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Abstract—We introduce a property that we call Successive
Description property for Slepian Wolf coding. We show that
Monotone-Chain Polar Codes can be used to construct low-
complexity codes that satisfy this property. We discuss appli-
cations of this property to network coding problems.
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I. INTRODUCTION

Consider a memoryless source (X,Y ) ∼ PX,Y where
PX,Y is a joint distribution on X × Y with X = Y = {0, 1}.
Let (Xn, Y n) be what the source generates after the first n
instances. In this paper we study a version of the Slepian-
Wolf problem with 2 sources and 2 receivers. In this setting
the first receiver gets nR1 encoded bits from the first source
and nR2 encoded bits from the second source, and is expected
to decode with vanishing probability of error (Xn, Y n). On the
other hand, the second receiver gets respectively nR̃1 and nR̃2

encoded bits from each source, and should also decode reliably
(Xn, Y n). The result of Slepian and Wolf in [1] states that if
the pairs (R1, R2) and (R̃1, R̃2) are in the region RSW =
{(Rx, Ry) : Rx ≥ H(X|Y ), Ry ≥ H(Y |X), Rx + Ry ≥
H(X,Y )}, then there exist encoders fX : Xn → {0, 1}nR1

and fY : Yn → {0.1}nR2 , such that receiver 1 can decode
reliably xn and yn using (fX(xn), fY (y

n)). Similarly, there
exist encoders fX̃ and fỸ that encode at rates (R̃1, R̃2) and
allow for reliable decoding.

For the encoder to satisfy the rate constraints on the
decoders, a naive solution would consist of doing the following
encoding:

Fx : Xn 7→ (fX(Xn), f̃X(Xn))

Fy : Y n 7→ (fY (Y
n), f̃X(Y n)). (1)

The first and second decoder respectively selects
(fX(Xn), fY (Y

n)) and (f̃X(Xn), f̃Y (Y
n)) to decode at their

desired rates. However, the encoding of (1) is wasteful as we
are essentially using two codebooks, and encoding sources Xn

and Y n into respectively n(R1+ R̃1) and n(R2+ R̃2) bits. In
contrast, a code is not wasteful in this sense, which we call suc-
cessive description Slepian–Wolf code, if Xn can be expressed
using n(max{R1, R̃1}) and Y n using n(max{R2, R̃2}) bits,
while still satisfying the rate constraints of each receiver. More
precisely this means:

Definition 1. Let (R1, R2) and (R̃1, R̃2) be 2 pairs of rates
on the dominant face of Slepian-Wolf region RSW , that is for
which R1 + R2 = R̃1 + R̃2 = H(X,Y ) and both (R1, R2)
and (R̃1, R̃2) ∈ RSW . Suppose, w.l.o.g., that R1 ≤ R̃1 and
R̃2 ≤ R2. A code has a successive description property if its
encoding functions:

fX : Xn → {0, 1}nR1 × {0, 1}n(R̃1−R1)

xn 7→ (u, a) (2)

fY : Yn → {0, 1}nR̃2 × {0, 1}n(R2−R̃2)

yn 7→ (v, b) (3)

are such that (xn, yn) can be recovered from both (u, a, v)
and (u, v, b).

This property is trivially satisfied by random codes, which
we will discuss in Sec. III. The main result of this paper in
Sec. III, is to show that Monotone Chain Polar Codes— a
family of efficient encoding and decoding codes— satisfy the
successive description property. Monotone Chain Polar coding
was introduced in [2] and is reviewed in Sec. II. This is a
low complexity distributed source coding technique that can
operate at any pair of rates on the dominant face. We will also
discuss why codes that have a successive description property
are important in the study of some network coding problems,
where the rate constraints on the receivers is given by the
network topology. This will be discussed in Sec. V.

II. BACKGROUND AND NOTATIONS

In this paper, we will only analyze the case of two
sources X and Y , and two receivers. All of the results can
be easily generalized to a arbitrary finite number of sources
and receivers. Keeping the discussion to this setting simplifies
notation and exposition.

Below we give a quick overview of monotone chain polar
coding introduced in [2].

