the TLS solution, reducer-based solu- [6] R. D. Blumofe and C. E. Leiserson. Space-efficient schiaduif
tions exhibit some advantages over TLS solutions. First, reducers multithreaded computationSLAM J. on Compuit., 27(1):202-229,
provide a processor-oblivious alternative to TLS, enhancing porta- . ;99D8-B| o and C.E Lo Sehedu ——
bility and simplifying reasoning of how performance scales. Sec- - D. blumoie and L. E. LeIserson. scheduling muiithreade
ond, reducers allow a function to be instantiated multiple times in computations by work Stea“ngA_CM’ 46(5)'720_7_48' 19_99']
parallel without interference. To support simultaneous running of 8! ?AgMBrzelnté T;elpgra"e' evaluation of general arithmetpressions.
functions that use TLS, the programmer must manually ensure that , 21(2):20 i 06, 1974'

.) s h [9] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat
the TLS regions use_d by the fur)ct_lo_ns are d|5]_0|nt. _Thlrd, reducers T. Wen. Solving large, irregular graph problems using asfapti
require only a monoid — associativity and an identity — to ensure work-stealing. InCPP, pp. 536-545, 2008.
correctness, whereas TLS also requires commutativity. The cor-[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
rectness of some applications, including BFS, is not compromised Introduction to Algorithms. The MIT Press, third edition, 2009.
by allowing commutative updates to its shared data structure. With- [11] T. A. Davis. University of Florida sparse matrix collent, 2010.
out commutativity, an application cannot easily use TLS, whereas Available at
reducers seem to be good whether commutativity is allowed or not. ___ BttP://wwu.cise.ufl.edu/research/sparse/matrices/.
Finally, whereas TLS makes the nondeterminism visible to the pro- (12 D- L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protdco

- . verification as a hardware design aid|GCD, pp. 522-525, 1992.
grammer, reducers encapsulate nondeterminism. In particular, re-[ls] D. L. Eager, J. Zahorjan, and E. D. Lazowska, Speeduguger

ducers hide the particular nondeterministic manner in which asso- efficiency in parallel system&EEE Trans. Comput., 38(3):408—423,
ciativity is resolved, thereby allowing the programmer to assume 1989.

specific semantic guarantees at well-defined points in the compu-[{14] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-BefReducers
tation. This encapsulation of nondeterminism simplifies the task and other Cilk++ hyperobjects. BPAA, pp. 79-90, 2009.

of reasoning about the program’s correctness compared to a TLS[15] M. Frigo, C. E. Leiserson, and K. H. Randall. The implenagion of
solution. the Cilk-5 multithreaded language. RLDI, pp. 212-223, 1998.

Nondeterminism can wreak havoc on the ability to reason about [16] J: fi:tggbner_t’lg' 'I-'M“r']‘ir’t?r;d iaH' Terr‘.?ﬁ G&Tﬂegricr:ns?h
programs, to test their correctness, and to ascertain their perfor- ~ Parttioning. ‘mpiementation anc experimerstai J. on <.

but it al » ities for additional | Comput., 19(6):2091-2110, 1998.
mance, but It also can provide opportunities for additional paral- [17] R.L. Graham. Bounds for certain multiprocessing anorsabell

lelism. Well-structured linguistic support for encapsulating nonde- 9ys. Tech. J., 45:1563-1581, 1966.

terminism may allow parallel programmers to enjoy the benefits of [18] Y. He. Multicore-enabling the Murphi verification todivailable
nondeterminism without suffering unduly from the inevitable com- fromhttp://software.intel.com/en-us/articles/
plications that nondeterminism engenders. Reducers provide an ef- multicore-enabling-the-murphi-verification-tool/,
fective way to encapsulate nondeterminism. We view it as an open 2009.

guestion whether a semantics exists for TLS that would encapsu-[19] Y. He, C. E. Leiserson, and W. M. Leiserson. The Cilkview

. . - . . scalability analyzer. I8PAA, 2010.
late nondeterminism while providing a potentially more efficient [20] Intel Corporationintel Cilk+ + SDK Programmer's Guide, 2009.

implementation in situations where commutativity is allowed. Document Number: 322581-001US.
[21] R. E. Korf and P. Schultze. Large-scale parallel bredulst search.
11. ACKNOWLEDGMENTS In AAAI, pp. 1380-1385, 2005.

. . . . _[22] C.Y. Lee. An algorithm for path connection and its apations.|RE
Thanks to Aydin Bulug¢ of University of California, Santa Bar Trans. on Elec. Comput., EC-10(3):346-365, 1961.

bara, who helped us obtain many of our benchmark tests. Pablo G.23] C. E. Leiserson. The Cilk++ concurrency platforinSupercomput.,
Halpern of Intel Corporation and Kevin M. Kelley of MIT CSAIL 51(3):244-257, 2010.

helped us debug PBFS's performance bugs. Matteo Frigo of Axis [24] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and CoBtsos.
Semiconductor helped us weigh the pros and cons of reducers ver- Reallistic, mathematically tractable graph generation antligen,

sus TLS. We thank the referees for their excellent comments. using Kronecker multiplication. IRKDD, pp. 133-145, 2005.
Thanks to the Cilk team at Intel and the Supertech Research Group[25] J. B. Lubos, L. Brim, and J. Chaloupka. Parallel breditt-search
at MIT CSAIL for their support. LTL model-checking. IPASE, pp. 106-115, 2003.
[26] E.F. Moore. The shortest path through a mazéntnSymp. on Th.
of Switching, pp. 285-292, 1959.
12. REFERENCES [27] D. Stein and D. Shah. Implementing lightweight threaddJSENIX,
[1] N.S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scliegu pp. 1-9,1992.
for multiprogrammed multiprocessors. 8RAA, pp. 119-129, 1998. [28] B. StroustrupThe C++ Programming Language. Addison-Wesley,
[2] D.Bader, J. Feo, J. Gilbert, J. Kepner, D. Keoster, E.,Loh third edition, 2000.
K. Madduri, B. Mann, and T. Meuse. HPCS scalable synthetic [29] Supertech Research Group, MIT/LG3Ik 5.4.6 Reference Manual,
compact applications #2, 2007. Available at 1998. Available from
http://www.graphanalysis.org/benchmark/HPCS-SSCA2_ http://supertech.csail.mit.edu/cilk/.
Graph-Theory_v2.2.doc. [30] A.van Heukelum, G. T. Barkema, and R. H. Bisseling. Dna
[3] D.A. Bader and K. Madduri. Designing multithreaded aigrons for electrophoresis studied with the cage modeComput. Phys,,
breadth-first search arstkconnectivity on the Cray MTA-2. IhCPP, 180(1):313-326, 2002.
pp. 523-530, 2006. [31] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendricksand
[4] G. E. Blelloch. Programming parallel algorithn@ACM, 39(3), U. Catalyurek. A scalable distributed parallel breadthtfiearch
1996. algorithm on BlueGenel/L. I8C 05, p. 25, 2005.
[5] R.D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. LeisersonHK [32] Y. Zhang and E. A. Hansen. Parallel breadth-first héigregearch on
Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime a shared-memory architecture.AAAI Workshop on Heuristic

systemJPDC, 37(1):55-69, 1996. Search, Memory-Based Heuristics and Their Applications, 2006.

