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The effect of velocity uncertainty on migrated reflectors: Improvements
from relative-depth imaging

Oleg V. Poliannikov1 and Alison E. Malcolm2

ABSTRACT

We have studied the problem of uncertainty quantification
for migrated images. A traditional migrated image contains
deterministic reconstructions of subsurface structures. How-
ever, input parameters used in migration, such as reflection
data and a velocity model, are inherently uncertain. This un-
certainty is carried through to the migrated images. We
have used Bayesian analysis to quantify the uncertainty
of the migrated structures by constructing a joint statistical
distribution of the location of these structures. From this dis-
tribution, we could deduce the uncertainty in any quantity
derived from these structures. We have developed the pro-
posed framework using a simple model with velocity uncer-
tainty in the overburden, and we estimated the absolute
positions of the horizons and the relative depth of one hori-
zon with respect to another. By quantifying the difference in
the corresponding uncertainties, we found that, in this case,
the relative depths of the structures could be estimated much
better than their absolute depths. This analysis justifies re-
datuming below an uncertain overburden for the purposes of
the uncertainty reduction.

INTRODUCTION

Seismic depth migration is a general process by which seismic
events in recorded data are moved from time to depth coordinates
(Yilmaz, 2001). This process traditionally produces a single deter-
ministic image with no uncertainty description. Any subsequent in-
terpretation is based on this image as if it were an accurate
representation of the subsurface. To go from data recorded in time
to an image that represents the subsurface in depth, any implemen-
tation of depth migration requires a velocity model. This velocity

model is obtained from prior surveys and analysis, and it is assumed
to be given for the purpose of migration. Obtaining an accurate
velocity model in practice is a nontrivial problem, and the final
velocity model is an approximation of the true velocity model that
can be associated with some uncertainty. This uncertainty propa-
gates to the migrated image as a whole and to the locations of indi-
vidual horizons in particular (Grubb et al., 2001; Bube et al., 2004a,
2004b; Kane et al., 2004; Pon and Lines, 2005; Glogovsky et al.,
2009; Osypov et al., 2011).
A natural question is, what information contained in the image

can we believe? Does the uncertainty in the input parameters affect
all horizons found in the migrated image in the same way? It is clear
that the estimated depth of any given structure becomes uncertain if
the migration velocity is uncertain. It has been shown (e.g., Fomel
and Landa, 2014) that an incorrect velocity may also lead to struc-
tural deformations in the image, but the continuity of imaged hori-
zons is nonetheless more stable than their positions if the velocity
perturbations are relatively smooth. This shows that some of the
spatial information contained in the image is more reliable than
other information. Proper uncertainty quantification is necessary
to understand what information in the image is reliable and what
is not.
A naïve way to quantify uncertainty in a seismic image is to de-

scribe a joint probability distribution of all its grid points. For a 3D
survey, this would result in a distribution with many millions or
even billions of variables. Conceptually, this distribution would
contain all existing statistical information about the image. How-
ever, this approach is not only impractical due to the exorbitant re-
quirements of computational resources and memory but it is also
most probably useless. Assuming such an object could be con-
structed, it is not obvious how we can use it in a meaningful
way. Analysis of seismic data primarily aims to extract useful in-
formation from the volume of the recorded data in a compact and
manageable form; it is rarely useful to further inflate this already
very large data volume.
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In this paper, we regard continuous events in the recorded data as
basic objects that can be considered in the data or, after migration, in
the model space. For the purposes of uncertainty quantification, we
approximate all events at discrete points with small line segments in
2D or small planar patches in 3D. The original horizon could then
be reconstructed from these linear patches by interpolation. We then
use map migration/demigration (Douma and de Hoop, 2006) in a
given velocity to transform these line segments (or patches) between
the data space and the model space. We use it on one or several
horizons simultaneously to study how they jointly migrate and
demigrate in different velocity models. Map migration/demigration
provides a fast, tractable, physical model that can be used as a basis
for statistical uncertainty quantification. As with any approximate
method, map migration may not be suitable for constructing images
in some cases, even in the noise-free scenario with a known velocity
model. Although we would not be able to recover quantitative un-
certainties in these cases, following the map-migration procedure
outlined here would give at least some idea of the uncertainties,
and particularly of how the uncertainties in different horizons are
related to one another.
The Bayesian uncertainty analysis that we advocate in this paper