Polar transform: The polar transform is a linear bijective
function from Xn ∈ {0, 1}n to Un ∈ {0, 1}n defined by :

Un = GnX
n (4)

with GN defined as in [3]. We will not go into details of Gn,
but suffice it to say that it follows from a recursive construction



of the n = 2 case:

U2 = (X1 ⊕X2, X2) (5)

Because the transformation described in (4) is a bijection, it
is the case that:

H(Un) = H(Xn) (6)

In a similar way, it is possible to do the polar transform on
Y n to obtain the random variable V n : V n = GnY

n.

Monotone Chain Polar Codes: The joint entropy
H(Un, V n) can be expanded in many ways using the chain
rule. Perhaps the simplest expansion is :

H(Un, V n) = H(Un) +H(V n|Un)

=

n∑
j

H(Uj |U j−1) +
n∑
j

H(Vj |V j−1, Un) (7)

The main idea of source polarization and monotone chain polar
codes is to consider so-called monotone decompositions of
H(Un, V n) as the one in (7) and to show that each term in
that expression converges to either 0 or 1.

Definition 2. A chain expansion of (Un, V n) is called Mono-
tone with respect to Un, if :

H(Un, V n) =

2n∑
i=1

H(Si|Si−1) (8)

with S2n a permutation of (Un, V n) such that the relative
order of Un is preserved. We say a chain expansion of
(Un, V n) is monotone, if it is monotone with respect to both
Un and V n.

Note that we will use the notation S2n to represent the
permutation in a particular monotone chain.

It is very convenient to represent monotone chains for
two sources in diagram form as was done in [2]. The regular
diagram for n = 4 can be seen in Fig 1: all valid monotone
decomposition can be seen by looking at the paths from the
lower-left ∅ to the upper-right U4V 4. As such, the decom-
position in (7) corresponds to the two segment path from ∅
to U4, and then to U4V 4. Finally, monotone decompositions
can be represented equivalently by a binary string sequence
b2n = {0, 1}2n, where bi = 0 corresponds to a horizontal
move on a regular diagram at step i, and bi = 1 corresponds
to a vertical move.

It has been proved in [2] that monotone decompositions
that have binary string sequence of the form b2n ∈ V =
{0i1n0n−i} are sufficient to approximate any pair of rates on
the dominant face of RSW . These correspond to the three
segments path on the diagram, first i horizontal moves, then n
vertical moves, finally the n− i remaining horizontal moves.

This result can be interpreted using the idea of source split-
ing introduced in [4] 1. Source splitting amounts to splitting
a source X into two separate sources X1 and X2, and then
describing the data using H(X1)+H(Y |X1)+H(X2|Y,X1)

1Relation between source splitting and Monotone Chain Polar codes were
pointed out by Arikan himself in the concluding remarks of [2].
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Fig. 1: Regular diagram for Monotone Chain representation
for n = 4

bits. Altough the split in [4] is done through a time-sharing
variable, we can consider different, possibly deterministic ways
of splitting X . In the context of this class of Monotone Chain
Polar codes, we split the variable Un into two variables U i
and Uni+1. Next, we sequentially compress U i using H(U i)
bits, then V n using H(V n|U i) bits, and finally Uni+1 using
H(Uni+1|V n, U i). Note that as:

H(Xn, Y n) = H(Un, V n)

= H(U i) +H(V n|U i) +H(Uni+1|V n, U i) (9)

the resulting values

R1 =
1

n

(
H(U i) +H(Uni+1|V n, U i)

)
(10)

R2 =
1

n

(
H(V n|U i)

)
(11)

are indeed on the dominant face of RSW . The hope is that
by choosing i appropriately, one can tune the (R1, R2) as
described in eqs. (10) and (11) to approximate any arbitrary
pair of rates on the dominant face. Next, using polarization
results, one can show that the values (R1, R2) correspond
to actual operational rates: the ratio of bits that each user
describes. The theorem below shows that it is possible to
approximate any pair of rates using the simple source spilt
above:

Theorem 1. from [2] Let (R̂1, R̂2) be an arbitrary pair of
rates on the dominant face of RSW . For any ε > 0, there exist
n sufficiently large, such that |R1−R̂1| ≤ ε and |R2−R̂2| < ε,
where R1 and R2 are defined in eqs. (10) and (11)

Furthermore, the polarization results of [5] show that when
n → ∞, the terms in the chain expansion will tend towards
either 0 or 1. This means that the sets of high entropy bits
satisfy:

|AX(δ)| = |{i : bi = 0, H(Si|Si−1) ≥ 1− δ}| ≈ nR1

|AY (δ)| = |{i : bi = 1, H(Si|Si−1) ≥ 1− δ}| ≈ nR2. (12)
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Fig. 2: The paths for two pairs of rates can be decomposed into 4 segments.

