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Abstract—We present a natural and low-complexity technique
for achieving the capacity of the Gaussian relay network in
the high SNR regime. Specifically, we propose the use of end-
to-end structured lattice codes with the amplify-and-forward
strategy, where the source uses a nested lattice code to encode
the messages and the destination decodes the messages by lattice
decoding. All intermediate relays simply amplify and forward the
received signals over the network to the destination. We show
that the end-to-end lattice-coded amplify-and-forward scheme
approaches the capacity of the layered Gaussian relay network in
the high SNR regime. Next, we extend our scheme to non-layered
Gaussian relay networks under the amplify-and-forward scheme,
which can be viewed as a Gaussian intersymbol interference
(ISI) channel. Compared with other schemes, our approach is
significantly simpler and requires only the end-to-end design of
the lattice precoding and decoding. It requires little knowledge
of the network topology or the individual channel gains.

I. INTRODUCTION

Finding the capacity of Gaussian relay networks with one

source, one destination, and a set of relays, has been a long-

standing open problem in network information theory. The

relay channel was first investigated in the seminal work of

Cover and El Gamal [1]. More recently, Kramer et al. con-

sidered transmission techniques for larger Gaussian relay

networks, e.g., the amplify-and-forward, decode-and-forward,

and compressed-and-forward schemes [2]. Avestimeher et al.

presented a deterministic model for Gaussian relay networks

and proposed the quantize-map-and-forward strategy [3]. It

has been shown that the quantize-map-and-forward strategy

can achieve a rate within a constant number of bits from

the information-theoretic cut-set bound for Gaussian relay

networks, which is independent of the channel gains and the

operating SNR [3]. In [4], Ozgur and Diggavi incorporated

lattice codes, lattice quantization, and lattice-to-lattice map-

ping into the quantize-map-and-forward scheme. It was shown

that the lattice-based quantize-map-and-forward scheme can

still achieve the capacity of Gaussian relay networks within

a constant gap. While offering strong performance in terms

of achievable rates, the schemes presented in [3], [4], involve

considerable operational complexity at intermediate relays.

As pointed out in [5], in wireless communication settings,

signals simultaneously transmitted from different sources add,

leading to the receiver obtaining a superposition of these

signals, scaled by the channel gains. Since the relays are

not interested in the messages sent by the source, they do

not necessarily have to decode, compress or quantize the

messages. Since the relays have already observed the sum of

the signals, in some settings a natural strategy would be to

simply amplify and forward without explicitly dealing with

the noise.

A multihop amplify-and-forward scheme with random en-

coding and decoding was proposed in [5]. In this strategy,

the message sent by the source is propagated over many

intermediate nodes (relays) and possibly over multiple hops.

All relays exploit the interference and forward the received

signals over the network to the destination. It has been shown

in [5] that the achievable rate of the multihop amplify-and-

forward scheme approaches the capacity of the Gaussian relay

network when the SNR at the destination is sufficiently high.

In this paper, we propose the use of end-to-end structured

lattice codes with the amplify-and-forward strategy, where the

source uses a nested lattice code to encode the messages and

the destination decodes the messages by lattice decoding. All

intermediate relays simply amplify and forward the received

signals over the network to the destination. Relative to the

random coding approach of [5], the use of structured lattice

codes significantly reduces system complexity by making

possible computationally tractable encoding and decoding.

Furthermore, the use of end-to-end lattice codes implies that

we require little information concerning the network topology,

or individual channel gains. Instead, we require only the end-

to-end channel response, which can be obtained by using

probing signals.

We show that the end-to-end lattice-coded amplify-and-

forward scheme approaches the capacity of the layered Gaus-

sian relay network under the high-SNR condition presented

in [5]. This result is facilitated by the key observation that

a Gaussian layered relay network under amplify-and-forward

is equivalent to a point-to-point Gaussian channel. Next, we

extend our scheme to non-layered Gaussian relay networks

under the amplify-and-forward scheme, which can crucially be

viewed as a Gaussian intersymbol interference (ISI) channel.

Our lattice-coded amplify-and-forward scheme is simpler than

the lattice-based quantize-map-and-forward scheme proposed

in [4], since it does not require lattice quantization and lattice-

to-lattice mapping at relay nodes. For layered networks, only



end-to-end design of the precoding and decoding with nested

lattice codes is required. Thus, the end-to-end lattice-coded

amplify-and-forward scheme is a natural and low-complexity

technique for achieving the capacity of the Gaussian relay

network in the high SNR regime.

