
MIT Open Access Articles

The BigDAWG Polystore System

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Jennie Duggan, Aaron J. Elmore, Michael Stonebraker, Magda Balazinska, Bill Howe, 
Jeremy Kepner, Sam Madden, David Maier, Tim Mattson, and Stan Zdonik. 2015. The BigDAWG 
Polystore System. SIGMOD Rec. 44, 2 (August 2015), 11-16.

As Published: http://dx.doi.org/10.1145/2814710.2814713

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/100936

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/100936
http://creativecommons.org/licenses/by-nc-sa/4.0/


The BigDAWG Polystore System

Jennie Duggan
Northwestern

Aaron J. Elmore
Univ. of Chicago

Michael
Stonebraker

MIT

Magda Balazinska
Univ. of

Washington

Bill Howe
Univ. of

Washington

Jeremy Kepner
MIT

Sam Madden
MIT

David Maier
Portland State

Univ.

Tim Mattson
Intel

Stan Zdonik
Brown

ABSTRACT
This paper presents a new view of federated databases to
address the growing need for managing information that
spans multiple data models. This trend is fueled by the
proliferation of storage engines and query languages based
on the observation that “no one size fits all”. To address
this shift, we propose a polystore architecture; it is de-
signed to unify querying over multiple data models. We
consider the challenges and opportunities associated with
polystores. Open questions in this space revolve around
query optimization and the assignment of objects to stor-
age engines. We introduce our approach to these topics
and discuss our prototype in the context of the Intel Sci-
ence and Technology Center for Big Data.

1. INTRODUCTION
In the past decade, the database community has seen

an explosion of data models and data management sys-
tems, each targeted for a well-defined vertical market [3,
6]. These systems exemplify the adage that “no one size
fits all” for data management solutions [21]. For example,
relational column stores are poised to take over the data
warehouse market; most of the major database vendors
have embraced this technology. High-throughput OLTP
workloads are largely moving to main memory SQL sys-
tems, with products available from multiple startups as well
as Microsoft and SAP. Moreover, there has been a flood of
NoSQL engines implementing a panoply of data models,
and they typically operate on flexible storage formats such
as JSON. The internet of things (IoT) calls for real-time
stream processing and analytics that may be best served
by either an OLTP engine or a stream processing engine.
In addition, the jury is still out on the winning architec-
ture for complex analytics and graph processing. Lastly,
distributed file systems (a la HDFS) have become popular
owing to their simple scalability and rich ecosystem of data
processing tools.

Increasingly, we see applications that deploy multiple
engines, resulting in a need to join data across systems.
It is simply not reasonable for them to replicate all infor-
mation on all platforms. This landscape calls for a new
approach to federating data systems. At the Intel Science

and Technology Center for Big Data, we have constructed
a medical example of this new class of applications, based
on the MIMIC II dataset [18]. These publicly available pa-
tient records cover 26,000 intensive care unit admissions
at Boston’s Beth Israel Deaconess Hospital. It includes
waveform data (up to 125 Hz measurements from bed-
side devices), patient metadata (name, age, etc.), doctor’s
and nurse’s notes (text), lab results, and prescriptions filled
(semi-structured data). A production implementation would
store all of the historical data augmented by real-time streams
from current patients. Given the variety of data sources,
this system must support an assortment of data types, stan-
dard SQL analytics (e.g., how many patients were given
a particular drug), complex analytics (e.g., computing the
FFT of a patient’s waveform data and comparing it to “nor-
mal”), text search (e.g., finding patients who responded
well to a particular treatment), and real-time monitoring
(e.g., detecting abnormal heart rhythms).

Although it is conceivable to implement this entire appli-
cation in a single storage system, the consequences of do-
ing so would be dire. Not only would there be 1–2 orders of
magnitude performance penalty on some of the workload,
but the real-time requirements may not be achievable in a
one-size-fits-all engine. In our reference implementation,
which we call BigDAWG1, we use SciDB [6] for archived
time series data, Accumulo [1] for text, Postgres for patient
metadata, and S-Store [8] for real-time waveform data. Ob-
viously, there will be queries that span two or more storage
engines. For example, to compare current waveforms to
historical ones, one would query S-Store and SciDB. To
find patient groups associated with particular kinds of pre-
scriptions or doctor’s notes, one would query Accumulo
and Postgres. To run analytics on the waveforms from a
particular cohort of patients, one would query Postgres and
SciDB. It seems clear to us that a federation of multiple dis-
parate systems will be a requirement in a myriad of future
applications, especially those that are broad in scope like
the MIMIC II example above.