This allows a simple encoding technique:

• Given a source realization (xn, yn), each sender
computes un = Gnx

n and vn = Gny
n respectively.

This defines a realization of the path variables s2n

• The first sender transmits {si : i ∈ AX(δ)}. Similarly
the second sender transmits {si : i ∈ AY (δ)}.

• The decoder has access to {si : i ∈ AX(δ)∪AY (δ)}.
A low complexity successive decoding algorithm
given in [2] decodes (xn, yn) with high reliability.

In the rest of the paper, we will refer to a Monotone Chain
Polar Code, as a (n, b2n, δ) Monotone chain Polar Code, where
n is the block length, b2n is the binary sequence of the
decomposition, and δ is a parameter that controls the error
rate.

III. SUCCESSIVE DESCRIPTION PROPERTY

The simplest codes that satisfy the successive description
property are perhaps random codes along with joint typicality
decoding.

Proposition 1. Random binning encoding and joint typicality
decoding is a successive description coding scheme as defined
in Def. 1.

Proof: Follows from standard techniques.

This result on random coding is not surprising, as only
the number of bits received by the decoder is important in
expressing the error probability. Therefore, puncturing some
bits from a source can be compensated by using additional
bits from the other source, as long as the rates are in the
Slepian Wolf region. However, typicality decoding cannot be
implemented in practice, and we present now the main result
of our paper concerning Monontone Chain Polar Codes.

Theorem 2. Let (R1, R2) and (R̃1, R̃2), R1 ≤ R̃1 be two
pairs of rates on the dominant face of RSW . Consider two
Monotone Chain Polar Codes of same block length n and
argument δ at the pair of rates (R1, R2) and (R̃1, R̃2). It is
possible to construct encoding functions as defined in Def. 1
from the Monotone Chain Polar codes.

Proof: Let n be the block size. Consider two pair of rates
(R1, R2) and (R̃1, R̃2), and their associated paths b2N and
b̃2N . The associated path variables are denoted respectively
by S2N and S̃2N . Recall that the paths are in the form b2N =
0l1N0N−l and b̃2N = 0k1N0N−k, and suppose without loss
of generality that l ≤ k. This case is shown in Figure 2. Recall
that the encoding consist in storing the Si or S̃i that have a
high entropy in the chain decomposition. Let AX(δ), AY (δ)
and ÃX(δ), ÃY (δ) be the high entropy sets defined in (12)
respectively for b2n and b̃2n. Finally, let π : {1, . . . , 2N} →
{1, . . . , 2N} be defined such that for all 1 ≤ i ≤ 2N , we have
Si = S̃π(i).

We investigate all the segments :

• I1 : let 1 ≤ i ≤ l. In this range, π(i) = i, which means
that H(Si|Si−1) = H(S̃π(i)|S̃π(i)−1), therefore i ∈
AX(δ) ⇐⇒ π(i) ∈ ÃX(δ).

• I4 : let i > N + k, similarly we have π(i) = i,
so H(Si|Si−1) = H(S̃π(i)|S̃π(i)−1). Therefore i ∈
AX(δ) ⇐⇒ π(i) ∈ ÃX(δ)

• I3 : let N + l < i ≤ N + k. Because Si = S̃i−N =
Ui−N , we have π(i) = i − N and H(Si|Si−1) =
H(Ui−N |U i−N−1, V N ) ≤ H(Ui−N |U i−N−1) =
H(S̃π(i)|S̃π(i)−1). Therefore i ∈ AX(δ) =⇒ π(i) ∈
ÃX(δ).