The nested lattice code was originally proposed by Erez et

al. in [6], [7] and [8]. In [7], it was shown that the nested lattice

code with lattice decoding can achieve the capacity of the

additive white Gaussian noise (AWGN) channel at any SNR.

Erez et al. showed that the power-constrained AWGN channel

can be transformed into the modulo-lattice additive noise

(MLAN) channel by minimum mean-square error (MMSE)

scaling along with dithering. The capacity of the MLAN

channel, achieved by uniform inputs, becomes the capacity

of the AWGN channel in the limit of large lattice dimension.

In [6] and [8], Erez et al. extended their techniques to the

AWGN dirty-paper channel. They obtained the achievable rate

at any SNR by incorporating MMSE scaling. It was shown

that with an appropriate choice of the lattice, the achievable

rate approaches the capacity of the AWGN dirty-paper channel

as the dimension of the lattice goes to infinity. These results

provide an information-theoretic framework used in [6] to

study precoding for the Gaussian ISI channel. Erez et al.

showed that when combined with the techniques of interleav-

ing/deinterleaving and water-filling, nested lattice precoding

and decoding can achieve the capacity of the Gaussian ISI

channel [6].

The remainder of this paper is organized as follows. The

network model is presented in Section II. The fundamental

properties of lattices and nested lattice codes are summarized

in Section III. The main result on the lattice-coded multihop

amplify-and-forward strategy is presented in Section IV. Sec-

tion V extends the analysis to non-layered networks. Section

VI concludes the paper.

II. NETWORK MODEL

A. Layered Network

We first focus on the layered network in which each path

from the source to the destination has the same number of

hops. We denote the layer l by Ll, l = 0, 1, . . . , L. Assume

that the source s is located at layer L0, and the destination d
at layer LL. We denote the number of relays at layer Ll by

nl, and thus
∑L−1

l=1 nl = N . In a layered network, the input-

output relationship is simple due to the fact that all copies of

a source message transmitted on different paths arrive at the

destination simultaneously. An example of a layered network

is shown in Figure 1.

Now consider a layered Gaussian relay network consisting

of a single source s, a single destination d, and a set of N
relays. The communication link from node i to node j has a

nonnegative real channel gain, represented by hij ∈ R+. The

channel output at node j 6= s is

yj =
∑

i∈N (j)

hijxi + zj . (1)

Fig. 1. Example of a Layered Network

where xi is the channel input at node i, zj is the real Gaussian

noise with zero mean and unit variance, and N (j) denotes the

set of nodes that can transmit to node j with a direct link, i.e.,

N (j) = {i : hij > 0}. Note that the links are assumed to

be directed so that i ∈ N (j) does not imply j ∈ N (i). We

assume that there is an average power constraint at each node:

E
[

X2
i

]

≤ Pi. (2)

The source s wishes to send a message from a message set

W =
{

1, . . . , 2nR
}

to the destination d with transmission

rate R. The encoding function at the source is given by Xn
s =

f (W ) , W ∈ W , and a decoding function at the destination d
is given by Ŵ = g (Y n

d ). A (R, n) code consists of a message

set W , an encoding function at the source, and a decoding

function at the destination. The average error probability of

the (R, n) code is given by Pe = Pr[Ŵ 6= W ]. A rate R is

said to be achievable if for any ǫ > 0, there exists a (R, n)
code such that Pe ≤ ǫ for a sufficiently large n.

B. High SNR Regime

As in [5], we are interested in the scenario in which all

relays forward the data with large enough power to guarantee

that the total propagated noise at the destination by multihop

amplify-and-forward is low enough. Assume that each node i
transmits with the average power Pi given by (2). The power

received at relay j ∈ Ll, l = 1, . . . , L − 1, is then determined

by

PR,j =





∑

i∈Ll−1

hij

√

Pi





2

, j ∈ Ll

and the power received at the destination d is given by

Pd =





∑

i∈LL−1

hid

√

Pi





2

. (3)

As in [5], we consider a high SNR regime where for some

small δ > 0, the transmit powers of the relays satisfy

min
j∈Ll

PR,j ≥ 1

δ
, l = 1, . . . , L − 1. (4)

