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Abstract

The interdependency of parameters and the complexity of the ship model make it
very difficult to find an optimal design, although many feasible solutions exist. In this
research weight optimization of a Naval destroyer is conducted using an evolutionary
strategy, a generalized concept of what is better known as a genetic algorithm. Various
genetic operators are applied to a simplified ship design process, and examined. The best
configuration includes non-uniform selection pressure, one-poini crossover operator, non-
uniform mutation operator, and Baker’s selection mechanism applied to a rank-based
selection filter. The configuration is selected as the optimization tool, and is suggested for
ship concept design applications.

As a case study, the suggested optimization method is applied to meet the design
and payload requirements of the U.S. Navy DDGS1 class, an existing vessel weighing
8130 Iton at full load. The algorithm found that with a different hull form and the same
HM&E systems, the same mission requirements can be met with a 7290 Iton ship, lighter
by more than 10%. The characteristics predicted for the new design are confirmed by
ASSET, the standard computer program used by the U.S. Navy for concept ship design.

Thesis Supervisor: Alan J. Brown.
Title: Professor of Naval Architecture.



God said to Noal, “The end of all flesh has come
before me, for the earth is filled with robbery
through them; and behold, 1 am about to destroy
them from the earth. Make for yourself an Ark of
gopher wood; make the Ark with compartiments, and
cover it inside and out with pitch. This is how you
should make it - three hundred cubits the length of
the Ark; fifty cubits its width; and thirty cubits its
height. A window shall you make for the Ark, and
to a cubit finish it from above. Put the entrance of
the Ark in its side; wmake it with bottom, second and
third decks”.

Genesis, the decree of the Flood, chapter 6:13-16.
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Introduction

Ship Design and Modeling

The design of a new ship is performed in several stages, during which the level of
certainty increases, and, accordingly, the design margins decrease. Many changes and
modifications are made during the period of design and construction, but the early concept
design, even if is conducted with a simplified tool, always has a major impact on the final
design. The concept design has an important role in the design process. Usually, the
general design characteristics and dimensions of the vessel are determined in this stage. It
is essential therefore that this tool gives accurate predictions.

A ship is a very complex platform, with a non-analytic hull shape and various
systems, the characteristics of which influence and are influenced by all others. Even a
basic simplified mathematical model consists of a large number of interdependent
parameters. The dependence implies that everything affects everything else. For instance,
an enlarged length increases the volume of the hull, so a larger air conditioning system is
required, which in turn makes the ship heavier, reducing the speed (as the wetted area is
higher), but more important, increasing the length in order to provide the floatation,
Hopefully, at some stage this process converges and stops. In some cases this can lead to
divergence. Naval Engineers like to illustrate the design process as a spiral, where the
design begins outside and converges to the inside,

Naturally, a model needs to be as scientific as possible in order to provide reliable
results. In early design stages, in which a lot of data is unknown, it is hard to apply
engineering methods, which require a detailed knowledge of the problem. Instead,
empirical expressions are used. These are obtained by regressive analysis of actual similar
vessels. As the design proceeds, more and more details are determined, and this statistical
approach is replaced by logical scientific computations.

All engineering problems are actually optimization problems. Almost any real life
problem has more than one solution, and many of them have an infinite number of
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answers. The optimal solution is the one that, among the entire population of solutions,
performs best according to some specified criterion. The problem is not just to find a
solution, but to find the best one. In order to keep track of solutions, models include
independent parameters, parameters which are set at the beginning of the evaluation, and
not changed. All other variables depend on these parameters, and are strictly defined by
them: a solution from the infinite solution space is uniquely represented by this set. The
decision on the selection of the independent parameters is not straight forward, but the
effort is worthwhile, because a systematic approach is established, and the analyzer can
compare the suggested solutions and choose the fittest one. The size of the independent
vector, the vector containing the independent parameters, determines the magnitude of the
solution space, and thus it is vital to have it minimized. As its length increases, the number
of combinations increases as well, and the chance to find the best individual solution
becomes more difficult.

A ship is a classic example. There are infinite hull shapes that meet the
requirements, and the Naval Architect strives to develop the best performing one. The
best solution is often a subjective opinion, since the definition depends on the purpose of
the vessel. A race boat needs to have the fastest hull; a ferry is designed as to have the
biggest stowage space; a tug requires a stable body with advanced maneuverability.
Sometimes there are more than one consideration; usually they contradict each other.
Take a ferry for example: it should have large hold spaces, to accommodate more freight,
but the faster it transports it, the better; unfortunately, as the stowage spaces are
increased, the displacement gets higher and the speed decreases. A decision matrix can be
constructed, which assigns weights to the items and provides an overall decision criterion.
Usually, however, an important consideration is the cost of the project. Cost is typically
driven by weight, and is calculated through weight-based models. Hence, it is customary
to conduct a weight- based optimization.

Computerized ship design optimization using is conducted for more than 30 years.
Murphy, Sabat and Taylor [1] in 1965 and Mandel and Leopold [2] in 1966 conducted
economical optimization to merchant ships, using very simple design models and modified
random search techniques. The computers available at that period did not allow
complicated computations, and consequently the models were not accurate and required
many iterations.

Evolutionary Programs and Genetic Algorithms

In today's computational environment, a lot of time is spent to solve complex
problems, which traditionally were considered solvable for simplified specific cases only.
Researchers direct their efforts to create numerical algorithms capable of solving multi-
degree and/or multi-dimensional problems. The appearance of parallel computers has
strengthened this approach. Many cases, especially in engineering applications, are
optimization problems, where the desired answer provides a maximum or minimum value
of an objective function. The basic methods of calculus are not applicable, because usually
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the function is given numerically, without an explicit expression, and is often not
continuous. Engineering problems are also typically highly constrained. Therefore,
instead of a rigorous mathematical procedure, the solution is exccuted by a computer, and
takes the form of a search process. A sequential-arranged scarch, during which all options
are checked, is generally not possible, because the number of combinations is enormous
(when the problem is multi dimensional), or the time required to evaluate the objective
function is long (when the problem is of high order); the majority of applications involve
both. Barrett [3], for example, showed that a simple exhaustive exploration would take
him 2687 years'. There are many techniques to explore the solution space, and a review
of them can be found in [4]). Among these, evolutionary programs are search procedures
relying on analogies to natural processes, imitating the principle of evolution: survival of
the fittest. The most basic strategy in this field is the genetic algorithm. Experiments with
this approach can be traced to the early 1950’s, but genetic algorithms as they are known
today were invented by John Holland [5] at the University of Michigan. A tremendously
helpful source for starters in GA's is [6], written by Michalewicz. It provides the basics,
with practical examples and illustrations, suggests a lot of approaches and has a rich list of
references. [7] is another familiar, more theoretical reference.

In an evolutionary search process, a collection of potential solutions, called a
generation, strive for survival. They are selected according to their fitness. Better
solutions have better chances to live. The surviving solutions are then allowed to breed:
they experience a sequence of transformations, which imitate real life breeding. The
resulting new potential solutions, the offspring, define a new generation. By the survival
of the fittest principle, this generation offers enhanced performance. After a number of
similar generations, the process converges, and the best individual solution represents the
optimal solution.

The elementary difference between evolutionary programs and other search
methods, such as hill climbing [9) and simulated annealing [10], is that evolutionary
programs maintain a population of potential solutions rather than a single solution at each
step. The collection of solutions imparts a wider view to the algorithm. Therefore, it
performs a multi-directional search, with improved exploration capabilities and better
chances to find the global optimum, instead of a local one.

[6] presents the concept of evolutionary programs as a gencralizauon of genetic
algorithms. All natural process mimics involve genetic operations, to imitate the breeding
and genetic transformations that occur in nature. In genetic algorithms a potential solution
is depicted by a binary string, on which two basic genetic operations are performed,
crossover and mutation. Evolutionary programs, on the other hand, may use floating
point number representation, and incorporate a variety of other operators.

During the last ten years there has been a growing interest in algorithms imitating
natural processes, particularly in genetic algorithms. International conferences are held

" Page 134
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around the world, [11] for example, and a world-wide academic study is being conducted.
Genetic algorithms have an important usage in artificial intelligence systems, see [12] and
[13]), where evolutionary processes are used to instruct the machine in the best way to
handle the current problem. It tries some optional solutions, evaluates their performance
(via a fitmess function), and in some sense learns the best response. Barrett [3] actually
taught his mechanical Tuna fish to swim efficiently (with minimum drag) using this
approach.

It seems natural, then, to apply the search engine suggested by genetic algorithms
for the optimization of a ship. All the classic conditions exist: a ship model is a multi-
variable problem (the variables are the independent parameters), and of high order. The
solution space is huge, and an exhaustive search is impiactical.

Objective of the Research

The primary objective of the research is to show that evolutionary strategies can be
used in ship concept design optimization. Once this is proven, a secondary aim is to
develop an effective genetic search engine, since as will be seen, this field suggests many
methods. To make the research interesting and with real implications, the U.S. Naval ship
DDGS51 is used as a case study. The design problem is to design a vessel that carries the
same (military and other) payload, and has at least the same performance: endurance,
stores period and sustained speed. A very simple objective function, minimum payload
weight fraction, is used. In the actual DDGS1 design, many more attributes and criteria
were considered. This case study is intended primarily to demonstrate the method.

Preview of the Following Chapters

There is a growing interest in evolutionary strategies and genetic algorithms in
engineering applications. However, this field is relatively unfamiliar to the majority of
engineers. Therefore, besides the understandable effort a graduate student makes in his
thesis, 1 have raised an additional goal in this paper, to expose the Naval Architecture
community to genetic search techniques. For this reason, this thesis includes extensive
theoretical and practical background. There is no intention to create an alternative
reference book; many times the reader is referred to professional literature. Nevertheless,
I do hope it will impart satisfactory comprehension and stimulate the imagination of the
reader. )

The thesis contains distinct but evidently (in this research) connected two issues,
ship design and genetic exploration. Once the required ship design foundations have been
established, the concentration is on the second issue. Chapter 2 introduces the design
approach, but does not employ revolutionary ship theories. It deals with ship concept
design, in which a mathematical model, incorporating classical and regressive Naval
Architecture techniques, is constructed. The remaining chapters, except for the last one,
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deal with evolutionary strategies which use the ship models. The search process evaluates
different hulls, searching for the best one,

The chapters in this thesis are logically organized, starting with the basic concept,
developing the engineering representation of the problem, and then reporting the
experimental results of several solution approaches. The order of the chapters is
according to my progress in the research. Chapter 1 introduces the basic idea of
evolutionary programs, with some traditional methods and theoretical foundations to
conduct a genetic search. This is an explanatory basic description only, providing the
necessary background in this field, without yet touching on ship design at all. Advanced
topics are introduced later, as they are incorporated in the algorithms. Chapter 2 describes
the design model and the objective function which is optimized. It also defines the set of
physical constraints of the system, and thus determines the boundaries of the solution
space. Initial evolutionary searches are discussed in Chapter 3. These first runs are
executed as sensitivity research, to obtain the suitable search parameters, such as intrinsic
probabilities. These runs are conducted without the resirictions of Chapter 2. After
optimal search parameters are determined, Chapter 4 describes some advanced genetic
exploration results, still in the unconstrained solution space. The best mechanism is
chosen to be the final search algorithm. Chapters S describes two different approaches
taken for the constrained search. Finally, in Chapter 6, the optimal ship is analyzed and
compared to the DDGS51.
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Chapter 1
The Concept of Evolutionary Algorithms

Evolutionary methods are probabilistic search engines, based on the mechanics of
natural selection, imitating the principle of evolution. They can be used 1o solve all types
of problems, and not just conduct optimization searches. The principle of evolution was
stated in Darwin’s selection theory in the mid 1800’s, actually long before the discovery of
genetic mechanisms. As described in [8], he did not talk about heredity principles, but on
fusion or blending inheritance, suggesting that parental qualities mix together like fluids in
the offspring mechanism. The theory suffered from serious objections, and only at the
beginning of the 1900’s, was it proved experimentally that hereditary information is
carried by chromosomes, and transferred from parents to their descendants. In evolution,
each specie looks for beneficial adaptations to better confront its environment, and the
experience or knowledge it gains during its lifetime is embodied in its chromosomes.
Better parents have improved chances to survive and breed, and their enhanced inheritance
is then preserved. [6) illustrates' this by an example of rabbits and foxes: the surviving
population of rabbits procreate; statistically, more smart fast rabbits survive, so their
genetic contribution makes the rabbits faster and smarter on the average (because some
dumb slow rabbits also survive just due to luck, and breed) from generation to generation.
Of course, foxes do so as well, otherwise they would not be able to catch the rabbits, and
they would be annihilated.

Evolutionary methods are a generalization of genetic algorithms. GA's were
invented by Holland [5] in 1975, and during the years they have been modified as more
and more research was performed in that field. Some of the new algorithms have no
connection to genetics (inversion operator [6] [7), for example), and the general name of
evolutionary programs was chosen. This chapter introduces the idea of evolutionary
programs (starting with the specific implementation of genetic algorithms and extending to
evolutionary programs), describes its fundamentals, and finally explains why they work. It
starts with some basic issues, and then describes the mechanism of each step in the

! Page 14
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algorithm, The concentration is on the very basic concepts. Other advanced algorithms,
as well as experimental results, are introduced and discussed according to their
appearance, in later chapters.

1.1 The Basic Idea

Evolutionary programs and genetic algorithms adopt the vocabulary of biological
genetics. A potential solution in the exploration process is called a chromosome, to imply
that this solution has some genetic information embodied in it. A chromosome can be a
string of binary numbers or a vector of floating point numbers. The first type is employed
in GA’s, and the second in evolutionary programs. Although [6] distinguishes between
these two, defining evolutionary programs as a generalization of genetic algorithms, they
are not distinguished here. Occasionally, chromosomes are also called genotypes or
individuals. Note the difference in the terminology: in nature, each cell of every organism
carries a certain number of chromosomes; man has 46 of them. The genetic information is
then determined by all chromosomes together. Evolutionary algorithms, however, store
the genetic data in a single genotype. Chromosomes are made up of genes; each gene
represents and controls a certain feature of the specie - the potential solution in the case of
genetic algorithm. FEach gene has a certain location on the chromosome. In order to
imitate Darwin's hypothesis of fusion inheritance in offspring, we say that individuals
hreed, to create new chromosomes. For more terminology, refer to [S], [6] and [7].

The approach is to maintain at any generation a population of potential solutions,
in which each chromosome represents a solution to the problem. Each solution is
evaluated via the mathematical model of the problem, to determine its respective
performance. The model is a tool to compute the value of the function to be optimized.
This function is referred to as the objective function or fitness function. In a maximization
problem, for instance, high performance of a solution is expressed by a high value of the
fitness function. Then, the fittest individuals are selected to live, while the relatively bad
ones die. Since bad chromosomes can still have some good genetic material (in the
terminology of the rabbits, it is possible to observe a fast but however dumb rabbit), the
selection scheme is probabilistic rather than elitist; it does not chose only the best
individuals, but gives better chances to good chromosomes to survive. Not only does a
good solution have better odds to reproduce, it also can be selected more than once. It is
not rare that several chromosomes are selected more than once. In this event we say’that
the individual has been copied. In this way good genetic information is not lost. An elitist
selection can lock on local optimum (say, converge to fast rabbits instead of fast and smart
animals), because it did not use all genetic data (which, completing the analogy, would
have given it information about wisdom also). The next generation must obviously
suggest some new solutions, better on the average according to selection theory. This is
accomplished by genetic operators which transfer genetic information stored in the
selected population to each subsequent generation. The selected population undergoes
changes by means of crossover and mutation transformations. These operators are the
artificial version of breeding. They use the selected parents as their input and output the



1 The Concept of Genetic Algorithms 19

children, the new generation. Crossover serves as an analogy to reproduction. It
combines the characteristics of two randomly selected individuals to create two new
solutions, by breaking the original chromosomes at a randomly chosen (identical for both
parents) location, and then swapping all genes on same side of the split. If, for example,
the parents consist of the four gene vectors (a,b;,¢1,d;) and (a2,b2,¢2,d3), and the random
swap location is the second gene, the crossover operation yields the descendants
(anbicady ) and (asba,cnd)). Note that the process is applied probabilistically, typically
with a 0.25 probability?, so some parents are transferred to the next generation just as they
are, without changes. Mutation is the artificial version of genetic mutation. It randomly
changes randomly selected genes of the chromosomes. In terms of the last example, in an
event that second and third sites are chosen, the resulting individuals are (a;,bs¢,,d)) and
(a2,b2,¢3d3). Crossover and mutation are not related to each other, meaning that it is
possible to mutate a selected-but not crossed-over individual, and vice versa. Once the
next generation is established, the algorithm is repeated until convergence is reached, or
alternatively, the maximum allowable number of generations is passed. During all
iterations the optimal generational value is stored (in a maximization problem, the maximal
value evaluated among all chromosomes). Convergence is declared in the case that
n_converge successive generations give the same optimum value, within a domain of e.
Note that evolutionary programs involve other operators, as well as higher order
crossover and mutation. These are described later.

The evolutionary process is illustrated in Figure 1.1. The first generation has no
heritage to use. Thus, the creation of the population is random. Obviously, the quality of
the first generation influences the process: a good population converges faster to the
optimum. However, it can also lead to premature convergence, in which the algorithm
locks on a swper-individual and concentrates only on it. Methods to prevent such a
behavior are discussed in [6] and [7]; some of them are described later. Since the
algorithm is probabilistic, it is usually executed several times, and the overall best solution
is then picked. Only an extremely robust evolutionary program finds the same optimum in
several runs. It is customary to measure the quality of a genetic search engine by the
average optimum it obtains. Since the algorithm searches in a finite discrete solution
space, and due to stochastic errors in the sampling mechanism of selection, it is possible
that the algorithm will obtain a better fitness in earlier generations than the final optimum
it reports, The chances of this event increase as the mutation rate increases: although an
algorithm has a promising individual, which is selected for the next generation, it is
mutated such that the new fitness is poorer. The search engine then forgets the good data
and starts again, looking for other promising chromosomes. This is a good example of the
effects of the exploitation versus exploration balance problem, discussed in the following
section.

The genetic operators block is placed outside the main stream of the program, to
imply that it is not applied to all chromosomes. It is intentional not to break down this
block into crossover and mutation, because the flowchart depicts the general procedure

* Thus on the average only onc of four pairs of parcnts is crossovered. Sce more details later,
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for any evolutionary program, not only traditional genetic algorithms; the former can
include additional tailored special genetic operators.

Population
Initialization
]
t Store Best
Evaluation Individual
I Fitness
Selection

GenetE_l
| Operators

No

Figure 1.1, Evolutionary program general flowchari.

There is one essential difference between the natural evolution, as suggested by
Darwin, and the evolutionary algorithms. In nature, the environment changes as well as
the species, which try to enhance themselves in an effort to survive. In the allegory of the
rabbits, the environmental changes are expressed by the improvement of the foxes. On the
other side, in the artificial model, the objective function representing the artificial
environment remains the same along the whole process. The fitness function is then said
to be static. Dynamic environment EA's also exist, and may have applications to the ship
design problem. They are not addressed in this thesis.

Any chromosome must correspond to a unique solution. The genes are therefore
chosen as the independent parameters of the problem, the parameters dictating the
problem which is to be solved.

1.2 Exploitation and Exploration Conflict

Genetic operators imitate the procreation process in nature, practically in that they
generate the offspring, and also in the genetic sense. However, from a different point of
view, without the knowledge about biological genetics, they simply provide an exploration
tool, through the entire solution space. Crossover halves chromosomes to explore, while
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still retaining good genetic information. Mutation introduces some seemingly unnecessary
accidental data, but extends the search by suggesting new solutions, still in the vicinity of
relatively good options. Mutation also compensates for otherwise lost genetic data that is
buried in a relatively poor individual: it introduces this data randomly in the next
generation. Recall also that the initialization is random, so we must allow some variability
in the process, just in case the initial population lacks important genetic material. The
result is that the operators basically provide an intelligent search path, rather than just
exhaustively trying random combinations of genes.

Two features dominate any search process through a space of potential solutions.
First, it is expected to explore the space efficiently. Second, the algorithm should exploit
the best individuals towards the optimal solution. These features oppose ¢ach other: if
you want to search all over the space, you would not concentrate on a specific region,; if
you have found a promising region, you would not want to abandon it and search
elsewhere. This issue is referred to as the exploitation and exploration conflict, and a
search algorithm has to balance them. (6] gives two opposite examples to illustrate the
applicability. Random search explores the entire solution space but ignores promising
parts of it. Hill climbing [9], on the other hand, traces only the best solution for possible
improvement, concentrating in a very specific region in the solution space. Evolutionary
methods, however, provide a remarkable balance in this conflict: they look for the more fit
individuals, but use hints from the available genetic data to explore the entire domain.
This provides a multi-directional search, integrating both exploration and exploitation
mechanisms.

Population diversily is a variation of the exploration feature, and is sometimes
used to describe the search ability of an optimization algorithm. The larger the size of the
population involved, the more genetic information is processed. The chances to lose
important genetic data in the initialization are lower. The exploration is more efficient,
since the algorithm has more data to learn from, and holds a better view of the solution
space. Theoretically the best population size approaches infinity; however, the price is in
running time, which cannot be ignored in large models.

1.3 Chromosome Representation

The chromosome consists of the independent parameters of the problem. This
name is used only for complicated models, with an implicit fitness function; in a simple
maximization problem of an explicit function fx, .. .x,), the arguments are the
independent parameters.  Actually, in an explicit problem there are no dependent
parameters. Here evolutionary methods are implemented on complicated models, and this
terminology is kept. The first step after the genes are defined, is to determine the solution
space boundaries. Each gene gets a minimal and maximal value, and the collection of
these restrictions forms the space that is explored. There are problems for which the
boundaries are not known, but usually this is not the case. In ships, if the prismatic
coefficient is chosen as an independent parameter, it customarily varies between 0.5 and
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0.7 for naval vessels, and in any case in the domain [0,1). The resolution of the search is
determined as the extent to which the space is discretized. Some independent variables
may be continuous, while others not. In order to have a finite (though possibly large)
number of optional solutions, the solution space must be limited, allowing only discrete
values for each gene. Resolution is driven by the required accuracy of the optimal
solution: as the precision increases, the resolution must be increased as well. If & decimal
places for the independent parameter values are required (meaning that the final optimum
is expected to be accurate to k decimal digits), and if each of them takes values from a
domain D=[a,,b,), then the respective domain must be cut into

N, =(b -a) 10" (1.1)

equal size ranges. The implementation is that the algorithm can have N,+1 discrete values
for the gene x,. For instance, proceeding with the prismatic coefficient, if a reasonable
precision of two decimal digits is required, k=2, and Equation (1.1) gives 20 sub-domains.
The prismatic coefficient gene, in that case, can take 21 values (0.50, 0.51, ..., 0.70).

Two representations are possible for a chromosome. Genetic algorithms use

binary depiction, in which the chromosome is a binary string. Each gene x, occupies m,
bits, where m, is the smallest integer that satisfies the inequality

(b, —a,)-10" <2™ - (1.2)
and the total string length is Zm,. The decimal value of the gene is decoded by

h, -a, (13
2’". _l ' )

x, = a, +decimal(string, )

where decimal( ) is the conversion function from binary to decimal base.

The binary representation suffers from some disadvantages, especially when
utilized in intense multi-dimensional high precision models. Being a probabilistic search
method, evolutionary programs employ a random number generator, operating at every
generation for selection and genetic transformations processes. The generation of a
random number takes time because the computer calls an external routine. Clearly, the
binary depiction requires a lot of bits, because it can take only the values of 0 or I.
According to Equation (1.2), this number gets bigger as the solution space expands, and
when higher precision is requested. ~ As the length of the chromosome increases, the
process takes more and more time, since a random number is generated for each bit in the
genetic operations stage. Additionally, the length m, of each gene is the smallest integer
that meets Equation (1.2); it is possible to form, in the initialization or by the genetic
operators, an out-of-range gene. This will not happen only if the equality in (1.2) is met.
For instance, an integer gene from the domain [0,10] occupies 4 bits; it is possible for the
string (1111)2=15,0 to be obtained, which is out of the solution space. In such cases a
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recovering algorithm is written, This takes additional running time, because it requires
new random number generations.

Evolutionary programs therefore use floating number representation. The
chromosome takes the form of a vector, whose members are the genes. Its length is
shorter than in binary form. The representation space is also closer to the problem space:
two representatively close points are also close in their fitness performance. In binary
depiction two close chromosomes can be totally remote. Floating number representation
also offers accuracy for free, with no payment in chromosome length, because the
computer keeps the data internally. The exploration with this representation is
continuous, because the gene can have any value within its limits, and the issues of
resolution discussed earlier are not of concern.

Genetic algorithms treat the chromosome logically rather than mathematically.
Even if the individual has numerous genes, binary representation looks like a long string of
0’s and 1’s. Once the length in bits of each gene is determined, there is no longer
distinction between them. In floating number representation, each gene remains separate
from his peers during the whole procedure.

1.4 Selection

As the evaluation of a certain generation is completed, members of the population
are selected to survive based on their relative fitness. The selection process assigns better
chances to relatively better individuals. In Section 1.1 the nature of this scheme is
discussed; it must allow some chance of survival for poor chromosomes also, in case they
have some good genetic material. The selection scheme suggested by Holland [5] is
referred to here as classical selection. [6) calls it the stochastic universal sampling
method. There exist other selection methods, described in principle in [6]°, with their
advantages and drawbacks. In this section only classical selection is discussed, Chapter 4
describes some other selection procedures which are used in the research.

All the selection schemes are conducted by means of a roulette wheel. This term is
intentionally used, to imply that the selection is probabilistic. The wheel has number of
slots equal to the population size pop_size, one slot per each individual. The probabilities
of survival are represented by the area of the slots, sized according to the fitness of each
individual, and are given by

P = Jitness(x,)

- i
’wlp - Sitness(x,)

(1.4)

3 Sce Section 4.1, page 56.
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It can be seen that as the fitness of a certain chromosome increases, so does its probability.
A typical roulette wheel is illustrated in Figure 1.2, The poorest individual gets the
narrowest slot, and the best one owns the widest slot. The probabilities are sorted
clockwise in a descending order, but this is not mandatory in the process.

Figure 1.2, Roulette wheel for a population of 30 individuals.

The wheel is spun pop_size times, and at each spin one chromosome is selected to breed.
The artificial spinning is performed with the definition of the cumulative probability,

9,=2.P (1.5)

This function assigns to each individual a window, analog to the slot of the wheel, its
width expresses the probability of selection, exactly as the slot does. The cumulative
probability varies between the values of /°; (for the first individual) and 1 (corresponds to
the pop_size chromosome). The window boundaries are ¢,.; and ¢,, and the width of the i
window is g-¢.,. Instead of spinning the wheel, the computer artificially rotates the
marker. It generates pop_size uniformly distributed random numbers between 0 and 1,
playing the role of the marker: the chromosome for which the number falls in its window is
selected for reproduction. The process is repeated pop_size times, such that pop_size
individuals, not necessarily distinct, survive and continue to the next generation. Better
chromosomes have a better chance to be selected more than once, in agreement with the
survival of the fittest idea: better species have a better chance to preserve their heritage.

1.5 Crossover and Mutation

Some of the selected chromosomes undergo genetic transformations, and the rest
are simply copied and are not changed. Genetic operators imitate natural breeding, and
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are the tools used to transfer genetic heredity from generation to generation. Any genetic
operator is expected to direct the exploration mechanism towards a wise effective search
path. This section describes only the elementary operators.

Crossover, the first operator, mates two randomly selected individuals (those who
passed the selection filter) and makes them parents. In the new generation they no longer
exist, but their heredity lives in their children. Depending on the genes of the parents, the
offspring can be similar or totally different, poorer or hopefully performing better than the
parents. The decision on whether a pair of chromosomes is crossed-over or not depends
upon the probability of crossover Pc. This predefined parameter determines an expected
value of Pc - pop_size chromosomes which, on the average, undergo the crossover
operation, A pair is chosen if a uniformly distributed randomly generated float number,
from the domain [0,1], is less or equal to the crossover probability. The bigger the
probability, the more pairs are mated to produce new offspring. After a pair is selected for
crossover, a second integer random number is generated, this time from the discrete range
[1,m-1], where m is the total length of the chromosome (number of bits in binary
representation or number of genes in floating number representation). This number
indicates the position of the split, by which genetic material is swapped. [6] denotes this
number by pos; two parents (a,,a; ... Gpos,Qpos=1 +.. Aw) and (b1, b2 ... bposbposes ... bn) give
birth the children (a,,a; ... Apos, bpos+s .. bn) and (b1, by ... bposy Aposer ... Am).

Mutation, the second fundamental operator, randomly changes bits of the surviving
individuals. The mutation is conducted at a muration probability Py, known also as the
mutation rate. For all existing bits, belonging to either copied or crossed-over individuals,
a random float number from the domain [0,1] is produced. If it is less or equal to Py, the
bit is mutated. In binary representation, the mutation replaces a 0 by | and vice versa, for
a float number representation, the operator replaces the gene by a new random number
from the domain of that gene, [a,b/].

Note that the application of crossover and mutation is different for binary and
floating number representation. In binary form, the chromosome is one long string, with
no distinction between the various genes. The operation position can therefore occur in
the middle of a gene. In the second form, all operations can take place only between
genes. This is not important when dealing with crossover, because the net effect is
identical. In terms of mutation, however, it can not be ignored. If the same mutation
probability is used, say some high amount, binary representation will be mutated a lot
more, simply due to the fact that it is much longer than the floating number form. The
result in such a case is devastating: instead of a gentle mutation, intended to investigate at
a near point, the offspring is thrown far away from the original location in the solution
space. Similarly, if a low probability is used, the chances to mutate a floating number
chromosome are too poor to be practically efficient. In order to have a uniform
comparable definition, for both representations, the probability of update Pyp is
introduced here. It expresses the chances that an individual is mutated at least in one
bit/gene. (1-Py) is the probability that a bit (or the whole gene in floating number
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depiction) is not mutated; (1-Px)" is the probability that none of the bits is mutated. The
relation to the probability of mutation Py, is thus

Pop =1-(1=Py)" (1.6)

As an example, consider a two-dimensional chromosome, each gene represented by six
bits in the binary form. A desired update probability of 0.3 yields, by the reversed
Equation (1.6), mutation probabilities of 0.029 for the binary case and 0.163 for the
floating point number depiction.

Crossover and mutation probabilities are two of the most important parameters of
the search engine. The ideal balance between exploitation and exploration depends on
their choice to a great extent. Each application requires a different tune of the parameters,
depending on the type and behavior of the problem. Excessively high crossover
probability shifts the algorithm from concentrating on high performance individuals and
low probability ignores the search directions the genetic material can provide. An
exaggerated mutation rate prevents convergence, because the algorithm loses the good
chromosomes when reproduced for the next generation. A low mutation probability puts
all the attention on exploitation while avoiding the rest of the solution space. Very often
the rates are varied during the progress of the program, and the operators are classified as
dynamic. At the beginning, the algorithm concentrates on exploration, in order to avoid
premature convergence. As the process advances, the rates are decreased so the computer
can search at the vicinity of only good solutions: at that stage it is believed that other
portions of the space have nothing to contribute.

1.6 Why do Evolutionary Programs Work?

While the logic behind the evolutionary procedures is briefly discussed in Section
1.2, there are some theoretical foundations behind this approach. The theoretical
explanation is developed in [5] for binary representation, but in conjunction with the
perceptive view, it can be extended for all evolutionary representations. Basically,
Holland [5] showed that fit gene groups, which he called building blocks, are transferred
from generation to generation in exponentially increasing numbers. The optimal solution
is found by joining the best building blocks together, each contributing its expertise. The
exponential behavior insures rapid convergence, much better than random search. This
section explains why genetic algorithms work. The same arguments with additional
developments can be used for the general case of evolutionary programs.

1.6.1 The Schema

A schema is a template representing similarities among a population of
chromosomes.  Schemata are used to analyze the effects of genetic material
transformations, performed by the genetic operators, on individuals in the populations.
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Not only does this notion provide a chromosome classifying tool, it also allows
investigation of the relationships between several genes in an individual.