recovers the absolute and relative positions of seismic horizons
along with their associated uncertainties. It follows a similar analy-
sis of location uncertainty for seismic events (Poliannikov et al.,
2013, 2014). Given surface seismic reflection data, we construct
a joint posterior estimator of the locations of chosen horizons that
is a multidimensional probability distribution of the locations of dis-
crete points on the horizons. This probability distribution describes
the likelihood of each horizon location and the correlation between
possible locations of different horizons. It is derived from a prior
probability of the horizon locations, which can be uninformed,
and a likelihood function that describes the probability of observing
a particular data set given fixed horizon locations.
Our analysis shows that in some cases, the location of one struc-

ture relative to another can be estimated with much smaller uncer-
tainty than the absolute depth of individual structures, and this
difference in the uncertainties of absolute locations and relative lo-
cations can be exactly quantified. This analysis is applicable in

many situations from redatuming below a complicated near surface
to updating a model during monitoring while drilling. The uncer-
tainty in the image constructed using surface data includes velocity
uncertainty throughout the volume. However, having drilled to a
certain depth, we know the model up to that depth and we may
be interested only in the part of the model that lies below. Absolute
depths of deeper horizons can then be inferred from the current ab-
solute depth of the drill bit and the relative depths of these horizons.
If the uncertainty in the relative imaging is smaller than the uncer-
tainty in the absolute imaging, then a better image of the subsurface
can be constructed than the one initially obtained from the sur-
face data.

THEORY

Problem setup and velocity uncertainty

We first consider a simple acoustic model with two embedded
reflectors to illustrate our framework; we extend this model to more
complicated situations below. Sources and receivers are located on
the surface as shown in Figure 1. The velocity model is uncertain.
We model the velocity uncertainty by assuming that the velocity V
belongs to a family of admissible velocity models V. The probabil-
ity distribution pðVÞ determines the likelihood of any velocity
model from the family V.
Proper identification of a suitable velocity distribution pðVÞ is

very important because the results of the uncertainty analysis will
follow from the assumptions we make about possible sources of
uncertainty. In some cases, pðVÞ may be defined analytically; how-
ever, it does not have to be. Most crucial in applications is the ability
to sample from the probability distribution pðVÞ, i.e., to generate
multiple realizations of plausible velocity models so that their effect
on migration can be explicitly considered. In practice, these plau-
sible velocity models may come from different sources, some of
which we discuss below.
Extrapolated blocked sonic logs may be used as approximations

for migration velocity models. The amplitude of velocity fluctua-
tions in the log around the chosen value for any given depth
may be viewed as a measure of velocity uncertainty. When the
velocity model is estimated using tomographic methods, an a priori
defined cost functional may be minimized using numerical optimi-
zation. When the convergence condition is satisfied, it is typically
assumed that the correct velocity model has been found. However, it
is conceptually possible to let the optimization algorithm continue
to run and explore other velocity models that are all consistent with
the data used in the inversion. Thus, we would naturally obtain sam-
ples of plausible velocity models. If the velocity is obtained using
some type of moveout analysis, then the size of the spot defined by
high semblance values (or something similar) could also be a good
measure of velocity uncertainty.
Figure 2 shows the result of the velocity analysis for the numeri-

cal model shown in Figure 1 using shots and receivers with offsets
up to �1.5 km and normalized velocity stacking. In this case, we
could infer that velocity uncertainty could be as high as 5%–10%,
up to 200 m∕s. If we used a different array or if the reflectors had a
different geometry, the velocity uncertainty would be different. For
the purpose of our discussion, the exact methodology used to quan-
tify the velocity uncertainty is not important. We assume that the
velocity analysis has been performed and thus the family of admis-
sible velocities V and the probability distribution pðVÞ have been

Easting (km)

Velocity model with uncertain near–surface

D
ep

th
 (

km
)

0 Δ

Figure 1. A numerical acoustic model with a background velocity
of 2 km∕s, two reflectors, and sources and receivers at the surface.
The part of the medium above the first reflector (z ¼ 1 km) is un-
certain in later examples. The velocity below the reflector z ≥ 1 is
assumed to be known.