We then assume that Pd remains a constant as δ → 0, so

that the Multiple-Access Channel (MAC) at the destination



is a bottleneck for the data transmission.1 The MAC cut-set

bound is given by

CMAC =
1

2
log (1 + Pd) . (5)

III. LATTICES AND NESTED LATTICE CODES

In this section, we briefly review some basic properties of

lattices and nested lattice codes. A more extensive discussion

can be found in references such as [6] and [7]. A lattice Λ is

a discrete subgroup of the Euclidean space R
n. If λ1 and λ2

are two elements of a lattice Λ, then the sum λ1 + λ2 and the

additive inverse −λ1 are also elements of Λ. Any lattice can

be written in terms of its generating matrix G:

Λ = {λ = Gx : x ∈ Z
n} .

We can then define the nearest neighbor quantizer associated

with Λ by

QΛ (x) = argmin
λ∈Λ

‖x − λ‖ .

The Voronoi region of a lattice point λ ∈ Λ is the set of all

points that quantize to it. The fundamental Voronoi region V
is the set of all points that quantize to the origin, i.e.,

V = {x : QΛ (x) = 0}.
Define the modulo-Λ operation corresponding to V as

x mod Λ = x − QΛ (x) .

The second moment of a lattice Λ is defined by

σ2
Λ =

1

nV ol (V)

∫

V

‖x‖2
dx,

and the normalized second moment of a lattice Λ is defined

by

G (Λ) =
1

n [V ol (V)]
1+2/n

∫

V

‖x‖2
dx,

where V ol (V) is the volume of V .

Two lattices Λ1 and Λ2 are said to be nested if Λ1 ⊆ Λ2,

where Λ1 is called the coarse lattice and Λ2 the fine lattice.

Denote by V1 and V2 the fundamental Voronoi regions of Λ1

and Λ2, respectively. The coding rate is defined by

R =
1

n
log

[

V ol (V1)

V ol (V2)

]

.

The points in the set

C = Λ2 ∩ V1

are called the coset leaders of Λ1 relative to Λ2. For each

c ∈ C, the shifted coarse lattice Λ1,c = c + Λ1 is called a

coset of Λ1 relative to Λ2.

The use of high-dimensional nested lattice code is justified

by the existence of asymptotically good lattices. We consider

two types of goodness as introduced in [6] and [7].

1Note that for network capacity, the worst case occurs when the bottleneck
is at the MAC at the destination. In this case, the noise is propagated over
more hops than in any other case.

(1) Good for AWGN Channel Coding: For any ǫ > 0 and

sufficiently large n, there exists an n-dimensional lattice Λ
with the volume of the fundamental Voronoi region V ol (V) <
2n[h(Z)+ǫ], where Z is Gaussian noise with variance σ2

Z , and

h (Z) = 1
2 log

(

2πeσ2
Z

)

is the differential entropy of Z , such

that

Pe = Pr [Z /∈ V ] < ǫ.

(2) Good for Source Coding: For any ǫ > 0 and sufficiently

large n, there exists an n-dimensional lattice Λ whose normal-

ized second moment G (Λ) satisfies

log (2πeG (Λ)) < ǫ.

IV. LATTICE-CODED MULTIHOP AMPLIFY-AND-FORWARD

In [5], it is shown that the simple multihop amplify-

and-forward scheme with random coding can approximately

achieve the unicast capacity of a Gaussian relay network in

the high SNR regime. In this paper, we propose the use of

structured nested lattice codes in conjunction with the mul-

tihop amplify-and-forward scheme. Choose a pair of nested

lattices (Λ1, Λ2), Λ1 ⊆ Λ2, with the coding rate

R =
1

n
log

[

V ol (V1)

V ol (V2)

]

≥ RLAF ,

where RLAF is the rate achieved by the lattice-coded amplify-

and-forward scheme defined by (10). We choose the coarse

lattice Λ1 to be good for source coding, with the second

moment σ2
Λ1

= Ps, where Ps is the average power constraint

of the source node s. We choose the fine lattice Λ2 to be

good for AWGN channel coding. Let QΛ2
denote the nearest

neighbor quantizer of the fine lattice Λ2. We apply the scheme

proposed in [6], [7] and [8] to the layered Gaussian relay

network as follows:

(1) Source: the source s maps the message W ∈ W
uniformly at random to a coset leader of Λ1 relative to Λ2:

t ∈ C = Λ2 ∩ V1.