A schema is constructed by introducing a don 't care symbol, denoted by ‘*’, into
the binary alphabet. The don’t care sign represents either ‘0" or ‘1°. Therefore, a schema
represents all strings that match it in all positions other than those occupied with ‘*”. For
example, the six bit schema (* 11000) represents two individuals, (011000) and (111000),
and the schema (* 1100*) describes four strings, (011000), (011001), (11100V) and
(11100]1). Each schema matches 2" strings, where r is the number of don’t care signs in
the schema. Similarly, it can be shown that from an opposite point of view, each specific
individual of length m can be represented by 2" schemata. In a population of pop_size
optional solutions, there exist between 2" and pop_size-2" different schemata. Assuming a
considerably short chromosome of 30 bits ([6] describes a 3000 bit long individuals), and
typical population size of 20 solutions, between 1073741824 and 32212254720 schemata
may be represented.

The order o(S) of a schema is defined as the number of fixed positions (non ‘*’
signs) presented in the schema. It expresses the specialty of the schema: as the order
increases, less don’t care signs exist, and therefore less individuals are represented by the
schema. A schema of order m does not have any don’t care symbols, and therefore
matches only one specific chromosome. The defining length &) is the distance between
the first and last fixed positions. For instance, the schema S=(1* * * 01 * %) has a defining
length of &S)=6-1=5. It expresses the compactness of genetic information stored in the
schema. The nomenclature of [6] is adopted here. Both terms are used to compute the
probabilities of survival of a schema during genetic operations.

1.6.2 The Schema Theorem

Continuing with the terminology of Michalewicz [6], the number of strings at
generation / matched by a schema S is denoted by &(1,5). The average fitness of all these &
chromosomes is

Z, . fmcss(x,

FOS =009

(.7

Without repetition of the entire development, it can be shown (and is shown in [6], for
example) that in the next generation, the number of matched chromosomes is

F(, S (S
£ +1,8) 2 &1,8) 1("’( )) ( =P '—”(_—)—()(.S) P, ) (1.8)
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Here F(r) is the generational average fitness for the entire population, including those
individuals not represented by the schema S, at gereration /. Pc and Py, are the
probabilities of crossover and mutatior,, respectively. The parenthesized term is associated
with the probability of survival of the schems S, This term is constant for a specific
schemata and genetic system: as the order and defining length decrease, this term
increases, The number of matched individuals at the next generation grows if the
condition

F(4,8) é(S) ,
‘fvr'('-”c'r.,'*‘)“"”*f)>' (9

is satisfled. This requires that the schema offers fitness F(1.5) higher than the cverall
average generational fitness /@ (7). Assuming that the schema remains above average by

€%, such that Fy)=(1+e) F (), the number of matched individyals increases
exponentially, ‘

(o, 88
§(6.5)2 £(0,8)- (1 + ) .(1 - Pl o(.s)-pd,) (5.10)

The meaning is that a promising - above average - schema is sampled in ap exponentially
increasing amount. At the end, the population is saturated with individuals matched by the
highest average schemata. Equation (1.10) is the mathematical representation of the
schema theorem, Copied from {6}, short, low order, above average schemata recejve
exponentially increasing trials i subsequent generations af a genetic algorithm, Such
schemata are called the building blocks of the search,

The schema theorem and the terminology of order and defining length introduced before
are related to the operators of crossover and mutation. Short schemata have less chance
to be destroyed during crossover, and similarly low order schemata have less chance to be
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Chapter 2
DDGx Self-balanced Ship Design Model

Ship design is a tremendously complicated optimization problem. It involves a
large number of parameters, and each influences the other to an unknown extent. Aside
from the modeling problem, which is discussed here, there is still the philosophic argument
of the definition of the optimal design. For a naval ship, it can be the fastest vessel, the
least susceptible one, the one that offers the best seakeeping ability, or the one with the
lightest hull. Large projects may define an integrated decision tool, which incorporates
more than one consideration with respective weights to provide an overall grade for the
design. The most common criterion is the cost of the project, given minimum
performance constraints. Cost is traditionally modeled as a function of the weight of the
vessel. The majority of cost models, particularly in preliminary design, are weight-based.
This research adopts this simple approach: the best ship is considered to be the lightest
one. To measure the amount of lightness, payload weight fraction is used, determined by

= 21
"W &b

where Wp is the weight of the military payload. The design problem is thus a
maximization problem, with the payload fraction as the fitness function. The evolutionary
algorithm is required to find the ship with the highest payload fraction.

This chapter describes the mathematical model used in the search process to
balance the ship design variants and compute the payload fraction. The evolutionary
algorithm uses this model to evaluate the fitness of each chromosome. The model is based
on the MIT 13.412' course model, known as the math model. The math model is a very
simple, yet effective model, developed at the MIT Ocean Engineering Department in the
mid 1980’s, and improved with use. It is used to deinonstrate the process of designing a
feasible ship, before studying the more complex U.S. Navy ship design computer program,

! Principles of Naval Ship Design
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ASSET?. It employs scientific methods as well as empirical expressions, based on
regression analysis of existing ships. A similar process is used in ASSET, but ASSET has
many options, stores more data and provides more detailed results. In the math model, in
which only one unique set of empirical expressions exists, the accuracy of the output
depends on the similarity of the new design to the ships used in the regression analysis; a
suitable one yields good results, comparable to ASSET. In other words, the math model
is capable of giving good results for a specific class of ships. This was proven
experimentally in the 13.412 third project.

The model is written in Mathcad™ plus, a special spreadsheet offered by
Mathsofi®. This software has all the advantages of a regular spreadsheet, including
programmability, but also allows the user to perform analysis, add graphics and
annotations as with pencil and paper, using real math notation. The ability to visualize the
expressions in the traditional way was very helpful during the construction of the model,
this representation allows fast changes and corrections, without the neeu of tedious
repeated compilations. The original MIT math model is also written in Mathcad. The
model was called the DDGx maodel, since it is used to design ships similar to the U.S.
Navy’s DDGS51. After the model was completed, it was converted to Microsoft® Fortran
90 language, because Mathcad's competence is limited, in programmability, speed,
problem size and complexity. The converted model is referred here as the Fortran model.

The original model was substantially changed. It is organized in a more rational
order, is friendlier and more sophisticated. All required input was transferred to the head
of the model, and all desired output to the end. In the old model manual input (by means
of graphs and tables) is required at each iteration; in the modified model all required data
is read directly, from data libraries, by the computer. The Fortran model also balances the
weight and area requirements automatically, and for this reason is also called the self-
balanced model. Certain algorithms demanded some corrections and modifications,
usually because the MIT model was written for the design of frigates, such as FFG7. The
updated DDGx Mathcad model can be used again in 13.412, and its advanced
per:ormance allows the student to spend the time on real design issues.

The most important modification is in the regression analysis. Since in this work
the idea is to compare the optimization results of the genetic search to DDGS5I, all
empirical expressions in the model are calibrated to reflect this actual Shlp. when its
parameters are input, Although it is realized that data in the ASSET match run® (executed
by NAVSEA) for DDGS51 is not exact, the accessibility it allowed and the absence of
unclassified data, together with the believed relatively high accuracy, convinced me to
treat it as real. The hypothetical expressions in the model are tuned to give the same
numbers. As a first choice, empirical expressions used in ASSET were taken. If they
gave incorrect results, even when calibrated, the original expressions were chosen and

? Advanced Surface Ship Evaluation Tool
3 Run exccuted for an existing vessel, in order to check and update the algorithms of the program. Some
discrepancics are corrected only through P&A table.
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tuned. Note that in any case, only the constants of the expressions were changed, and not
the general structure. For instance, linear functions remained linear.

2.1 Design Requirements

When a new ship is to be designed, design requirements are specified by the
customer or user. These demands are a set of constraints, sometimes qualitative, which
the ship must satisfy. In the exploration process of this research only hull parameters (as
explained in Section 2.3) are investigated. The requirements are predefined, and are
treated as given.

For DDGS51 comparability, its design requirements are duplicated in the DDGx
model. All values are taken from the ASSET DDGSI match run. Endurance range is
3807.6 nm at 20 knots, average stores period is 45 days (ASSET distinguishes between
various types of stores, and allows assignment of different values in a four-dimensional
array), and average deck height (ASSET has different heights at hull and deckhouse,
actually, the hull deck height is a computed number, not a given) is 10.66 fcet. All
explored ships have the same 922.8 Iton nilitary payload as DDGS1, described in detail in
Appendix C. Data for the weights, locations, area and electrical requirement is taken from
ASSET payload and adjustments table. The crew is assumed to have the same size, 26
officers, 315 enlisted plus 36 additional accommodations. It is recognized that both
center of gravity locations and manning size differ for two different hulls: smaller vessels
have lower visual signature and smaller crew, and vice versa. In a real smaller vessel -
which would hopefully be found - the payload is lower, and the crew smaller. Therefore,
the calculation of stability and manning spaces is conservative. In reality the stability
would be better and the required area smaller.

The HM&E"' system is predefined for all runs, identical to DDGS1. Deckhouse
and hull are made of steel, with no roll fins. Four standard LM2500 gas turbines drive
two controllable pitch propellers through mechanical transmission. The eclectrical plant
consists of three DDA 501-K34 generators, and a continuous internal upper deck exists.
All hulls have an SQS-53 sonar dome. Sustained speed - defined as the speed at 80%
power - threshold is set to 29.96 knots, the speed DDGS51 attains according to the match
run. This speed is in fact a constraint, and is further discussed latter in Section 2.12.1.

2.2 General Structure

Computer models for ship design are not new, and appeared immediately after
computers became available for the common engineer. Reed [14] wrote a Fortran code in
1976, for his Masters thesis at MIT, with a general structure similar to the DDGx model.
The general structure is described in Figure 2.1.

4 Hull, Mechanical and Elcctrical
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Figure 2,1, DDGx self-balanced model flowchart.

The calculations are performed in separate modules, each uses data from its preceding
modules, and creates data for the utilization of its succeeding modules. The modules are
drawn in Figure 2.1 off the main stream of the process, since they are written as
subroutines in the Fortran 90 model. In the Mathcad model all modules, except for one,
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are located in the main program. The Mathcad model, with the parameters of the DDGS1,
is shown in Appendix D. The fortran self-balanced model is shown in Appendix F. As
can be seen in the flowchart, the computation is performed by the trial and error method.
After the desired ship parameters are substituted, the calculation repeats itself iteratively in
two loops, until weight and total area convergence is achieved. In Figure 2.1 the genetic
notation is used, as the parameters of the ship are represented by a chromosome. Each
parameter is considered as a gene.

Two modules are outside the iterative weight loop - space and initial stability
modules. The latter is outside both loops. As described in sections 2.10 and 2.11, the
execution of these is not required in the displacement balance procedure, and in order to
save in running time, is executed only after weight convergence. Area balance is achieved
by iterative adjustment of the deckhouse volume. Reed [14] used a raised deck to balance
the area requirement,

2.3 Ship Characteristics

Ships evaluated in the DDGx model are uniquely defined by six independent
parameters - the genes - together creating the chromosome, as shown in Figure 2.2. The
first four are adopted from the math model, while the remaining two are new. The
chromosome uniquely defines a specific ship.

Flgure 2,2, The chromosome.

Naval architecture parameters are defined in [15] and [16], and are not discussed here. Cp
stands for the prismatic coefficient, Cy for maximum section coefficient. Cy, represents
the displacement to length dimensional ratio, in [lton/ft'),

(:!AL - WFI.

= : 2.2
(001L,,) 2

where Wg, is the full load displacement. Gene Cyr describes the beam to draft ratio,
Crpio, the hull depth coefficient, defines the non-dimensional ratio of the length on
waterline to the depth D, and finally, the raised deck coefficient Cpy defines the location
of the raised deck. The interpretation of the last two genes is best illustrated by Figure
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2.3. The first five genes describe the whole hull, and the last one, Cgp, is used to
determine the length Lgp,

Lep = Crplan (2.3)

This length, together with the raised deck height Hz, determine the hull volume which is
eliminated from the full hull. A raised deck coefficient of zero implies that no raised deck
exists. In all runs a constant raised deck height of 9.5 ft, as in DDGS1, is used.

owef o owiL

AP (1 FP

Figure 2,3, IHull determination,

Reference [17] describes a method to construct the actual body plan of the vessel
as a function of the first five parameters used here. It uses boundary conditions of some
existing ship (ASSET has several options) to create the hull lines. In our case DDGS5I
parent boundary conditions should be employed.

Note that only the hull is defined by the chromosome, and not the superstructure.
Since only space-balanced ships are considered feasible, the volume of the deckhouse is a
function of the hull, and in fact for a certain chromosome only one unique deckhouse
volume is valid. The size of the superstructure is found by the self-balanced model as
described in section 2.10. Not all genotypes yield feasible solutions, since there are
physical constraints on the shape of the ship and the size of the superstructure. Section
2,12 lists these limitations and deals with them.

2.4 Main Dimenslions

At the beginning of the model, see Figure 2.1, an iterative process for the full load
weight and total area is established. The computer guesses the displacement Wg, and
deckhouse volume V), in the first iteration, or simply uses the values computed in the last
one. In each iteration, the main dimensions are calculated according to

W,
L,, =100 (A (2.4)
*AL

A
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CBITVFL

B= |7 25
CoCrlun @3
where V, is the wetted full load volume, and,
v
T=——5— 2.6
CpCylyy B 26)
The depth is computed as in Figure 2.3, by
L
D,y = Cl:; 2.7)

Here Cp, is used, instead of C,,,, , for abbreviation. Similarly, Car will be used instead
OfCB/r.

2.5 Resistance Module

The resistance module evaluates the drag of the ship at three speeds: endurance,
sustained and maximum, Results obtained by the resistance module are used to check if
the sustained speed requirement is satisfied, compute the fuel weight and tank volume.
The calculation is conducted according to DDS 051-1 [18], and uses Taylor Standard
Series theory [19], with Gertler reanalysis [20]. Useful data was found in the ASSET
manual [21], which describes the algorithm ASSET uses. For the sustained and maximum
speeds, the procedure is iterative: the computer finds the respective speed by trial and
error, until the total drag is balanced by the available power installed aboard the vessel.
The algorithm is almost identical to that employed in ASSET, and consequently gives very
close results.

2.56.1 Frictional Drag

To calculate the wetted area, [18] provides the chart shown in Figure 2.4, as a
function of prismatic coefficient Cp and beam to draft ratio, Csr. [18] neglects
dependence on the volumetric coefficient Cy,

_Vu

C ==~
YLy

(28)
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The graph assumes a TSS’ hull, but experimentally gives good results for other hulls.
Figure 2.4 shows only a portion of the original DDS 051-1 graph, relevant to fast naval
ships.

[ ——BT=28
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Prismatio coefficlent

Figure 2.4, IWetted area coefficient from [18).

The surface area is calculated by

Stss = Copss \/VFL Ly, (2.9)

It is possible to sample these curves and build a library file from which the model reads
and interpolates the data. However, [21] performed regression analysis, and uses

Siss = .s'rss(Al'AJ-Asacr)\lvnlﬂu (2.10)
Where

Cyss = Ay + ACp + A,C}

A, = 7028 -2331-C,y +0299-C3;
A = -1145536:C,y - 0704-C},
Ay = 6913-3419.C,, +0451.CL,

(2.11)

Although [18] uses a non-constant correlation allowance of

$ Taylor Standard Serics
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0008289
C, = ~ 000064 (2.12)
V “HL

The customary fixed value of 0.0004 is used in the DDGx model, because this number is
used in ASSET match run. The frictional drag coefficient is calculated per 1957 ITTC®,

0.075
Cp = ; (2.13)
[tog(R,)-2]
where Ry denotes Reynold’s number,
L,V
R, = Jl;——- (2.14)
The frictional resistance is finally,
l \ \ al h )
R, =§p(.ss + S NCp +C V- (2.15)

In Equations (2.14) and (2.15) V is the speed, and Ssp is the wetted area of the SQS-53
sonar dome. Note that Ssinstead of Srss was used, assuming them to be equal.

2.5.2 Residuary Drag

Unlike the computation of frictional drag, for which the method described in
Section 2.5.1 is commonly adopted for all applications, residuary drag can be calculated
by various methods, each designated for different hull types. ASSET offers four options
for residuary resistance, all explained briefly in [21]. In the DDGx model the reanalysis of
Gertler [20] is utilized. First, among the four algorithms in [21], this is the only one which
does not require a detailed input, typically not known at this design stage. Secondly, the
same procedure is employed in the DDGS1 match run of ASSET.

Historically, Gertler conducted his experiment at David Taylor Model Basin at the
end of the 1940’s and beginning of the 1950’s, because the results of Taylor [19],
obtained in the same institute approximately five years earlier, are applicable for a narrow
range of hulls, for a specific beam to draft ratio. Gertler stayed with TSS hulls, but
experimented with them for three different beam to draft ratios. He constructed a large
set of graphs for the calculation of the residuary drag coeficient, being a function of four
parameters: beam to draft ratio, prismatic coefficient, volumetric coefficient and the
dimensional speed fo length ratio,

¢ International Towing Tank Conference
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R= JIK": [knots | \[f1] (2.16)

Each chart gives residuary drag coefficients as a function of speed to length ratio, for a
specific prismatic coeflicient, volumetric coefficient and beam to draft ratio. Sampled
numerical data, extracted manually from the original curves, was taken from [14].
Unfortunately, for high volumetric coefficients, Gertler checked only a narrow speed to
length range, which turned out to be insufficient for fast Naval ships: for C' of 0.003,
0.004 and 0.005, maximum available speed to length ratio is 1.3 knot/ft®’; for - of 0.006,
it is even lower, 1.0 knot/R%*. Only data for volumetric coefticients of 0.001 and 0.002 is
complete. The space domain for those four parameters is listed in Table 2.1.

Parameter Minimal value | Maximal value | In steps of
BT 2.25 3.75 0.75
Cp 0.48 0.70 0.02
C 0.001 0.000 0.001

R {kntp™) 0.5 2.0/1.3/1.0 .

Table 2,1, Gertler original reanalysis space domain.

Three extrapolation rules are considered here to extend the Gertler results:

e Linear extrapolation, in which data is extrapolated from the closest lower volumetric
coefficient curves, for the same prismatic coefficient and beam to draft ratio.

o Constant spacing extrapolation, in which new data is created for the same Cp and B/T'
by assuming that at each speed to length ratio the value jumps in constant quantum,

Co(CE RY = Co(Ch o R) +[Co(Cl R) = Co(CL R (2.17)

o ASSET extrapolation [21]. The drag coefficient corresponding to the highest speed to
length ratio available from Gertler for the required volumetric coefficient C/ is

Co(CJLRL), where R), <R. The drag coeficient for the same speed to length

max max
ratio R/ but for the closest complete volumetric coefficient (', curve drag

coefficient is denoted by C, (C,,R!..), and for the required speed to length ratio & by

mas

Cr(C,.,R) . The extrapolated drag coefficient is:

Co(CHLR!
_ﬁ._(__L_L‘) . CR ((fl" ) (2.18)

(,‘ (1£,R = A v
(Gt R) -'R(("'"R'{‘“)
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These methods are illustrated in Figure 2.5 for a selected case of beam to draft ratio of
2.25 and volumetric coefficient of 0.003 (for which data is available only up to speed to
length ratio of 1.3 knot/R*?).
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Figure 2.8, Extrapolation rules for Gertler reanalysis data.
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Figure 2,6, ASSET Extrapolation rule for Gertler's reanalysis, B/T=2.25, Cp=0.48.
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It can be seen that the linear law forms a non-smooth curve, with non-continuous
connection. It also seems to give exaggerated drag coefficients. The remaining two
methods, on the other hand, look smooth and natural. Because they give similar results,
and in an effort to duplicate ASSET results, the latter was chosen for the DDGx model.
Figure 2.6 describes the complete extrapolated results, using the ASSET approach, for a
specific B/T'and Cp. There are two curves for volumetric coefficient of 0.006: a solid and
dashed line (denoted (7" =0.006). The extrapolation for this parameter departs from [21],
since the curve of this method looks inappropriate. In the DDGx model, values fcr
C;=0.006 are extrapolated twice, using the already extrapolated curve corresponding to
C,=0.005. These are drawn in the solid line. The original curve is dashed. In this way
the curve looks more physical and consistent. Complete Gertler residuary drag coefficient
extrapolated tables appear in Appendix E. The DDGx model reads the coefficients from
these tables.

In order to accommodate hulls with different beam to draft ratio (and not those
discrete values tested by Gertler), the form factor, given by

4
FF = 3(Car =3) (2.19)

is introduced. Values for the drag coefficient are read for all three bean to draft values,
with linear interpolation (or end extrapolation if required), and then interpolated again by

(3 _ (O
Crrss = C™ + FF"Lz—R +FF° _Lf__z_'* - (2.20)

This is an additional departure from ASSET extrapolation, which conducts the procedure
by four different sub extrapolations, and then combines the results. The simpler approach
of the math model is adopted here. The residual resistance is computed by

] Ve o \
Rypgs = Ep (S5 +85))CrrssV~ (2.21)

However, the DDGx hull is not strictly a TSS daughter hull. In order to account for this
deviation, the DDGx model uses the concept of Worm curve. By this approach, the
residuary drag is modified by

Ry = Ry WCF(R) (2.22)

Where WCF is the worm curve factor, This idea is investigated in [22], in an effort to find
an ultimate definition or rule when approaching the problem. The authors conclude that
the best and safest way is to perform resistance experiments. Nevertheless, assuming hull
similitude with DDGS51, worm factors in the DDGx model are taken from the ASSET
match run, and the assumption is that the error for different hull parameters is small,
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Additional suggestions for values are listed in [21). The model considers the sonar dome
as a part of the hull, not an appendage; the data in ASSET corresponds to that
assumption. Figure 2.7 plots worm factors for DDGS51.

............................................................................

WCF
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°
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Flgure 2.7, IWorm factors for DDGS 1.

For comparison, the default Worm factor of [21], for which only the hull (without any
dome) is considered, is also plotted. Technically, the values are stored in a library file, and
are read by the program. Linear interpolation is performed whenever needed.

2.5.3 Effective Horsepower

The bare hull resistance Rr is the sum of the frictional and residuary resistance,
Equations (2.15) and (2.22). The respective power is therefore,

Pewn = ReV (2.23)
To this quantity appendages drag and air drag are added.

2.5.3.1 Appendage Effective Power, The algorithm for appendage drag adopted in the
DDGx model is quite primitive. ASSET, see [21] and [23], uses a whole set of empirical
expressions for each main appendage, such as propellers, rudders, and more. Reference
[18] provides Figure 2.8 to estimate the additional drag induced by the appendages. The
chart is based on data of existing U.S.N, ships. [18] gives separate charts for single and
twin screw vessels, but only the second is shown here. As can be seen, there is a clear
distinction between fixed and controllable pitch propellers. This coefficient accounts for
all regular appendages in the underwatey hull, the propellers in particular. Note that the
coefficient has the units of [10° hp/fi’knot’). [18] states that it does not take into
consideration special or big items, such as roll fins or sea chests. These need a separate
calculation.
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Figure 2.8. Appencages arag coefficient for twin screw ship, from [18].

A simple curve fit for a CPP equipped vessel results in,

Cp.pp[107° }'—’/%’—, =-4-107° L3, [} +9-10° L} [ /1]~ 0.0081L,, [ 1]+ 50717 (2.24)

[18] and [21] introduce the propeller coefficient Crrop, which has the value of 1 for twin
screws and 1.2 for a single shaft. The propeller diameter is empirically estimated by [18},
[21] and [23] together,

D, = (064T +0013L,,)+ Cprop (2.25)

Equation (2.25) does not represent the actual diameter of DDG51, but is considered to be
an acceptable estimation for early design stages. In the case of roll fins [18) recommends
to add 2.5% of the bare hull effective power for each pair. Total appendage power is
given by

Peipp = LIILDI’CDJI'I’V’ + Py (2.26)

The original expression in [18] includes a term for a sonar dome, but in this model the
dome is considered as a part of the hull, and its contribution is computed in the residuary
resistance calculation (Section 2.5.2). During the calibration of the model, to adjust the
predictions to those of ASSET, large discrepancies were observed in the output of
Equation (2.26). The simplicity of the model relative to the ASSET procedure makes this
understandable. A correction factor of 1.23 is incorporated, equating the appendage
effective power at 30 knots (sustained speed of DDGS51) of the DDGx model with the
prediction of the match run. Thus,

Peypp = 123Ly,; DPCDAI‘PV) + Ping (2.27)
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The calibration relative to the sustained speed condition improves the sustained speed
prediction of DDGx model, but has the disadvantage of incorrect resistance values in the
endurance mode, which are used to compute the required burnable fuel weight. Because
there is a limit on the sustained speed (refer also to Section 2.12.1), the results are
calibrated at this speed.

2,5.3.2 Air Effective Power. For the estimation of the frontal area above water line,
Figure 2.9 is used.

Water line.

Figure 2.9, Frontal area calculation.

By simple geometry, and additional 5% for masts and external equipment,
Ay =105(D,, -T+3H,.) B (2.28)

The effective air power is
l
Py = EPAC.M AV’ (2.29)

where, as suggested in both [18] and [21], C,4=0.7.

2.5.3.3 Total Effective Power, Using Equations (2.23), (2.27) and (2.29), the overall
effective power of the ship is

Per = Py + Pyypp + Py (2.30)

Finally, for design purposes, a power margin factor is taken, for which
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EHP = PMF - P,, 2.31)

The DDGx model utilizes a power margin of 8%, as in the match run.

2.6.4 Power Balance

The DDGx model assumes a constant propulsive efficiency of 0.67. Although this
coefficient varies in the ASSET match run between this value and 0.70, where it increases
as the speed decreases, it gives good results for the relatively low endurance speed. [25]
suggests a set of empirical expressions for the propulsive efficiency, as functions of the
beam, the draft and the speed, but this is not adopted here. The shaft power is, by
definition, where PC stands for the propulsive efficiency,

LHP

SHP = PC

(2.32)

A typical mechanical efficiency of 0.97 is chosen. In the sustained speed condition the
resistance is increased by 25% (equivalent to 20% reduction in power) for fouling and
rough sea state. The required installed power is

1.25SHP;
mee = .. (2.33)
n
For the maximum speed, the coefficient 1.25 in (2.33) is omitted,
SHP,,..
Pasg == (2.34)

These power requirements must be balanced by the propulsion engines, which supply
Pgyay horsepower, Recall that the computer balances between Ppy4v and (2.33) or (2.34)
in an iterative process, with the speed ¥ as the variable. In Mathcad™ this process is
executed manually, but the Fortran model performs it automatically, using an intrinsic root
finder based on the bisection method, see [26) and [27]. A relative error lower than 1% is
required for convergence.

2.6 Avallable Space Module

The available space module assesses the total existing volume in the ship. The
output of this module is used to estimate the electrical load (which is a function of the
volume of the compartments), the total weight and center of gravity of the vessel, and to
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check the space balance, versus the space requirements. It uses the results of regression
analysis and engineering tools.

The underwater volume is the full load volume, derived from the full load
displacement. The vessel's sheer line is a continuous curve passing through three points
on the main deck: The two perpendiculars (stations 0 and 20) and midship (station 10).
The depth at midship is one of the principle parameters of the hull, and is derived by
Equation (2.7). The remaining depths are calculated per DDS 079-2 [28], the Navy
standard for freeboard requirements,

D, =2.011827T - 6.36215-107° Lj, +2.780649- 107 L,

I (2.35)
Dy, = 00141, (2125+125:107 Ly ) + 7

The respective freeboard at each station, assuming zero trim, is obtained by subtracting
the draft from the depths. The projected side area of the hull is given by

A = Ly Fy+4F, + 1
"o = 098 6

(2.36)

where the trapezoidal rule is employed. A correction factor of 0.98 is included, to reflect
the average side length (generally the waterline length is 95% of the overall length). The
average freeboard and depth are, respectively,

Fv = AI'RO
W Ly, (2.37)
D, =Fu+T

The average depth is used to calculate the cuhic number CN. This parameter commonly
serves as a statistical measurement of the hull, and is used many times in regression
analysis as a parameter. The DDGx model utilizes the cubic number for weight and
volume estimation. By definition,

= — 38
o (2.38)
Waterplane coefficient is taken from [15],
C, = 0278 +0836C, (2.39)

The above water hull volume is computed according to the illustration in Figure 2,10,



2 DDGX Self-balanced Ship Design Model 46

|
"_:55 ,i”[w’
wiL - W

Figure 2.10, Above water hull volume calculation.

As in the DDGS 1, all explored hulls have a 10° flare. Hence, by basic trigonometry,

View = I:.»l:l”a"(lou)l‘ul + Ly BC, 1, (2.40)
As shown in Figure 2.3, a certain volume should be eliminated from this volume,
representing the presence of a raised deck. The breadth of the hull at main deck and first

platform are then calculated; the first, Byuy, is the original maximal breadth, and the
second, Byor, is be the breadth at the raised deck area. Using Figure 2.10,

By, = 2F . tan(10°) + B

) (2.41)
Biow = By = 2H ytan(10%)
Therefore, the hull lost volume due to raised deck is
B + B0
Vi = Coplanr '—\Lz__m—' Hy Gy (2.42)

In (2.42) an average breadth is used. Recall that Hg in (2.41) and (2.42) expresses the
raised deck height, and is a predefined magnitude in the DDGx model. Total available hull
volume is

VHT = VHUII' + Vll.-lll' - l"III. (243)
Finally, overall ship volume is the sum of the volumes of the hull and the deckhouse,
Vi =V V) (2.44)

The total hull volume given in Equation (2.43) is the gross volume; not all of it is available
for the requirements of the owner. It includes volume dedicated to machinery and tanks.
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2.7 Electrical Load Module

The electrical load module calculates the electrical consumption of all equipment
aboard the ship. The module uses the results of the available space module, Section 2.6.
Its results are utilized for the calculation of fuel weight, and for the size of the auxiliary
machinery rooms. All expressions used are empirical, typically functions of hull volume or
crew size. A lot of data was gathered from [25], but the available output ASSET gives is
very detailed, and there is no correlation to the expressions listed in [25]. When DDGS51
numbers are substituted, the results are totally different. The DDGx model uses empirical
expressions from the old 13.412 math model, calibrated to reflect the final results of the
ASSET match run of DDG51.

When an electrical balance is performed, the design team checks the load for
several scenarios and cruise modes. Traditional cases are battle, cruise, anchor, towing
and emergency conditions, Usually battle and cruise conditions are considered in summer
and winter. ASSET, as an example, calculates six cases in its machinery module. The
13.412 model computes only the winter cruise condition. The size of the electric plant is
determined to satisfy the highest consumption among them. In the majority of cases,
either winter battle or winter cruise condition drives the size of the electric plant. For the
DDGS51 match run the former is higher by less than 5%. Due to the proximity of the
results, and in an attempt to simplify the DDGx model, it was decided to use the approach
of the 13.412 model. Later it is discovered that the generators are big enough for all hull
forms explored, thus this decision is safe.

The empirical expressions for the functional load are not repeated in this section,
and can be found in convenient format in the Mathcad model, Appendix D. Most of the
categories are calculated directly, but three of them, namely heating, ventilation and air
conditioning electrical loads, are functions of the net volume of the ship. As suggested by
[25], without the exact numeric values for the constants,

KW, =k, (V; - Viw =Vauy)
KW, = k. (KW + KW, ) + KWy (2.45)
KW.«- =0.67- [k.lu' Nr + k.ic *r - V,\m - V.w.\' )+ 0.1KW,,y ]

Vs and Vv are the volumes of the machinery box and auxiliary machinery rooms,
respectively. KWy denotes the electrical load of the military payload, KWeps stands for
the consumption of the CPS’. All the ks are dimensional constants, used to calibrate the
results. For machinery space volume prediction, ASSET uses a large library of propulsion
engines and generators, including their physical size and configuration. Volume estimation
requires a general arrangement from the user. To simplify the design model, remembering
that DDGx and DDGS51 are driven by the same HM&E system, the following assumptions
are made:

? Collective Protection System
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o DDGx machinery box volume is the same as at DDGSI1, for any hull chromosome.
Since an identical propulsion system is installed, and since the machinery box is the
most common location for it, this is a good assumption.

e DDGx volume of auxiliary machinery rooms, which typically consist of the generators
and secondary equipment, is linearly related to that of DDGS51, according to:

KW, , (DDGx)
KW, 5, (DDG51)

Vux (DDGx) =V 4, (DDGS1) - (2.46)

Thus, an iterative process is established. The loads of Equation (2.45) and the AMR
volume are calculated together, in a loop, until convergence is reached. Both Mathcad
and Fortran models perform this procedure. The maximum functional electrical load is the
sum of all the loads.