S22 Poliannikov and Malcolm

D
ow

nl
oa

de
d 

01
/1

2/
16

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



identified, and we proceed to describe the experiment and the prob-
lem of quantifying the uncertainty of reflector positions.
We fire a shot at each source location (Figure 1) and record a

corresponding common-shot gather. These common-shot gathers
are resorted, for example, to common-offset gathers, and individual
reflections are picked in the sorted gathers. The problem is to de-
scribe the location and shape of the reflectors along with the asso-
ciated uncertainties from the reflected events in the gathers. The
current discussion relies on the picking of event traveltimes in
common-offset gathers and migrates those picked times directly.
This is, of course, not ideal for a real data set. In that case, we would
expand our data in a suitable basis, e.g., curvelets (Douma and de
Hoop, 2007) or similar, and we migrate the time indices of these
bases’ functions. This is a subject of current work.

Map migration

For a 2D survey in a 3D space, each event in a common-offset
gather can be approximated with a collection of 5-tuple as
follows:

ðxd; yd; td; px
d; p

y
dÞ; (1)

where xd; yd are common-midpoint coordinates, td is the traveltime,
and

px
d ¼

1

2

∂td
∂xd

; py
d ¼

1

2

∂td
∂yd

(2)

are the horizontal slownesses of the unmigrated reflection.
For simplicity, we will work in 2D, where yd ≡ 0 and py

d ≡ 0, and
the event in the data domain has the form ðxd; td; pd ≡ px

dÞ. All re-
sults, however, generalize directly to 3D (Douma and de Hoop,
2006). For a homogeneous isotropic medium with velocity V,
the traveltime is governed by the double-square-root equation as
follows:

td ¼
1

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxd − xm − hÞ2 þ

�
Vtm
2

�
2

s

þ 1

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxd − xm þ hÞ2 þ

�
Vtm
2

�
2

s
: (3)

Here xm is the coordinate of the reflection point, h is the half-offset,
zm is the depth, tm ¼ 2zm∕V is the two-way migrated traveltime,
and we define

pm ¼ 1

2

∂tm
∂xm

¼ 1

V
∂zm
∂xm

: (4)

Douma and de Hoop (2006) derive an analytic formula for the
coordinates of the migrated reflector embedded in the known veloc-
ity model ðxm; zm; pmÞ from the specular reflection coordinates
ðxd; td; pdÞ. They also present a 3D version of this formula that
could be used to extend our results to 3D. This relationship, which
we will denote by M, has the following form:

xm ¼ xd −
�
Vtd
2

�
2 Λd

h
;

zm ¼ V

�
t2d
4
−
h2

V2
þ
�
VtdΛd

4h

�
2
�
4h2

V2
− t2d

��
2

;

pm ¼ 1

2
pdtdjΛd − 1jjΛd þ 1j

×
�
t2d
4
−
h2

V2
þ
�
VtdΛd

4h

�
2
�
4h2

V2
− t2d

��−1
2

; (5)

where

Λd ¼
1

2
ffiffiffi
2

p
pdh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θd

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

64ðpdhÞ4
Θ2

d

s �vuut (6)

and

Θd ¼ t2d þ
�
2h
V

�
4 1

t2d
− 2

�
2h
V

�
2

ð1 − ðVpdÞ2Þ: (7)

The demigration equations describe the transformation D back
from ðxm; zm; pmÞ to ðxd; td; pdÞ (Douma and de Hoop, 2006):

xd ¼ xm þ Vpmzm þ hΛm;

td ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h2

V2
þ 4pmhzm

VΛm

s
;

pd ¼
pm2zm

VjΛm − 1jjΛm þ 1j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h2

V2 þ 4pmhzm
VΛm

q ; (8)

where

Velocity (km/s)

Normalized velocity stack

T
im

e 
(s

)

Figure 2. Result of velocity analysis performed for the model
shown in Figure 1 using shots and receivers with offsets up to
�1.5 km. The source central frequency is 10 Hz.
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Λm ¼ 4pmh

Θm

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16ðpmhÞ2

Θ2
m

q � (9)

with

Θm ¼ 2zm
V

ð1þ V2p2
mÞ: (10)

Migrating horizons from the data domain into the model domain
and demigrating them in the opposite direction using map migra-
tion/demigration are therefore very straightforward and extremely
fast. The regularized versions of these formulas obtained by Taylor
approximations could be used for small offsets or short times to
ensure numerical stability. This allows us to do inversion with Baye-
sian uncertainty quantification in a computationally efficient way.