Then a random dither vector u is generated uniformly over

V1, i.e., u ∼ Unif (V1). Given the message W , the source

encoder sends

xs = [t + u] mod Λ1. (6)

(2) Relay: each relay i ∈ Ll, l = 1, . . . , L− 1, performs the

multihop amplify-and-forward scheme

xl,i = βiyl,i, i ∈ Ll (7)

where the amplification gain is chosen as

βi =

√
Pi

√

(1 + δ)PR,i

, i ∈ Ll. (8)

In [5], it is shown that the power constraint (2) at each node

i is satisfied by choosing the amplification gain in (8). Also

shown in [5] are the following two results on the propagated

noise.

Lemma 1: [5] At any node i ∈ Ll, the noise propagated

from all nodes in layer Ll−k, k = 1, . . . , l−1, via the multihop



amplify-and-forward scheme in the high SNR regime has the

power

P l−k
z,i ≤ δPR,i

(1 + δ)
k
.

Corollary 2: [5] The total noise propagated to the destina-

tion d ∈ LL has the power

Pz,d =

L−1
∑

k=1

PL−k
z,d = δPd

L−1
∑

k=1

1

(1 + δ)
k
≤ LδPd. (9)

(3) Destination: the destination computes

ŷd = QΛ2
(αyd + u) mod Λ1,

where

α =
γ

1 + γ
, γ =

Pd

(1 + δ)L−1 Pz,d

.

The following theorem is the main result for the lattice-

coded amplify-and-forward scheme.

Theorem 3: In a layered relay network (1) in the high SNR

regime defined by (4), the lattice-coded multihop amplify-and-

forward achieves the rate

RLAF ≥ 1

2
log

[

1 +
1

(1 + δ)
L−1

Pd

1 + LδPd

]

. (10)

Proof. As in [5], if the amplification gain at each relay is

chosen as (8), the received signal at the destination can be

written as

yd = ĥdxs + ẑd + zd, (11)

where ẑd the total propagated noise, zd is the noise at the

destination, and

ĥd =

√
Pd

√

Ps (1 + δ)L−1
. (12)

By (11) and (12), the received signal power at the destination

is

P̂d =
Pd

(1 + δ)L−1
.

By Corollary 2, the power of the total propagated noise ẑd is

Pz,d = δPd

L−1
∑

k=1

1

(1 + δ)
k
≤ LδPd.

Therefore the SNR at the destination satisfies

SNR ≥ 1

(1 + δ)
L−1

Pd

1 + LδPd
. (13)

In other words, the received signal yd can be viewed as the

output of the AWGN channel characterized by (11) with

the SNR given by (13). The capacity, or equivalently the

achievable rate via amplify-and-forward, is then given by

RLAF =
1

2
log (1 + SNR)

≥ 1

2
log

[

1 +
1

(1 + δ)L−1

Pd

1 + LδPd

]

.

It is shown in [6] and [7] that if we choose the coarse lattice to

be good for source coding and the fine lattice Λ2 to be good for

AWGN channel coding, nested lattice codes can achieve the

capacity of the AWGN Gaussian channel when the dimension,

or equivalently, the length of the codewords n, tends to infinity.

Hence, the above lattice-coded amplify-and-forward scheme

can achieve the rate RLAF .

Note that as δ → 0, the rate achieved by the lattice-coded

multihop amplify-and-forward scheme in (10) approaches the

MAC cut-set bound (5), and the unicast capacity of the

Gaussian relay network.

V. EXTENSIONS

A. Non-layered Networks

In layered networks, each path from the source to the

destination has the same number of hops, so that all copies

of the source message transmitted on different paths arrive

at the destination with the same delay. In non-layered net-

works, however, copies of the source message may arrive at

the destination with different delays through different paths.

Assume that the number of hops (length) in the longest path

is L ≥ 1. We can then classify all paths from the source to

the destination according to the path length

Pl = {paths of length l}

Assume that the number of paths of length l is Kl, l =
1, . . . , L. As shown in [5], the received signal at the destination

d at time t is then given by

yd (t) = h0xs (t) +
∑

j∈P1

hj,1xs (t − 1) + . . .