We call such systems polystores to distinguish them from
earlier federated databases that supported transparent ac-
cess across multiple back ends with the same data model.

1So named after the ISTC Big Data Analytics Working Group



We begin by defining polystores and their architecture in
Section 2. We then discuss our approach to query opti-
mization within this framework in Section 3. After that, we
turn to the monitoring system for query optimization and
data placement. In Section 4, we discuss how our polystore
model presents new challenges in assigning data to back
ends. A discussion of prior work follows in Section 5.

2. POLYSTORE SYSTEMS
In this section, we present the semantic notion of poly-

stores that we are exploring with our BigDAWG prototype.
This approach is motivated by three goals. First, like previ-
ous federated databases, BigDAWG will support location
transparency for the storage of objects. This transparency
enables users to pose declarative queries that span several
data management systems without becoming mired in the
underlying data’s present location or how to assign work
to each storage engine. In this context, an island of infor-
mation is a collection of storage engines accessed with a
single query language. Section 2.1 explores this construct.

The second goal of our work is semantic completeness.
A user will not lose any capabilities provided by his un-
derlying storage engines by adding them to a polystore.
Hence, BigDAWG will offer the union of the capabilities
of its member databases. As we will see in Section 2.2, this
calls for the system to support multiple islands.

Our third aim is to enable users to access objects in
stored a single back end from multiple islands. For exam-
ple, a user accessing MIMIC II waveform data may express
real-time decision making in SQL with streaming seman-
tics (e.g., “raise an alarm if the heart rate over this win-
dow exceeds some threshold”). On the other hand, he may
express complex analytics using an array language with
queries like, “compute the FFT over all heartrate wave-
forms, grouped by patient and day”. For such a user, it
is desirable to have the same data be queryable in both an
array and a relational island.

Enterprises also have legacy systems that access newly
federated datastores. Obviously, they want their existing
applications to continue to run while simultaneously writ-
ing new ones in a more modern language. Again, we see a
need for a single datastore to participate in many islands.

In summary, a polystore will support a many-to-many
relationship between islands of information and data man-
agement systems over multiple, disparate data models and
query languages. This framework is designed to minimize
the burden associated with running many back ends while
maximizing the benefits of the same.

2.1 Islands of Information
In BigDAWG we use islands of information as the application-

facing abstraction with which a user interacts with one or
more underlying data management engines. Specifically,
we define an island of information as:
A data model that specifies logical, schema-level informa-
tion, such as array dimensions or foreign key relationships.

A query language for that data model. It is with this lan-
guage that users pose queries to an island.
A set of data management systems for executing queries
written to an island. Here, each storage engine provides a
shim for mapping the island language to its native one.

When an island receives a query, it first parses it to cre-
ate an abstract syntax tree (AST) in the island’s dialect. It
also verifies that the query is syntactically correct. It then
uses the query optimizer to slice the AST into subqueries,
where subqueries are the unit with which the polystore as-
signs work to back ends. The island then invokes one or
more shims to translate each subquery into the language
of its target data store. The island next orchestrates the
query execution over the engines and accumulates results.
The island itself will do little computation other than con-
catenating query results from its data stores. This design
permits us to take advantage of the optimizers in the back
ends rather than managing data at the federator level.

Ideally, an island will have shims to as many databases
as possible to maximize the opportunities for load balanc-
ing and query optimization. At the same time, individual
users may be comfortable working in different query lan-
guages and data models. In general, we expect that users
will desire islands for well-known data models, such as re-
lational and streaming, and that these islands will overlap
in practice. In BigDAWG, two systems developed by ISTC
members will be used as initial islands, and we will build
additional ones as we go along. The two initial systems
are Myria [13], which uses relational-style semantics plus
iteration, and D4M [15], which implements a novel data
model based on associative arrays. In our prototype, both
islands will mediate access to MIMIC II data stored in the
same engines (Accumulo, SciDB, S-Store, and Postgres).