Bayesian uncertainty analysis

Forward model

If the velocity V is known, and there is no noise in the data, then
any infinitesimal reflector can be represented in the model domain
as a pair lm ≡ ðxm; zm; pmÞ, where ðxm; zmÞ is the location the re-
flector and pm is the half-slope, or in the data domain as a triplet
ld ≡ ðxd; td; pdÞ. These two representations are related through the
operators of map migration M and map demigration D:

ðxd; td; pdÞ ≡ ld→
M
lm ≡ ðxm; zm; pmÞ; (11)

and

ðxm; zm; pmÞ ≡ lm→
D
ld ≡ ðxd; td; pdÞ: (12)

In practice, the velocity model is never known exactly and the
recorded data are noisy. Velocity randomness and the noise in
the recordings introduce a random component in the reflection-time
data, and the problem becomes that of recovering the model of the
subsurface from these observations. We solve this problem by
Bayesian inversion. The Bayesian framework is based on the notion
of the likelihood function. Consider a model that consists of a set of
reflectors lm ≡ ðxm; zm; pmÞ, an assumed model V, and the half-off-
set h. Here and throughout the remainder of the paper, we always
understand that we deal with a collection of triplets. The observed
data are then written as

t̂d ¼ td þ nt; (13)

where

ðxd; td; pdÞ ¼ Dðxm; zm; pmjV; hÞ; (14)

and we explicitly indicate the velocity V and half-offset h used in
the demigration operator. We assume that there is no noise in the xd
component, i.e., x̂d ¼ xd, because the traveltimes are registered at
fixed receiver locations. The noise nt is assumed to be a realization
of a zero-mean Gaussian process with some correlation length l in a
horizontal position. If reflection times were picked independently at
each receiver, the correlation length would be zero: l ¼ 0. However,

because in practice events are picked in the entire gather, the pick in
any given trace depends on the signal content at neighboring traces,
and the correlation length may be greater than zero: l > 0. We es-
timate the noisy slownesses p̂d from t̂d by a second-order finite-
difference approximation.

Inversion in the known velocity with fixed offset

We denote the likelihood function that describes possible ob-
served data and their probabilities as pðl̂d ∣ lm; h; VÞ and the prior
as pðlmÞ. Applying Bayes’ formula yields the following inversion:

pðlm ∣ l̂d; h; VÞ ∝ pðl̂d ∣ lm; h; VÞpðlmÞ: (15)

Equation 15 provides an exact expression for the posterior dis-
tribution of the model parameters. However, if each reflector is ap-
proximated relatively finely, then the total number of model
parameters is very large. To simplify the computation and the rep-
resentation of the posterior distribution of the horizon locations, we
approximate our collection of reflectors with a multivariate Gaus-
sian distribution:

ðxm; zmÞ ∼N ððx0m; z0mÞ;Σ0Þ; (16)

where ðxm; zmÞ denotes all of the reflectors approximating the
horizon.
Following standard Gaussian analysis, the mean of this multinor-

mal distribution is found by maximizing the previously defined
likelihood function:

ðx0m; z0mÞ ¼ arg max
xm;zm;pm¼1

2
∂zm
∂xm

pðx̂d; t̂d; p̂d ∣ xm; zm;pm;h;VÞpðxm; zm;pmÞ

(17)

subject to the constraints

x̂d ¼ xd; p̂d ¼
1

2

∂t̂d
∂xd

: (18)

Effectively, we search for reflectors in the model space that best
explain the observed data. The uncertainty around these maxi-
mum-likelihood positions is assumed Gaussian with the covariance
matrix given by the inverse Hessian of the logarithm of the function
inside the arg max in equation 17 at its maximum point.