The design electrical load, with design and growth margins, is given by

KW,y = EDMF - EFME - KW, ,, (2.47)

As with the power margin, the DDGx model uses values from DDGS!: zero design
margin, and 1% growth margin. Similarly, the average 24 hour load includes a load
margin factor of 20%, and is given in [25]:

KW, = E24MF . KW, (2.48)

Where,

KW,, =05-(KW,, ~ KW, - KW,)+ KW, + KW, (2.49)

KWp and KWs are the electrical loads of propulsion and steering systems. These operate
non-stop, and are therefore taken out of the influence of the averaging factor. Equation
(2.49) is different than suggested in [25] in the averaging factor. [25] recommends on
additional averaging factor of 0.8, operating on these two last loads.

2.8 Tankage Module

This module calculates the volume required for all tanks. It reads data evaluated in
all prior modules, and its results are used to calculate the net hull volume (the arrangable
space), the total displacement and center of gravity location. For the fuel computation,
the algorithm adopted is from the Navy standard DDS-200-1 [29]. Other liquids are
treated empirically, where [25] is the reference. The model only allocates the calculated
volume for tankage; it does not arrange the tanks.
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2.8.1 Fuel Tanks

Fuel is consumed by the propulsion engines and the generators. The rate depends
on the operation of these consumers, and for each machine there exists an economical
work point, for which the rate is minimal. The algorithm is taken from [29], without any
changes. The fuel carried must enable cruising at the required endurance speed of 20
knots to a distance of 3807.6 nm, the design endurance range. The calculation executed
by the model is similar to ASSET. Since the DDGS1 and DDGx use a compensated fuel
system, the calculation is performed assuming full load displacement during the cruise.
The process is divided into two identical sub calculations, each handles the consumption
of either the engines or the generators. The total fuel amount is the sum of the results.

2.8.1.1 Propulsion Fuel. This section deals with the fuel required for the propulsion
engines. Using the resistance module, the average endurance (meaning at endurance
speed) brake horsepower required is, with a 10% margin for fouling and sea state,
SHP,

n

(2.50)

Icﬂ.-ll'ﬂ =Ll

The index ‘¢’ denotes endurance condition. Specific fuel consumption, provided by the
manufacturer of the gas turbine, is taken from [25]. The fuel rate at any operational
condition is given as a function of the consumption at the maximum continuous rate (that
is, at the nominal power), the delivered power and the engine speed (rpm) at that
condition,

sfe, = f" Mk (7215 107" %% +0.3629r,¢ "’“’"~) (2.51)
4

The index ‘X implies that the calculauon is for a certain operational condition. sfcycr is
the specific fuel rate at the MCR® operational condition, a constant given by the
manufacturer. For the LM2500, it has the value of 0.4097 Ib/hp-hr. r, expresses the
proportion of the power at the work point to that at MCR,

)
P,
Prser

ro=

(2.52)

Formerly used Poreva has been replaced here by Pycx. The next parameter, 1, describes a
similar ratio for rpm. However, the DDGx model does not evaluate this data, ASSET,
the source of Equation (2.51), gets it from its Propeller module, based on the predefined
series of the propeller. In the absence of this kind of data in the model, the propeller law
[24] which states that rpm and speed are proportional is used. ASSET [23] recommends
on the same relation,

8 Maximum Continuous Rate
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oy,
L A (2.53)

Mur  Vaux

Vopg

Reference [23] is the manual for the initialization module of ASSET. This module was
part of previous versions of that package, intended for quick analyses, and was canceled.
However, the algorithms listed there are still valid. The last parameter in (2.51) is

Py
ny
r, =5 2.54
¢ PMCR ( )
Pyier
Substitution of (2.52) and (2.53) into (2.54) reveals that
Ly
Ip = " (2.55)

Since endurance fuel is required, Equations (2.51) through (2.55) are used for the
endurance cruise condition, and the specific fuel rate of the propulsion engines at
endurance speed, sfc.r, is obtained.  [29] instructs to correct this value for
instrumentation inaccuracy (during ship acceptance trials) and machinery design changes
(accounts for minor machinery changes during construction), by the correction factor

'104 if LISHP, l-li

04 If LISHP, < 32

. . 2 B

J,=1103 if LISHP, 2 3 (2.56)
)

1.02 Otherwise

\

P, /2 expresses the nominal power of the two operating gas turbines at the endurance
condition. The option to operate only two gas turbines at endurance speed, with one
trailed propeller, is neither considered here nor in the DDGS1 match run. As can be seen,
the correction factor depends on the proximity of the shaft horsepower to the brake
horsepower. [25] has modified Equation (2.56), converting it to a continuous function, by
passing a straight line between the values of 1.04 and 1.03; the DDGx model adopts the
original version of the standard. The specific fuel rate is also margined by an additional
safety factor of 5%, for plant deterioration,

FR 1y =105 f, + $f¢ (2.57)

This is the average fuel rate, in [Ib/hp-hr]. The hurnable propulsion fuel weight is then
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Wep = — Py FR o (2.58)

A

2,8.1.2 Electrical Fuel. Here the amount of fuel required for the generators is evaluated.

The algorithm is very similar to that of Section 2.8.1.1. The main difference is the
conversion from electrical load to mechanical power. Again, [25] with its machinery
library is used. According to factory data for the DDA 501-K34 generator gas turbine, a
desired electrical power KW14414 is converted to mechanical power by the relation

Posy = KW, o la (2.59)

where a is a conversion factor that accounts for physical units and efficiencies. A value of
0.7087 kW/hp is given in [25]. The process described in the last section is now revisited.
According to the ASSET DDGS51 match run, each generator turbine generates 4600 hp at
MCR, so0 (2.52) becomes

P, I N

’.P = (144600 a (260)
The division of the mechanical power by Nu(=2) is because two generators are used for all
applications. The third generator is for emergency. For lower fuel consumption, the
engine speed is set to the rated rpm, consistent with a constant generator frequency.
Hence r,0=1 for any work point. The specific fuel rate at MCR is 0.4727 Ib/hp-hr. The
formula for the specific fuel rate at a specific work point for this turbine is a polynomial
rather than exponential,

Sy e

ey = = (02821+0.7179r) (2.61)

4

When the results from the electrical load module are plugged into Equations (2.59)
through (2.61), sfcazs, the specific average fuel rate per hp, in [Ib/hp- hr], is obtained. The
same flow rate, per kW, is

¥/ )
Mean Doy

"../2"(":".'4 = K"/“.“’” (2'62)

It has the units of [Ib/kW- hr]. The same margins of {29] are applied, only that here f; has
a constant value of 4%, Thus,

FRoura = 104105 sfeqp,, (2.63)

Similar to (2.58) the burnable electrical fuel weight is calculated by
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E

We = -l-/— KW, 0l Ro00 (2.64)

2.8.1.3 Total Fuel Weight. The actual required fuel weight is divided by the tailpipe
allowance TPA, with the value of 0.95 commonly used,

WBP Wlfr
Wer = Gos #7095 (2.65)
Total required fuel weight is the sum of the weights of (2.65),
Wea =Wep + W, (2.66)

F41 is the SWBS group for fuel. See next section for a description of the SWBS
classification system. The volume of the fuel tanks, with a 2% addition for internal
structure and 5% for expansion, is

Ve =102:105-W,,  7e (2.67)

¥ denotes the specific volume of fuel, 42.3 /' lron.

2.8.2 Other Tanks

This section describes the algorithms for tanks other than fuel. Here some of the
expressions are logical, based on engineering, and others are empirical. Almost all of them
are taken from [30].

2.8.2,1 Helicopter Fuel. The weight of this fuel, 64.4 Iton (see Appendix C), is part of
the military payload the ship has to carry. Using the methodology of Equation (2.67), the
required volume is given by

Vie =102:105:-Wepy -7 e (2.68)
F42 is the SWBS group of helicopter fuel. yy-is 43 fr'/lton,

2,8.2.2 Lubrication Oil. ASSET, as described in [25], has empirical expressions for the
oil amounts required by different machinery. The DDGx model uses the oil weight of
DDGS51, 17.6 lton, since the same HM&E system as DDGS51 is installed. This assumes
the same amount for any hull shape. Hence,

Vo =102-105-W,s 710 (2.69)
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where y.0=39 fr'/lton is used.

2.8.2.3 Potable Water. The requirement is to carry 0.15 lton of fresh water for each
crew member. Therefore, the water weight is, where Nr represents the crew size,

Wyo = Ny -015 [lron) (2.70)
Water expansion is negligible, so the required volume is
Vi =102-Wegy -y (2.71)

ASSET results for fresh water weight in the match runs are a little lower, but in this case
the results have not been calibrated to fit the DDGS51.

2.8.2.4 Sewage and Waste Oil. From [30],

Ve =(Ny + N )-2.005 (/°]

(2.72
Viasrs =002V )

Nr+N, expresses the total number of accommodations on the vessel. Vg is the fuel tank
total volume, taken from Equation (2.67).

2,8.2,5 Clean Ballast. DDGx ships are equipped with a compensated fuel system, as is
DDGS1. Compensated systems require some ballast for heel and trim adjustments. From

the match run and [30],

Vo =019-V, (2.73)

In ASSET the 0.19 coefficient is called the ballast fuel fraction.

2.8.3 Total Volume of Tanks

Total volume allocated by the DDGx model for tanks is the sum of all volumes,
Equations (2.67) through (2.73), or,

Viek =Ve +Vye +Vi0 + Vi + Vg +Viasrs +Vau (2.74)

4]

2.9 Welght Module

The weight module computes lightweight and full load displacement, and their
respective center of gravity locations. As illustrated in Figure 2.1, the module closes the
weight loop: It compares the initial full load weight to the final one, until convergence
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within a relative error of 1% is reached. The module reads necessary data from all its
preceding modules, and after convergence, the results are used by the initial stability
module. The iterative process is conducted according to the substitution basic method,
described in [27]: In case of relative error larger than the assigned limit, the process is
repeated with the final value as the guess. This method is not guaranteed to converge, but
is very useful due to its simplicity. The Fortran model is limited to 15 iterations. In the
rare case of divergence, the model assigns the chromosome a payload fraction value of
zero. For convenience, the SWBS® weight classification method is adopted. This method
is weight-based. It breaks the weights into seven main groups (100-hull, 200-machinery,
300-clectric plant, 400-command and surveillance, 500-auxiliaries, 600-outfit, 700-
armament) and other groups for variable payloads. ASSET manuals provide empirical
expressions for the weight and center of gravity of all 3 digit SWBS items on board, but
this is too detailed and complex for the DDGx model. Instead, the math model’s original
weight module is kept. The weight is divided into the seven main groups, but each group
consists of not more than five categories. This classification is primitive, but the
calculation is significantly simpler and straight forward. Whenever possible, ASSET
expressions are used, replacing the old ones. As a rule, all the expressions are re-
calibrated, to give the same results as the output of ASSET weight module for DDG51.

In the DDGx weight distribution, group 100, hull weights, is divided into the basic
hull, consisting of groups 110 through 140, 160 and 190, the deckhouse, group 150, the
masts, group 171, and foundations, group 180. The deckhouse is made of steel, as
required by the U.S. Navy. The DDGx model uses the same masts as the DDGS51 for all
runs, with a weight of 2 Iton. Group 200 is distributed into basic machinery, accounting
for groups 239, 241, 242, and 250 through 290, shafting, group 243, propulsors, 245, and
bearings, group 244, SWBS group 300 is not divided into any sub-groups. The command
and surveillance, group 400, is divided into gyro/internal communication/navigation,
groups 420 and 430, and cabling. Most of the weight of this group comes from the
military payload. Group 500 is generally not distributed. Group 600 is divided into two
sub-groups: hull fittings, groups 610, 620, 630, and personnel related outfit, groups 640
through 670. Group 700 is entirely determined by the payload. The empirical expressions
are not listed here, and can be found in Appendix D.

After all weights are computed, the lightweight is calculated.  Although the
standard weight margin for concept design is 10%, a weight margin factor WM/=0.5% is
added, as in the match run of the DDGS1. The weight margin for future growth is

W,y = WM W, (2.75)

Wiize is the only weight margin employed by the model. For the center of gravity
calculation, the assumption is that the center of gravity of the margin coincides with the
lightship center of gravity. The summation includes the weight of the payload (without

% Ship Work Breakdown Structure
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the variable payload, which is not part of the lightweight) corresponding to each weight
group. The lightweight is

W = ZW: + WAIZ-O (2.76)

Next, the variable load is computed. The weight of provisions, SWBS group F31, and
general stores, group F32, depends on the crew size and the required stores period. The
general form of the equations of [32] is used, with re-scaled constants, as appears in
Appendix D. The weight of the crew, group F10, uses the expression

W, =236- Ny +400-(N, +1)  [/b] (2.77)

(2.77) assumes that officers are allowed to have a more baggage. The total full load
weight is the sum of the lightweight and all other weights,

Wy =W + W + Wy + Weyg + Wiy + Wy, +Weys +Weyg (2.78)

Wy» represents the variable payload, the part of the payload which is changeable. DDGx
variable payload consists of ammunition and helicopter fuel. The calculation of the center
of gravity is conducted in the regular way, where empirical locations (except for the fuel,
which is assumed to have a constant center of gravity location of 10.3 ft above base line)
are assigned to each weight sub-group, and the moments about the baseline are summed.
A margin of 0.5 ft is added to the center of gravity at full load condition. The expressions
here are entirely empirical as well, and are scaled to give the numbers of DDG51.

Convergence of the weight loop is reached when the guessed full load
displacement, g, and the resulted weight, Wr, coincide within 1%.

2.10 Space Module

The space module determines the space required to be available in the ship. The
calculation is performed by summing areas: Appendix C lists area required for the military
payload, while other necessary areas are evaluated using empirical expressions.  As in the
case of weight, the original approach of the math model and not the detailed computation
of ASSET is adopted. However, all expressions are modified. The actual expressions are
not repeated in this section, and are listed in Appendix D.

Required areas are divided into two types: equipment which must be installed in
the deckhouse, and equipment which can be placed in either the hull or superstructure.
For example, the bridge has to be located in the deckhouse, but stores can be anywhere in
the ship. The military payload in Appendix C uses the same classification. The model
output is the deckhouse required area Apz, the hull or deckhouse required area A, and
the total area required, Azx, where
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Ape = Ayg + Apg (2.79)

A vessel which does not have enough area, i3 not feasible, and considered to be in
imbalance. Surprisingly, while DDGS1 is a real ship, its match run is not space-balanced,
the computer sends a massage that the required area is higher than the available by
approximately 10000 . Because the ship is assumed to be space balanced, and since the
results for the available space of the model and ASSET match run are very similar, the
required space is calibrated such that the DDG51 run in DDGx model is space-balanced,
and not according to ASSET space module results.

As shown in Figure 2.1, the model balances total area by adjusting the deckhouse
volume such that the required area equals the available net arca. The available space
module computes the gross hull volume, Equation (2.43). The gross value consists of
machinery and tankage spaces, which are not available for other applications. The net
available hull volume, representing the overall allocation-entitled volume, is

Vi =Vur =V = Vaoy Vi (2.80)

where Vy5 stands for the main machinery rooms volume (typically referred as machinery
box), V,uy for the auxiliary machinery rooms volume, Equation (2.46), and Vrx for the
tanks volume, taken from (2.73). The superstructure is considered to be entirely available
for space allocation, although it would be bad engineering judgment to place machinery
equipment or tanks up there. Hence, the net total arrangable volume is

Via =V +Vp (2.81)

The net total available area is therefore, where Hyy describes the average deck height,

Ay, = (2.82)

Hpy
To minimize weight, the vessel is required to be area-balanced. Otherwise, either
the ship is too small to enclose all required facilities, or too big, and therefore heavier thun

needed. Unlike weight, no margin is preserved for future growth. The area balance
equation is constructed with the deckhouse volume as the unique argument,

Bal(V,) = Ay, — A, (V) = 0 (2.83)

and then solved by the computer using [34], an intrinsic function in Fortran 90. An initial
guess of 190000 ft* is taken, only because this is the volume in DDG51. The limit is set to
20 iterations. Usually convergence is reached in less than 8 trials, and in the unlikely case
of divergence, the payload fraction of that vessel is assigned the value of zero.
Convergence is declared when A7z and Az, are within a relative error of 1%.
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2.11 Initial Stabllity Mcdule

The initial intact stability module calculates the ratio of metacentric height and the
beam, Cays. It uses data from the weight and available space modules. This value is
traditionally used to assess stability of ships. The module is classified as initial, because it
expresses the stability for small heel angles, a feature which depends on the metacentric
height. For small angles this is an accepted analysis; actually, the righting arm curve of
this basic analysis is tangent to the rigorous analysis curve at small roll angles, as shown in
[15] and [16].

The algorithm is taken from [15], and is one of the basic calculations in naval
architecture. The vertical center of buoyancy is estimated by the Moorish formula,

T C,C,
KB = Ly (2.4 - AL) (2.84)
3 Cy

where Cy is taken from (2.39). The original formula uses 2.5 in the parenthesizes, but is
mudified to 2.4 to fit the results of DDG51. The distance from the center of buoyancy to
the metacenter is, for small angles,

e
BM =3 (2.85)

Here Iy is the transverse water plane moment of inertia, and V the underwater displaced
volume. For the determination of the moment of inertia, the fransverse water plane
inertia coefficient is introduced,

I
Cp =75 (2.86)

This coefficient represents the ratio between the actual moment of inertia to the moment
of inertia of a rectangle with the dimensions of Lyz,-B. This coefficient is empirically given

in[15],
C,, =-0537+144.C, (2.87)

As before, this expression is modified, to reflect the actual results of DDG5I1. The
metacentric height is

GM = KB + BM - KG (2.88)



2 DDGx Self-balanced Ship Design Model 58

Finally, the desired stability criterion is

Cam = - (2.89)

2.12 Feasibility Constraints

Not all solutions from the DDGx self-balanced model are physically possible, or
meet the design requirements specified in Section 2.1. A non-possible solution is called
non-feasible. Mathematically, each suggested solution is expected to meet a set of
constraints, some of which are equalities, and others are inequalities. Two equalities exist,
the total area constraint and the weight constraint, described earlier in this chapter. It is
clear that a satisfaction of an equality constraint is more complex in reference to an
inequality constraint, because an equation has a finite number of solutions, while the
second has an infinite number of them. For this reason the equality constraints are
satisfied automatically by the Fortran model. All other constraints are only checked by the
DDGx model after the evaluation of the ship is completed. A feasibility status is printed at
the end of the evaluation. No effort is performed by the model in order to make the vessel
feasible.

The set of constraints is presented in this section, in the order of appearance of the
associated module. Some limitations of the inodel are derived from a local design
decision, and are not applicable for all general cases. For instance, the requirement for a
continuous internal deck - the damage control deck - limits the height of the machinery
box for a specific depth D,s. This limit does not exist for ships with discontinuous first
deck.

2.12.1 Sustained Speed Constraint
Section 2.1 sets the minimal accepted sustained speed to 29.96 knot, hence
Ve 22996  knots (2.90)
where Vs is calculated in the resistance module. The exact sustained speed of DDGS5I
(instead of 30 knots) is used as the constraint, in order to increase the number of feasible

ships in the population. It is found later that the overall number of feasible chromosomes,
in the solution space defined in Chapter 4, is considerably low.

2,12.2 Depth Constraint

The main deck sheer line is determined by the available space module. The value
for the depth, Do, is a function of the fifth gene in Figure 2.2, the hull depth coefTicient.
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However, not any value is allowed. Reference [33] requires that at 25° heel the deck edge
must be out of the water. Using simple trigonometry, as illustrated in Figure 2.11,

o'o "T
&2

WL WL
25°

L

¢

Figure 2.11, Heel constraint for depth.

Do-T

= tan(25°) Or, D,, =0233B+T

0|

However, this calculation assumes that the ship heels about the center of floatation,
which is an acceptable hypothesis for small angles only, not 25°. Also, the hull may have a
bulwark, so artificially the deck edge is higher. Hence, a somewhat more lenient
expression is adopted, from the original math model,

D, 2021B+T (2.91)

Additionally, the hull must be structurally strong enough to withstand various sea
loads. The DDGx model does not compute stresses and section modulus, so a very simple
expression, from the math model as well, is used,

L
T (2.92)

This relation was derived from data of existing ships. In the two last equations, (2.91) and
(2.92), Hy is added if Cpp is greater than 0.5, since in this case the actual (or ¢ffective)
depth is D;o-Hg. Finally, the design requires a continuous deck for better damage control,
and, assuming that the machinery box is near midship, the depth must also satisfy the
inequality

Dy 2 Hypyin + Hpy (2.93)

Otherwise, the passage above the main machinery rooms is not accessible.  Hyuomn
represents the minimal machinery box allowed, taken from [25]. This value, 22 fr in
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DDGx case, is a function of the propulsion engine type. Equation (2.93) ensures that all
machinery fit into the machinery box. In Equation (2.93) there is no need to account for
Hp, because even if a raised deck exists, its external part can be used as damage control
deck, a continuance of the internal damage control deck. Practically, the model assigns
the maximal value among Equations (2.91), (2.92) and (2.93) to the parameter [);omn, and
the constraint becomes

D,2D

10min

(2.94)

2.12.3 Electrical Plant Constraint

DDGx ship electrical plant consists of three DDA 501-K34 generators, each
produces 2500 kW. Regularly, only two of them are operated, and the third is used as a
standby generator, for emergency. The electrical load module computes the maximum
functional electrical load, including margins. This parameter represents the highest
electrical consumption of the ship. This amount can be evaluated per generator,

K "/.\ FiAN

KWorso = (N, -1)-09

(2.95)

where KWym, is the maximal possible load, Ng the number of generators installed, and an
additional margin to compensate for voltage fluctuations. Equation (2.95) expresses the
maxiinum electrical load required from each operating generator. Hence, the electrical
load constraint is

KW,y 2 KWopeo (2.96)

where KW, is the nominal power of one generator (2500 kW in DDGx and DDGS5I).
Experimentally, this constraint is easily met for all hull parameter combinations, since the
installed electric power aboard the vessel is large.

2.12.4 Deckhouse Area Constraint

In Section 2.10 two types of area allocation are introduced: area of equipment
which must be allocated in the deckhouse, and area which can be placed in either the
deckhouse or the hull. The first is referred as deckhouse area, and the latter hull area,
where it should be born in mind that it means hull or deckhouse. This means that if the
hull is too small, a portion of its required area can be transferred to the superstructure,
theoretically, deckhouse volume can be increased infinitely, until area balance is reached.
This is not always feasible, obviously, and one tool to restrict it is the deckhouse volume
constraint, described later in Section 2.12.5.
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The solution for the superstructure volume, Equation (2.83) is merely mathematical,
Therefore, a negative deckhouse volume can be the output of the program. The net total
available volume was shown to be

Via =V +Vp (2.81)

Or, dividing by the average deck height,

Ar, = Ay, + Ap, (2.97)

Thus, a negative deckhouse volume implies that the opposite happened: the net available
hull area is higher than the required hull area, in an amount that also covers the
requirements of deckhouse area, so, mathematically, there is no need for a superstructure.
The total area constraint is thus not enough, and its satisfaction, even if all other
limitations are met, does not result in a feasible ship. To correct this, a secondary area
constraint is required: the available deckhouse area must be greater than the required
deckhouse area,

Apy 2 Ay (2.98)

In an event of negative deckhouse volume, the available area is negative as well, since

V
Ay, = H; (2.99)

and (2.98) cannot be satisfied. The deckhouse area constraint can be also considered as a
minimum deckhouse volume constraint, because Equation (2.98) may be written as

V,
_-D—ZADR

H ok
or,

Vp 2 Hpy Apr =Vpmia

2,12.6 Deckhouse Volume Constraint

The superstructure volume must also be within reasonable positive limits. The
DDGx model evaluates a superstructure with two decks, and an additional one for the
bridge only. The typical shape, with maximum allowed dimensions, is illustrated in Figure
2.12. For RCS'" reduction, a serious consideration in modern war ships, superstructure

19 Radar Cross Scction
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sides are inclined by 10°, The maximum width is the beam B, such that the side clearance
(to the deck edge) is zero, and the passage is placed in the structure. This is the
recommended arrangement for a reduced RCS, also.

Figure 2.12, AMaximal deckhouse dimensions.

The length limit is 60% of Lyz, leaving space for a helicopter landing area, deck weapons
and mooring operations. Adding 10% for the bridge,

Hpy
Vome = (ZB -4 1an(80°)

) ‘Hpp +06L,, <11 (2.100)

where simple stereometry is used. The deckhouse constraint is, then,

V, sV, (2.101)

max

2.12.6 Initial Stabllity Constraints

Stability is considered in the DDGx model in a very basic approach, applicable for
small heel angles only. The stability measure is the metacentric height to beam ratio,
Cays. Naturally, a ship must have a sufficient residual righting arm (see [15] and [16]),
providing a moment to resist the heel motion. Proceeding with the same small heel angle
analysis, it can be shown that heel motion is sinusoidal, with a period of

I e 2ri
g GM

/ is the mass longitudinal radius of gyration. (2.102) shows that the period decreases as
the metacentric height is increased. However, an exaggerated value of GM makes the
period too short; the ship is stable, but too stiff. The hull motion has a low roll period,
making it uncomfortable for the crew, and inappropriate for normal function. In such a
case the ship is said to be rigid. The parameter Cuym, as a result, is bounded by upper and
lower limits.

(2.102)
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From the experience of the U.S. Navy, while evaluating stability per [33], the
lower limit is a ratio of 0.09. This number is also presented in the MIT math model, and
adopted in the DDGx model. Equation (2.102) can also be presented in an empirical
relation, taken from [16],

. B (2.103)
~ JoM '
¢ is a dimensional constant, between 0.72 and 0.91 sec/m®’. Rearranging (2.103),
GM ¢'B
5 =T (2.104)

DDGx has a beam of around 20 meters. When a minimal roll period of 10 seconds is
required, and extreme values of the coefficient ¢ are substituted, Equation (2.104) gives
extreme values for the rigidity bound of Cgys,

0103 < (Cﬂ\lﬂ)npdsmblll{r <0.165

When the recommended value for frigates, 0.8 sec/m”’, is plugged in, the result is an
upper limit of 0.128. For the DDGx model an upper value of 0.135 is used for Ciys, vice
the MIT model’s value of 0.122. Thus, the initial stability constraint is

0.09 S Cyypy <0135 (2.105)

2.13 Comparison to DDG51

Figure 2.14 describes a typical self-balanced model output, run with DDGS1 hull
chromosome.

Main Parameters ...

Cp . 609
Cx .819
cdl 80.68 (lton/ft~3)
Cbt 2,926
CcD10 11.13
Crd .200

Main Dimensions on Waterline ...

Underwater volume 2.846E+05 (ft~3)
Length on waterline 465,44 (ft)
Beam 59.89 (ft)
Draft 20.47 (ft)

D10 41.82 (ft)
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Speed and Resistance ...

Wetted area

Sustained speed

Maximal speed

Endurance shaft horsepower

Space Available ...

30726.5 [ft~2]
30.00 (knt}
31.64 (knt)
14942.1 [(hp)

DO 52.74 (ft)
D10 41.82 (ft)
D20 36.11 (ft)

Total hull volume
Electrical Loads ...

Winter cruise electrical load

Marginal winter cruise electrical load
24 hours average electrical load

Power required per generator
Auxiliary machinery rooms volume

Tankage ...

Fuel weight

Fuel tanks total volume
Ballast tank volume
Total tanks volume

Weight and Center of gravity ...

Lightweight

Vertical CG of lightship
Full load displacement
Vertical CG at full load
Payload fraction

Area/volume Balance ...

Required hull area
Available hull area
Required hull volume
Available hull volume
Required deckhouse area
Available deckhouse area
Required deckhouse volume
Available deckhouse volume
Total required area

Total available area
Total required volume
Total avallable volume

Initial Stability .....

766783.3 (ft~3)

3443.6 (kW)
3478.1 (kW)
2313.2 (kW)
1932.3 (kW)
57444.49 (£t~3)

1171.5 [lton]
53071.0 (£t~3)
10083.5 (ft~3)
70568.,0 [ft~3)

6428.0 (lton)
25.00 (ft)
8091.1 {lton)
23.10 (ft)
.113

56587.1 [ft~2)
48794.6 [ft~2)
603217.9 (£t~3)
520150.9 [ft~3)
10207.5 [£t~2)
17542,9 [£t~2)
108811.5 (ft~3)
187007.4 (ft~3)
66794.5 (£t~2)
66337.6 [ft~2)
712029.5 (£t~3)
707158.3 [ft~3)

KB 12.05 (ft)
BM 17.46 [ft)
Metacentric height 6.41 [ft)
GM to B ratio .107

Deckhouse volume

Balance/Feasibility Status ...

188505.49 [ft~3)

Category Required/Minimal Available
Deckhouse area [ft"3]) 10207.5 17542.9
Electric plant (kW) 1932.3 2500.0

64
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Susteined speed 29,96 30.00

Initial stability .090 .1071
135

Depth (ft] 33.04 41.82

Maximal deckhouse volume [ft~3]) 367610.9 188505.4

Payload fraction .075 1134

Figure 2,13, Self-balanced DDGx model output, with DDGS 1 hull parameters.

Table 2.2 compares the results of ASSET and the DDGx model for the DDG51.

Units ASSET Model | Emor {%9)
Hull chromosome
Prismatic cocflicient - 0.609 0.609 .
Midship coellicient - 0.819 0.8)9 -
Displucement to length ratio (o) | R0.68 80.68 .
Heam to draft ratio . 2.9 293 .
Length to depth ratio - 1113 JTA K] -
Raised deck coellicient . 0.2 0,20 -
Mala dimensiops
L iny 465.73 465.4¢ <36
B (0 58.R4 59.89 +1.78
T N 20.11 2047 +1.79
4] 0 52.06 52.74 +1.31
DIO n 4183 41.82 -0.02
N20 (ny 36.29 W11 +5.02
Length to beam ratio - 7.92 1.7 -1.81
Water plane coeflicient . 0.787 0.787 0.00
Resistance
Sustained speed (knt] 29.96 30.00 +0).13
Maximal speed |knt| 31.28 .64 +1.15
Endurance shal horsepower |hp) 14731.0 | 14942.1 +1.4}
Wetted surface area (V) 202984 | 292265 +0.10
Electrical Louds
Winter cruise maximal load (kW) MY 478.1 +].14
Average 24 hour clectrical load (kW] 2361} PRIRW) 212
Space .
Hull volume (') R0O0691 | 7867813 -1.74
Deckhouse volume (A} | 1920094 | 188505.4 | -1.82
Average hull deck height ") 10.66 10,66 -
Tota) required orca () 74368 | 66794.5 | -14.77
Total available arca n ORGSR 66337.6 338
YWeight
Fuel weight (ton] 1186.7 1715 -1.28
Light ship weight (lon) 6453.1 642R.0 0.9
Light ship VCG i 250 25.0 (.00
Full load weight [Mton] 81269 8091.1 -0.44
Full load VCG n 22.69 23.10 +1.81
Full load KB (N 11.94 12.05 +0.92
Full lond BM {n) 17.45 17.46 +0.06
Full lond GM N 5.98 6.41 +7.19
(M to Beam ratio . 0.102 0.107 +4.90

Table 2.2, Comparison of DDCGx model and ASSET match runs for the DG5S,
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Underlined data implies numbers which are input to the model as independent parameters.
The results are a little different than those presented in Appendix D, because here all
calculations were performed by the Fortran self-balanced model automatically, and the
results in appendix D were obtained manually, using the Mathcad model. It is not
uncommon to obtain slight differences when using different numerical algorithms, even
though they have been used to solve the exact same problem.

The comparison gives errors larger than 5% in three categories: hull depth at
station 20, total required area and metacentric height. The error in /)y is irrelevant,
because the DDGx model uses different sheer line, which is not calibrated with DDGS5I.
The error in the required area prediction is not surprising, because as described in Section
2.10, ASSET seems to give unreasonable results in this field. The error in the result for
GM is due to accumulation of small errors during the calculation per Equation (2.88). All
the components in this equation have relative errors lower than 1%, but due to the low
value of (GM, the relative error is big. However, when the metacentric height is divided by
the beam, to find the stability ratio, the error drops below 5%.