Neither island contains the complete functionality of any
of the underlying engines. Differing support for data types,
triggers, user-defined functions, and multiple notions of
null are invariably system-specific. To satisfy our goal
of semantic completeness, we require degenerate islands
that have the complete functionality of each storage engine.
Our initial prototype will have six islands: four degenerate
ones (relational, array, streaming, and text) augmenting the
two described above. In general BigDAWG will have as
many islands as one wants, each providing location trans-
parent access to one or more underlying storage engines.

2.2 Cross-Island Querying
An island within a polystore supports location transparency

via a shim for each storage engine. For a storage engine to
join an island, a developer writes a shim. If a single-island
query accesses more than one storage engine, objects may
have to be copied between local databases. Here, a CAST
mechanism copies objects between back ends.

When a user command cannot be expressed in a single
island’s semantics, he must convey his query in multiple is-
land languages, each of which is a subquery. To specify the
island for which a subquery is intended, the user encloses



BigDAWG

Clients Streams AppsVisualizations

Array Island Relational Island Island X

Array DBMS RDBMS X RDBMS Y Streaming 

Shim

CAST CAST CAST

Shim Shim Shim Shim Shim

Figure 1: Polystore Architecture

his query in a SCOPE specification. A cross-island query
will have multiple scopes to indicate the expected behavior
of its subqueries. Likewise, a user may insert a CAST op-
eration to denote when an object should be accessed with
a given set of semantics.

For example, consider a cross-island operation, such as
a join between an object in an array island and one in a ta-
ble island. Obviously, we can CAST the array to the table
island and do a relational join or we can do the converse
and perform an array join. Since the each of these options
produces a different output, a user must specify the seman-
tics he desires using SCOPE and CAST commands. If he
elects relational semantics, his query might be:

RELATIONAL(SELECT *
FROM R, CAST(A, relation)
WHERE R.v = A.v);

Here, the user specifies that the query will execute in a re-
lational scope. From the user’s perspective, the query will
produce output as if A were translated into a table, shipped
to a relational engine, and executed there. Because A is
an array, the CAST converts it into a table when it is ini-
tially accessed. The user does not care whether the query
is executed in the array store or relational one provided his
prescribed island semantics are obeyed. Many queries may
have implicit CASTS, and the polystore will insert these
operations automatically as needed.

The full BigDAWG architecture is shown in Figure 1.
This diagram shows multiple applications using a BigDAWG
instance with three islands. Each island speaks to one or
more engines through the use of shims. Objects can be
CAST between engines, and only a subset of casts are shown
for clarity. Here, a user issues a query to BigDAWG, and
he specifies his commands using one or more island lan-
guages. Within an island, the polystore calls the shims
needed to translate the query into the language(s) of the
participating storage engines. When the query uses multi-
ple islands, data may be shuffled among them using CAST
operations.

As a result, the BigDAWG query language consists of
the above SCOPE-CAST facility for a collection of islands
over an overlapping set of storage engines. For simplicity,
we leave the control of redundant copies of data objects
for future work. In the rest of this paper we discuss our
approach to query optimization and data placement.

3. QUERY OPTIMIZATION
In this section, we first introduce our approach to op-

timizing single-island queries. After that, we outline a
mechanism for generating and managing the statistics needed
for query optimization and data placement within a poly-
store. The section closes with a discussion of generalizing
the optimizer to multi-island query planning.

3.1 Single Island Planning
Traditional query optimization is simply not capable of

supporting cross-database queries. First, cost-based opti-
mizers [19] require the planner to maintain a model for
each operation to estimate its resource needs. This essen-
tially obligates the optimizer to understand all of the op-
erations in all storage engines as well as how the various
shims work. Moreover, the primitives in each of the under-
lying storage engines may not map neatly to the operators
in the island language. For example, a distributed array
store may implement matrix multiplication with a purpose-
built set of scatter-gather operations whereas a relational
engine might categorize it as a group by aggregate. Rec-
onciling these models would be non-trivial. Also, the opti-
mizer would have to adapt whenever a new storage engine
is added to the polystore. Lastly, conventional optimizers
assume metadata about objects is available, such as their
distribution of values. Local engines may or may not ex-
pose such information. As a result, we propose a black box
approach in this section, whereby no information about the
local optimizer is assumed.