Inversion in uncertain velocity from multioffset data

Equations 15 and 16 provide expressions for migrated reflector
coordinates in a known velocity V model for a fixed half-offset h.
Forward-model predicted data in multiple common-offset gathers
l̂d ≡ ðx̂d; t̂d; p̂dÞ can be obtained by combining data predicted
for every available offset as described above. In general, a model
ðxm; zm; pmÞ is now evaluated as likely if it fits the observed data
across different offsets after a demigration with a plausible velocity
model. Formally, when the velocity is uncertain, we integrate the
product of the likelihood function and the prior to obtain the veloc-
ity independent posterior.
More specifically, we denote the reflectors in the model domain

lm ≡ ðxm; zm; pmÞ, the combined observed reflection data sorted in
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all common-offset gathers l̂d ≡ ðx̂d; t̂d; p̂dÞ, and the velocity V. We
have from Bayes’ formula that

pðlm; V ∣ l̂dÞ ¼
pðl̂d ∣ lm; VÞpðlm; VÞ

pðl̂dÞ
; (19)

where

pðl̂dÞ ¼
ZZ

pðl̂d ∣ lm; VÞpðlm; VÞdlmdV: (20)

A velocity-independent description of the uncertainty in the re-
flector positions lm can be obtained from the joint ðlm; VÞ posterior
by integrating over the velocity variable:

pðlm ∣ l̂dÞ ¼
Z

pðlm; V ∣ l̂dÞd

¼
Z

pðl̂d ∣ lm; VÞpðlm; VÞ
pðl̂dÞ

dV

¼ 1

pðl̂dÞ

Z
pðl̂d ∣ lm; VÞpðlmÞpðVÞdV

¼ 1

pðl̂dÞ
EV ½pðl̂d ∣ lm; VÞpðlmÞ�; (21)

where EV denotes the expected value over admissible velocity mod-
els. Thus, we can write the following equation:

pðlm ∣ l̂dÞ ∝ EV ½pðl̂d ∣ lm; VÞpðlmÞ�: (22)

The formal expectation, EV in equation 22 can be approximated
with a mean over a sample from the velocity distribution. If the fam-
ily of admissible velocities V is large and multidimensional, then
producing a large number of sample velocities from this distribution
to assure the convergence of the average to the theoretical mean
may be a nontrivial problem. Several methods to speed up Bayesian
inversion have been proposed in the literature (Tierney, 1994). Dis-
cussing them in more detail is beyond the scope of this paper. In the
examples in the next section, we will look at a simple illustration for
the proposed methodology, in which the numerical computation of
the expectation over different velocity models V is easy.

NUMERICAL EXAMPLES

Two reflectors in a layered medium

We illustrate the proposed methodology with simple numerical
examples. The model is as described above with sources and receiv-
ers at the surface and two reflectors in the subsurface (Figure 1).
The velocity in the overburden is uncertain, and the recorded data
are assumed to be noisy. The noise in the signal would lead to erro-
neous picking of the specular reflection events. We model picked
traveltimes by ray tracing the model and adding Gaussian correlated
noise to resulting arrival times. Most picking algorithms enforce
some kind of continuity of a horizon that will lead to correlation
between picking errors at nearby traces. The correlation length
of the picking error process is taken to be l ¼ 1 km in the horizontal
position, and the standard deviation of the signal noise in each trace

Midpoint (km) Midpoint (km)

D
ep

th
 (

km
)

R
el

at
iv

e 
de

pt
h 

(k
m

)

a) b)

Δ [–2% ,2%]

Figure 3. (a) Variations in the position of the migrated reflectors when the overburden velocity is uncertain: V ¼ V0 þ ΔV, where
ΔV ∼ U½−2%; 2%�. The lines denote the true reflector positions, and the error bars show the three-standard-deviation region plotted with
vertical exaggeration to show the reflector shape. (b) The relative depth of the second reflector with respect to the depth of the first one.
The inset shows one of the error bars magnified. The effect of the velocity uncertainty is much smaller for the relative depth than for each
depth individually.
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is 1 ms. We now consider two cases of velocity uncertainty. In both
cases, the velocity above the reflectors is uncertain, and the velocity
below the first reflector is presumed known. We model velocity un-
certainty by assuming that the velocity in the overburden is uni-
formly distributed between two values, which are shown for
each numerical experiment. This is a simplistic model for a geology
frequently encountered in the Middle East, in which karsts and
dunes sit on top of a layered cake of slowly varying sediments.
For each numerical setup, we compute the posterior given by equa-
tion 22 by approximating the expectation with an average over
velocity samples. The number of velocity samples is such that
the convergence of the average to the theoretical expectation is
detected.