2.14 Experimental Results

Experimental results show that many of the solutions are non-feasible, generally
due to stability problems of both kinds (see Section 2.12.6), and sustained speed violation,
although other criteria are violated occasionally. Figure 2.14 reveals onc of the outputs
obtained from the Fortran model. It shows feasibility status of a randomly generated
population of 30 individuals. The first six columns define the chromosome, the seventh
gives the respective payload fraction, and the rest provide the status: an ‘x" mark is written
under a violated requirement. Each column is titled after the parameter associated with
this constraint. Thus for example, the column ‘Area’ describes the deckhouse arca
constraint, ‘kW' the electric plant limit, and so on. In casc of negative resolved deckhouse
volume, representing a too big hull structure, a *-* is assigned in the *Vd' column. When
an ‘x’ is written in this column, the maximum superstructure volume limit is exceeded.
There are cases for which several criteria are violated. The stability constraint is the only
criteria that is bounded from two directions. Hence, it is divided into two columns, one
for unsatisfactory initial stability and the other for excessive stability.

Cp Cx cdl Cbt CDl10 Crd Fp Area kW Vs GM- GM+ DIO Vd

.51 .85 82,6 3.3 10.4 .47 .1000 x

.51 .85 89,8 3.2 10.€ .78 .1000 X X

.5¢ .87 €9,2 3.3 10.3 .05 .1056 b4 -
.63 .88 73.4 2.9 11.4 .77 .1125 P

.€1 .71 72.4 3.4 11.€¢ .13 ,1029 b4 b3

.€2 .80 €€,1 3.5 10,7 .2¢ 1040 X X -
.€9 .85 80,0 3,0 0.1 .71 .1117 b X

.52 .70 89,1 3.5 13.8 .05 .l0l5 X X X

.52 .77 87.9 3.2 11.7 .49 .1000 b b

.53 .84 73,2 3.3 4.4 .11 .1158 b

.59 .85 72.7 3.3 1l1.4 .26 .1094
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.56 .86 73.2 3.2 10.7 .20 .1071 X

.62 .82 77.2 3.4 11.7 .44 .1094 X

.70 .84 60,1 2.9 13.2 .10 .1206 X

.53 ,70 67.3 3.4 11,1 .70 .0840 X X X X
.66 .71 83.8 3.3 11.4 .78 .1032 % X X
.53 .81 66,2 3.2 12,1 .51 .1000 X X
.64 .80 64.9 2.9 11,9 .71 .1085 X X
.65 .84 89,0 3.6 11.7 .26 .1156 b X

.67 .76 78,2 2.8 10.9 .00 .1149

.53 .85 76,2 2.8 11.4 .35 .1067 X

.60 .77 82,2 3,6 12.8 .57 .1067 X X X
.59 .81 65.4 2.9 10.6 .01 .1133 X

.52 .80 77.4 3.0 11.9 .09 .1036 b X

.52 .72 72.1 3.2 11.0 .53 .0912 X X X
.59 .87 82.5 3.3 12.7 .34 .1151 X X

.69 .04 84.3 3.0 10.7 .25 .1173 X X

.50 .84 63,3 3,4 11.6 .79 ,0939 X X

.66 .71 79.8 3.3 11.2 .77 .1034 b3 X X
.62 .83 64,1 3.3 11.6 .78 .1085

Figure 2,14, Experimental feasibility status.

It can be seen that only 3 chromosomes, 10% of the entire population, represent feasible
solutions. Furthermore, 21 of 27 failures, almost 78%, involve a violation of the stability
requirement. Additional experiments provided an even higher portion of stability-related
non-feasibility. The remarkably interesting fact is that the majority of stability deviations
are related to excessive stability, while the naval engineer typically deals with insufficient
stability problems. It is found later, when optimum solutions are approached, that
insufficient stability becomes the limiting stability constraint. More than 60% of the
solutions suffer from sustained speed constraint violation, implying that fast hull shapes
are also difficult to find.

Note that there are no deviations from the electrical plant requirement. In all runs
performed this constraint is never violated. This implies that the electrical generators
carried aboard DDGx are very powerful.

For all runs a 150MHz Pentium computer, with 16MB EDO RAM and 512K
pipelined burst cache was used. In terms of running time, each chromosome evaluation
takes 12.5 seconds on the average. Running time is driven by the deckhouse volume
solver, or, specifically, on the proximity of the initial volume guess to the final result.
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Chapter 3 |
Tune Up in the Unconstrained Solution Space

The system of constraints described in Chapter 2 limits the applicability of some
possible solutions, thus decreasing the effective size of the solution space, because only
feasible solutions are eligible, and the choice of the optimal ship is taken from among
them. The difficulty is that neither the new boundaries nor the size of the reduced solution
space are known; we can only say that it is included in the original domain. Figure 3.1
illustrates qualitatively the structure of the solution space.

Figure 3.1, Solutlon space.

Grayed zones represent an environment of feasible solutions. As was learned
experimentally in section 2.14, the allocation of real estate here is generous, and the real
proportions are worse: likely less than 10% of the space provides feasible ships. There are
some special methods to handle a constrained optimization, [6], [7] and [35] for example.
However, before addressing this difficulty, it was decided to first test the search
mechanism itself, in order to be confident with its correctness and performance. The
search process needs many tune-ups to be effective, robust and reliable. This is equivalent
to sensitivity research, in which system parameters are changed (here the verb tuned was
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used), the purpose is to find the best combination of them. Therefore, the first step
performed is to ignore the non-feasible voids in the solution space while searching for the
maximum payload fraction. The obtained data may not help in the final goal: the chances
are that this overall maximum is non-feasible, due to the far bigger scarch area of such
solutions. Nevertheless, a tuned algorithm facilitates the efficient search for the desired
optimum.

This chapter defines the search parameters and describes the results of exploration
under different combinations of them, without any constraints. The considerations in the
decision of the best parameters depend on three outputs: average result, robustness and
running time. Primarily, ‘best’ means that the algorithm finds the overall optimum in each
run, and not a local one, after different population initializations (all of which are random).
The measure is through the average optimum during a number of executions. In order to
achieve a high average, the model must be robust. Even though it has started to search
with different individuals, possibly poor, it is still expected to provide the same result. A
robust model reduces the required amount of executions when trying to find the optimum.
In a case that two exploration engines have similar performances, we can choose
according to their convergence time.

A listing of the Fortran 90 source file is found in Appendix F. The file includes the
converted Mathcad model shown in Appendix D and the evolutionary processes used
during the research.

3.1 Search Parameters

Search parameters quantitatively express the features of an evolutionary
exploration process, and are the means by which the search is governed. They consist of
the population size pop_size, crossover probability P, mutation update probability Pup,
and the selective pressure Ps. The first three parameters were defined in Section 1.5,
selective pressure will be discussed later in this chapter.

Although relatively simple, the DDGx self-balanced model is still very time
intensive. It takes a 150MHz computer 12.5 seconds on the average to resolve one ship.
An average generation therefore uses 12.5pop_size CPU seconds. This point of view
suggests a reduced population size for relatively fast exploration. However, population
size dictates the population diversity: the larger it is, the higher the chances that all
required genetic material exists in it, thus avoiding premature convergence to a local
optimum. This size provides the multi-directional search ability, and its advantage relative
to other search methods, [9] and [10). To ensure some feasible solutions at each
generation, 30 individuals are used for the population size. A larger size takes too much
time. A typical population size is on the order of 100 for similar applications, but it is
possible to find lower sizes. The span of the population is defined as the generational
standard deviation to average fitness ratio,
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\[;_l___ P fitmess(x, 1) - F(1 )

op_size - |
span(l) = 20, 3.1)

where 7 is the generation number, x; a certain chromosome, and fifness(x, 1) is the fitness
function value. The span measures the distribution of the fitness function around the
average fitness at a specific generation. The higher the span, the higher the diversity of the
population. At late stages of the exploration, for example, it is expected to decrease,
because convergence is approached, and the population is assumed to be saturated with
good individuals. [6] finds experimentally that an initial span of 0.1 gives a good trend
between exploration (which is the same as diversity) and speed. Population size of 30
approximately matches this value. The maximum allowed number of generations,
gen_max, is set to 100.

For the crossover probability the customary value of 0.25 is used. This means
that, on the average, pop_size/4 individuals become parents. This has to be an even
number, and thus a correction is added to the algorithm. If an odd number of
chromosomes are selected, a coin is tossed. According to the outcome, one genotype is
released, or an additional one is randomly selected.

The remaining two parameters, mutation update probability and selective pressure
are not determined as constants, but rather are changed between executions, in order to
obtain the best configuration of the search engine. The tune up uses these parameters.

For ship design, an accuracy of 4 decimal digits for the payload fraction, the fitness
function, is satisfactory. In the event that the computer reports the same 4 digit maximum
generational payload fraction for 10 successive generations, convergence is assumed even
though generation gen_max has not yet been reached. There is some risk of premature
convergence with this approach because there is always the possibility that the computer
may find a better value given enough time. This risk increases as the crossover and
mutation probabilities decrease, because then the chances to create new offspring, possibly
better, are less. Due to the limitation on the precision of the final obtained optimum, the
chances to observe a significantly better value are low.

3.2 Solution Space

Six-dimensional solution space boundaries are shown in Table 3.1 with the
resolution of the search. The raised deck coefficient, Crp, cannot take values higher than
1. Extreme values for the prismatic coefficient C» and maximal section coeflicient 'y are
the traditional ones. Cp values also coincide with Gertler's reanalysis [20] for the
residuary drag coefficient, see Section 2.5.2. ASSET limits the maximum section
coefficient to 0.845, but, based on the experience of 13.412 projects, values to 0.90 are
considered. Beam to draft ratio limits are taken from the original math model. The same
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values are recommended by ASSET. Values for the boundaries of the remaining two
genes, the displacement to length and length to depth ratios are chosen to contain DDG51
actual numbers. At C., values lower than 60 lto/ft®, weight convergence is not observed.
The initialization of the population is done by the expression

Cou —C,

R T (3.2)

where RAN# is a randomly generated integer number, with a uniform distribution, from
the domain [O,V].

Gene Minimal value | Maximal valuc | Divisions (N)
Cp 0.50 0.70 20
Cy 0.70 0.90 20
Car. [ltow/®) 60 90 15
Cur 2.8 3.7 9
Coio 10 15 10
Crp 0 0.8 20

Table 3.1, Solution space boundaries and search resolution.

Table 3.1 dictates a discrete search which is not really necessary in a floating point number
representation. However, the specified precision of the results decreases the number of
optional solutions, thus decreasing the running time. The selected resolution also provides
a justification for the usage of evolutionary strategies. The total time required to conduct
a complete exhaustive search through the entire space can be computed by multiplying the
overall number of combinations by the average running time,

se I howr | day 1 year
3 0 0 O . 9 ' AN WD s"c . . . —_ . "
207 15-1 runs- 12,3 run 3600 sec 24 hour 365 day

= 4.28 years

Thus more than 4 years and 3 months are required to cover all the possible solutions.

As stated in Section 1.3, the resolution of the search is driven by the desired

accuracy of results. Mathematically written, it is expressed by Equation (1.1),
N,=(bh -a,) 10" (1.1)
where N, is the number of divisions in the domain [a,h]. The most precise genes are the
first two, Cp and Cy, with an accuracy of 0.01, due to the model’s sensitivity to these

parameters. Other parameters are given lower accuracy. After a maximum value is found,
it is possible to increase the resolution. This is done later in Chapter 5.
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A binary representation requires 27 bits in each chromosome. For the reasons
listed in Section 1.3, floating point number representation is adopted here. The floating
number chromosome is a six-dimensional vector.

3.3 Classical Search

It was natural to start with the classical exploration process, as developed by
Holland [5] at the University of Michigan. This is the most basic strategy, and its details
are described and discussed in Chapter 1, This is a pure genetic algorithm. Several runs
with different mutation update probabilities were performed. None of them converged.
Convergence chances increase as the mutation probability decreases, because the search is
narrower and very conservative in creating new solutions, Figure 3.2 provides a graphic
representation of the process under a 0.1 mutation update probability.

0.126

0.124 -

0122 {--Af

2 o2 ||

—~———av_gen
max_gen
....... span‘100.0

0.116 1

0.114

0 20 40 6 80 100
Generation

Figure 3.2, Classical genetic algorithm results with Pyp=0.1.

The uppermost curve, designated in the legend by max_gen, describes the highest payload
fraction individual in each generation. The best ever found value, 0.1256, was at
generation 92. The curve denoted by av_gen represents the average fitness of all
chromosomes at every generation. The third line draws the behavior of the span, defined
in Equation (3.1). The exploration is virtually random; there is no evidence of sustained
improvement of the maximal generational payload fraction as the process advances.

This failure is a result of the characteristics of the payload fraction function. The
distribution of a randomly initialized population performance is shown in Figure 3.3. The
solid horizontal line denotes the average fitness of the population. This is a typical
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population - the average is not high, and none of the individuals has a payload fraction
higher than 0.119.

0.12
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Figuve 3.3, Payload fraction of a randomly initialized population.

Except for one bad chromosome, the seventh, the relative differences are within £10%
about the average. In Section 1.4 the selection scheme is discussed, in which each
chromosome is given a probability of survival,

p = Jitness(x,)

f:' ™ finess(x,)

(1.4)

Rephrasing Equation (1.4), and writing it as a function of the generational average fitness,

_ Simess(x,)
" F(1)- pop_size

(3.3)

This reveals that, given a distribution similar to that of Figure 3.3, the probabilities of
survival have close values. In GA terminology, the problem is referred to as a scaling
problem. Figure 3.4 best illustrates this using the resultant roulette wheel. As in Figure
1.2, the probabilities are sorted clockwise in a decreasing order. According to classical
selection methodology, based on the larger amounts of wheel real estate claimed by the
more fit individuals, they have higher probability to survive and reproduce. However, in
the case of Figure 3.4, the slots are similar in area - there is no distinct difference between
the slice associated with the poorest solution and the best one. These are intentionally
located one beside each other, at the top of the wheel.
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Figure 3.4, Roulette wheel in a classical search.

Consequently, the problem is the seemingly inappropriate selection algorithm. This is a
classic case of poor exploitation of the better genotypes. Instead of using the good
genetic material, the computer ignores their promising performance, and actually
conducts a random search across the solution space. A short Fortran code was used to
count the times each chromosome is selected. The experimental result for the roulette
wheel of Figure 3.4 is shown in Figure 3.5. Again, the chromosomes are ranked
according to their fitness from right to left, in descending order.

3+ + 0.03
% 21 1002 a memm Counts |
S ; £ | Probabilty
| JI I I | I |I III i )
o8_388__ N _NER_BE_ 38 LRy
1 3 6 7 9 11 13 16 17 19 21 23 256 27 29

Rank of Individual

Figure 3.5, Experimental reproduction in a classical selection.

High fitness solutions are not selected more frequently, and bad solutions are given more
copies. The graph also shows the flatness of the probability curve. A new measure, the
center of selection, an equivalent to the center of gravity in mechanical systems, is
introduced,
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pop _site
counts(x,) -(pop_size — i)
v ey i=| ! -
CS = pop_size pop._size 3.4)

The center of selection is the expected position (in a ranked list, where the best individual
has the first position) of a randomly picked chromosome. That is, it gives the center of
gravity of the bars in Figure 3.5. This parameter provides a statistical measure of
exploitation: the lower the location, the more exploitative is the algorithm. counts(x) is
the number of times that a chromosome x; has been copied. For example, an entirely
random selection has a center of selection of (pop_size+1)/2, 15.5 in this research; an
elitist model, which selects only the best individual, has a center of 1. Quick computation
shows that the center of selection of Figure 3.5 is 14.43, virtually a random selection.

3.4 Rank-Based Selection and Selection Pressure

In order to enable exploitation, to an appropriate extent, the program must
distinguish between fit and poor individuals, and sample them in amounts that agree with
selection theory. As demonstrated in the last section, particularly in Figure 3.3, the
payload fraction function is too flat. Plotted with its six degrees of freedom, it is nearly a
flat surface with very distinctive maximum points rising like high mountains. This is the
reason that a random initialization gives modest (in payload fraction terms) ships - most of
the surface is flat, and it is hard to find the mountains.

There are many methods to improve the selection procedure. Michalewicz [6]
dedicates a special chapter' to such problems, and relates them to the sampling mechanism
and the characteristics of the evaluation function. He is concerned with premature
convergence, vice the current problem of no convergence. Goldberg [7)* suggests to use
a linear scaling, in which the fitness of all chromosomes is scaled by the law

Sitmess'(x,) =a- fitness(x,) +b (3.5)
where a and b are problem dependent parameters. This scaling law removes the
congestion of fitness values around their average, and helps emphasize the bulges on the
surface. A similar correction is attained using the power law scaling,

Siness'(x,) = fitness* (x,) (3.6)

with & as a system parameter.

' Chapter 4: Sclected Toplics.
*pp. 122-124,
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A different method, with the same effect, is to sort the chromosomes in descending
order, according to their fitness, and to assign each individual a probability of survival
based on its location /. The best chromosome is ranked 1, and the poorest gets the rank
pop_size. The selection process is then rank-based, and the probability function is a
geometric series,

P =4 P (3.7

Here / goes between 1 and pop_size, A, is a constant, and the selection pressure, Ps, is the
quotient of the series. P is a regressive series, otherwise poor solutions will get higher
probabilities than good ones. Hence, the quotient of the series ,Ps, takes values between 0
and 1. The sum of all probabilities has to be 1, so 4, is a dependent variable,

1- P,

Al = ]l - l)spop_u:c (38)

The closer the value of Ps to unity, the more uniform is the probability. At the limit of
Ps=1, the series does not exist, and all individuals get the same probability of survival,

F(Ps=1)= S — (3.9)

pop_size

The selection is then totally random. As Ps approaches zero, 4; approaches unity, while
all other selections are negated. Ps dictates the selection: the closer it is to zero, the more
elitist is the selection; the closer it is to unity, the more random is the selection. Figure 3.6
shows the probability of survival as a function of selection pressures and the rank of the
chromosome.
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Figure 3.6, Probability of survival under different selection pressures.
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The surface is a plot of Equation (3.7), with the first term computed from (3.8). A
selection pressure of 0.8 is very elitist, and the probability of the lower half of the
population is approximately zero. As the pressure approaches unity, the cross section of
the plane becomes a horizontal line, assigning identical chances of breeding to all the
population, without considering their respective performance.

Figure 3.7 shows experimental selection results under variable pressures. At low
selection pressures, the columns tend to crowd to the leff, and become higher; no
relatively poor solutions survive. When the pressure increases, the distribution and height
of the columns become uniform.

Rank of Iindividual

Figure 3.7, Experimental distribution of copied chromosomes under different selection pressures.

Since Equation (3.7) represents a deterministic survival probability function, the
theoretical location of the center of selection can be computed,

CS=2"""p i (3.10)

Equation (3.10) is derived using probability theory. The theoretical location, with some
experimental results, are shown in Figure 3.8. The experimental points match the curve
nicely. The real curve can take only integer values, so it actually has steps. The curve of
Figure 3.8 is the pure mathematical result, with no truncations or rounds off. The curve
reveals the greatest advantage of rank-based selection methods: the exploitation is both
predictable and controllable, with minimum effort. The exploration and exploitation
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struggle is in the hands of the user. For space-wide exploration, the pressure is increased,
for tight exploitation, it is decreased”.

0.80 0.85 0.90 0.95 1.00
Selection pressure

Figuve 3.8, Center of selection in rank-based selection.

The rank-based procedures do suffer from several disadvantages. They disregard
similarities of solutions: relatively close fitness values do not get close probabilities to
survive and breed. Secondly, these methods violate the schema theorem described in
Section 1.6.2, since the whole idea of showing that higher than average individuals get
exponentially increasing number of copies relies on the proportional probability of
survival. The advantages of total control they give and the guarantied cancellation of all
scaling problems, outwage these minor drawbacks, and this approach is used in
subsequent algorithms®,

3.5 System Parameters Tune Up

Assuming that once scaling problems are eliminated, convergence can be reached,
the next goal is to avoid premature convergence. In the literature, premature convergence
is considered the main problem of evolutionary programs, and many solutions have been
suggested; a brief description with rich bibliography is given in [6]. At this stage the only
departures from traditional genetic algorithms are the float number chromosome
representation and the rank-based selection. Before starting to add some enhanced
genetic operators, experiments with the existing model show that even with a rank- based
selection, high mutation rates lead to divergence. There is no surprise here: as the
probability to mutate increases, the concentration is on search rather on exploitation; very
high rates create wild exploration, almost random. A second expected result is the

3 There is a basic confusion in the definition of sclection pressure: an increased pressurc loosens the
selection, and decreased pressure tights the procedure. 1 have decided to keep this name only because the
term is widely used in cvolutionary strategics. However, the implication should be imprinted in mind.

1 There is the biggest advantage of this method, which is discussed in Chapter 5, when the scarch is
conducted in the constrained space. The method allows big penaltics applicd to non-feasible solutions.
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premature convergence at low selection pressures’. Pressures lower than 0.9 are virtually
ineffective. In such runs the algorithm locks on a certain super-individual and converges
rapidly to a local maximum. Thus, tune up was performed at relatively low mutation
update probabilities (of 0.1, 0.2 and 0.3) and relatively high selection pressures (0.94, 0.96
and 0.98). 10 runs were executed per each combination of Pyp and Ps, for which the
resolved maximal payload fraction and the respective convergence time (in generations)
are given in Tables 3.2 and 3.3.

Pup 0.1 0.2 0.3
094 1096|098 ] 0.94 ] 096 | 0.98 | 0.94 | 0.96 | 0.98

0.1278]0.12690.1244]0.1254{0,1275]0.1269{0.1272|0.1273)0.1262
0.1275]0.1269(0.1268)0.1277[0.1265]0.1261{0.1264]0.1263]0.1272
0.1266{0.1260(0.1255{0.1273{0.1269[0.1269{0.1278/0.1260] 0. 1277
0.1264{0.12710.1258(0.1266(0.1267(0.1281{0.1271]0.1278] 0.1260
0.12610.12600.1239(0.1270(0.1259{0.1265[0.1272]0.1272]0.1277
0.1256{0.1269(0.1225(0.1264[0.1273[0.1265[0.1280]0,1275] 0.1255
0.1273]0.1269[0.1253]0.1266[0.1273(0.1267(0.126110.1274
0.1268(0.1272/0.1233{0.1273]0.1272(0.1269(0.1266]0.1271
0.1280]0.1277(0.1251]0.1278]0.12680.1262]0.1278]0.1267
0.12630.1276]0.1252/0.1281{0.1259(0.1268(0.1273]0.1278
Average0.126810.1269{0.1248]0.1270/0.1268]0.1268]0.1272{0.1271) 0.1267

SO ® D »m =D

Table 3.2, Maximal payload fraction.

Py 0.1 0.2 0.3
Ps 094]1096]0.98[0.94]0.96(0.98]0.94]0.96 [ 0.98
| 55 | 40 | 48 | 31 | 42 | 63 | 55 | 24 | 100
2 60 | 34 | 37 | 63 | 32 | 44 | 40 ] 35 | 100
3 4| S5 |48 | 42 [ 40| T 41 35 | 100
4 23 | 30 | 46 | 26 | 63 | 68 [ 50 [ 63 | 100
5 22 15120 ] 37 24 46 | 26 { 43 | 100
6 20 | 40 13 133 |33 | 78 | 3 | 35 [ 100
7 M 23 | 4 21 30 | 35 18 | 72
8 g [ 27 12 | 37 | o6l 56 | 30 | 6l
9 26 | 58 19 | 34 | 27|37 ] 36 | 43
10 24 | 28 | 59 | 5] 42 | 72 | 51 | 100
Average] 33.6 | 35.0 | 343 ] 37.5]394]57.0] 383 ] 51.1]100.0

Table 3.3, Generations for convergence.

The overall maximum payload fraction obtained in these 86 runs is 0.1281, twice. For the
right hand column no convergence is reached after 100 generations due to the high

* Note again to the basic confusion in the definition of sclective pressure.
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pressure and mutation probability, so only six runs were performed. The best algorithm is
the one that gives the highest average fitness. This happens for a mutation probability of
0.3 and selection pressure of 0.94. The trends in Table 3.3 are as expected: as the
pressure and the probability of mutation are increased, the concentration is on exploration,
and the average time to attain convergence increases. A typical result is shown in Figure
3.9.

Generation

Figure 3.9. Rank- based algorithm results, Pyp=0.2, Ps+0.94.

In this example the algorithm did find the highest value of 0.1281. Note the differences
from the behavior of Figure 3.2: first and most significant, the average gencrational fitness
agrees with the survival of the fittest principle and evolutionary theory - there is clear
improvement as the procedure progresses. The improvement in the maximal generational
value is continuous, and the span decreases towards convergence, because the population
becomes saturated with good individuals.

Figure 3.10, Roulette wheel in a rank-based algorithm.
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Figures 3.10 and 3.11 show the roulette wheel and reproduction results at a certain
generation, for a pressure of 0.96, as opposed to Figures 3.4 and 3.5. With the ranking,
high performance solutions get higher chances to survive. In Figure 3.11, the center of
selection is 12.37.
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Figure 3.11, Experimental reproduction in a rank-based selection algorithn.

A typical chromosome evaluation takes 10 to 15 seconds; each generation lasts
more than 6 minutes, and 50 generations take about 5 hours. However, as the process
goes on, there is convergence to the best solutions, and some chromosomes in the same
generation are identical. Also, as the probabilities for crossover and mutation decrease,
and/or the sampling mechanism becomes more elitist, the chance of having equal
genotypes increases. Therefore, an accelerating algorithm is added, which first checks
whether a solution has already been evaluated in the population, and if so, just duplicates
the already available solution and proceeds. The check for identical chromosome is
performed only at the current processed generation, and hence the chances of duplication
increase as the number of evaluated chromosomes increases towards pop_siz¢. For
example, in the second individual evaluation only one chromosome is checked. In the
third individual the first and second individuals are checked and so on. Using the
accelerator has proven to be very effective. Figure 3.12 displays the number of
duplicated solutions for a certain run. The average number of duplicated individuals is
6.36, thus a time saving of more than 20% is gained.
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Figure 3.12, Number of duplicated chromosomes per generation, Pry=0.3.

The overall best ship violates three constraints: initial stability, depth and
deckhouse volume. In Chapter 4 several ships with the same maximum payload fraction
of 0.1281 are found. Figure 3.13 provides the technical data of one of them.

Main Parameters ...

Cp
Cx
cdl
Cht
cDhD10
Crd

Main Dimensions on Waterline ,..

Underwater volume
Length on waterline
Beam

Draft

DlO

Speed and Resistance ...
Wetted area

Sustained speed

Maximal speed

Endurance shaft horsepower
Space Available ...

DO

D10

D20

Total hull volume
Electrical Loads ...

Winter cruise electrical load

Marginal winter cruise electrical load
24 hours average electrical load

Power required per generator

Auxiliary machinery rooms volume

.700

. 900

75.93 [lton/ft"3)
2.800
15.00

.000

2.520E+405 (ft~3)
45€.10 [ft)

49.56 (ft)

17.70 [ft)

30.41 (f¢t)

28860.7 (ft~2)
30.48 (knt)
32.48 [knt)
1€493.0 [hp]

46.96 (ft)

30.41 (f¢t)

34.91 (ft)
597002.3 [ft~3)

3267.7 (kW)
3300.3 (kW)
2200.4 (kW)
1833.5 (kW)
54508.8 (ft~3)
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Tankage ...

Fuel weight

Fuel tanks total volume
Ballast tank volume
Total tanks volume

Unconstrained Solution space

1213.7 (lton)
54986.6 (ft~3)
10447.5 (£t~3)
72885.9 (£t~3]

Weight and Center of gravity ...

Lightweight $470.6 (lton)
Vertical CG of lightship 20.94 (ft})
Full load displacement 7176.0 [lton)
Vertical CG at full load 19.54 (ft])
Payload fraction .128

Area/volume Balance ...

Required hull area
Available hull area
Required hull volume
Available hull volume
Required deckhouse area
Available deckhouse area
Required deckhouse volume
Available deckhouse volume
Total required area

Total available area
Total required volume
Total available volume

Initial stability .....

48925.1 [ft~2)
31049.5 [£t~2)
521541.3 [£t~3)
330987.7 (£t~3)
10042.1 ([ft~2)
27701.3 [ft~2]
107049.2 ([ft~3)
295295.6 (£t~3)
58967.2 [ft~2)
58750.8 (£t~2)
628590.5 [ft~3)
626283.3 (ft~3]

KB 9.85 ([ft)
BM 12.96 [ft)
Metacentric height 3.27 [ft)
GM to B ratio . 066

Deckhouse volume

Balance/Feasibility Status ...

296949.4 (ft~3)

Category Required/Minimal Available
Deckhouse area ([ft~3]) 10042.1 27701.3
Electric plant (kW) 1833.5 2500.0
Sustained speed 29.96 30,48
Initial stability .090 .0660
.135

Depth (ft) 32.66 30.41
Maximal deckhouse volume [ft~3] 293917.4 296949.4
Payload fraction .075 .1281

Figure 3,13, Self balanced DDGx unconstrained best model ouiput,

83

All population initializations are random. It can be seen from Table 3.2 that the
algorithm, for any combination of the search parameters, is not robust. The variability of
the results is quite high, and the averages of fitness function maximum values differ from
the best ever value of 0,1281 in the third decimal place. The payload fraction range is
approximately between 0.085 (the lowest value in Figure 3.3) and 0.1281 (the highest
value in Table 3.2). The best parameter combination of Py=0.3 and Ps=0.94, giving the
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highest average fitness of 0.1272, is still below the optimum by 2.1%. The best
combination therefore suggests an accuracy of 97.9%. Note also that this combination
offers good speed, 38 generations to converge on the average.

In some runs, the final result was lower than the best-ever result found during the
exploration. An example is given in Figure 3.14.

0.114 +~ / . - e TEt TR
0 10 20 30 40 60
Generation

Figure 3,14, Convergence to a local maximum.

Here two problems exist: the best ever solution has a 0.1278 payload fraction (and not the
optimal 0.1281), and the final reported value is 0.1265. This is a result of the stochastic
errors in the sampling mechanism, and it occurs more and more as the probability of
mutation increases - the computer mutates the generational best chromosome so it actually
forgets it and loses the good genetic information it bears. This is the reason for storing the
best ever value in addition to the generational value. Some elitist models enforce the
selection of the best ever value in order to prevent this phenomenon, but this approach is
not adopted here, in order to prevent premature convergence. The modified genetic
operators described in Chapter 4 solves the problem of Figure 3.14.
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Chapter+

Enhanced Evolutionary Strategies in the
Unconstrained Solution Space

In Chapter 3 the foundations for the genetic search are presented, and values for
system parameters which gave the best results are identified. Although the selected
configuration accuracy is 97.9%, the highest average payload fraction differs from the best
ever value in the third decimal digit: 0.1272 versus an optimum of 0.1281. Except for the
usage of a rank-based selection mechanism, and the floating point number representation,
this is still the basic genetic algorithm search procedure suggested by Holland [7]. The
selected configuration of Chapter 3 ¢ ,eferred as the dafum model. Due to the increasing
interest in evolutionary strategies, and the availability of parallel computing systems, a lot
of academic effort was made during the last two decades to develop new methods in this
field. This chapter introduces some of the improved strategies incorporated in the search
model in order to increase the robustness of the datum system. Due to the intensity and
complexity in the evaluation of the DDGx model, an increased robustness means increased
confidence in the results - and, in the bottom line, a reduced number of required
executions. For example, return to Table 3.2. Through all 86 runs performed, only two
have identified the overall maximum payload fraction. Note also that the selected
parameter combination - the datum - does not report these values at all. By using the
following new operators the model becomes an evolutionary program. During all runs,
when applicable, the same system parameters as in the datum optimizer are used, except
one: the convergence criterion n_converge is increased to 15 successive generations
instead of 10; the algorithm is made more “patient”. Each new operator is evaluated
alone, to asses its contribution, and then several combinations are examined. The search is
still evaluated without the physical constraints of the system because it is easier to handle
one problem at a time: after the premature convergence problem is eliminated, the model
can be used with more confidence in any environment.
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4.1 Non-Uniform Selection Pressure

The fundamental cause in large population systems for premature convergence is
the ignorance of some vital genetic information. While small populations could possibly
lack required genetic material, large populations, together with an efficient search engine,
insure that the exploration has the necessary genetic data. The only problem is how to
refine and extract it. Premature convergence happens when one or more super-
individuals, with superior fitness, dominate the population. These super-individuals are
copied many times by the selection operator, and very fast the population is saturated
while other data is destroyed. In such cases the computer concentrates on exploitation
and forgets about exploration. In order to control the reproduction process, and to bound
the exploitation, DeJong [38] suggests to limit the number of copies a chromosome can
have. From a different point of view, the center of gravity in the search must move from
exploratlon at the beginning, to exploitation at the end: At the beginning, the explora(non
is almost random, allowing the evaluation of many options, until all vital information is
collected. This prevents the influence of super-individuals. Later, when the algorithm has
found the promising regions, there is less interest in new solutions, and the computer
concentrates only on the good chromosomes. The shift frora exploration to exploitation is
expressed by means of the center of selection, and is controlled by the selccuon pressure:
hlgh pressure is associated with exploration, low pressure with exploitation'. Instead of
using a constant pressure, a non-uniform selection pressure is exerted. In Chapter 3 it is
concluded that the most effective selection pressure is 0.94. Keeping this as the average
pressure, the specific pressure is changed from 0.98 at the initialization to 0.92 at
generation gen_max linearly,

gen

Py =006 ———
gen_max

+098 4.1)

Experiments show that lower pressures are too elitist, and give no improvement. Table
4.1 displays experimental results obtained using the non-uniform selection pressure. All
other parameters are as selected at the end of Chapter 3. gen represents the number of
generations before convergence. The right column gives the average of ten runs.