If our query optimizer cannot be made robust using this
approach, then we will selectively add more sophisticated
knowledge of individual systems, recognizing that this may
make adding new storage engines to a polystore more chal-
lenging. More detailed knowledge might include the sizes
of operands, their data distribution, available access meth-
ods, and explanations of query plans.

We first consider simple queries, ones which have com-
parable performance on all of an island’s storage engines.
We anticipate that many select-project-join queries will be
in this category and we will examine in how to identify
such queries in Section 3.2.
Simple Queries For such queries we propose to minimize
data movement among storage engines, so as to avoid costly
data conversions and unnecessary network traffic. Rather,
we should bring computation to the data whenever possi-
ble. Hence, we divide any simple query optimization into
stages. In Stage 1 we perform all possible local computa-
tions that do not require any data movement. At the end
of Stage 1, we are left with computations on collections of
objects, where each one is located on a different storage
engine. Since we have done all single-DBMS subqueries,
we expect the number of remaining objects to be modest.
In the next section we describe how to process this “re-
mainder”.
Complex Queries Now consider expensive operations, parts
of the workload that have at least an order of magnitude



performance improvement relative to “one size fits all” ar-
chitectures. Put differently, such operations are usually
O(N2) or O(N3), and dwarf the cost of conventional data
management commands, such as joins and aggregates. For
example, the Genbase benchmark [22] demonstrated that
complex analytics like linear regression enjoy a 10X speedup
when run on an array store in comparison to a column
store. For these queries, it will often make sense to move
the data to a site where the high-performance implemen-
tation is available–which we learn empirically. The cost
of the such moves will be more than amortized by the re-
duced execution time. To ensure a move is not too expen-
sive, we will explore tactics for moving an object based on
the engines involved, disk activity at both sites, and overall
network activity.

In summary, we must pay careful attention to expensive
operations. For polystores, we start by looking for select-
project-join subqueries that are local to an object, and per-
form them in place as above. The “remainder” is expanded
to include expensive functions, that we consider moving to
a different site that offers high performance execution. The
next section indicates how BigDAWG learns a preference
list for assigning simple and complex queries to engines.

3.2 Workload Monitoring
To make efficient query optimization and data placement

decisions, BigDAWG relies on black box performance pro-
filing of its underlying systems. To rapidly acquire this
information, the polystore query executor will have three
modes of operation: training, optimized, and opportunis-
tic. In training mode, BigDAWG has the liberty to run a
subquery on all engines after inserting any casts that are
needed. Optimized mode assigns the work of an incoming
query to just one back end. Opportunistic mode measures
the performance of the polystore engines by exploiting idle
resources with an active learning approach.
Training For subqueries running in training mode, the fed-
erator records its elapsed time on each engine in an internal
performance catalog. It will first run the leafs and branches
from the AST at all possible locations in parallel to accu-
mulate feedback. Since branches may involved multiple
engines, there are many ways that a branch can be exe-
cuted. Specifically, if there are N engines involved in a
query, then there are N ! possibilities. In general we expect
N to be small, and hence not a source of scalability issues.

Since training mode uses all engines, the optimizer will
naturally have a comprehensive profile for each leaf and
branch. Hence, it can develop a ranked preference list to
determine the engine(s) best suited for each subquery. Af-
ter that, new subqueries matching the characteristics of this
subquery will need no additional experimentation.
Optimized If a query is run in optimized mode, then Big-
DAWG will execute no redundant computations for it. This
mode is invoked in one of two cases: either the subquery
has an existing preference list to guide its decision or there
are not enough spare resources for expansive training. In

the latter case, BigDAWG selects a database at random for
query execution. Over time, the polystore builds up the
same performance profiles offered more quickly by train-
ing mode.
Opportunistic BigDAWG maintains partial profiles on sub-
queries from optimized executions for further evaluation
during periods of low system utilization. The system op-
portunistically executes the stored subqueries on new en-
gines when their resources become available.