Precision of relative imaging

In the first example shown in Figure 3, the velocity estimate in the
“overburden” has an uncertainty of�2%. We compute the posterior
distribution for both reflectors with equation 22. In Figure 3a, we
plot the true positions of each reflector. We also compute the offset-
dependent means μ and standard deviations σ of the depth of each
reflector, and we indicate the boundaries of the μ� 3σ intervals
with error bars. In Figure 3b, we show the relative depth of the sec-
ond reflector with respect to the depth of the first reflector. The ver-
tical axes of the two panels have the same scale, so that the error
bars in the absolute and relative depth domains can be directly
compared.
Estimators for the absolute and relative depths do not exhibit any

noticeable bias because of the geometry of the horizons and the un-
biased uncertainty in the velocity. However, a comparison of the
panels reveals a marked reduction in uncertainty in relative depth
compared with the absolute depth. The relative depth reconstruction
is more stable in this example because much of the velocity uncer-

tainty, in the overburden, has little effect on the relative depth. The
relative depth primarily depends on the difference of the reflection
times from the two reflectors. This traveltime difference is not sig-
nificantly affected by the velocity variations in the overburden if the
scale of the velocity perturbations in the overburden is sufficiently
large because for each source-receiver pair, reflected waves travel
through nearby parts of the layered overburden. For small velocity
variations, different reflection times may not reduce uncertainty to
the same extent or even at all. By appropriately choosing a family of
admissible velocity models V, we can calculate precisely what un-
certainty reduction, if any, is to be expected from using relative
imaging.

Accuracy of relative imaging

In the second example shown in Figure 4, we assume that the
prior velocity is biased. More specifically, we let the velocity in
the overburden above the first reflector be overestimated by a ran-
dom error that is distributed uniformly between 0% and 5%. The
velocity between the reflectors is still assumed to be known. As
before, Figure 4a contains the results of the uncertainty analysis
of the absolute depths of the migrated reflectors.
The absolute depths of both reflectors are underestimated due to

the fast velocities used for migration. At the same time, the relative
depth of the second reflector with respect to the depth of the first
reflector is once again recovered much better. No bias in the esti-
mate of the relative depth is present due to the cancellation of the
effect of the velocity error, and this estimate is much more precise.
Before moving to a more complicated model, we show one more

test in Figure 5, in which we underestimate the velocity by 2%–5%.
This example is particularly interesting because all assumed veloc-
ity realizations are wrong, whereas previously, the correct velocity
model (ΔV ¼ 0%) was part of the assumed family of admissible
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Figure 4. (a and b) Same as Figure 3 but withΔV ∼ U½0%; 5%�. Note that the error bars have a similar size, but they are now biased because the
estimated velocities range from correct to too fast; however, we do not include any that are too slow.
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velocities V. When the correct velocity is not included, the forward
model may be, strictly speaking, incompatible with the data. Be-
cause the analysis presented above uses the forward model, its re-
sults may be misleading if our assumptions about the velocity
uncertainty, signal noise, etc., are not satisfied.

Two reflectors in a model with a lens

In the second example shown in Figure 6, a homogeneous veloc-
ity model contains a fast inclusion. The velocity increase inside the
inclusion relative to the background ΔV lens is assumed to be uncer-
tain between 0% and 20% (0–400 m/s).
When the velocity model is laterally inhomogeneous, the migra-

tion velocity depends on the midpoint and the offset. We use
straight-ray approximations with a variable velocity along the path
to calculate the demigration velocity for each model point lm.
As in the previous examples, we show the results of uncertainty

analysis of the absolute depths of the migrated reflectors and the
relative depth of the deeper reflector with respect to the shallower
one. We see from Figure 7 that the uncertainty in the depth of the
reconstructed reflectors is laterally varying. The uncertainty is much
larger in the middle of the model than at the edges due to the effect
of the random fast lens.
Our results show that when the velocity model used for migration

is completely wrong, then, not surprisingly, the depths of the im-
aged horizons will be wrong, too. In addition, we are able to make
more detailed observations such as that the true horizon positions
are not inside the error bars calculated using incorrect assumptions,
as expected, because the true velocity is not contained in our family
of admissible velocity models. However, if the velocity uncertainty
is constrained to the overburden, then the relative depths may be
recovered more accurately. This example shows that migrated im-
ages may contain information that is unreliable (in this case, abso-