Run | 2 l 4 5 6 7 8 ) 10 Ave
Fp | 01280 10,1273 1 01274 | 0.1281 | 0.1268 | 0.1276 | 0.1271 | 0.1272 | 0.1280 | 0.1278 0.1275
gen 4] 53 63 100 4() 79 100 83 100) 84 74.3

Table 4.1, Experimental results with non-uniform selection pressure.

"' promisc that this is the last time: pay attention to the fundamental confusion in the definition of
sclection pressure.
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The results are better than before: an average of 0.1275 instead of 0.1272, implying an
accuracy of 98.6% as opposed to the former precision of 97.9%. The process does take
more time, but this is the price of avoiding premature convergence.

4.2 Fine Local Tuning with Non-Uniform Mutation Operator

The mutation operator creates new solutions by altering one randomly selected
gene, to a random extent (but within the predefined gene domain). The operator can
provide some important missing genetic material, critical for the optimal solution.
Assuming continuity, it also provides a new individual in the vicinity of the mutated one.
It may have a higher fitness. Unfortunately, it might also offset the algorithm from a
promising regime if the change is too extreme. Such a behavior is acceptable and even
desired in early generations because it provides extensive exploration capability, and a
wide search ensures that the algorithm has checked many options before concentrating on
a certain one. At progressive stages, where the algorithm approaches the best solution
and starts to converge, it distracts and can destroy the good genetic material. An example
of this situation was illustrated in Figure 3.14. The extent to which a gene is changed
should be generation dependent: as the generation number increases, the mutation updates
a gene nearer to its original value. The operator is then a non-uniform mutation operator,
because the change is not uniform throughout the whole process. The mechanism is
referred to as fine local mning. Mathematically speaking, if a gene x, is bounded in the
domain [a;, b)), than its mutated value is given by,

(4.2)

x, + A(gen,b, - x,) if a random digit is 0
x, = A(gen,x, —a,) if a random digit is 1

where the effective branch in Equation (4.2) is selected by tossing a coin: the first mutates
to a higher value, the later to a lower value. gen is the generation number, and,
o gen Y

A(gen,x)=x-|1-r “en_ ) (4.3)

where r is a uniformly distributed random number from the range [0, 1], gen_max is the
maximum allowed number of gencrations, and h a parameter determining the degree of
non-uniformity. The function A determines how much a gene is mutated, and is displayed
in Figure 4.1, for h=2. Each curve represents different progresses in the search, expressed
by the non-dimensional time gen/gen_max, of 0.1 through 0.9. As the process advances,
the possibility of large changes decreases; as b increases, the decay of the graphs becomes
more drastic, reducing further the chances of serious offsets.
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Figure 4.1, The non-uniform mutation Delta function, for different gen‘gen_max ratlos, b=2.

The influence of the parameter b can be seen in Figure 4.2. It shows curves for b varying
between 1 and S, for a constant non-dimensional time of gen/gen_max=0.3.
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Figure 4.2 Influence of the parameter b on the Delta mutation function, gen-gen_max=0.3.

When use is made of this operator, the search mechanism is very pedantic, and usually
does not lose the best result, as happened in Figure 3.14. The exploration at these stages
is so local, that the algorithm recovers even if the best value has been forgotten for a
certain period. Table 4.2 provides experimental results with the non-uniform mutation
operator. The parameter b is set to 2. The performance with this operator is even better,
with an accuracy of more than 99.5%. The speed of convergence is also higher relative to
the last section. Clearly, this is a better operator, with the free advantage of shorter
running time.
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Run | 2 ] 4 5 6 7 8 9 10 Ave
Fp ]0.1281 [ 0.1273 | 0.1278 | 0.1275 | 0.1281 | 0.1281 0.1280 | 0.1279 | 0.1280 | 0.1281 | 0.1279
|_gen 4 59 48 49 100 52 78 58 70 59 60.7

Table 4.2, Experimental results with non-uniform mulation operator, b=2.

Evidently, the accuracy requested - before using this operator - for several genes, Cu, for
example, was not enough, and the search was too coarse. The non-uniform mutation
operator fixes this because it assigns the genes mid-values as well. Apparently there is big
sensitivity to the gene values. A minor disadvantage of the non-discrete search, on the
other hand, is that the chances to duplicate solutions in the next generation decrease.
Consequently, runs in this case are longer in total CPU time (but not in convergence time).

4.3 Baker's Selection Mechanism

High selection pressure operated at early search stages reduces the concentration
on super-individuals. However, to conduct an entirely random search at the beginning, by
using a very high pressure, say 0.99 and up, is inefficient because we still want to be able
to have some distinction between good and poor chromosomes, and to learn something
from the population, until the important genetic material is identified. Baker [37]
presented a stochastic universal sampling method, in which the whole population is
exploited, thus collecting genetic data generation-wide, under predefined probabilities of
selection. The model uses the same roulette wheel, with slot sizes allocated according to
the relative fitness, but incorporates pop_size equally spaced markers, and only one wheel
spin. The numerous uniformly distributed markers guarantee diverse selection, still
depending on the slot area: high fitness individuals still have higher chance to get more
copies. Figure 4.3 illustrates an experimental result of Baker’s selection filter.
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Figure 4.3. Experimental reproduction according to Baker's selection algorithm.
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In this case the same selection pressure of Figure 3.11 is used, for comparison purposes.
Except for two inferior chromosomes, all solutions have been selected, the best three (plus
the seventh) individuals received double copies, to reflect their superiority. The improved
selection mechanism can be appreciated now: it obeys the selection theory, because good
individuals get more chances to survive and breed, but also explores the genetic data
stored in the whole population. According to [6], this method was adopted by many
researchers as a standard. The experimental center of selection in this example is 12.37,
the same as in the regular selection of Figure 3.11, as it should be. In a rank-based
roulette wheel construction, it depends on the selection pressure only,

cS=2"""p (3.10)

=1
Because the probabilities are functions of /s,
P=A.-r" (3.7)

Table 4.3 shows experimental results with Baker selection. The average predicted
payload fraction is the same as in the datum model, but inferior relative to former trials.
The good news is that the speed of convergence is significantly higher than before: the
algorithm collects all vital genetic information very effectively. However, when it has the
data, it does not have the ability to complete the exploration without premature
convergence, as in the datum model.

Run | 2 k] 4 5 6 7 8 9 10 Ave
Fp | 0.1259 | 0.1280 | 0.1281 | 0.1270 | 0.1273 [ 0.1277 | 0.1268 | 0.1275 | (.1260 [ 0.1281 | 0.1272
| gen 17 28 100 28 kK] 75 18 50 40 58 48.7

Table 4.3, Experimental results with Baker's selection method,

4.4 High Order Crossover Operator

Another approach to improve the search mechanism refers to the basis of the
theory of genetic algorithms, As shown in Section 1.6, the exploration is conducted via
the concatenation of building blocks, groups of fit genes that are brought together towards
the fittest individual. The schema theorem states that short, low order, above average
schemata receive exponentially increasing samplings in subsequent generations, so only a
portion of the available schemata is exploited. For instance, suppose that the high fitness
schema S=(110* * * x x 0101) is evaluated. It is destroyed if crossed-over with a second
schema: the operator splits the valuable schema somewhere, and swaps its half strings with
the second one. The one point crossover is thus not always effective, because not only
does it not use the good data, but it may even destroy it. [6] also raises an additional
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argument against this crossover. The amount of mutated genes depends on the length m
of the chromosome, Py, - m on the average. This allows a control of the exploration
intensity. One point crossover always combines two strings together, regardless of the
length.

Higher order crossover operators have been developed. A two-point crossover
[38), in which the selected chromosomes are cut at two positions and then swapped
overcomes the above disadvantage. For example, two relatively good schemata
S;=(110|*  * + »|0101) and  Sy=(* % *|* |11%|* % « «) where the random split
locations are also displayed, procreate the new couple S',=(110/*111#[0101) and
S'y=(* * # % % % % » | » % ), The schema theorem claims that the chromosome §", has a
higher fitness than its parents. Of course, the two-point crossover destroys more
sophisticated schemata, and so on. [38] has experimented with a multi-point crossover as
an extension of this idea. 1In such a crossover a randomly even number of splits, from
[0,m-1), is generated, and the segments are swapped. More advanced crossover operators
are described in [6)2. The most significant conclusion [6] reaches is that while the
effectiveness of high order crossover operators may vary from case to case, it is always
better than the classical crossover.

Since in this study the six degree chromosome is relatively short, only the two-
point crossover operator is considered. For any individual selected for crossover (at
identical probability of 0.25), two uniformly distributed discrete numbers, r,€[1,5] and
r e[r;,5), are randomly generated (the upper limit is 5 because for six genes five split
positions exist) to determine the positions of the splits. Note that if r,=5, there is
decadence to a regular crossover operation, because this enforces 7;=r;. Experimental
results are given in Table 4.4.

Run | 2 k] 4 5 6 7 8 9 10) Ave
Fp | 01271 | 0.1268 | 0.1281 | 0.1275 | 0.1281 | 0.1278 | 0.1275 | 0.1280 | 0.1276 | 0.1278 | 0.1276
gen 30 54 85 67 97 48 73 81 52 47 634

Table 4.4, Experimental results with two-point crossover.

The two-point crossover offers better performance than the one-point, as is expected.

4.5 Arithmetical Crossover Operator

Similar to the effect of uniform mutation discussed in Section 4.2, the classical
crossover operation might also offset the algorithm from a promising regime if the change
is too significant. A possible better breeding mechanism is to procreate offspring in the

* Scction 4.3, page 67.



4 Enhanced Evolutionary Strategies 92

vicinity of the parents, as does the non-uniform mutation operator. An arithmetical
crossover is defined as a linear combination of the parents,

x,(gen+1)=a-x,(gen) + (1-a)-x,(gen)

x,(gen+1)=a-x (gen)+(1-a)-x, (gen) (4.4)

where x,(gen) and x(gen) are the parent chromosomes at generation gen, whereas
x(gen+1) and x(gen+1) are their children at generation gen+/. The pre-declared
parameter a determines the proximity of the offspring to the parents: the more it is
decreased, the closer are the children. When a=0.5, a simple mathematical average is
taken. The function can be applied to the whole chromosome vector or just to the
swapped segments. In this work the second option is chosen, because the first method
actually does not juxtaposition building blocks, but changes the entire string, thus
contradicting the schema theorem. However, as in Section 4.1, a variable parameter « is
included,

gen

99—+ .
gen_max (4.5)

Q
i
|

Thus a runs linearly between 1 and 0.1 as the search advances. As the process converges,
the new solutions are closer to their parents. Experimental results with this alternative are
shown in table 4.5.

Run 1 2 3 4 5 6 7 8 9 10 Ave
Fp | 0.1278 [ 0.1274 | 0.1279 | 0.1275 | 0.1270 | 0.1277 | 0.1277 | 0.1278 | 0.1280 [ 0.1274 | 0. 1276
en 63 53 100 50 30 59 78 79 96 05 67.3

Table 4.5, Experimental results with arithmetical crossover.

The table shows that arithmetical and two-point crossover give a similar search efficiency.
The small difference in the speed is negligible.

4.6 Experimental Results with Combined Methods

The success with the application of various single evolutionary operators to the
algorithm suggested experiments with multiple mixed operators. The non-uniform
selection pressure, the non-uniform mutation and the advanced crossover alternatives give
better results but converge slower. While Baker's reproduction does not improve the
results, it may increase the speed of convergence due to its special genetic data collection
mechanism. Different combinations were tested, the results are shown in Tables 4.6 and
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4.7. As usual, 10 runs were executed for each configuration. In all runs non-uniform
selection pressure and non-uniform mutation operator were incorporated.

Crossover 1 point 2 point Arithimetical

Sclection | Ranked | Baker | Ranked | Baker | Ranked | Baker
l 0.1279 | 0.1280 | 0.1281 | 0.1280 | 0.1275 | 0.1281
2 0.1278 | 0.1281 | 0.1271 | 0.1281 | 0.1276 | 0.1274
3 0.1281 | 0.1281 | 0.1280 | 0.1280 | 0.1281 | 0.1280
4 0.1281 | 0.1275 | 0.1281 | 0.1281 | 0.1276 | 0.1281
5 0.1280 | 0.1281 | 0.1281 | 0.1281 | 0.1281 | 0.1281
6 0.1281 | 0.1281 | 0.1278 | 0,1279 | 0,1278 | 0.128]
7 0.1279 | 0.1277 | 0.1272 | 0.1274 | 0.1280 | 0.1277
8 0.1276 | 0.1278 | 0.1281 | 0.1277 | 0.1281 | 0.1278
9 0.1273 | 0.1280 | 0.1276 | 0.1275 | 0.1280 | 0.1274

10 0.1273 | 0.1280 | 0.1278 | 0.1280 | 0.1280 | 0.1273
Average 0.12781]0.12794 ] 0.12779 ] 0.12788 | 0.12788 0,12780

Table 4.6, Experimental results with combined evolutionary operators.,

Crossover 1 point 2 point Arithmetical

Sclection | Ranked | Baker | Ranked | Baker | Ranked | Baker
1 67 62 84 05 76 79
2 71 66 71 86 84 46
ki 90 67 100 48 78 49
4 100 49 47 77 92 67
5 78 70 94 91 78 86
6 73 65 52 48 63 60
7 87 62 ol 49 89 75
8 5l 16 73 51 88 86
9 89 59 47 56 91 6l
10 74 71 72 56 R0 76

Average 78.0 6l.7 70.1 62.7 81.7 08.5

Table 4.7, Experimental convergence results with combined evolutionary operators.

The results are quite uniform, without any prominent preference when only Table 4.6 is
considered. All the combinations have converged faster with Baker's mechanism, as
anticipated, offering reduced running time. The interesting discovery is that none of the
combined algorithms have given better results than those already obtained for the non-
uniform mutation operator alone, described in Section 4.2. The combination of the non-
uniform selection pressure and non-uniform mutation operator, with or without high order
crossover, does not improve on the performance of the algorithm with only the non-
uniform mutation, Table 4.2, Table 4.8 shows the experimental results obtained when a
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uniform selection pressure of 0.94 and regular one-point crossover operator were
combined with the non-uniform mutation operator and Baker's selection.

Run | 2 k] 4 5 6 7 8 9 10 Ave
Fp [ 0.1279 1 0.1279 [ 0.1281 | 0.1280 { 0.1280 | 0.1281 | 0.1281 | 0.1281 | 0.128] 0.1280 | 0.1280
gen 50 56 40 72 68 58 70 L) 060 42 59.5

Tablc 4.8, Experimental results with uniform pressure, non-uniform mutation and Baker's selection.

The results with a uniform selection pressure are better. The robustness of this
configuration is remarkable, and the accuracy is more than 99.75% . The fine local tuning
is apparently a vital part in an effective search. For the one-point crossover, for example,
the average has significantly increased to the same value as in all other runs. Before using
the advanced operators, the average for both rank-based and Baker’s selection was only
0.1272, see Tables 3.2 and 4.3.

In an effort to select the best configuration for the search, additional analysis
displayed in Table 4.9 has been done. For each combination of evolutionary operators, the
standard deviation of the results and the number of times that the overall optimum has
been reported have been computed, representing the distribution of the results.

Configuration Fp gen | 10%7 | Nyax
l Datum 0.1272 | 383 597 0
2 1 + Non uniform sclection pressure | 0.1275 | 74.3 429 2
3 1 + Non uniform mutation 0.1279 | 60,7 266 4
4 1 + Baker's sclection 01272 | 48.7 770 2
5 I + two point crossover 0.1276 | 634 | 405 2
6 1 + Arithmetical crossover 0.1276 | 67.3 282 0
7 1+2+3 0.1278 | 78.0 295 3
8 14+2+3+4 0.1279 | 61.7 196 4
9 1+2+3+5 0.1278 | 70.1 159 4
10 14243 +4+5 0.1279 | 62.7 244 3
11 142+3+6 0.1279 | 81.7 223 3
12 1+2+3+446 0.1278 | 08.5 N 4
13 1+3+4 0.1280 | 59.5 | 78.1 5

Table 4.9, Comparison of all evolutionary strategies experimental results.

Option 13, with uniform selection pressure and non-uniform mutation, Baker’s sclection
and one-point crossover, is the best alternative. Among the configurations it has the
highest average payload fraction, is the fastest, has the lowest standard deviation, and has
found the optimum of 0.1281 more times than the others.
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4.7 Conclusions

Four lessons have been learned from the runs performed so far. First, the non-
uniform mutation operator is a vital tool in any genetic exploration. The contribution of
other evolutionary operators in the unconstrained optimization is, surprisingly, negligible,
even negative in some cases. The possible reason is the relatively short chromosome
length adopted in this research, negating the influence of modified crossover methods, for
example. Second, the resolution shown in Table 3.1 is not enough, because better payload
fractions are achieved using intermediate values. Only the non-uniform mutation, which
makes the search continuous, is able to explore these values. Thus, when using a floating
point representation it is advisable to create new genes, both in the initialization and
mutation, in a continuous and not a discrete manner. In this way the designer is not
worried whether his required resolution is sufficient. Third, faster convergence of up to
25% can be achieved with Baker's reproduction system. The fourth conclusion is that a
genetic search has to be patient to find the optimum. There is always a trade-off in the
determination of n_converge, the number of successive generations needed for
convergence call: a low value is associated with short running time, whereas a high value
allows more time for the optimization. It is recommended to permit long runs because the
total number of required runs as to be sure that the actual optimum has been obtained will
be lower.

A typical feature of a patient search engine is the highly saturated final population.
The computer has enough time to search in the entire neighborhood of the optimal
chromosome. Figure 4.4 shows the final population of a certain run, under a very elitist
selection of Ps=0.94, with a maximum of 0.1281. This is the same output type as was
given in Figure 2.14. Duplicated chromosomes are marked; there are 21 identical
chromosomes, showing that convergence is also generation-wide, not only across
generations.

Cp Cx Cdl Cbht CDIO Crd Fp Area kW Vs GM- GM+ DI0 Vvd

.70 .90 75.92 2.8 15.0 .75 .1217 b4 b X

.70 .80 75.9 3.2 15.0 .00 .l1228 b P

.70 .90 75,9 2.8 15.0 .00 .l28l X X X

.70 .90 75.9 2.8 15.0 .00 .l1281 Duplicated solution - chromosome# 3
.70 .90 75.9 2.8 15.0 .00 .l28l Duplicated solution - chromosome# 3
.70 .90 75.9 2.8 15.0 .00 .128l Duplicated solution - chromosomef 3
.€6 ,90 75,9 2.8 15.0 .00 .1254 % X

,70 .90 75,9 2.8 15.0 .00 .1281 Duplicated solution - chromosomef 3
.70 .90 75,9 2.8 15,0 .00 .l281 Duplicated solution - chromosomef# 3
.70 .90 75.9 2.8 15.0 .00 .l28l Duplicated solution - chromosomef 3
.70 .90 75.9 2.8 15.0 .00 .l28l Duplicated solution - chromosomef 3
.70 .90 75.9 2.8 15.0 ,00 .28l Duplicated solution - chromosomef 3
.70 .90 75,9 2.8 15,0 .00 .l28l Duplicated solution - chromosomef 3
.70 .90 75.9 2.8 15,0 .00 .,l28l Duplicated solution - chromosomef 3
.70 .90 75,9 2.8 15.0 .00 .l28l Duplicated solution - chromosomef 3
.70 .90 75,9 2.8 10.8 .00 .l1227 X

.70 .80 75,9 2.8 15.0 ,00 .1243 X X

.70 .90 €8.5 2.8 15.0 .00 ,1277 b X

.70 .90 75.9 2.8 15,0 .00 .l281 Duplicated solution - chromosomef 3
.70 .90 75.9 2.8 15.0 .00 .l281 Duplicated solution - chromosome# 3
.70 .90 75.9 2.8 15.0 .00 ,l1281! Duplicated solution - chromosome# 3
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.70 .90 75,9 2.8 15,0 ,00 .1281 Duplicated solution - chromosome# 3
.70 ,90 75.9 3.2 15.0 .00 .1268 X

.70 .90 75.9 2.8 15.0 .00 .1281 Duplicated solution - chromosome# 3
70 .90 75.9 2.8 15.0 .00 .,1281 Duplicated solution - chromosome# 3
70 .90 75.9 2.8 15.0 .00 .l1281 Duplicated solution - chromosome# 3
70 .90 75.9 2.8 15.0 .00 .12861 Duplicated solution - chromosome# 3
.70 .90 75.9 2.8 10.1 .00 .1214 X b4

.55 ,90 75.9 2.8 15.0 .00 .1210 b b

.70 .90 75.9 2.8 15.0 .00 .,1281 Duplicated solution - chromosome# 3

Figurc 4.4, Saturated population at final generation.

For the predefined payload fraction accuracy of up to the forth decimal digit,
various maximums of 0.1281 have been found. The computer, at every run, picks the
highest value using all of the digits, but the data collected through all executions is
recorded with only four decimal digits Table 4.10 displays some of the chromosomes
found to have the highest payload fraction.

Ce Cx Cu, Chr Coio Crp Fp
0.700 | 0.900 | 77.30 2.80 15.00 0.00 0.1281
0.700 | 0.900 76.60 2.80 14.98 0.00 0.1281
0.700 | 0.900 77.03 2.82 15.00 0.00 0.1281
0.700 | 0.900 76.70 2.80 14.90 0.00 0.1281
0,700 0.900 76.00 2.80 15.00 0.00 0.1281
0.700 | 0.900 76.50 2.80 15.00 0.00 0.1281
0.694 0.900 77.46 2.80 15.00 0.00 0.1281

Table 4,10, Optimal hulls in the unrestrained solution space.,

Except for the displacement to length ratio (4, the genes are nearly identical, thus
the hulls are geometrically similar. The identical payload fraction in Table 4.10 makes the
full load weight of all unconstrained optimal ships equal. Thus their length and
consequently their beam and draft differ, due to the slightly different ("t;. Excluding Cu,,
all genes are at their extreme value, thus the maximums obtained are located at the
boundary of the unconstrained solution space. At this stage the boundaries are not
extended, because the results represent unfeasible ships. A similar behavior in the
constrained solution space will require this operation.
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Chapter 5
Optimization in the Constrained Solution Space

Until now, all efforts were made in the construction of the search/optimization
engine. Since it does not matter to the algorithm what parameter is optimized, physical
constraints were abandoned. Now that the algorithm is tuned, feasibility must be
considered. This chapter reviews the existing techniques for constrained problems,
examines their applicability, and describes the solutions applied in this research,

Although the best system parameter configuration in Chapter 4 is the one with a
uniform selection pressure of 0.94, experiments in the constrained solution space, as
discussed here in Sections 5.2 and especially 5.3, show that the non-uniform pressure
gives better results. While the unconstrained space is big, the feasible regimes are
relatively small. Thus, in order to succeed in finding the overall feasible maximum, the
algorithm needs to collect genetic data from many zones, until the vital material is found.
The experiments reveal that the uniform selection pressure does not allow the necessary
wide exploration, and hence in some cases relatively low maximums were obtained using
this method. The non-uniform pressure, on the other hand, concentrates on exploration at
the beginning of the process, and is able to gather the required genetic data.

5.1 Feasible Solutions In the Unconstralined Search

In Section 2.14 it was shown that feasible individuals are rare. It was also shown,
in Chapters 3 and 4, that all maximums obtained are non-feasible. This is expected, since
generally unrestricted systems, like an unbalanced ship, give enhanced performance. It
should not be expected to find feasible solutions at advanced generations at all, otherwise
there is a problem with the process - as the exploration progresses the population must be
saturated with only the best chromosomes, the non-feasible ones. An experimental
illustration was displayed in Figure 4.4. Even if incidentally two foasible individuals are
mated by the crossover genetic operator, the chances are that their two offspring are non-
feasible. The same applies for a mutated genotype. If we do find a feasible solution, it is
randomly generated, and will be destroyed soon, unless it has a relatively good
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performance, or has sneaked through the selection filter. Figure 5.1 demonstrates the
decay of the number of feasible solutions during an unconstrained experiment. This run
was randomly initialized with 5 feasible chromosomes, a relatively high number. These
individuals had relatively high fitness, and they bred to some extent. After the 10"
generation their appearance was incidental: only one feasible solution was obtained in the
final two generations. Most of the time no feasible solutions were found in the population.
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Figure 5.1. Number of feasible individuals at unconstrained exploration.

However, the selection theory mathematically states that the average fitness of the
population increases with time. Hence, feasible genotypes must have relatively high
payload fraction to be created. Therefore, the optimization must work on feasible
individuals also, if they do exist in the population. Figure 5.2 displays the feasible
maximum and average generational fitness, and illustrates the operation of the algorithm
on feasible solutions in the unconstrained search. The process began to converge. It
stopped only because of earlier non-feasible convergence.

Fitness

TR JUS a-NAHR ] {————F_av_feas

max_gen_feas

30 40 50
Generation

Figure 5.2. Convergence of feasible solutions in an unconstrained exploration.
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Between generations 13 and 19 the feasible fitness has decreased, and moreover,
between generations 25 and 30 it was zero (or, no feasible individuals in the population at
all): the former is a result of evasion of a poor solution through the selection mechanism;
the later is an example of distinction of feasible solutions, because they offer relatively low
payload fraction. In cases for which the average fitness and the maximum fitness coincide,
only one feasible individual existed in the population. Figure 5.2 represents the result of a
population initialized with many feasible solutions, such that the algorithm had enough
time to maximize them too, before they were destroyed. In the majority of runs, at the
end of the process no feasible solutions survive, and poor best feasible results were
obtained, in the order of 0.1200.

Motivated by the future consideration of feasible solutions, during all runs
performed in Chapters 3 and 4, the best feasible solutions were also recorded. Table 5.1
shows the best recorded results. It represents the results of a somewhat random search,
because in those runs the model was programmed to maximize the overall payload
fraction. As illustrated in Figure 5.1, the appearance of feasible chromosomes at late
stages is accidental. Nevertheless, it still provides good information and some idea of the
expected results when exploring the constrained solution space. The final results in the
research must be higher or at least equal to those in Table 5.1.

Cp Cy Cy Cnr Coia Criy Fp
0.70 0.90 77.4 3.2 13.9 0.00 0.1257
0.70 0.90 67.4 3.1 14.5 0.00 0.1256
0.70 0.50 81.4 3.1 13.7 0.04 0.1255
0.70 0.88 68.0 3.1 14.5 0.00 0.1254

Table 5.1. Best feasible results obtained in the unconstrained search.

As in Table 4.8, the proximity of the genes, except for "y, shows that the direction of the
search is right. All hulls have similar shape, the only difference is the exact dimensions for
length, beam and draft.

5.2 Optimization with the Racist Model

Clearly, the feasible chromosome is not stable. The feasible regime is so smali,
that feasible ships in the unconstrained environment experience extinction: typically even
offspring of two feasible parents are non-feasible. In nature, to prevent extinction, species
are isolated and transferred to a more comfortable environment, where they can breed
without danger. The racist model was built according to this analogy. The algorithm is
described in Figure 5.3. Being based on the code of Chapter 4, the list file of this model is
not included.
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Figure 5.3. Racist optimization model flowchart.

Only feasible solutions are allowed - “dangerous™ non-feasible chromosomes are
not wanted and destroyed. The population is initialized randomly with only feasible
members, until pop_size of them exist. The nearness of the respective genes in Table 5.1
implies that the payload fraction function is continuous. Thus, a feasible new solution
would be generated if the original gene change is small. The two genetic operators which
fulfill exploration in the vicinity of former individuals are the arithmetical crossover
(discussed in Section 4.5) and the non-uniform mutation (Section 4.2). For the former, a
constant value of a=0.05 is set, and for the later =5 is utilized. If a non-feasible
chromosome is obtained, it is deleted and the computer generates randomly a new feasible
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individual. The optimizer uses the other features of the search engine as concluded in
Chapter 4: non-uniform selection pressure' and Baker’s roulette wheel.

Undoubtedly, this model has many drawbacks. First and most significant, it
contradicts the selection theory because new species are thrown into the population
without being evolved in time. The whole progress achieved by the evolution process is
contaminated with primitive individuals, which return the average fitness back in time. If
for example relatively fit parents produce non-feasible children, the computer destroys
them and creates two random feasible chromosomes, likely to be less fit because of the
random generation. An experimental demonstration is shown in Figure 5.4. The figure
displays the maximum and average payload fraction at each generation, and the number of
times the computer created a new feasible solution. On average for this run, about 4
chromosomes are thrown into the population each generation. While the maximum value
improves with time, the average oscillates due to this addition and does not improve with
time.
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Figure 5.4. Contradiction of the evolution principle in the racist model.

Secondly, the gentle genetic operations increase the chances of feasibility, but ignore the
possible existence of better solutions in other regimes, which are not accessed because
none of the initialized individuals are located there. An increased population size would
increase the number of visited feasible areas, thus reducing this disadvantage, but it takes a
lot of time to randomly create or complete pop_size feasible chromosomes, because they
are so rare. Creation of 10 feasible genotypes takes approximately 20 minutes, effectively
more than ten times longer than usual, and a complete run is not practical. The long
running time is a great disadvantage. Fourth, the discarded non-feasible solution might

' Sce in the introduction of this chapter,

|
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contribute some necessary genetic data, and even create a feasible solution, as illustiated
in Figure 5.1.

Experimental runs show that the method does work. Table 5.2 provides the
results of 5 executions. Due to the long running time, populations of 10 and 15 members
were used. The number of trials for which the computer tries to create 2 substitute
feasible solution is bounded to 15. When this limit is reached the program randomly takes
an existing feasible individual from the same generation as the replacement. The number
of identical successive generations needed for convergence is reduced to 10.

10 individuals 15 individuals

Fp gen Fp gen

1 0.1242 100 0.1248 100
2 0.1241 100 0.1253 100
3 0.1250 100 0.1255 100
4 0.1237 100 0.1255 100
5 0.1244 100 0.1247 100

Ave 0.1243 1000 | 0.1252 100.0

Table 5.2. Feasible experimental results with the racist optimizaticn model.

The effect of the population size is easily seen. Not only is the average fitness higher, but
also the distribution of the results is more uniform. Should the model be run with a bigger
population, the results would be even better. This was not done for running time reasons.
The fact that none of the runs has converged implies a high mutation rate. It was decided
not to decrease this rate because it proved itself in Chapter 4. The racist optimizer gives
poor results in reference to those of Table 5.1, but while Table 5.1 represents the best
performance found in approximately 350 runs, most of them yielded low fitness, the
distribution here is uniform. The current model is more robust, even for small
populations. The premature convergence is the result of the selection theory violation,
and the lack of required genetic material.