We expect a polystore to be in optimized mode most of
the time or for it to start in training mode and gradually
shift to optimized executions. In any case, over time Big-
DAWG assembles a database of subqueries and their du-
ration on various engines. This monitoring framework is
used to guide query optimization and data placement.

To accommodate complex operations, the experiments
noted above will have a timeout. Hence, if an engine has
not completed its trial within N multiples of the fastest
running option it is halted. If objects are so large that data
movement is problematic, we propose running a subquery
on a statistical subset of the data to contain costs whenever
possible. A subquery is then considered complex if there is
significant variance in its runtime on different back ends.

3.3 Multi-Island Planning
We now consider queries that span multiple polystores.

Here, the user is explicitly stating his semantics using CAST
and SCOPE commands. Changing the order of these direc-
tives arbitrarily will generally result in ambiguous seman-
tics in the query’s execution. We will not support such
indeterminateness. Instead, our main optimization oppor-
tunity is to identify circumstances where multiple islands
have overlapping semantics. Consider an extension to the
example query in Section 2.2:

RELATIONAL(SELECT count(*)
FROM R, CAST(A, relation)
WHERE R.v = A.v);

Here, the user issues the appropriate SCOPE-CAST query.
This query, however, produces the same result, regardless
of the join’s island semantics. In other words, the join
is sensitive to scope, but the subsequent aggregate masks
these semantics. Hence, the query can be converted to the
single-island query that is potentially amenable to tradi-
tional optimization. We will look for more instances where
an island query may be simplified in this fashion.

We can also examine optimization opportunities between
islands by analyzing their shims. For example, if two is-
lands both have shims to the same back end, the optimizer
may merge the output of their shims, deferring more of the
query planning to a single storage engine’s optimizer.

We will also investigate how to identify areas of inter-
section between multiple shims associated with the same
storage engine. By identifying areas of the various island
languages that produce the same query in the storage en-



gine’s native dialect, we can rewrite the query in a single
“intersection” island and further leverage the storage en-
gine’s query optimizer. More broadly, we will examine
techniques for finding equivalences between the grammars
of multiple islands. This will involve probing the space of
queries in a manner similar as described for monitoring.

4. DATA PLACEMENT
Our polystore is an environment in which objects reside

in some local execution engine. In a location transparent
system it is possible to move objects without having to
change any application logic. There are two reasons to
move an object: load-balancing and optimization. In the
former scenario, operations may take longer than necessary
because one or more engines are overloaded. To shed load,
objects must be relocated. In addition, for complex ana-
lytics the system would be more responsive if one or more
objects were moved elsewhere because a faster implemen-
tation of the object’s common workload is available. Since
ultimately DBAs are in control of their data, our interface
will have a mechanism for specifying that some objects
are “sticky” and cannot be moved so that local control is
supported. Non-sticky objects are available for relocation.
For simplicity, we will initially consider a single client and
later explore placement and load-balancing in the presence
of concurrent queries. It is worth noting that if all access to
underlying engines does not go through BigDAWG, then
data placement decisions are likely to suboptimal.

We estimate the relative duration of each operation on
each storage engine. From this, BigDAWG will predict the
effect of placing object Oi on engine Ej . Its what-if analy-
sis will estimate the effect of this move on both the perfor-
mance of the source engine and any proposed destination.
Hence, BigDAWG learns a matrix estimating the resource
utilization of each object Oi on each storage engine Ej .

We initially assume that the various engines are not over-
loaded, and that early numbers represent an unloaded state.
The polystore may identify overload situations by compar-
ing the runtimes of queries to similar ones that were run
in the past. For every engine Ej , we compute an average
percentage deterioration of response time over all possible
objects. When the percentage exceeds a threshold for a
site Ej , we choose an object stored on that back end for
relocation.

Our initial algorithm greedily selects the object Oi with
maximum benefit to Ej and relocates it to the engine Ek

with maximum headroom. Clearly this will not necessarily
be the optimal choice, and we will explore other options.