+
∑

j∈PL

hj,Lxs (t − L) + ze (t) ,

where h0 is the channel gain on the direct link from the source

to the destination, and hj,l is the equivalent channel gain of

path j in the set Pl. Note that hj,l depends on the network

topology, and contains the accumulated channel gains and

amplification gains on the source-destination path j. Finally,

ze (t) denotes the total propagated noise at the destination.

From (14), we see that under the amplify-and-forward

scheme, the non-layered Gaussian relay network is equivalent

to a Gaussian ISI channel:

yd (t) =

L
∑

l=0

hlxs (t − l) + ze (t) , (14)

where xs (t − l) , l = 0, . . . , L, are the inputs to the Gaussian

ISI channel, hl =
∑

j∈Pl
hj,l represents the ISI coefficient, and

yd (t) stands for the received samples. The additive Gaussian

noise is denoted by ze (t).
We now focus on the feedforward MMSE decision feedback

(MMSE-DFE) equalizing filter for the Gaussian ISI channel

[9], [10]. The output of the MMSE-DFE feedforward filter can

be written as

r (t) = xs (t) + s (t) + n (t) , (15)



where s (t) =
∑L

l=1 ĥlxs (t − l) is the post-cursor intersymbol

interference, and ĥl and n (t) represent the ISI coefficients

and the sampled noise at the output of the MMSE-DFE

feedforward filter, respectively.

The SNR associated with the MMSE-DFE filter is defined

by [9]

SNRMMSE−DFE =
E

[

X2
s (t)

]

E [N2 (t)]
,

and the capacity of the Gaussian ISI channel is given by [10]

CISI =
1

2
log (1 + SNRMMSE−DFE) . (16)

If the encoder knows the entire post-cursor intersymbol

interference vector before transmission, as mentioned in [6],

the input-output relationship given by (15) can be viewed as

the Gaussian dirty-paper channel whose capacity is given by

(16). Based on that observation, [6] proposed a coding strategy

for the Gaussian ISI channel, in which the MMSE-DFE feed-

back equalizing filter is replaced by nested lattice precoding,

as described in the dirty paper case. In the interleaver, the

messages are encoded row by row and are transmitted column

by column. When a message which comprises the jth row

of the interleaver is to be encoded, the post-cursor interfering

symbols belong to the codewords for messages which have

been already encoded, similar to the dirty paper scenario [6].

In [6], it is shown that nested lattice precoding with interleav-

ing/deinterleaving and waterfilling can achieve the capacity

of the Gaussian ISI channel given by (16). Waterfilling is

required because the sampled noise n(t) in (15) may not be

white Gaussian. If we incorporate nested lattice precoding into

the multihop amplify-and-forward scheme, the achievable rate

can thus be obtained as the capacity of the corresponding

Gaussian ISI channel. The lattice-coded multihop amplify-and-

forward scheme is shown in Figure 2.

Unlike the case for layered networks, in order to implement

nested lattice precoding with interleaving for non-layered

Gaussian wireless relay networks, it is necessary to know

the channel gains as manifested in the “ISI coefficients.” In

the absence of such knowledge, techniques such as blind

equalization may be needed to preserve the performance of

our scheme.

If the encoder does not know the entire post-cursor ISI

vector before transmission, we have to use the original MMSE-

DFE technique proposed in [9] with nested lattice encoding

and decoding. In that case, however, the decoded messages

must be fed back. Thus, any decoding error will affect the

performance of the MMSE-DFE feedback filter, and hence the

subsequent decoding process. This may lead to the decoding

error propagating over multiple symbols.

VI. CONCLUSION

In this paper, we considered an end-to-end lattice-coded

multihop amplify-and-forward strategy for Gaussian wireless

relay networks in the high SNR regime. When the power re-

ceived at all relays are large enough, our strategy performs well

for both layered and non-layered Gaussian relay networks. In
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Fig. 2. Lattice-Coded Multihop Amplify-and-Forward Scheme

the worst case, the bottleneck of the multihop transmission

is at the multi-access channel (MAC) at the destination. We

showed that our strategy approaches the MAC cut-set bound

as the received powers at the relays increase. The lattice-

coded multihop amplify-and-forward scheme is simpler than

the decode-and-forward scheme and the quantize-map-and-

forward scheme. Our scheme requires only end-to-end design:

lattice precoding at the source and decoding at the destination.

It does not require any knowledge of the network topology or

the individual channel gains.
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