5.3 Optimization with the Penalty Function

The approach of Section 5.1 is not useful, since it requires a large number of
executions in the unconstrained space, which makes it not effective, and the results
uncertain. The racist model does use the features of the effective algorithm constructed in
Chapters 3 and 4, but the addition of new chromosomes into the population disturbs the
process and causes premature convergence. The solution should combine the features of
these approaches: use the data of non-feasible chromosomes, but concentrate on the
feasible members. This requires the computer to distinguish quantitatively between them,
in a systematic way.
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Linear systems with constraints are easy to optimize in a systematic way.
Michalewicz [6] created the GENOCOP system to deal with such cases. The model
converts the set of equations and inequalities to expressions limiting each gene value as a
function of themselves. Then, when a gene is selected for update, by either the crossover
or mutation operator, it can get a value only from this range, and the new chromosome
remains feasible. For non-linear problems the method is not applicable, particularly for
problems without ari explicit mathematical representation. A second method is to use
recovery algorithms: when a non-feasible chromosome is found, the computer randomly
chooses a gene, and then goes back and somekow finds the domain of that gene for which
the chromosome is recovered and returns (o be feasible. The value of that gene is
randomly chosen from that range. Such methods are not practical in large systems such as
the DDGx model: the running time is too long even on a fast computer. Most of the
references recommend using a penalty function. In this method, the objective function
incorporates knowledge about the feasibility of the solution. Fitness of a non-feasible
individuat is reduced (or increased in minimization problems). The reduction is by means
of a penalty,

FPE’JE'L‘II\W — I:p — Pen(,l’.y (S.I)

The penalty is associated with the distance from which a gene has deviated from its
allowed domain. The bigger the constraint violation, the bigger the penalty. In problems
with more than one constraint, the penalties are summed,

F’f:flli-cm-u =F, - Z Penalty, (5.2)

The difficulty is to decide on the intensity of the penalty. Exaggerated punishment
suppresses non-feasible solutions and their vital genetic information. A weak penalty, on
the contrary, does not focus on feasible solutions. At this point one of the biggest
advantages of the rank-based selection mechanism solves the dilemma. Revisiting Section
3.4, in this method probabilities of survival are assigned to the chromosomes according to
their relative rank when fitness values are sorted in descending order and not according to
their relative fitness: the best one is positioned as number one, the second best gets the
second rank, and so on. There is no importance to the relation between the values, their
proximity for example. From a different point of view, this is a serious drawback, because
very poor individuals can also survive. However, in this proven evolutionary program it is
irrelevant. Therefore, no matter how strong the penalty is, provided that it is applied
evenly to all of the non-feasible solutions, iheir position in the sorted population does not
change, and they still get the same chance to survive. Their necessary genetic data is not
lost, and the algorithm can use it for the optimization. Similarly, a tough penalty policy
might turn some of the values to negative. In a regular roulette wheel the associated
probability would be negative, which has no meaning; in a rank-constructed wheel this
cannot occur.
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The penalty function used is based on the relative deviation of each gene. 5ix
constraints are defined in this optimization problem, one of which - the initial stability -
restricts the respective value from two directions,

Covn < Com < Corm (2.105)

The rest limit the values from one side of the plane only,

Ve 22996 kuots (2.90)
Dy, 2Dy in (2.94)
KW; 2 KW, (2.96)
Ap, 2 Apg (2.98)

Vo <V ma (2.101)

The electrical load constraint has never been violated during the runs. For that reason this
constraint is disregarded for the penalty. Area, speed, stability, depth and deckhouse
volume errors are defined,

A.,— A
ERR,,, =—2-—2L.100
' Apg
V“”" _ V
ER‘RSPced = SVMm >-100
S
C.\hn _ C (w _ (‘w,\la\'
EmSlabiI = =2 \in = ’ 100 or =2 A av =z ' 100 (53)
Cé.\IB C&.\‘IB
D, -D
ERRDIO - I(ln;n 10 . 100
10min
V,-V, .
ERR,, = —% 100
D max

The errors are expressed in percentages deviation, and are always positive. The net
penalty is determined as reduction of 0.0001 from the real payload fraction per each &
percent total deviation, and Equation (5.2) becomes

2. ERR,

FEPewe = F, — 00001 - ————

p (5.4)
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Negative errors are considered as zero in this summation, namely, the gene does not get a
prize on being within its allowed limits. [6] incorporates time dependence, in which the
penalty is increased as the process advances, but this is not employed here. Taking
advantage of the above described property of a rank-based selection, the parameter & is
experimentally increased until the algorithm converges to a feasible individual. A first
guess for & is obtained form the known unconstrained optimum of 0.1281 and constrained
optimum of 0.1257. In order to bring the fitness from 0.1281, with net error (see Figure
3.13) of 34.6%, a reduction of 0.0024 is required, thus k&= 34.6/24~1.45. Experiments
reveal that this value is not sufficient, because other non-feasible solutions are found,
although with fitness lower than 0.1281. Several experiments with decreased k& were
performed, until k=0.1 was found to be satisfactory. Table 5.3 gives the experimental
results of 10 different executions with this parameter. All the chromosomes represent
feasible ships. The search process is identical to the configuration selected in Chapter 4,
with non-uniform mutation with =2, Baker’s reproduction and classical crossover,
excluding three modifications: it uses non-uniform selection pressure as explained at the
beginning of the chapter, penalty to non-feasible individuals is applied, and, as concluded
in Chapter 4, the search is changed to continuous. Thus, initialization is performed not
according to Equation (3.2), but by

C=C, +(C,, -C..) RAN# (5.5)

max

where now RAN= is a uniformly distributed random number from [0,1]. The population
size is again 30. The listing of this code is included in Appendix F.

Cp Cx C_\L CBT Cmn CRD GM/B Fp zgen
1 0.700 | 0.881 71.58 | 3.03 14.33 | 0.00 | 0.0900 | 0.1257 71
2 0.700 | 0.899 | 6547 | 3.19 | 14.66 | 0.01 | 0.0910 | 0.1253 6l
3 0.700 | 0.900 | 68.95 | 3.22 { 1450 | 0.00 | 0.0967 | 0.1258 80
4 0.700 | 0.900 | 75.77 | 3.13 14.04 1 0.00 | 0.0909 | 0.1260 74
5 0.700 | 0.866 | 86.00 | 2.86 | 13.50 { 0.00 | 0.0910 | 0.1252 95
6 0.700 | 0,900 | 89.75 | 3.05 13.29 | 0.00 | 0.0911 | 0.1258 94
7 0.697 | 0.898 | 90.00 | 3.03 | 13.26 | 0.00 | 0.0907 | 0.1257 72
8 0.700 | 0.898 | 90.00 | 3.08 13.00 | 0.00 | 0.0923 | 0.1253 65
9 0.700 | 0.900 | 70.40 | 3.18 1436 | 0.00 | 0.0922 | 0.1259 75
10 0.698 | 0900 | 81.78 | 3.08 13.67 | 0.00 | 0.0900 | 0.1258 66

Ave 0.1257 | 75.3

Table 8.3. Feasible experimental results with penaliy function.

As usual gen represents the number of generations required for convergence. The results
are not much better than those obtained in Tables 5.1 or 5.2, but they are better for all
runs. The search is also more robust, with a standard deviation of 10*.6°=265. Figures
5.5 and 5.6 show experimental results of the ninth run. The first displays the maximum
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and average fitness as a function of the time, and the second the corresponding number of
feasible members in every generation.

The number of feasible solutions was expected to grow until they saturate the
population with pop_size feasible individuals. In Figure 5.6, however, the amount of
feasible chromosomes fluctuates in a random fashion, and is never close to pop_size; it has
even decayed several times.

-.—--F_av_feas |

max_gen_feas |

|
i
i
I

Paylcad fraction

i

Generation

Figure 5.5. Experimental maximum and -Average fitness with punishment.

Feasible chromosomes

Generation

Figure 8.6. Number of feasible chromosomes per generation for Figure 5.5 run.

The unpredicted behavior is explained by the fact that all ships in Table 5.3 have marginal
stability factor, close to Cpy5=0.09. The non-uniform mutation operator explores more
and more in the vicinity of the best chromosomes. The algorithm walks on the stability
border line in an effort to optimize the fitness. Sometimes it falls inside the allowed
domain, and other times it does not. Since the decision of non-feasibility is sharp, and a
new genotype is considered non-feasible even with Csyp as close as 0.089999, many
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chromosomes in the population are not feasible. The effect of these is represented in the
low overall average fitness, which is far lower than the feasible average. Had the optimal
value had its constrained parameters far from the bounding limits, this would have not
happened. As an example, the characteristics of the optimal hull are given in Figure S.7.

The GM to B ratio for this ship is 0.0909.

Main Parameters

Cp
Cx
cdl
Cht
CcD10
Crd

Main Dimensions on Waterline ...

Underwater volume
Length on waterline
Beam

Draft

D10

Speed and Resistance .

Wetted area

Sustained speed

Maximal speed

Endurance shaft horsepower

Space Available

DO
D10
D20
Total hull volume

Electrical Loads

Winter cruise electrical load

Marginal winter cruise electrical load
24 hours average electrical load

Power required per generator
Auxiliary machinery rooms volume

Tankage ..

Fuel weight

Ffuel tanks total volume
Ballast tank volume
Total tanks volume

Weight and Center of gravity ...
Lightweight

Vertical CG of lightship

Full load displacement

Vertical CG at full load
Payload fraction

Area/volume Balance ...

Required hull area

. 700

.900

75.77 [lton/ft~3)
3.130
14.04

.000

2.562E+05 [ft~3]
458.95 [ft])
52.67 [ft)
16.83 [ft]
32.69 [ft]

29283.9 [£ft~2)
30.31 [knt]
32.23 [knt]
16618.3 [hp)

45.27 [ft)
32.69 [ft]
34.17 [ft])
671759.0 [ft~3]

3308.4 [kW]
3341.5 [kw]
2223.1 (kW]
1856.4 (kW]
55188.8 [ft~3]

1218.9 {lton]
55221.1 [ft"3]
10492.0 [ft~3)
73169.5 [ft~3]

5578.2 [lton]}
21.46 [ft]
7288.8 [lton)
19.97 [ft]
.126

50352.2 [ft~2]



Optimization in the Constrained Solution Space

Available hull area
Required hull volume
Available hull volume
Required deckhouse area
Available deckhouse area
Required deckhouse volume
Available deckhouse volume
Total required area

Total available area
Total required volume
Total available volume

Initial Stability

KB
BM

Metacentric height

GM to B ratio

Deckhouse volume

Balance/Feasibility Status

Category

Deckhouse area [ft"~3]

Electric plant [kW]

Sustained speed
Initial stability

Depth [ft]

Maximal deckhouse volume [ft~3]

Payload fraction

37971.9 [ft~2]
536754.0 (ft~3)
404780.7 [ft~3])
10091.9 [ft~2)
22472.1 [ft~2)
107579.5 [ft~3]
239553.0 [ft~3)
60444.0 [ft"2]
60444.1 [ft~2)
644333.5 [ft"3]
644333.7 [ft~3]

9.37
15.39
4.79
.091

[ft]
[ft]
(ft]

239553.0 ([(ft~3]

Required/Minimal

10091.9
185¢.4
29.9¢
.00
.135
32.66
315833.9
.075

Available
22472.1
2500.0
30.31
.0909

32.69
239553.0
.1260

Figure 5.7, Self balanced DDGx optimal ship characteristics.
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Figure 5.8 illustrates the marginal stability of explored ships at late stages. It shows the
final population of the run of Figures 5.5 and 5.6, converged to the value of 0.1259 after

75 generations.

The population is saturated with the best chromosome as was

demonstrated already in Chapter 4 for the unconstrained exploration. Almost all non-
feasible members across the population are for low stability reasons.

Generation # 75

Cp Cx Cdl Cbt CD10 Crd Fp
70 .90 70.4 3.4 14.4 .00 .1252
70 .90 70.4 3.2 14.4 .00 .1259
70 .90 70.4 3.2 14.4 .00 .1259
70 .90 70.4 3.2 14.4 .00 .1259
70 .90 70.4 3.2 14.4 .00 .1259
70 .90 70.4 3.2 14.4 .00 .1259
70 .90 70.4 3.6 13.1 .00 .1229
70 .90 70.4 3.2 14.4 .00 .1259
70 .20 70.4 3.2 14.4 .00 .1259
70 .90 70.4 3.2 11.3 .00 .0530
70 .90 70.4 3.2 14.4 .00 .1259
70 .90 70.4 3.4 14.4 .00 .1252
70 .90 70.4 3.2 14.4 .00 .1259
70 .90 70.4 3.2 14.4 .00 .1259

Area

kW Vs GM-

GM+

D10 vd

Duplicated solution - chromosome# 3
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70 .90 70.4 3.6 13.0 .00 .1227

70 .90 70.4 3.2 1:4.4 .00 .1259

70 .90 70.4 3.2 14.4 .00 .1259 Duplicated solution - chromosome# 16
70 .90 70.4 2.9 14.4 .00 .0950 X

70 .90 70.4 3.2 14.4 .00 .1259

70 .71 70.4 3.2 14.4 .00 .0372 b

70 .90 70.4 3.2 14.4 .00 .1259

70 .90 70.4 3.2 14.4 00 .1259

70 .90 70.4 3.2 14.4 .00 .1259 Duplicated solution - chromosome# 22
70 .90 70.4 3.2 14.4 .00 .1259

70 .90 70.4 3.2 14.6 .00 .1247 X

70 .90 70.4 3.2 14.4 .00 .1259

70 .90 70.4 3.2 14.4 .00 .1259

70 .90 61.7 3.2 14.4 .00 .1169 X

70 .90 70.4 3.2 14.4 .00 .1259

70 .90 70.4 3.2 14.4 .00 .1259

Figure 5.8. Final population with penalty function for the run of Figure 5.5.

In Section 2.14, which gave experimental results after one generation only, it was
recognized that the majority of stability failures were for excessive stability. It was
annotated that this behavior is not typical of ship design, in which the problem is usually
poor stability. The constrained optimization results in this chapter confirm that prediction.

The proximity of Dy to Djomin, as can be seen in Figure 5.7, for example, is not
surprising either, because minimum weight means minimum depth. In some runs the
values have coincided.

5.4 Final Local Optimization

The algorithm of the last section found the optimal value only one time. Holland
[5] himself suggested to conduct a final local search, in the neighborhood of the optimal
chromosome, in order to further reduce the possibility of premature convergence. His
rationale was that the evolutionary search only gives the direction and tries to improve the
performance of the entire population; it does not optimize a specific individual. He
recommended using the genetic search as a preprocessor, to identify the high performance
region in the solution space, and then to “invoke a local search routine to optimize the
members of the final population”. The hill climbing technique [10] is employed for the
local optimization performed. The best chromosome found by the genetic search is taken
as the start (or datum) point of the local search. Then, each randomly selected gene is
changed by plus or minus its required precision, and the new chromosome is evaluated.
Since it was discovered that the initial precision of Table 3.1 is not discrete enough, and
that there is a big sensitivity to the values, the steps by which the hill climbing tries to
advance are set to the values shown in Table 5.4.
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Gene Cp Cy Cu | Cor | Cpio | Cro
A 0.001 0.001 0.01 0.01 0.01 0.01

Table 5.4. Gene steps in hill climbing optimization.

If the new fitness is higher, the datum point gets the genes of this better
chromosome and the process is repeated similarly. The source file is provided in
Appendix G. Non-feasible improved results are discarded and considered as no
improvement. The limit is set to SO allowable iteratioris after an improvement has been
reached. The algorithm did not find solutions better than the optimum of 0.1260, thus
suggesting that this is an overall maxima, but worked well for other inferior runs. Table
5.4 provides the experimental resuits of 5 executions for a start point identical to the
eighth result in Table 5.3, 0.1253.

# of improvements Fp
1 34 0.12580
2 11 0.12549
3 29 0.12573
4 34 0.12580
5 34 0.12580
Ave 28.4 0.12572

Table §.5. Hill climbing experimental results, start point at 0.1253,

The central column gives the number of times the algorithm found a beiter chromosome
(or, number of steps the algorithm climbed up the hill). As has already been stated in the
introduction section, this technique excels in its exploitation ability. It does not care about
the whole picture and about other regimes of the solution space. The results thus depend
strongly on the start point. However, after the space has been investigated by the
evolutionary program, the start point is the best possible guess, thus the chance of
obtaining the overall optimum is very high.

5.5 Conclusions

As was known from previous chapters and expected, the fitness of feasible
solutions is lower than non-feasible ones. Even from the philosophical aspect, the latter
have superior performance as they are simply not constrained by laws. The weight
optimized feasible ship weighs only 7289 ltons at full load, more than 10% less than the
DDGS51 actual design. ‘
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Among the three approaches used to optimize the constrained solution space, only
the last one, the penalty function, is practical due to the better results it provides and also
due to the reasonable running time and computational effort needed. All three give close
results. The motivation to first construct the search engine in the free solution space, and
to establish its reliability, was good. A well built robust evolutionary model functions in
any environment, including constraints. It is shown that the optimization in the
constrained solution space performed in this chapter is identical to the process of early
chapters, with the same features: comparable convergence speed and population
saturation. The collection of feasible results during the construction has given a first,
evidently very good guess about the final value of the optimal payload fraction.

As the naval architect expects, and different from the experimental results of
Chapter 2, the major reason for non-feasibility throughout the constrained exploration is
poor stability. All reported best results in Table 5.3 have marginal low GM to B ratio.
Many solutions have been punished due to this failure, and contaminated the population
with non-feasible solutions, as is illustrated in Figure 5.6. This trend of attraction to low
GM’B ratios has already started in the unconstrained optimization: the overall maximum
fitness of 0.1281 has an initial stability ratio of 0.066, as shown in Figure 3.13. The final
population in an unconstrained exploration, Figure 4.4 for example, has all failures
associated with poor stability, except for one individual, which did fail due to excessive
stability but had a significantly lower fitness.

Although no further improvement has been attained by employing the final local
optimization to the optimal result of the evolutionary algorithm, the method still worked
for the rest of the results, and should be incorporated in the search process.

Finally, the genes of Table 5.3 have Cp, Cy and Cgp at their extreme limits. The
uniform values verify that the algorithm has converged in the right direction. While
neither Cp nor Crp associated limits can be extended, the first due to a consequent exit
from Cp range in Gertler’s reanalysis for the residuary drag, and the second since it must
be non-negative, the Cy upper limit can be raised. The accepted upper limit to this
coefficient is around 0.85. However, the physical bound is 1.0, and that was the thought
at the beginning of the research when the upper value was set to 0.9. When this limit is
set to 0.95, for example, payload fractions as high as 0.1268 (fi'!l load displacement of
7277.8 lton) are found. The convergence to the upper lim .p and Cy happens
because the algorithm tries to balance the area while keeping the hull small. As the hull
becomes more full, the net arrangable area increases. The conclusion is that as the
maximum sectional and prismatic coefficients increase, the weight decreases. This
discovery requires additional study, since usually these values for ('» and Cy are not
investigated because the vessel is considered to be too “full””. Typically such high values
are associated with high resistance and thus are disregarded. In Chapter 6 it is shown that
the residuary drag algorithm used by the DDGx model gives lower values than predicted
by other methods, and thus the optimal ship here may violate the sustained speed
constraint.



6 ASSET Model of the Optimal Ship 112

Chapter 6
ASSET Model of the Optimal Ship

Throughout the research the limitations and simplicity of the design model have
been kept in mind. While it is proven that genetic optimization works, the pretension to
compare the results to the DDGS51 class is not obvious, because the prediction ability of
the self-balanced model is not validated. In the preface to Chapter 2 the restrictions of the
model are recognized, and it is stated that in any case the model is good only for similar
hulls, with comparable characteristics. The evaluation model is calibrated at a specific
point in the solution space, that of DDGS51. The distance from this location, for which the
results are still reasonably accurate is not known. As the distance increases the errors
increase as well. In order to validate the results, the optimal hull has been modeled in
ASSET, the computer tool used by the U.S. Navy for concept design. The reduction of
10% in the full load displacement is big enough that it is important to conduct this
comparison. This chapter deals with this validation, and provides a comparison between
the results predicted by DDGgx self-balanced model and ASSET.

6.1 Model Construction

ASSET stores the vessel’s description in arrays. The data bank includes a
thorough description of the analyzed ship: hull, compartments, tanks, deckhouse,
materials, midship section structure, power plant configuration and components,
appendage and propeller. The program uses this information to compute weights, areas
and volumes, and to asses the performance of the ship. The data bank created for the
DDGS51 match run was used as the basis for the new hull. No changes were made in the
data bank to fields other than those associated with the hull or propeller determination. In
this way only the effects of the different hull shape are computed. There is no intention to
try to improve other aspects, such as power plant modified components, different
propulsion configuration etc., because the calibration assumes that excluding hull
characteristics, all other systems are identical in type but scaled in size. The parameters
that were changed are given in Table 6.1. These were taken from the Fortran model
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output, as shown in Figure 5.7. The values of the last two parameters, which are
calculated but not reported by the Fortran code, are extracted from the Mathcad maodel.

Parameter Value
Prismatic coefTicient Cp 0.700
Maximum section coefTicienis Cy; 0.900
Raised deck coefficient Cgp 0.0

Length on design water line Ly {/7] 458.95
Beam on design water line B [/i] 52.67
Draft at design water line T [/i] 16.83
Depth at midship Dy, [f1] 32.69
Depth at station o D, [/f} 145.27
Depth at station 20 D3, |1} 34.17
Deckhouse volume I'p [ff’] 239553
Auxiliary machinery rooms volume 1”7,y [/} 54912
Propeller diameter Dp [/i] 16.69

Tabie 6.1. DDGx data bank changed parameters.

The offsets of the hull are calculated by the hull geometry module using the first
nine parameters in Table 6.1. The module creates the offsets using user-defined hull
boundary conditions. In order to enforce the specified Dy and D3, the hull boundary
conditions indicator is set to “given” instead of “DDGS51”; otherwise the computer builds
the sheer line similar to DDGS51, and the numerical values for these heights are different.
The conceptual arrangement of the compartments is not changed, and is illustrated in
Figure 6.1.

ve—o-

GNP T MMEZ LAMRS

|

Figure 6.1. Optimal DDGx hull general arrangement.

The hull has one internal coniinuous deck and two lower decks. The height and
sheer ratio of the internal decks, as well as the position of the transverse bulkheads, were
changed in an iterative manner, to get the same main machinery room total volume of
138600 ft*, auxiliary machinery room total volume of 54912 &, and an average hull deck
height of 10.66 ft, as in the self-balanced model. All three are calculated by the hul
subdivision module, the latter by the relation
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V
Hg;u _ AH.-I (6.1)
H4

where the notation of Chapter 2. Vy, is the net arrangable available hull volume, defined
in equation (2.80), and Ay, is the net available hull area. Note that in the DDGx math
model Hpy is a predefined parameter. The volume of machinery spaces is set as specified
by the DDGx model, and no attempts were made to minimize these spaces in order to gain
additional arrangable space. It is noticed that these rooms may be bigger than required.

Superstructure is defined in ASSET by means of prismoids, altogether creating the
required shape of it. 17 prismoids are created in the model. As a first guess, a deckhouse
as in Figure 2.12 was built. Then some prismoids were eliminated, and others reshaped
iteratively, until the required volume of 239553 ft* is attained. An isometric view of the
hull and deckhouse, obtained by exporting the data to Autocad, is displayed in Figure 6.2.
As specified in Chapter 2, the superstructure has two decks, except for the bridge, which
forms a third deck in the front part of the deckhouse.

Figure 6.2. Optimal vessel hull and deckhouse.

The prismoids of the deckhouse are adjusted for the location of the intakes and exhausts
of the propulsion plant. The mechanical arrangement, which is identical to that of
DDGS], is illustrated in Figure 6.3. Each machinery room contains two LM2500 gas
turbines, connected to a single gear box and driving one shaft. The rated power of each
gas turbine is set automatically by the computer to 25775 hp. It is a little lower than the
current specified power, but is kept to be comparable to DDGS51 results, which has this
rating in the match run. The aft machinery room also contains one Allison 501-K34 ship
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service generator. The other two generators are located at the forward auxiliary
machinery room and the other machinery room. The stacks, which are not shown in the
picture, are located on the superstructure. The vertical position of the main engines is
adjusted in order that the two fit in the rooms.

RSSET/MONOSC VERSICN 4.1.0 - MACHINERY MODULE - 1/12/28 19:59.38
GRAPHIC DISPLAY MNO. 1 - SHIP MACHINERY LAYOUT
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Figure 6.3. DDGx mechanical arrangement.

The location of the fuel tanks is also shown in Figure 6.3. These are defined as
tanks in the large objects array. The center tank is the service wing tank, and can also be
seen in Figure 6.2. Their size was adjusted iteratively such that the exact required fuel
volume, calculated by the machinery module, is allocated’'.

Last, the propeller diameter is specified as calculated by the Fortran model. All
other propeller required parameters are evaluated by the propeller module. As mentioned

' This is a necessary step in ASSET. Otherwise. the computer assigns internal volumes as tanks
“automatically, until the required volume is obtained. The total assigned volume might be bigger than
required, and thus arrangable area is wasted.
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before, all otl:er parameters were kept at their original value for DDG51, including design
margins. The summary output of the design summary module is shown in Figure 6 4.

ASSET/MONOSC VERSION 4.0.0 - DESIGN SUMMARY - 11/20/97 10:50.22
PRINTED REPORT NO. 1 - SUMMARY

SHIP COMMENT TABLE
DDGX HULL MODEL.

PRINCIPAL CHARACTERISTICS - FT WEIGHT SUMMARY - LTON
LBP 459.0 GROUP 1 - HULL STRUCTURE 2482.7
LOA 480.5 GROUP 2 - PROP PLANT 789.8
BEAM, DWL 52.7 GROUP 3 - ELECT PLANT 306.1
BEAM, WEATHER DECK 58.3 GROUP 4 - COMM + SURVEIL 408.7
DEPTH @ STA O 32.7 GROUP 5 - AUX SYSTEMS 734.3
DRAFT TO KEEL DWL 16.8 GROUP 6 - OUTFIT + FURN 619.0
DRAFT TO KEEL LWL 1€.14 GROUP 7 - ARMAMENT 314.9
FREEBOARD @ STA 3 29.7T e~
GMT 4.8 SUM GROUPS 1-7 5655.4
CP .700 DESIGN MARGIN 31.2
CcX 900 —mememe e i it
LIGHTSHIP WEIGHT 568¢€.6€
SPEED(KT): MAX= 32.2 SUST= 30.2 LOADS 1699.3
ENDURANCE: 3807.6 NM AT 20.0 KTS ===—=———-m oo __
FULL LOAD DISPLACEMENT 7385.9
TRANSMISSION TYPE: MECH FULL LOAD KG: FT 19.3

MAIN ENG: 4 GT @ 25775.0 HP

MILITARY PAYLOAD WT - LTON 1089.6
SHAFT POWER/SHAFT: 50270.8 HP USABLE FUEL WT - LTON 1210.1
PROPELLERS: 2 - CP - 16.7 FT DIA

SEP GEN: 3 GT @ 2500.0 Kw

OFF CPO ENL TOTAL
24-HR LOAD 2145.4 MANNING 26 24 291 341
MAX MARG ELECT LOAD 3281.5 ACCOM 26 21 291 341

AREA SUMMARY - FT2 VOLUME SUMMARY - FT3

HULL AREA - 33329. HULL VOLUME - 632417.
SUPERSTRUCTURE AREA - 21213. SUPERSTRUCTURE VOLUME - 239612.
TOTAL AREA - 54542. TOTAL VOLUME - 872029.

Figure 6.4. Design summary output for DDGx optimal ship.

Two warning messages were received from the computer when synthesizing the
data. The first one was from the propeller model, which has found that the required
expanded area ratio is 1.09, while the accepted maximal value for controllable pitch
propellers is 0.8. The warning is disregarded since its effect on the required comparison is
small. It did reveal that the estimaticu of the diameter in the DDGx model gives bad
prediction, and that a slightly bigger propeller diameter is needed: a bigger disk area
decreases the loading and allows lower expanded area ratio. The second message was
from the space module. As in the DDG51 match run, no space balance is reached. As
shown in Table 2.2, for the DDG51, about 10000 ft* in additional volume are required for
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area balance. For the DDGx the required area is bigger than the available by
approximately 14100 ft*. The suspicious results of ASSET are thus ignored here as well.

6.2 Comparison between ASSET and DDGx Self-Balanced Model

The following sections compare the results of the Fortran model with those of
ASSET, and analyze the differences between the weight-optimized ship and the DDGS]1.
The comparison is presented in the order of the modules in ASSET.

6.2.1 Geometry

Table 6.2 shows the results for the geometrical information. In this case the
differences between the model and ASSET are small, because the parameters are input to

ASSET.

DDG51 DDGx
ASSET { Model | Error [%]
Lw. /1] 465.7 458.77 | 458.95 0.0
B [/1] 58.8 52.63 52.67 +0.1
T /1] 20.1 16.43 16.83 +2.4
Ce 0.609 0.700 0.700 -
Cx 0.819 0.900 0.900 -
B/T 2.93 3.20 3.13 -2.2
L/B 7.92 8.72 8.71 +0.1
Dyo /1] 41.83 32.66 32.66 -
D, [/1] 52.06 45.45 4543 -
D~ /1] 36.29 3419 3419 -
Cw 0.787 0.835 0.863 +3.4
Vp /] 192009 | 239553 | 2395353 -

Table 6.2. Geometrical comparison.

Given data in the ASSET model of the DDGx is underlined in the table. The small
difference in the prediction of the draft for the DDGx is due to the different parent hull in
ASSET. The difference in the water plane coefficient is understandable: while ASSET
calculates this parameter based on the real offsets, the self-balanced model uses the
empirical relation (2.39). As is expected, DDGS1 is bigger and thus heavier than DDGx,
although its hull is more slender. The higher Cp and Cy values make the DDGx fuller than
the DDGS51, but the DDG51 is fatter due to the lower L/B ratio. The price for the lower
depth in the DDGx is the higher deckhouse volume. As shown in Table 6.6, the bigger
superstructure decreases the stability indicator GM'B relative to the DDGS1.
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6.2.2 Resistance

Comparison of resistance module results is shown in Table 6.3.
surface for all three cases includes the 1400 ft” wetted area of the sonar dome, which is

considered as part of the hull in the resistance analysis.

DDGS51 DDGx
ASSET Model Error |%)]
Endurance shaft horsepower [hp] 14731 17095.0 | 16618.3 -2.8
Wetted surface [ft°] 30698 | 29443.0 | 292839 0.5
Sustained speed [knt] 29.96 30.24 30.31 +0.2
Maximum speed [knt] 31.28 32.24 32.23 0.0

The wetted

Table 6.3. Resistance coniparison.

The correspondence between the results of ASSET and the model is excellent but not
surprising, since they both employ identical algorithms. The small difference in the
endurance shaft horsepower is due to the calibration of the DDGx model at sustained
speed and not endurance speed. Figure 6.5 shows the behavior of frictional, residuary and
total effective horsepower for the DDGx and the DDGS1. Data is extracted from the
resistance module.
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Figure 6.5. Comparison of frictional, residuary and total effective horsepower.

At endurance speed the DDGS51 has less resistance, due to its lower Cy’, but at high
speeds, above approximately 28.5 knots, the trends change and the resistance is higher

> Cp has higher impact on residuary resistance at moderate speeds.
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than for the DDGx. The change is caused due to an increase of the frictional and
particularly residuary drag for the DDG51. The DDGx has thus higher sustained and
maximum speeds.

The computation of the residuary drag involves the Worm curve factor. Motivated
by the uncertainty of these values, additional residuary drag coefficient calculations were
performed. The analysis included a different Worm curve, the ‘DD calc’ option in
ASSET, recommended for SQS-53 sonar domes treated as part of the hull. It also
examined calculations according to a regressive method performed at DTRC for
destroyer-type hulls. The model was then synthesized, and the results are given in Table
6.4. For the regression methods one warning message was sent. The longitudinal center
of buoyancy position LCB to Ly ratio for this case is out of range.

Method Worm=Original | Worm=DD calc Regressive
Sustained speed [knt] 30.24 30.03 29.04
Maximum speed [knt] 32.24 31.81 30.08

Table 6.4. Comparison of resistance results Jor different residuary drag predictive methods.