So far, we have been assuming we are choosing the lo-
cation of objects within a single island of information. As
noted in the Section 2, there will typically be multiple is-
lands with overlapping storage engines. This island ab-
straction imposes additional limitations on the operation
of our polystore. Specifically, any object that is accessi-
ble in multiple islands may be moved to a different storage
manager, but only to one with shims to all of its islands.

Otherwise, some application programs may cease to work.
Each island maintains a set of metadata catalogs that

contain the objects the island knows about along with the
storage manager that houses that object. BigDAWG must
be able to read all of these catalogs to implement its CAST-
SCOPE mechanisms. As such, it is capable of identifying
the collection of storage managers that may host a given
object. This information is used to restrict data placement.

5. RELATED WORK
The federation of relational engines, or distributed DBMSs,

was studied in depth during the 1980s and early 1990s.
Here, Garlic [7], and TSIMMIS [9], and Mariposa [20]
were early prototypes. The research community also ex-
plored distributed query processing, distributed transactions,
and replica management. There was also research on fed-
erating databases with different schemas, and it focused on
issues such as coalescing disparate schemas [4] and resolv-
ing semantics between applications [14]. More recently,
Dataspaces were proposed as a mechanism for integrat-
ing data sources [12], however this approach has not seen
large-scale adoption.

BigDAWG’s approach is similar to the use of media-
tors in early federated database systems [7, 9, 23]. The
use of shims to integrate individual databases is modeled
on wrappers from these systems, and islands are similar to
mediators in that they provide unified functionality over a
set of disparate databases. However, mediators were often
used to provide domain-specific functionality and did not
span multiple data models. These systems focused on in-
tegrating independent sources, and did not consider the ex-
plicit controls, such as placement or replication, found in
BigDAWG. We also will extend work on executing queries
across several disjoint execution sites [5, 10]. This includes
the ability to decompose queries into subqueries for partial
execution [17], and adaptive query processing to handle
uncertainty in database performance [2].

Historically, there has been limited interest in data fed-
erations inside the enterprise. Most enterprises have inde-
pendent business units that are each in charge of their own
data. To integrate disparate data sources, enterprises of-
ten use extract, transform and load (ETL) systems to con-
struct a common schema, clean up any errors, transform at-
tributes to common units, and remove duplicates. This data
curation is an expensive process for constructing a unified
database. In the past it was common practice to simply
load curated information into a relational data warehouse
for querying.

These data warehouses are incapable of dealing with
real-time data feeds, as they are optimized for bulk load-
ing. In addition, most are not particularly adept at text,
semi-structured data, or operational updates. As such, we
expect revitalized interest in federated databases as enter-
prises cope with these shortcomings.

Recently, many vendors have advocated “data lakes” wherein
an organization dumps its data sources into a repository–often



based on the Hadoop ecosystem. However, Hadoop’s lack
of transactions, batch-oriented processing, and limited func-
tionality means it is not often an ideal solution. As such,
it is a plausible historical archive, but it would still re-
quire an additional polystore for the interactive and real-
time components of the workload. Several recent research
prototypes have explored multi-database systems that cou-
ple Hadoop with relational databases [11, 16].

6. SUMMARY
We believe that polystore systems will be a critical com-

ponent as data management needs diversify. Here we pre-
sented our vision for a next-generation data federation, Big-
DAWG, that offers full functionality and location trans-
parency through the use of explicit scopes and casts. With
these primitives, we outlined tractable research agendas in
query optimization and data placement.

7. REFERENCES
[1] Accumulo. https://accumulo.apache.org/.
[2] L. Amsaleg, A. Tomasic, M. J. Franklin, and

T. Urhan. Scrambling query plans to cope with
unexpected delays. In Fourth International
Conference on Parallel and Distributed Information
Systems, 1996, pages 208–219. IEEE, 1996.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In PODS, pages 1–16. ACM, 2002.

[4] C. Batini, M. Lenzerini, and S. B. Navathe. A
comparative analysis of methodologies for database
schema integration. ACM Computing Surveys,
18(4):323–364, 1986.