lute depths), and other information that is more reliable (in this case,
relative depths). By performing careful analysis, we explicitly iden-
tify which quantities derived from the image we can trust and which
we cannot.
Our conclusions about the quality of reconstruction of absolute

versus relative depths are specific to the chosen model and the as-
sumptions made about the velocity uncertainty. Different assump-
tions would lead to completely different analysis results and hence
different interpretations. Here, we advocate a general framework for
calculating uncertainty in various quantities of interest derived from
migrated images. Proper analysis will not always lead to a reduced
uncertainty, but it will lead to the correct estimate of the uncertainty.

DISCUSSION

The results presented here show that uncertainty estimates for
seismic images can be generated in a theoretically sound way.
The numerical examples presented here are simple. This is by de-
sign, to illustrate a methodology that allows for the quantification of
uncertainty in seismic imaging. The underlying theory extends di-
rectly to more complicated models. The key to generalizing this
work lies in the replacing of manually picked events with some sort
of automatic data decomposition, as mentioned above; along with
that extension it will be necessary to improve the computational
efficiency of the method so that a sufficient number of sample data
sets can be generated. Such research is already underway in the
context of full-waveform inversion (Virieux and Operto, 2009;
Käufl et al., 2013), and much of that work could be applied to
the problems studied here. Calculating posteriors for more realistic
velocity perturbation models will be computationally difficult.
Smart sampling strategies when computing statistical distributions
are essential.
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Figure 5. (a and b) Same as Figure 3 but with ΔV ∼ U½−5%;−2%�. Note that now the true locations are no longer included in the error bars
because the true velocity is not included in the admissible set of velocity models.

Migration in uncertain velocity S27

D
ow

nl
oa

de
d 

01
/1

2/
16

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



The observation that the relative positions of reflectors can have
smaller uncertainties than their absolute positions is of key impor-
tance. This is likely to hold with whatever method is used to form
the image and is physically reasonable because much of the path the
data follow is shared. We have theoretically explained why this is
the case, and we have shown that the reduction in uncertainty can be
significant. The applications of this include the estimation of the
depth of subsequent reflectors once a single reflection has been

identified during drilling, improved confidence in reservoir thick-
ness estimates, and in the alleviation of statics problems.

CONCLUSIONS

Seismic migration inherently relies on an available velocity
model. However, a good velocity model may not be available,
and even the best velocity analysis will yield a set of plausible
velocity models rather than a single model. The resulting migrated
image should incorporate the uncertainty of the parameters used to
build the image. We have proposed a Bayesian framework to quan-
tify uncertainty in the migrated images. We considered the effect of
velocity uncertainty and the effect of the picking error. Prior infor-
mation about the velocity model and assumptions about picking al-
lowed us to construct a posterior estimate of the locations of the
migrated events. This estimate not only produced a single location
for each event, but it also captured the uncertainty in those locations.
In some geometries, such as surface seismic and structures with rel-
atively small deviations from horizontal, raypaths from sources and
receivers to different structures largely overlap. This allows for the
possibility of shared-path cancellation for velocity models with
large-scale perturbations in which most of the traveltime errors
are induced by a large uncertain overburden. The effect of the veloc-
ity uncertainty along the shared path is reduced, which results in
better imaging of one structure relative to another.

ACKNOWLEDGMENTS

We would like to acknowledge Total for their support, and we
thank P. Williamson of Total for thorough discussions of this

Midpoint (km)

D
ep

th
 (

km
)

Midpoint (km)

R
el

at
iv

e 
de

pt
h 

(k
m

)[0%,20%]

a) b)

Δ lens

Figure 7. (a) Variations in the position of the migrated reflectors for the model shown in Figure 6. (b) The relative depth of the second reflector
with respect to the depth of the first one. The introduction of the lens results in a change in error bars that change with midpoint, but the overall
conclusion that the relative depth is more accurately recovered remains unchanged.

Figure 6. A numerical acoustic model with a background velocity
2 km∕s, two reflectors, and sources and receivers at the surface. A
fast lens is included above the reflectors. The velocity inside the lens
is constant with values chosen at random from 2 to 2.5 km∕s
(ΔV lens ∼ U½0%; 20%�).
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