The comparison reveals that the TSS resistance prediction may be optimistic. According
to the regressive prediction method the optimal ship is not feasible due to sustained speed
constraint violation. The results for the ‘DD calc’ Worm curve factors are close to that
limit also. Figure 6.6 plots the residuary horsepower of the three methods for comparison.
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Figure 6.6. DDGx residuary horsepower comparison between predictive methods.
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6.2.3 Electrical Load

The comparison for the electrical load analysis is provided in Table 6.5. As was
already described in Section 2.7, due to historical reasons, it is assumed in the self-
balanced model that the winter cruise condition and not the winter battle cruise condition
requires the highest electrical load. In the DDG5I, and also in this analysis, it was seen
that this assumption is not true, but nevertheless close enough. Again there is good
correlation for the DDGx. The higher electrical load associated with DDGSI is
anticipated, due to her bigger volume: the empirical expressions used by the machinery
module to compute electrical load depends mainly on internal volumes.

DDG5I DDGx
ASSET | Model | Error (%]
Max marginal load [kW] 3439.0 | 32815 | 33415 +1.8
24 hours average load [kW] 2363.3 21454 | 2223.1 +3.6

Table 6.5. Electrical load comparison.

6.2.4 Weights and Stability

Table 6.6 shows comparative results for weight and stability parameters. The table
combines stability and weight, because the former is driven strongly by the position of the

center of gravity.

DDG5l1 DDGx
ASSET | Model | Error [%
Fuel weight [/ron) 1186.7 1273.8 | 12189 -4.3
Light ship weight [/ron] 6453.1 5686.6 | 5578.2 -1.9
Light ship VCG [/i} 250 20.93 21.46 +2.5
Full load weight [/ron] 81269 | 73859 | 7288.8 -1.3
Full load VCG [/1] 22.69 19.33 19.97 +3.3
SWBS 100 weight [/ron] | 3115.5 | 24827 | 2346.1 -5.5
SWBS 200 weight [/ron] 745.2 789.8 712.3 9.8

SWBS 300 weight [/ron] 315.1 306.1 314.0 +2.6
SWBS 400 weight [/ron] 430.5 408.7 416.1 +1.8
SWBS 500 weight [/ton] 8242 7343 778.2 +6.0
SWBS 600 weight [/ron] 676.9 619.0 643.6 +4.0

Full load KB [f1] 11.94 | 918 | 937 +2.1
Full load BM [1] 1745 | 1566 | 1539 1.7
Full load GM {1} 5.98 179 | 479 0.0
GM/B 0.102 | 0.091 [ 0.091 0.0

Table 6.6. I1'eight and stability comparison.
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Excluding three categories, the agreement for the DDGx is within less then 5% error. The
largest error is in SWBS 200 weight, nearly -10%. The discrepancies are not surprising,
because ASSET performs detailed weight estimation of each component aboard the ship.
The errors cancel each other, and the net error for the full load displacement is
approximately 1%. The difference in the fuel weight is due to the difference in the
endurance shaft horsepower discussed in Section 6.2.2. The DDGS51 has higher weights
in every aspect, related to the bigger hull, except for the fuel weight and SWBS 2C0. As
discussed in Section 6.2.2, at cruise condition the DDGS51 has lower resistance, and hence
is required to carry almost 90 Iton less fuel. The reduced SWBS 200 is not anticipated.
An examination of the 3 digit SWBS 200 reports of DDGS51 and DDGx shows that the
main reason for the difference is the shafting’, SWBS 240. The DDGS5]1 also has better
initial stability, not marginal as in the DDGx.

6.2.5 Space

The space calculations obtained from ASSET for both DDGS1 and the current
model give inconsistent results, and the match run for the DDGS1 is not area-balanced.
Therefore, the comparison in this category, given in Table 6.7, is made onl" for reference.

DDGs1 DDGx
ASSET Modcl | Error [%]
Hull gross volume [/’] 800691.0 |1 632417.0 | 671759.0 +6.2
Underwater volume |f’] 284441.5 | 258506.5 | 255108.0 -1.3
Above-water volume [/’ 516249.5 | 373910.5 | 416651.0 +11.4
Net required hull area [/F] 63573.0 | 53348.0 | 503522 9.0
Net available hull area [/ 48561.5 | 333286 | 379719 | +13.9
Net required deckhouse area [/} 14795.0 | 13301.0 | 100919 -24.1
Net available deckhouse area [/F] | 20097.0 | 21213.0 | 22472.1 +5.9
Total net required arca [fF'] 78368.0 | 68649.0 | 60444.0 -12.0
Total nct available area [/ 68658.0 | 54542.0 | 60444.1 +10.8

Table 6.7. Space Comparison.

The key difference is in the two last rows, revealing the area balance. According
to ASSET, the required area exceeds the available one by approximately 14100 fi*.
According to the self-balanced model, on the other hand, the space is exactly balanced.
This is the result of the adjustment of the deckhouse volume made by the DDGx model.
DDGS1 values in Table 6.7 are higher than in the DDGx, due to the bigger hull. The
difference in the above-water volume, the net available hull area and consequently the total
net available area are due to the way the DDGx model computes the gross above-water

? Note that in Figure 6.3 one shaft is long. possibly too long. This fact is ignored. as the influcnce on the
comparison is negligible.
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hull volume, Equation (2.40). The value predicted by ASSET is calculated according to
the actual body plan by the subdivision module.

6.2.6 Seakeeping

Lastly, seakeeping indices are compared. The self-balanced DDGx model does not
evaluate seakeeping, and thus the results are only from the seakeeping module of ASSET.
The results of this analysis are not considered in any way during the optimization process,
and therefore are shown only for reference. The seakeeping module calculates two non-
dimensional seakeeping indices, according to Bales and McCreight methods. Both are
regressive predictions, evaiuated in an effort to make a seakeeping performance
assessment without the need to run a complicated computer code like the strip theory or
panel methods. The results for the two ships are shown in Table 6.8.

DDGS351 | DDGx
Bales 6.565 | 7.094
McCreight | 14.220 | 12.928

Table 6.8, Seakeeping comparison.

Seakeeping behavior is considered better as the value of the indices increases. It can be
seen that the Bales method predicts better performance for the DDGx, while McCreight
gives the better score to DDG51. The numbers are close enough to conclude that with the
certainty of this analysis, the two vessels have comparable seakeeping performance.

€.2.7 Comparative Naval Architecture

Comparative naval architecture allows a comparison to successful ships, and can
reveal design lane deviations. A comparison of various naval architecture normalized
parameters of the optimal DDGx and the existing DDGS1 is shown in Table 6.9. The
results for another existing ship, the FFG7, are also shown. This examination enables a
comparison of specific features, which do not depend on the displacement or size of the
vessel. The comparison analyzes weight, volume and power allocation and distribution.
Data for the DDGx is taken from the ASSET model results. As can be seen, the
normalized parameter of the DDGx are similar to those of the two in service ships.

In the weight allocation comparison, the machinery (W:), electrical (W), control
(W), armament (W) and ammunition (Wr) system weight fractions of the DDGx are
higher than for the other ships. The reason is the predefined HM&E and payload systems,
identical to DDGS51. In a real design the size and weight of SWBS200 and 300 would be
lower, due to the smaller hull. The long shafts discussed in Section 6.2.4 also contribute
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to the ratio for the machinery weight. The low weight margin fraction relative to the
FFG7 is due to the low user-defined weight margin factor, adopted for the DDGx from
the DDG51 ASSET match run, as described in Section 2.9. The lighter hull of the DDGx
relative to the DDGS51 results in a lower lightweight to full load weight ratio, thus
allowing allocaticn of more weight to loads. As a resuli, the fuel (Wry), ammunition
(Wr20) and overall load (Wra) weight fractions are higher than in the DDG51.

DDG51 | DDGx | FFG7
Weight Allocation Fraction
Wy 0.383 | 0.336 | 0318
Wiy 0.092 | 0.107 | 0.085
Wy 0.039 | 0.041 | 0.050
W, 0.053 | 0.055 [ 0.033
Wy 0.101 | 0.099 | o0.140
Wylly 0.083 | 0.084 | 0.093
-1y 0.039 | 0.043 | 0.028
Wy My 0.004 | 0.004 | 0.019
sy 0.794 | 0.770 | 0.767
Wey /Wy 0.146 | 0.172 | 0.145
Weao/lr 0.025 | 0.028 | 0.020
Weo Il 0.206 | 0.230 | 0.233
Volume Allocation
Vi Vr 0.287 | 0.296 | 0.236
Va1 0.520 | 0429 | 0472
) 0.807 | 0.725 | 0.708
I'p 17 0.193 | 0.275 | 0.291
Iusd T 0.197 | 0223 | 0.197
Vel 0.051 | 0.062 | 0.064
Capacity Size Ratios
Py [hp/lton] 12.686 | 13.959 | 11.700
KIWly [kWilton] 0.923 | 1.015 | L.100
Nplly [men/lton] 0.042 0.046 | 0.059
191y [ft3/1ton] 122,150 | 118.059 { 148.200
Specific Ratios
0,15 [Lb/fP] 7.030 | 6.378 | 4.810
I's'Py [Lbishp] 16.191 | 17.160 | 16.180
VugPy [fPshp] 1.896 | 1.885 | 2.500
0541 [LbAI] 94.110 | 91.422 | 100.800
W17 [LbP] 1.860 | 1.886 | 2.120
Welp [Lb/P] 1.527 | 1.590 | 1410
Densitics
Wl [Lb/P] 18.338 | 18.974 | 15.110
Wes [lton)] 1012.700 | 991.200 | 352.200
Wesl7 [LbP] 2285 | 2.546 | 1.487
Overall
Wes/lly 0.125 | 0.134 | 0.098
Wes sy 3.733 | 4.058 | 2.820

Table 6.9. Comparative naval architecture ratios for the DDGx optimal ship.
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In the comparison of volume allocation, the differences are associated with the
bigger - by 25% - superstructure of the DDGx. The higher machinery box volume
fraction is a result of the approach used for the determination of the machinery spaces
volume in Section 2.7. As recognized in Section 6.1, the volume of these may be higher
than required.

The comparison of the capacity size ratios show that the “density” Vr/Wr of the
DDGgx is the lower, an expected result because weight optimization is conducted in this
design. The ratio N/Wr is higher than in the DDGS51 only due to the identical crew size.
A real design would incorporate smaller crew.

The weight of the combat systems, Ws, is calculated by
Wes =W, + Wy + Weyy + Weay + Weay + Wey, + Wei (6.2)

The small difference between the DDGx an the DDG51 is due to a small difference in W,
the weight of control systems, apparently due to lower cabling weight. The reduced total
volume of the DDGx gives her a higher combat system specific weight Wcs'7'7. Both ships
have a significantly high ratio relative to the FFG7.

The last comparison shows similar trend for the weight portion of the combat
systems, as expected. The last ratio, Wcs-Vs'Wr, expresses the power of the war ship in an
artificial way. The higher the combat system weight portion and sustained speed, the
higher the power of the vessel. The DDGx offers the higher value.

6.3 Conclusions

The results obtained from ASSET for the optimal ship confirm that the analysis of
the self-balanced model gives sufficient accuracy for a wide domain. The majority of
results are very close to ASSET predictions, and, considering the simplicity and the time
required to conduct the preliminary design with the self-balanced mode! the model is
attractive in early design stages.

For this specific study, the comparison has verified the optimization results, for
which it is possible to design a ship which satisfies the design requirements of the DDGS1
class and is significantly lighter. The fuller hull shape of the DDGx allows the allocation
of more area in the hull, while keeping the depth low in order to minimize the weight. The
remaining required area is allocated in the deckhouse. The big deckhouse decreases the
stability of the vessel, but the reduced GM to B lower limit, 0.09, enzbles the
superstructure to be this big.

The reduced weight of the DDGx ship is not the only advantage relative to the
DDGS51. The cost which depends on the weight is lower also. The DDGx travels at
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sustained speed of 30.24 knots and maximum speed of 32.24 knots, faster than the
DDGS1. The DDGx has lower or at least equal signatures in all aspects: the visual and
RCS signatures are lower due to the smaller dimension, the height in particular; the
thermal, acoustic and electromagnetic signatures are at least as good as in the DDGS51.
The lower signatures impart the DDGx higher survivability and operational effectivzness.
The latter expresses the chances of the vessel to complete its mission. The lower weight
also allows operation in shallower water and narrower channels.

The evolutionary algorithm in this research, for the design and payload
requirements, associates light ships with full-body hulls and high volume deckhouses.
Typically, Cp and Cy values of Naval ships are lower than 0.64 and 0.85, respectively.
The bounds are possibly due the feeling that fuller hulls have high resistance and
consequently low sustained speed. In new designs the high values found here of 0.7 and
0.9, respectively, may not be considered. Possibly, as shown in Table 6.4 and Figure 6.6,
the resistance prediction is not accurate due to incorrect Worm curve factors. For high
speeds an extrapolation of Gertler’s values is also performed. The extrapolation rule may
also add some error to the calculation. When the other two predictive methods discussed
in Section 6.2.2 are used, the optimal ship becomes non-feasible due to low sustained
speed, which may verify the stigma of the designer.



Conclusions 126

Conclusions

The methodology adopted in this research is suggested for use. The optimization
tool is constructed in the unconstrained solution space, in order to establish its reliability
and to learn the trends. Once the robustness is proven, the algorithm does not care what
is optimized, and the investigation in the constrained space is conducted. The collection
of feasible solutions during the unconstrained runs gives an idea of the expected feasible
values, which helps when deciding on the penalty intensity. The construction of the model
does not involve evolutionary operators in the first phase. Different selection pressures
and mutation rates are examined, and the best configuration is selected. The best
configuration is the one that suffers from the least premature convergence. Then,
enhanced evolutionary operators are incorporated, using the knowledge accumulated from
previous runs. It is discovered that a non-uniform mutation operator is vital in any
configuration, while other operators’ contributions are not always better. The final
configuration consists of non-uniform mutation, non-uniform selection pressure, and
Baker’s selection applied to the rank-based selection filter. It has an accuracy of 99.5%,
and is suggested for use in other applications. The necessity of local tuning indicates that
the initial required accuracy for all genes, but especially Cy, Cpio and Car, is not
sufficient, and contributes tc the premature convergence. The conclusion is that the
chromosomes best have a floating point number representation, which allows continuous
exploration.

While the racist modei does work, its tremendously long running time and other
disadvantages make it non-comparable in all aspects to the method of penalty function,
which is recommended. In case of highly constrained design problems, where penalties
might be complicated to impose, the racist method may be useful.

The importance of a final local search, recommended by Holland [5], is also
demonstrated. When a hill climbing technique is used, relatively low final results are
improved significantly and premature convergence is almost completely eliminated. In this
work separate programs are used for the evolutionary and hill climbing strategies, but it is
recommended to integrate them together, as one optimization unit.
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The remarkable reduction of more than 10% in weight from DDGS51 design shows
the effectiveness of a good optimization process. The research demonstrates the
applicability of evolutionary optimization to ship design. The quality of the results
predicted by the simplified model are confirmed by ASSET. The model, although simple,
is better than anticipated. The study suggests the use of this basic tool for the “pre-
concept” design stage. With the results obtained, ASSET is used to obtain a final concept
design. The Mathcad model by itself is recommended for use in 13.412, for its reliable
results, and the fact that it allows the student to concentrate on ship design rather than
tediously struggle with the required data the current model requires.

The evolutionary algorithm has found that full vessels, with high prismatic and
maximum section coefficients, and large deckhouses - within stability constraints - yield
light ships. Usually such high values are not examined due to resistance considerations.
However, additional resistance analysis must be performed. It is shown in Chapter 7 that
a different resistance prediction method gives higher resistance, which makes the optimal
ship non-feasible due to sustained speed constraint violation.
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Future Study

As stated in Chapters 5 and 6, as well as in the conclusions, additional study is
required in the resistance model. The convergence to high Cr and Cy values contradicts
the shape of the majority of existing war ships. Improved accuracy can also achieved by
estimation of propeller-hull interaction characteristics and modified propulsive coefficient
prediction. There exists many regressive data in this area. The prediction of the propeller
diameter requires a modification as well, as seen in Section 6.1.

Similarly, additional examination of the space module which determines the
required area is needed. ASSET also seems to give poor prediction in this field.

The next step, but clearly the toughest one, is to incorporate the evolutionary
optimization with a better design tool, ASSET for example.

The optimization conducted in this work is weight-based, but there are other
applications for which the fitness function may differ. The tool will of course work for
other functions, such as maximum speed. A comparative study of hulls of different
optimal function may lead to enhanced hulls combining the best of those features together.

Better algorithm performance may be achieved by adjusting additional pararneters
such as the probability of crossover. I think the influence of this parameter has never been
examined.

Additional consideration is needed for the limits of stability. In this work the lower
limit is set to GM/B=0.09. The value is taken from the math model. ASSET, for example,
allows the user to specify this limit. In the match run of DDG51 a value of 0.086 is used.
As is discovered, light ships tend to have marginal stability. Thus, by allowing lower
limits, lighter hulls can be obtained.

The model is limited in application because it allows only hull changes. Neither
HM&E systems nor manning changes are included. An extended chromosome, including
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those parameters, would give wider exploration of possible solutions. This requires
incorporation of additional modules for assessing the additional information. The more
parameters the model has, the more accurate the results and more efficient the engineering
judgment. Additional hull genes can be added as well, the flare angle for example. A
more correct model should also account for different payload locations. The current
model assumes that the payload components have a constant center of gravity position,
relative to the baseline of the ship. For weight optimization the evaluation is conservative,
but a more real prediction should relate the position with the location of the deck on
which the components is installed. The best solution is to locate each payload itemn
differently in the hull, as function of its dimensions, instead of using the total payload
weight and center of gravity position.
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Appendix A

Ship Design Nomenclature

¥ Fuel specific volume.

2 Potable water specific volume.

WHF Helicopter fuel specific volume.

Yo Lubrication oil specific volume.

n Transmission efficiency.

Vair Salt water dynamic viscosity.

Pi Air specific weight.

PoH Deckhouse specific weight.

Psi Salt water specific weight.

Ao Empirical coefficient for the calculation of Csrss.

A Empirical coefficient for the calculation of Cgrss.

A Empirical coefficient for the calculation of Cgrss.

Acoxo COXO living deck area at deckhouse.

Apa Available deckhouse deck area.

Aps Bridge and chart room deck area.

Apie Engine inlet/exhaust deck area at deckhouse.

ApL Total living deck area at deckhouse.

Apyr Maintenance deckhouse deck area.

Apo Officers living space deck area at deckhouse.

Apps Required armament payload deckhouse deck area.

Aprc Required C&D payload deckhouse deck area.

Appr Deckhouse payload area.

Apr Total deckhouse required area.

Aeie Required inlet/exhaust cross section area per generator engine.
Acie Total required inlet/exhaust cross section area for generator engines.
Any Available hull deck area.

Anap Hull or deckhouse habitability deck area per crew member.
Anie Engine inlet/exhaust deck area at hull.

Ane Hull or deckhouse living deck required area.
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Anpa Required armament payload huli or deckhouse deck area.
Anpc Required C&D payload hull or deckhouse deck area.

Anrr Hull or deckhouse payload area.

Anr Total hull or deckhouse required area.

Ans Hull or deckhouse stores deck area.

Ansr Ship functions deck area at huil or deckhouse.

A Required inlet/exhaust cross section area per propulsion engine.
Apie Total required inlet/exhaust cross section area for propulsion engines.
Apro Projected area of above water hull.

Asp Required sonar dome/appendages area.

Az, Available ship deck area.

A Total ship required area.

Aw Frontal area of ship (above water).

B Beam on waterline.

BALpyp Type of ballast system (compensated/uncompensated).

BM Distance between center of buoyancy and metacenter.

Cu Displacement to length ratio.

C, Roughness frictional drag correction coefficient (correlation allowance).
Cua Air drag coefficient.

Car Beam to draft ratio.

Coro Length to depth ratio.

Cp.rp Appendage drag coefficient.

Comsar Deckhouse material coefficient.

Cr Frictional drag coefficient.

Caup GM to Beam ratio.

Cryiar Hull material coefficient.

Cir Transverse water plane inertia coeficient.

Cis Length to beam ratio.

CN Cubic number.

Cr Prismatic coefficient.

Crrorp Propeller area coefficient.

Cra.2s Gertler residuary drag coefficient for 2.25 beam to draft ratio.
Cra.00 Gertler residuary drag coefficient for 3.00 beam to draft ratio.
Crazs Gertler residuary drag coefficient for 3.75 beam to draft ratio.
Cro Raised deck coefficient.

Crrss TSS residuary drag coefficient.

Csrss TSS wetted surface coefficient.

Cr Volumetric coefficient.

Cy Waterplane coefficient.

Cy Maximum cross section coefficient.

Dy Depth at station 0.

Doy Minimum depth at station 0.

Do Hull depth at station 10.

Djovnx Minimum depth at station 10.

D3 Depth at station 20.
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Doy
D,y
Dp

E
E24MF
EDMF
EFMF
EHP
ERR
ERR,
ERR,
Fo

Ji

Fio

ﬁe
Fo
Far

FF

Fp
FRy6
FRcuc
FRgsp
FRsp

Jfs

GM
Hpyx
Hus
Hymyiy
Hg

KB

KG
KGys
KGyire
KW,
KWasnis
KW,
KW,
KW;g
KWeps
KWe
KWr
KWﬁm
KW
KWorzo
KWy

Minimum depth at station 20.

Average depth.

Propeller diameter.

Endurance range.

24 hour electrical load margin factor.

Electrical load design margin factor.

Electrical load future growth margin factor.
Design ship effective horsepower required.

Weight balance error.

Area balance error.

Sustained speed balance error.

Freeboard at station 0.

Fuel rate margin for propulsion engines.

Freeboard at station 10.

Fuel rate margin for generator engines.

Freeboard at station 20.

Average freeboard.

Form factor.

Payload fraction.

Average propulsion engines fuel consumption at endurance speed.
24 hour average generator engines fuel consumption.
24 hour average specified generator fuel rate.
Specified propulsion engines fuel rate at endurance speed.
Shaft length coefficient.

Distance between center of gravity and metacenter.
Average deck height.

Machinery box height.

Minimal machinery box height.

Raised deck height.

Vertical center of buoyancy position.

Vertical center of gravity position.

Lightship KG.

KG margin.

24 hour average electrical load.

24 hour average electrical load with design margin.
Miscellaneous auxiliary machinery electrical load.
Air conditioning electrical load.

Aucxiliary boiler electrical load.

CPS electrical load.

Electrical plant electrical load.

Firemain electrical load.

Electric power requirement for fin stabilizers.
Nominal service generator electric power.
Electrical power required per generator.

Heating electrical load.
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KWy Fuel handling electrical load.

KWy, Miscellaneous electrical load.

KWir Maximum functional electrical load.

KWyimi Maximum functional electrical load with design and growth margins.

KWyp Non-payload functional electrical load.

KWp Propulsion electrical load.

KWhpay Payload electric power required.

KWs Steering electrical load.

KWseri- Services and work spaces electrical load.

KWy Ventilation electrical load.

Luz Length on waterline.

N, Number of additional accommodations.

Npie Number of deckhouse decks impacted by propulsion/generator
inlet/exhaust.

Ne Number of enlisted.

Njing Number of roll fins pairs.

Ne Number of ship service generators.

Nl Number of hull decks impacted by generator engine inlet/exhaust.

Nypie Number of hull decks impacted by propulsion engine inlet/exhaust.

No Number of officers.

Np Number of propellers.

Npeve Number of propulsion engines.

Nr Crew size.

Py Maximum continuos brake horsepower (all propulsion engines together).

Pgreve Nominal propulsion engine brake horsepower.

PC Propulsive coefficient.

Peyy Air effective horsepower.

Peipp Appendage effective horsepower.

P Average endurance brake horsepower required.

Pesy Bare hull effective horsepower.

Pegins Effective horsepower of roll fins.

Per Total effective horsepower.

P 24 hour average power of ship service engines.

P, Actual installed horsepower.

Pireg Installed horsepower required.

PMF Power margin factor.

PROPn» Type of propeller (FP/CPP).

Pus Lightship vertical moment.

Puat Variable load vertical moment.

Py Vertical moment dummy parameter.

R Speed to length ratio.

Rr Frictional resistance.

ruPE Endurance rpm to maximum rpm ratio for propulsion engines.

rG 24 hour average rpm to maximum rpm ratio for ship service engines.

Ry Reynolds number.
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YoPE Endurance bhp to maximum bhp ratio for propulsion engines.

TG 24 hour average bhp to maximum bhp ratio for ship service engines.
rore Endurance torque to maximum torque ratio for propulsion engines.
roG 24 hour average torque to maximum torque ratio for ship service engines.
Rz Residuary resistance.

Rgrss TSS residuary resistance.

Rr Total bare hull resistance.

SFCpe Specific fuel rate for propulsion engines at endurance speed.

SFCg Specific fuel rate for ship service engines at maximum continuous rate.
SFCa24 24 hour average fuel rate for ship service engines (per hp).

SFCoEn 24 hour average fuel rate for ship service engines (per kW).

SFCpg Specific fuel rate for propulsion engines at maximum continuous rate.
SHP Shaft horsepower.

SHP, Endurance shaft horsepower.

SHPs Sustained speed shaft horsepower.

SONpyp Type of installed sonar (SQS-53/SQS-56/none)

Ss Wetted surface area.

Ssp Sonar dome wetted surface area.

Stss TSS wetted surface area.

T Draft.

TPA Tailpipe allowance for tanks.

Ts Stores period.

Viuy Aucxiliary machinery rooms voiume.

VeaL Clean ballast tank volume {for trim/heel adjustments).

VCGoo Vertical center of gravity of ship’s structure.

VCGy5) Vertical center of gravity of masts.

VCG 80 Verticai center of gravity of mechanical foundations.

VCGago Vertical center of gravity of ship’s propulsion plant.

VCG;37 Vertical center of gravity of APU.

VCGago Vertical center of gravity of ship’s electrical plant.

VCGypo Vertical center of gravity of command and control systems,

VCGgs Vertical center of gravity of sonar dome’s water.

VCGsoo Vertical center of gravity of auxiliary systems.

VCGs)» Vertical center of gravity of auxiliary steam system.

VCGeoo Vertical center of gravity of outfit and furnishing.

VCGn Vertical center of gravity of armament.

VCGux Vertical center of gravity of auxiliary machinery.

VCGgy Vertical center of gravity of bare hull.

VCGgy Vertical center of gravity of basic machinery.

VCGecc Vertical center of gravity of cabling.

VCGeo Vertical center of gravity of miscellaneous command and control systems.
VCGpn Vertical center of gravity of deckhouse.

VCGrio Vertical center of gravity of crew.

VCGrs Vertical center of gravity of provisions.

VCGrs; Vertical center of gravity of stores.
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VCGry Vertical center of gravity of fuel.

VCGrys Vertical center of gravity of lubrication oil.

VCGgs Vertical center of gravity of potable water.

VCGic Vertical center of gravity of communication/gyro/navigation systems.
VCG, Variable load vertical center of gravity.

VCGis Lightship vertical center of gravity.

VCGorn Vertical center of gravity of hull fittings.

VCGorp Vertical center of gravity of personnel related outfit.
VCGp Payload vertical center of gravity.

VCGpioo Structural payload vertical center of gravity.
VCGpaoo Command and control payload vertical center of gravity.
VCGpsoo Auxiliary systems payload vertical center of gravity.
VCGpsoo Outfit and furnishing payload vertical center of gravity.
YCGsr Vertical center of gravity of shafting.

VCGp Variable payload vertical center of gravity.

Vp Deckhouse volume.

Voray Deckhouse volume upper limit.

Ve Endurance speed.

Ve Total fuel tanks volume.

Vie Volume of required fuel for generators.

Ve Underwater hull volume.

Vep Volume of required fuel for propulsion engines.

Vg Available hull volume.

Viaw Above water hull volume.

Vir Helicopter fuel tanks volume.

Vi Lost hull volume due to raised deck.

Vir Total hull or deckhouse required volume.

Vur Total hull volume.

Viuw Under water hull volume.

Vio Lubrication oil tanks volume.

Wiy Maximum speed.

Vi Machinery box volume.

Vs Sustained speed.

Vsew Sewage tanks volume.

Vr Total ship volume.

Via Available ship volume.

Vi Total ship tanks volume.

Vg Total ship required volume.

Vu Potable water tanks volume.

Viiste Waste oil tanks volume.

W, Structure weight (SWBS 100).

Wiz Masts weight.

Wiso Foundations weight,

W, Propulsion plant weight (SWBS 200).

Wsas APU weight.
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W
W,
Wss
W;s
Wsos
Wsos
Ws
W
W.uy
W
W Be
Wan

Wpsoo
Wer

Electrical plant weight (SWBS 300).
Command/control/surveillance weight (SWBS 400).
Sonar dome water weight.

Aucxiliary systems weight (SWBS 500).
Environmental support weight.

Auxiliary systems operating fluids weight.
Outfit and furnishing weight (SWBS 600).
Armament weight (SWBS 700).

Auxiliary machinery weight.

Bearings weight.

Burnable electrical endurance fuel weight.
Bare hull weight.

Basic machinery weight.

Burnable propulsion endurance fuel weight.
Cabling weight.

Worm curve interpolated correction coefficient.
Miscellaneous SWBS 400 weight.

CPS weight.

Combat system weight.

Deckhouse weight.

Crew weight,

Provisions weight.

General stores weight.

Total fuel weight.

Helicopter’s fuel weight.

Lubrication oil weight.

Potable water weight.

Weight of required generator fuel.

Full load displacement.

Full load displacement (guessed value, for first iteration only).

Weight of required propulsion fuel.
Gyro/internal communication/navigation weight.
Variable !oad weight.

Lightship weight.

Weight margin (for future growth).
Lightweight margin factor.

Hull fittings weight.

Personnel related outfit and furnishing weight.
Total military payload weight.

Structure payload weight.

Command and surveillance payload weight.
Mission handling/support payload weight.
Mission outfit payload weight.

Propellers weight.

Shafts weight.
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Wsr Total shafting weight.
Wr Total ship weight.
W Variable military payload weight.



Appendix B Evolutionary Methods Nomenclature

Appendix B

Evolutionary Methods Nomenclature

&)
o(S)
<(]
a

ai

b,

b

(08
ERR,
F(n)
F.S)

Sfitness(x, 1)
gen
gen_max
ki

m
n_converge
N;

qi

P;

Pc

Py
penalty
pop_size
Ps

Pyp
span(1)

Defining length of schema S.

Order of schema S.

Number of chromosomes at generation / matched by the schema S.
Arithmetical crossover parameter.

Lower boundary of ith gene.

Upper boundary of ith gene.

Mutation non-uniformity degree.

Center of selection.

Amount of xth constraint violation in percent.

Average fitness of entire population at generation /.

Average fitness of all £ chromosomes.

Fitness function of the ith chromosome at generation /.
Generation number.

Maximum allowable number of generations.

Required accuracy (in decimal points) of ith gene.
Number of genes or bits in a chromosome.

Number of successive identical results required to declare convergence.

Number of divisions of the domain [a, b].

Cumulative probability of survival of ith chromosome.
Probability of survival of ith chromosome.

Crossover probability.

Mutation probability.

Penalty value for non-feasible solution.

Population size.

Selection pressure.

Mutation update probability.

Standard deviation of entire population at generation /.
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Appendix: C
DDGx payioad and adjustments table

DDGx payload and adjustments table is taken entirely from the ASSET match run
of DDGS51. All data is obtained from the weight and summary modules. The items are
classified by the SWBS system. Since ASSET algorithms are empirical, they are not
guaranteed to give the actual results of the DDGS51 in all cases, and thus inaccurate results
are corrected to reflect the actual results. These corrections are called adjustments: there
is no linkage between them and the military payload, although both are entered via the
same table in ASSET. Adjustments in this appendix are shadowed. Since the DDGx
model is calibrated to provide DDGS1 actual results when her hull parameters are
employed, the adjustments are not needed. The calibration includes the influence of the
adjustments. Therefore, in this appendix, two weight summations are introduced: payload
and adjustments sum, and payload sum. The first, denoted by ‘PA’, includes adjustments
data, while the latter, marked ‘P’, does not. Only payload data is used for the design
requirements in Section 2.1. Area requirements are listed with their SSCS' code for
reference only. The codes are not used by the model. The requirements are divided into
deckhouse and hull. Deckhouse area is an area which must be allocated in the
superstructure; Hull area can be allocated in the hull or the deckhouse. Electrical loads
are given for winter cruise and winter battle cruise conditions. However, only the first are
used in the model, see Section 2.7. The variable payload, at the end of the table, is
identical to group F0O0, which includes ammunition and helicopter fuel, equipment which is
not fixed in the ship and requires replenishment.