[5] L. Bouganim, F. Fabret, C. Mohan, and P. Valduriez.
A dynamic query processing architecture for data
integration systems. IEEE Data Eng. Bull.,
23(2):42–48, 2000.

[6] P. G. Brown. Overview of scidb: large scale array
storage, processing and analysis. In SIGMOD, pages
963–968. ACM, 2010.

[7] M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya,
W. F. Cody, R. Fagin, M. Flickner, A. W. Luniewski,
W. Niblack, and D. Petkovic. Towards
heterogeneous multimedia information systems: The
Garlic approach. In Data Engineering: Distributed
Object Management, pages 124–131. IEEE, 1995.

[8] U. Cetintemel, J. Du, T. Kraska, S. Madden,
D. Maier, J. Meehan, A. Pavlo, M. Stonebraker,
E. Sutherland, and N. Tatbul. S-Store: A Streaming
NewSQL System for Big Velocity Applications.
PVLDB, 7(13), 2014.

[9] S. Chawathe, H. G. Molina, J. Hammer, K. Ireland,
Y. Papakonstantinou, J. Ullman, and J. Widom. The
TSIMMIS Project: Integration of Heterogeneous
Information Sources. In IPSJ, 1994.

[10] A. Deshpande and J. M. Hellerstein. Decoupled
query optimization for federated database systems.

In ICDE, pages 716–727. IEEE, 2002.
[11] D. J. DeWitt, A. Halverson, R. Nehme, S. Shankar,

J. Aguilar-Saborit, A. Avanes, M. Flasza, and
J. Gramling. Split query processing in polybase.
SIGMOD, pages 1255–1266, 2013.

[12] M. Franklin, A. Halevy, and D. Maier. From
databases to dataspaces: a new abstraction for
information management. Sigmod Record,
34(4):27–33, 2005.

[13] D. Halperin, V. Teixeira de Almeida, L. L. Choo,
S. Chu, P. Koutris, D. Moritz, J. Ortiz,
V. Ruamviboonsuk, J. Wang, A. Whitaker, et al.
Demonstration of the Myria big data management
service. In SIGMOD. ACM, 2014.

[14] R. Hull. Managing semantic heterogeneity in
databases: a theoretical prospective. In PODS, pages
51–61. ACM, 1997.

[15] J. Kepner, W. Arcand, W. Bergeron, N. Bliss,
R. Bond, C. Byun, G. Condon, K. Gregson,
M. Hubbell, and J. Kurz. Dynamic distributed
dimensional data model (d4m) database and
computation system. In ICASSP. IEEE, 2012.

[16] J. LeFevre, J. Sankaranarayanan, H. Hacigümüs,
J. Tatemura, N. Polyzotis, and M. J. Carey. MISO:
souping up big data query processing with a
multistore system. In SIGMOD, pages 1591–1602,
2014.

[17] L. M. Mackinnon, D. H. Marwick, and M. H.
Williams. A model for query decomposition and
answer construction in heterogeneous distributed
database systems. Journal of Intelligent Information
Systems, 11(1):69–87, 1998.

[18] M. Saeed, M. Villarroel, A. T. Reisner, G. Clifford,
L.-W. Lehman, G. Moody, T. Heldt, T. H. Kyaw,
B. Moody, and R. G. Mark. Multiparameter
Intelligent Monitoring in Intensive Care II
(MIMIC-II): A public-access intensive care unit
database. Critical Care Medicine, 39:952–960, 2011.

[19] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in
a relational database management system. In
SIGMOD, pages 23–34. ACM, 1979.

[20] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer,
A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa: a
wide-area distributed database system. In The VLDB
Journal, volume 5, pages 48–63. Springer, 1996.

[21] M. Stonebraker and U. Cetintemel. “One Size Fits
All”: An Idea Whose time has come and gone. In
ICDE, pages 2–11, 2005.

[22] R. Taft, M. Vartak, N. R. Satish, N. Sundaram,
S. Madden, and M. Stonebraker. Genbase: A
complex analytics genomics benchmark. In
SIGMOD, pages 177–188. ACM, 2014.

[23] G. Wiederhold. Mediators in the architecture of
future information systems. Computer, pages 38–49,
1992.