• I2 : let l < i ≤ N + l. Because Si = S̃i+k−l = Vi−l,
we have π(i) = i + k − l and H(Si|Si−1) =
H(Vi−l|V i−l−1, U l) ≥ H(Vi−l|V i−l−1, Uk) =
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Fig. 3: Decomposition of the network G into G1 and G2

H(S̃π(i)|S̃π(i)−1). Therefore, π(i) ∈ ÃY (δ) =⇒ i ∈
AY (δ).

This means that the set of high entropy bits is nested: If
i ∈ AX(δ), then π(i) ∈ ÃX(δ). Conversely, if π(i) ∈ ÃY (δ)
then i ∈ AY (δ). Therefore, we define encoding functions FX
and FY as follows:

FX : xn 7→ ({si : i ∈ AX∩X̃}, {si : i ∈ AX\AX∩X̃}) (13)
FY : yn 7→ ({si : i ∈ AY ∩Ỹ }, {si : i ∈ AỸ \AY ∩Ỹ }) (14)

where AX∩X̃ = {i : i ∈ AX and π(i) ∈ ÃX(δ)} and
AY ∩Ỹ = {i : π(i) ∈ ÃY (δ) and i ∈ AY (δ)}. The previous
observations imply that {si : i ∈ AX∩X̃} = {si : i ∈ ÃX(δ)},
and {si : i ∈ AY ∩Ỹ } = {si : i ∈ AY (δ)}. Using (12)
concludes the proof.

IV. SEPARATION IN NETWORK CODING

In this section we look at an application of successive
description codes to solve network coding problems at low
complexity. The problem of multicast network coding [6]
consists in transmitting information from a set of sources
nodes, to a set of terminal nodes, where all terminals are
interested in all sources. This setting has been well studied,
and most fundamental limits in this simple case are well-
known and understood. When the sources are independent,
there exist low complexity algorithms, most notably random
linear network codes in a large enough field [7] that allow
for a low complexity encoding and decoding of the sources.
However, the case of correlated sources is more delicate, and
all general methods rely on a joint typicality decoder, or a
maximum likelihood or minimum entropy decoder, neither of
which can be implemented in practice.

Separation of source and network coding has been studied
in [8], where a notion of separation of source and network
coding is proposed. Although it is not discussed in the paper
itself, the use of successive description codes is often necessary
in this context. We illustrate this with the following example:
Consider the butterfly network in Fig. 3 . On this network, the
source X with H(X) = 1 generated at s1, Y with H(Y ) =
1 generated at s2, are to be transmitted to two terminals t1
and t2. Further suppose that the sources are correlated such
that H(X;Y ) = 3

2 . We propose a low complexity separation
approach in the following steps:

• Use a successive description Slepian-Wolf Code with
(R1, R2) = (1, 12 ) = (R̃2, R̃1) to encode xn into
(u, a), and yn into (v, b).

• Observe that the network can be decomposed into
networks G1, and G2 as shown in Figure 3.

• Send (u, v) to both terminals using the network G1.
This is possible by the max-flow theorem of [6]. A
possible linear code is shown in Fig. 4 where the
summation is a bit to bit summation.

• Send sequence a from S1 to T1, and sequence b from
S2 to T2 using network G2 (this is not multicast).

• Terminal t1 receives (u, a, v) and terminal t2 receives
(u, v, b). Since the code is a successive description
code, it is possible to decode reliably at both terminals.
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Fig. 4: Linear code to multicast (u, v) to t1 and t2

The use of a successive description code in this example allows
each terminal to decode at different points on RSW , here on
each corner point. Having this flexibility is necessary. Indeed, a
naive approach where one encodes xn and yn using a Slepian-
Wolf codes that does not allow for a successive description
cannot succeed due to the constraints on the rates for each
decoder given by the topology of the network. This simple
example illustrates how a successive description code can be
used in a practical setting. Note that using monotone chain
polar codes would allow for an overall low-complexity scheme
for encoding and decoding of many network coding problems
with correlated sources, as shown in [8].

V. FINAL REMARKS

Successive description is a property that is trivially satisfied
by random coding, since the only parameter that matters is
the number of bits received by the decoder. When going from
random codes to structured codes, it is not clear that puncturing
bits from one source in exchange for additional bits from
another would yield a low complexity decoding. Monotone
Chain Polar Codes happen to be a family of codes in which
puncturing bits preserves the structure.
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