All calculations are performed in an Excel worksheet. Not that they are
complicated, but it enables quick changes, and creates a template, for future use for other
vessels.

! Shipboard Space Classification System



Appendix C

DDGx payload and adjustments table

144

Name SWBS Weight VCG Moment | Area key Hull atea Dkhs arnr Cruise Battle
ftton] [ (ton°f) 2] [r*27] W] [«W)
Shell plating 699 -159 -11114 None 00 00 0.0 0.0
Inner boftom 473 62 2933 None 00 0.0 00 00
Stanchions 99 295 2921 None 00 0.0 0.0 0.0
Longitudinal framing 112 1456 16307 None 0.0 0.0 00 00
Transverse framing 232 147 340 None 00 00 00 0.0
Longitudinal bulkheacs 499 285 14222 None 00 00 00 0.0
Transverse bulltheads 452 262 11842 None 0.0 0.0 00 00
Trunks + enclosures 281 133 373.7 None 00 0.0 0.0 00
Main deck 207 326 6748 None 00 00 00 00
01 level dack 533 411 21906 None 00 00 00 00
First platform 268 242 6486 None 00 0.0 00 0.0
Second platform 338 144 486.7 None 00 00 00 0.0
Inner bottom portion modeled as plaform 32 7.1 227 None 00 00 00 00
MK45 5°/54 gun HY-80 armor (level It) 202 383 7.7 None 0.0 00 00 0.0
29 cell VLS armor - level il HY-80 140 333 466.2 None 00 00 00 00
61 cell VLS amor - level lIl HY -80 211 333 7026 None 00 0.0 00 0.0
Unidentified ballistic plating 259 506 13105 None 00 00 00 00
Group 100 4973 221 109747 00 00 00 00
812 401 3265390 00 00 00 0.0
CIC WI2x UYQ-44 & 2x LSD 173 397 686.8 A1131 1989 0 00 745 755
Navigaton system 00 579 00 None 00 00 16 4 205
Extemal communication 324 339 10984 | ANINN 1270.0 950 933 964
SPS-67 surface search radar 17 ns 1216 A2l 0.0 700 80 00
MK XIl AIMS IFF 23 7 1635 None 00 00 32 40
SPY-1D MFAR - single transmitter 543 563 30571 A1121 00 15940 | 2690 4743
SQQ-28 LAMPS MKIlI electronics 35 448 156.8 None 00 00 53 55
SQR-19 TACTAS (elex in hull sonar) 462 233 343 7992 A1122 4730 00 266 266
SLQ-32 (V2) passive ECM 472 30 633 189.9 A1141 400 1320 64 6.4
AN/SLQ-25 NIXIE 473 36 343 1235 A1142 1720 00 30 42
SLQ-32 (V2) MK36 DLS w4 launchers 474 11 554 60.9 None 00 00 24 24
AEGIS based 5" GFCS (UYQ-21 UYQ-44) 481 07 358 251 A1210 00 1500 123 427
MK16 CIWS weapon controi system 481 10 56 3 563 A1210 00 4640 32 104
Tomahawk weapon control system (in CSER) 452 56 340 190 4 None 00 00 115 115
MKS9 GMFCS w3 SPG-62 illuminator 482 143 627 896 6 A1220 00 959 0 347 652
AN'SWG-1 Harpoon luanch control system in CIC 360 396 None 00 00 121 121
VLS weapon control system M5 242 A1220 560 00 150 180
VLS weapon control system 345 242 A1220 560 00 150 180
ASW control system (ASWCS}) 308 1478 None 00 00 195 195
MK3 integrated FCS 328 1673 None 00 00 30 30
Operational readiness test system 443 2038 None 00 oo 120 120
Shipboard NON-TACT auto process || 307 1228 A1131 1120 00 07 07
CIC - CSER area 00 0o A1131 2236 0 0o 0o 00
Group 400 451 83556 64040 34640 | 6471 9289
455 80290 62920 34640 | 6180 8957
29 cell magazine dewatering system 529 15 325 488 None 00 00 00 00
61 cell magazine dewatering system 529 30 325 975 None 00 00 00 00
[Cooling system delta L. 40 108 432 None 00 00 80 80
SPY-1D MFAR - equipment cooling delta 5 90 108 972 None 00 00 a0 00
LAMPS MKHI: helo in flight refuel system 542 76 273 2075 A1380 440 00 13 13
LAMPS MKIil: helo securing system 588 36 a1 151 6 None co 00 00 00
Group 500 WPAS00 287 225 6457 440 00 93 93
WP500 157 322 50513 440 00 13 13
MK45 5"/54 gun (hand SD) 710 500 461 23050 | A1210 2850 00 366 50 2
2x MK16 20mm CIWS & workshops m 132 628 8290 A1210 0o 3210 140 420
2x Harpoon SSM QUAD HCLS (LVL Il hardened) 720 54 445 2403 None 00 00 00 0o
4x MK41 VLS 29 cell w3 Tomahawk + 23 SM-2 + 3 VLASROC ™ 828 315 26082 | A1220 170 00 3 N1
8x MK41 VLS 61 cell w7 Tomahawk + 49 SM-2 + 5 VLASROC I3l 1478 305 45079 | A1220 1280 00 634 634
VLS weapons handling 722 10 383 383 A1220 750 00 00 00
VLS weapons handling 722 10 383 83 A1220 750 00 00 00
2x MK32 SVTT on deck 750 27 453 1223 None 00 00 06 11
Small arms and pyro stowage 760 80 362 2896 A1900 2030 00 00 00
LAMPS MKIII; helicopter REARM + magazine 780 27 48 4 1307 A1374 2120 (] 00 44
Group 700 WPAT00 3146 353 111096 9950 3210 1457 1922
WP700 3146 353 111096 995 0 321 0 1457 1922

Table C.1. Pavioad and adjustments table.
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Name SWBS Waeight VCG Moment | Area key Hull area Dkhs areal Cruise Baitle
fton] [M fiton"R] m+2] m2) | W W]
MK36 DLS SRBOC cannisters - 100 rds F21 22 554 1219 None 00 00 00 00
MK16 20mm CIWS Ammunition - 16000 rds F21 84 618 5191 A1210 00 2570 0.0 0.0
MK45 5°/54 ammunition - 600 rds F21 331 179 5925 A1210 705.0 0.0 00 0.0
Harpoon missiles - 8 rds F21 158 480 7584 None 00 00 00 0.0
Missiles - 3 Tomahawk + 23 SM-2 + 3 VLASROC F21 42 M1 1507.2 A1220 12890 0.0 0.0 0.0
Missiles - 7 Tomahawi( + 43 SM-2 + 5 VLASROC F21 638 331 31048 | A1220 21400 0.0 00 0.0
MK46 lightweight ASW torpedoes - 6 rds F21 14 453 634 None 00 00 00 0.0
Small arms ammunition - 7.62 mm + 50 cal + pyro F21 41 358 146.8 None 0.0 00 00 0.0
Bathythermograph probes F29 0.2 257 51 None 00 0.0 00 0.0
LAMPS MKIII; aviation fuel (JP-5) F42 64.4 130 837.2 None 00 0.0 00 0.0
Sea water in compensating tanks F51 67.2 kX:} 262.1 None 00 00 0.0 00
Correction to fresh water GRS VAFsZ: 101 58 586 None 0.0 0.0 0.0 0.0
Group FOO WFPA 3247 242 78599 41340 257.0 0.0 0.0
WFP 3348 237 79185 41340 2570 00 0.0
Vanable payload and adjustments WVPA 3247 242 78599 41340 257.0 00 0.0
Variable military payload WVP 3348 237 79185 41340 257.0 00 00
Tolal payload and sdjustments WPA 13504 288 389455 11577.0 40420 | 8021 11304
Total milita joad weP 9228 334 308154 114650 40420 7650 10892

Table C.1. Pavload and adjustments table (continued).
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Appendix D
DDGx Mathcad™ Model

Mathcad™ is a special worksheet, in which all expressions are visualized in their
traditional mathematical notation, exactly as they are written on a paper or in class. All
entities exist in regions; text, math or graphic regions. The execution of the calculations is
conducted from top to bottom, and from left to right. The CPU starts at the upper left
corner, advances to the right, to the first region, executes it if applicable, and then gets
down and proceeds. Refer to [39] for detailed usage instructions. Here only some basic
commands are described, to enable understanding of the model. Three kinds of equality
signs exist:

= The numerical value of the parameter in the left side is printed.

= The parameter to the left gets the value of the expression in the right side (can be a
numeric value). Only regions that appear after (that is, to the right and lower) this
region are influenced by this expression.

Same as above, but here all expressions, even former ones, are influenced.

Mathcad also tracks the physical units of the arguments, so no unit conversion is
needed; this is done internally by the software. At the beginning of the model, Naval
Architecture units are inserted, because these units do not exist in Mathcad’s unit library,
and otherwise are not traceable. Next, all design requirements are input. Numeric data is
per Appendix C, which describes the payload of the DDGx ships. Next, all modules are
shown. The last page contains the most important data: hull parameters (notice that they
use the ‘=’ sign, so all the document is influenced) and balance status report.

This model contains some conditional expressions. For example, the sonar dome
wetted area on page 150, can have three values, as a function of the input. This allows
evaluation of different ships. However, it should be remembered that many parameters
and expression are problem dependent. The final Fortran model contains only the
expression corresponds to the DDGx class.
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Gertler residuary drag coefficients are calculated in an external worksheet, as seen
in the third page. This file is included in this appendix, right after the model, starting on
page 163.

Note that the maximum speed calculation in this model, on page 152, is performed
by linear interpolation between the sustained speed and 35 knots. The Fortran self-
balanced model conducts the accurate computation, as described in Section 2.5.4.
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DPDGx Math Model

Units definition
hp = 33000 AL 160 on=22401  mile = knthr

min secC
Input
Use Appendix C for payload data, and Appendix A for nomenclature.
Trade Off
Average deck height (hull+deckhouse): H i :=10.66-ft  Raised deck height (if applicable): Hp :=9.5-f
Sustained (at 80% power) and endurance speeds: V g '=30-knt V e =20knt

Vs is set as to balance the resistance and installed propulsion power of the vessel. V, controls the
required fuel amount for the specified range and stores period.

Range and stores period: E =3807.6mile  Tg =45day

Margins
KGMARGrro.S-ﬁ PMF =108 EDMF =10 EFMF =1.01 WMF =0.005 E24MF =1.2

Physical Parameters

2
Sea water properties: p gy = l.9905-il;g vgw =1.2817 IO'S-ﬂ—
ft sec
Air properties: p p = 0.00238|7-il:§
ﬁ-

& a P 3
Liquids specific volumes: yp :=42.3-— THF 43— Lo =39 — Tw =36—

lton lton lton lton

Weight Requirements (from Appendix C)

W p =922.8:Iton W yp =334.8-lton VCGp =334/ VCG yp =23.7-1

Wpioo =81.2-1ton W40 =176.5ton - Wpsgg = 15.7-1ton W pgoo =0-lton W., =314.6-1ton
VCG pjgg =40.1'ft VCGpygg =45.5ft  VCGp3gg = 322t VCG pgpo =0t VCG 799 =353/
Wiy, =644 Iton

Sonar dome weights: W 49g '=86.5-Iton VCG 498 =-3.951

CPS (30 lton if installed): W pg-=30-lton

Hull material (will be used for hull structure weight calculation in the weight section later; 1.0 for OS or
0.93 for HTS) and deckhouse material (same use; 1 for aluminum and 2 for steel):

CHMAT 7093 CpHMAT =2
Area Requirements (from Appendix C)

Required payload deck areas at deckhouse: A ppc = 346402 A DPA =578 n?
Athull:  Appc =6292-#* Aypa =5173-87
Where 'PC' index stands for C&D (swbs 400) and 'PA' for armament (swbs 500, 600, 700 and F20).
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Sonar model (0 for none, 1 for SQS-56, 2 for SQS-53C):  SON pyp =2

Manning Requirements
N, and N stand for number of officers and enlisted, respectively:

N07:26 NE1:315 NT:=NE+NO NT=34I NA:=36

Ny defines the total crew size, N, the additional accommodations.

Electrical Requirements

KW :=(792.8 + 55)-kW (For winter cruise condition, with sonar).

PAY

Fin stabilizers: N s =0 KW= [0kW if Ng,s=0

Machinery 50-kW otherwise

Number of propellers: Np:=2 Type (1 for FP, 2 for CPP):  PROP yyp =2
Auxiliary propulsion unit (APU) data: W 534 =0-lton VCG 537 =01t

Ballast type (1 for compensated, 2 otherwise): BAL typ =1
Propulsion engines type (1 for diesel/2 for gas turbine/3 for RACER). PENGyp =2

Data in this model for gas turbine propulsion engines is for the LM2500's; Generator engines for DDA
501-k34's. Number and rated power of these engines (propulsion and generator, respectively):

NppnGg =4 PppENG =25775hp NG =3 KW =2500kW

Inlet/exhaust cross section area required for each PE and generator: A [g = 159. -2 A GIE ° 35.7-f°
Deckhouse decks impacted by propulsion and generator inlet/exhaust: Ny =2

Hull decks impacted by propulsion inlet/exhaust: N ypig =2

A zero actually means that there is no continuous deck in the hull. Hull decks impacted by generator
inlet/exhaust:

N HelE =5

Resistance and Power

Frictional Drag

TSS wetted surface coefficient, assuming no dependency on C,,, according to [21]:
Ag =7.028-2331-C g +0.299C gy’

Ay =-11+5536.Cg-0704Cpy’

A, =6913- 3.419-C g7 + 0.451-C g7’

. _ . v 2 . A=
Csrss “AgrApCprACp C g =2.348

- . = .2 -
Stgg =C STSS'JV FL LWL S Tgg =29307.011-/ Sg =ST1sS

Which means that actual wetted surface area is assumed to be equal to TSS area.
i=3.7 V. =Skt Vo =Vg V, =V,

Correlation allowance: Ca =0.0004
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SSD = Oﬁz if SON TYPBO
8087 if SON Typ=I

2 . -
1400-8 if SON pyp=2

Vi .__ 0075
VoW K (log(R Ni) - 2)2

ITTC friction expression: Ry "=LWL-
1

l
R =P sw (Ss+Ssp)(CF+ Ca) (Vi)

Residuary Drag
\ V.
cv:.,_""'- C y =0.00282 R =——

LwL® Cow

Calling the residuary drag coefficients module, which calculates Cy, for different beam to draft ratios:

Include:C:\Thesis\Analysis\Residuary_drag_module MCD

Form factor: FF := g- (Cpr-3) FF =-0.099
CRr37s.- CRr22s, ,[CR2257CR3TS
CRrrss. =CRr3.00 +FF +FF™ - CR3.00,
i i 2 2 t)
| ) \ 2
RRTss, =5 Psw (Ss+Sgp) (V)€ RTSS,
Worm curve cuefficient: A = READPRN(Worm_hull) WCF, = |j«0

Re—3
1 /.k.:_“\
\Ja/
while R.>A.

R |
j—j+ |
A, - A
ith2 "2 p
j.2+ 0.05 (.Ri Aj‘l)

R Ri =R RTSSi-WCFi

Bare Hull Resistance

RTi:RFi+RRi
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Fig. 1: Bare Hull Resistance Curves
8-10°

RFi s 7
- pd
W 10

-

R Ri / '
ibf4°10° ~ -
-

RT 7 LK
bf__ s .

-+ 2°10

35

Ship Effective Horsepower
Bare hull: Pegy. “RT-V,
1 ]

Appendages drag coefficient, from [18):

3 2 \ -5
c 3000 EVE 6108 EWET 00051 EWE L 36432 P10 i 5 N4 PROP pyp=5
DAPP ; > n T P TYP
s f i knt’
o LWL? 6 LWL? LWL \ hp 107
-410%2 L9108 - 0.0081- = + 50717} it 2:N p+ PROP 1yp=6
3 2 ft | @ knt » ‘
fi fl | % knt
2 -5
2105V 00 WL g g 107y p+ PROP pyp=3
2 f 2, 3
ft ft*-knt
3 2 -5
(-3- 10 KWL 7008 EWE” 60072 1V L 3.9489)-5‘10— it 2N p + PROP pyp=4
3 2 fi 2, 3
ft fl f% knt
o =2.848-1F 10
DAPP T
ft"-knt
Estimated propeller size, from [18] and [23]:

Roll fins: PEfins. = |0 if Ngn=0
1
0.025-Ppgyy otherwise
1
. 3 - .
P EAPP, = 1.23-LWL-D p-C papp: (Vi) + PEﬁnsi (Scaled to fit V=30 knots for DDG51).

Air frontal area (+5% for masts, equip., etc): Ay =1.05-B- ( Do-T+3H DK')‘ Aw= 33520582
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- 2] 3
C A =07 Pean, =5 CanAwea(V)
Total effective horsepower. Ppr =Pppy + PEapp. + PEAA. EHP, :=PMF-P gt
i i i i i

Fig. 2: Effective Horsepower

hp 510t L,
P EAPP; .
™ 2510% o
.a’
- ——
_ /| o _b--
0 e e —— — ¢
15 20 25 30 3s
v,
_i
knt

Power Balance

Approximated propulsive coefficient: PC = if(PR.OP Typ=1.07 ,0.67) PC =0.67

EHP,

- ] - . — . - J =3 S ol
SHP, =1 SHFg=SHP,  SHP5=80000714tp  SHP =SHP SHP , = 14935.726 *hp

4

Transmission efficiency: n =0.97

1.25-SHP ¢
Required installed power (with 25% for fouling and sea state): P IREQ - il P REQ = 103093.7 *hp
n
. P1- PIREQ
Actual insialled power: PI =N PENGP BPENG PI =103100-hp ERR \VA [—'——
‘1
Maximal continuous brake horsepower: Pgyax =N pENG P BPENG PgMmax = 103100hp
nPpmax - SHP g \ <
(V,-Vg) V Max =31.581 -knt

A" =V o+
MAX S SHP7-SHPS

Space Available |
Underwater available hull volume: Vhauw “VEL

HypMin =221

For sheer line, 3 criteria exist: - deck edge above water at 259 heel (DDS-079-1).
- ensure longitudinal strength.
- contain machinery box (in height).
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[ 021-B+T

33.033
M= 15 M={ 31019 [ft DlOMIN-=mﬂX(M) DIOM]N.=33.033'ﬁ

3266
HnpMmiN+ Hpi
: 6.36215-10° 2 _ c .
DOM,N.-z.onszn-__ﬁ——-LWL +2.78064910 2LWL D gpqn =52.725*R D =D gpN
D 0014 LWL {2125+ 22519 o | o 1 D =38092R D q'=D
20MIN = U014 LWL 2120 + : t 20MIN =~ 20 =Y 20MIN

Fg=Dgo-T Fio=Do-T Fy9:=Dgo-T (Assuming zero trim).

LWL Fot4F o+ Fao

A = (Trapezoidal rule).
PRO ™5 08 6 P )
-2 PRO F oy = 23005 = = 43.466-
FAV'_ LWL AV~ 3.005 DAV"FAV+T DAV—43.466 ft
LWL-B-D py
Cubic number: CNizeri CN=12.108
10°.1°
Water plane coefficient: Cyw =0278+0.836:Cp C\=0.787

Above water hull volume: V paw =F sz-tun( 10-deg) LWL + LWL-B-C \yF oy
V gaw = 547836.229-°

Lost hull volume due to raised deck: Vi = |B oy 2-F oy-tan(10-deg) + B
B 1ow=B max - 2-Hg-tan(10-deg)

B vt Biow
c RD'LWL'( max low )-H RCw
Total hull volume: Var =Vauw* VeAW- VHL V gy = 785978.989-°
Deckhouse size upper limit: V =|12-B- 4-—HLK—-)-H 0.6.LWL- 1.1
. DMAX tan(80-deg) DK™ .
Total ship volume: V1=Vyr+VD V= 977987.989-1t°

Eiectrical Load

Estimated maximum functional loads for winter cruise condition:

KWp '=0.00323-|:—W-PI (SWBS 200). KW p =333.013 kW
P
KWg :=O.00826-kL:/-LWL-T (SWBS 561). KW ¢ =78.637 kW

fi
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. kW
KW g :=0000213=—=-V ¢ (SWBS 300).
ft
KWy = 1014 kW (SWBS 430+475).

KWCPS = 10-kW if WCPS=OllOII
. kW

DDGx Mathcad™ model

0.000135-—-V 1 otherwise
ﬁ3
KW :=0235-N p-kW (SWBS 517).
. kW
KW =0.000097-==-V (SWBS 521).
ft
8 kW
KWy = 0.000177.?- yr  (SWBS 540).
KW 4 =0.65NkW+KWg o (SWBS 530+550).

154

KW =208311 kW

KW cpg = 132.028 kW

KW g =80.135 kW

KW p =94.865 kW

KW 4 =221.65%kW

The calculation is iterative, because KWy, KWy, and KW ¢ depend on Vayx, which depends on the
maximum functional load. Non-payload functional load (without the above mentioned loads):

KWNP::KWP+KWS+KWE+KWM+KWB+KWF+KWHN+KWA+ KWSERV

KW Y 0-kW
Kw - KW
while MFL X >0.01
KW MFL
] n* KWy
\"% « 56900 — ——
AUX kW 3410

ﬁ.

KW 5+ 0.67-| 0.1-kW-N 1 + 0.00067-

kW

3

kW .
KW ye-0.00064-—(V 1 - VB~ V AUX)

(vT- VMB- vIAUX')+o.|-KprY
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KW 1 = EDMF-EFMF-KW \ep KW p . = 3476.08 kW

The iterative process yields:

3 KW
V pux = 56900- & ML
kW 3411

KW ¢y :=0.00064 kW Vy-V \' KW 7 =500.452 kW

H =0 ‘g'( - VMB- V AUX) H = 500452
KW :=0.67-{0.1-.kW-N 0.00067 kW A v \Y 0.1- KW KW =430.67 kW

AC =0.67| 0.1 kW-N 1 +0. '?'( T- VMB- V AUX) + 0.1 KWpay AC =430.
Power required per generator, with one in stand-by position:

KW MFLM |

KW e KW =1931.155kW

OREQ ™ (Ng-1)09 GREQ
The 0.9 compensates for possible voltage fluctuations. 24 hours electrical load:
KW 54 :20.5- (KW - KWp-KWg) + I (KWp+KW) KW 54 =1926.657 kW
including design margin: KW y4avg “E24MF-KW o, KW o4avG =2311.988 kW

Space requirements
Machinery box

Since the same HM&E system is used, the same propulsion system in particular, It is assumed that
the volume of main machinery rooms (MMR's) is constant. Likewise, it is further assumed that the
volume of all other machinery rooms (auxiliary and others) is proportional to the electric load the ship
requires. Thatis:

N

N 3 . HPIE _ .
V \p=138620-ft Hyg =D jo- Hpk Hyp =31.145°R
V o 256000 0 S W MEL s a0t 3411 kW taken from the match

AUX = WW AUX =3 . ( aken from the match run).
Tankage
Fuel
Based on [29].
Average endurance brake horsepower required (including 10% margin for fouling and sea state):
I.1-SHP

PCBAVG '=—n—— PCBAVG =16937.422 'llp

_PeBAVG Ve T pPE Ib

SFC =0.4097 ——
PE
I'nPE hp'hl'

r | — r S —_— r =
pPE (P I) nPE v QPE

2
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SFC 1.252- 0.7229-
SFC pp =— E-(7.2IS-10'2-e "PE L 0.3629-1 (ypp-e '“"E) SFC pp =0.5699 12
ePE QPE ePE bo-hr
TpPE P
Correction for instrumentation inaccuracy and machinery design changes:
. 1 P1
f,:= |1.04 if 1.1.SHP <~ — £ =104
32
P
103 if 1.1.SHP >2.1
32
1.02 otherwise
Specified fuel rate:  FR gp '=f |-SFC .pg
Average fuel rate allowing for plant deterioration: FR AVG = 10O5FR gp FR oy =0.622 %r
1p-

Burnable propulsion endurance fuel weight: W gp .:VE—-P eBAVGFR AvG W pRp =895.847 “lton
c
Tailpipe allowance:TPA =0.95

w
Required propulsion fuel weight: Wpp = _T-I—’i_P W pp =942.997 “lton
Required propulsion fuel tank volume (including allowance for exparnsion and tank internal structure):
Vgp = 1.021.051pWgp V pp =42720.868-f’
KW P roc
PG = _ 24AVG _ bp oG . G G =1 QG __pG SFC g -04727. 10
0.7457-0.961-0.989 kW 2-4600-hp MG hp-hr
SFC g Ib
SFC Gag - (02821 +0.71791yg)  SFCgp4 =0.715-
“ r pG hphr
SFC 8
SFC gpgg = — 228 G2 SFC (g = 100910
KW 24AvG KW-hr

Margin for instrumentation inaccuracy and machinery design changes: e - 1.04

Specified fuel rate: FR GSP = f 1o SFC GE24

Average fuel rate, allowing for plant deterioration: FR oy = 105FR ggp  FR gayg =1.102 :%
Burnable electrical endurance fuel weight:
. E = .
WBC —-V—-KW 24AVGFR GAVG WBC =216.602 -lton
<
. W Be
Required electrical fuel weight: W, = — W . =228.002 -lton

Required electrical fuel volume: V., =1.021.059p W, Vg, =10329.255-1°

Total fuel weight and tanks volume: WEgl =Wepr W, Wy =1170.999 “lton
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VE=Vep+ Ve V p =53050.123-f°

Other Tanks
Helicopter fuel: V= 1.02-1.05-W p49Y F V g =2965.813-f°

Lubrication oil: W 46 :=17.6lton V1o :=1021.05W et o Vio=73. 134-8°

Potable water: W Esp =N 1°0.15-1ton W gy =51.15-Iton
Vw =1.022Wpsyyw Vw= 1878.228-° (Water does not expand).
Sewage: Vgew = (NT+NA)20058  Vgpy =755885-f |
Waste oil: V WASTE =002V V wasTE = 1061.002-f°
Cleanballast:  Vpgap =0.19-V V gar = 100795231

Total tankage volume required:
Vik =VF+Var+Vio+ Vwr VSEw VYV WASTE* V BAL V p = 70525.709-1

Payload Deck Areas
Deckhouse payload area (including access): Appg =1.15Appa + 1.23-Appc ADPR = 492542+

Hull payload area (including access): Aypr =115Aypa + 123 Agpe A pR = 13688.1 1-f?

Living Deck Area
The assumption is that officers live at deckhouse, and enlisted at hull. At deckhouse:

a9z a2 A= 2 _ _ a2
Athull: Apap =508  App =Apag(NT+Na)-App Ay, = 16675

Other Ship areas
ft? Ib

Hull stores: Ays =300-f%+ 00158 -N19-=Tg A s = 2482.059-1
ﬂ)’

Deckhouse maintenance: A g =0.05-(Appg +Apy ) A M = 3550217

Bridge and chartrooms: Appg * 16-f-(B - 18-11) Apg= 669.901 -1

Ship functions athull: A pygp = 1750.R%CN A pyqp =21189.012-1
Total inlet/exhaust cross section area needed: A p|g = N pENG A IE ApE = 636.4-112
_ _ al
AE “NGAGE Ao = 107.1-1

Engine inlet/exhaust area at deckhouse: Apig =14 NpE (A PIE+A eIE> A pIg = 2081 8-
Engine inlet/exhaust area at hull: Ay =14 ('N HPIE'APIE * NHelE'A clE) Ayl =2531 622
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i1

Total Required Area/\Volume

Hull:

Deckhouse:

Total:

Available hull volume:

Available hull area:

Total available volume:

AHR “AHPR*+AHL*AHS +AHSF+ AHIE

VHrR “HpkAHR

ApR:=Appr+ApL+ADMt+ADB+ADIE

Vpr "Hpk'ADR

ATR =ApR+ADR

ViR =VHR+ VDR

VHA =VHr- YMB- VaAux- V1K
VA

fra Hpg

Vta=VHat+VD

Vb

Available deckhouse area: Apj =—

Total available area:

Area effectiveness:

Weight
SWBS 200

Hpg
ATA *AHATADA

ATa-A
ERR 4 -“TA7T1IR
A
TR

Basic machinery (239+241/242+250 .. 290):

b
Wem =Pr—
p

Shafting (SWBS 243):

Propulsors (245): W pp =0.087-1b- (—

Bearings (244):
Total shafting:

Total for propulsion:

SWa8S 300

[0t )
9.0 + |2.4-\P,-__- !

hp
A _ - lton
tS —lf(N P—|,0.33,0.3)

5497 2033 g

D
P
) 'NP

ft

Wer =Wg+Wp+Wpp

W, =Wppm+Wer+ Wasgg

lton

3

W. =50-lton + 0.0352."OUN KW
kw67 G

ERR A =-0.001

A R = 56565.801-ft%
V R =602991.438-8°
= -A2
A pR = 10207.142-f
V pR = 108808.139-*
A TR =66772.943-%
V g =711799.576-
V A =519421.781-8°

A A =48726.246-

- a3
V a = 711430781

— a2
Appa = 18012.101-fk

= -2
A Tp =66738.347ft

W BM =414.79 *lton
W ¢ =190.768 lton
w PR =74.972 -iton
W g =62.449-lton

w ST = 328.189 “lton
W2 =742.979 -lton

W‘ =314 lton
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SWBS 400
.5 iton

Gyro/IC/Navigation (420+430): W - :=4.45-10 -—3--V T
fi
OtherMisc: W o =2.22CN-lton

Total: W :WP400+ch+wC0+ch+W498

SWBS 500 .
Aux systems operating fluids: W 59g -=0.000062-V T'“ﬂ
. o

\V} 0.7224

0.000772- (— +5.14— +6.19 3
ft

ft® 3

WaAux =

VT)I.M3 VT

Environmental support: W 593 =10Iton

Total: W, =W aux+ Wpsoo + Wso3+ Wsog+Weps

SWBS 600
Hull fittings (610+620+630): W oFH * 0-00(;4 18
ft

Vv T-Ilon

Personnel related (640+650+660+670). W opp =0.8- (N T- 9.5)-lton
Total: W6 :WOFHTWOFP+WP6OO

SWBS 100
Hull (110 .. 140,160,190):
Wpp =€ pyat 1135 (1.68341.CN? - 167.1721-CN - 103.283 )-lton

Deckhouse (150): pppy = it‘(C DHMAT=!.0.000746- l.02,0.00|68)

_ lton
WpH = DH'F'VD

Masts (171): W7, =2lton (Assuming the same mast).

Foundations (180): W gy =0.0735(Wpp+ W)+ W+ W+ Wy Wo W1)
Total: W, =Wpy+Wpy+W7;+Wg0+Wpjoo

Weight Summary
7
Margin for future growth: W (54 = WMF: Z W,

P

159

W [ =43.52-lton

w CcO =26.638lton
w cc =98.663 “lton

W4 =431.821 “lton

w 598 =60.635 *lton

+37TN 1+ 2.74-h_I 110" *lton + 117-Iton
p

Ws =824.297 “lton

W oy = 408.799 -lton

w OFP =265.2lton

Ws =673.999 “lton

W gy = 2288.044 “lton

W pyy =322.575 lton

W 180 =410.846 -lton
Wl =3104.665 lton

W 24 =32.032-lton
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7

Lightship weight: W g = Z W, + Wy
i=1

Provisions: WE3) =N1245 lO"‘-%Ei—T-T S

General stores: W F32 ° 0.00071 -hﬂ-T S'N T+ 0.0049-1ton-N T

day
Crew.  Wpgjg =2361bNE+ 40016 (N g+ 1)

160

w LS =6438.393 *lton

w F31 =37.595 *lton
w F32 =12.566"lton

w FI0= 38.009 lton

Total weight:
Wr=Wis+Wyp+Wrg v Wege+ Wrs2+ WE31+ W32+ Wro W =8101.112"kon
Wpr - W w
ERR:—FL—-T ERR =0.003 FP :—E Fp=0.114
W w
Lightship weight groups center of gravity and moments:
Piog =P +PyrParPysrWpigo VCG VCG | =100 VCG |0 =25.598-
100 "P1+PprP3rPy=Wpigo VG pigo 100 * l0p =23-398°R
1
P7 W37 VCG 37
P 200
2
P 3 =W 498 VCG 498
Py Po+PyorP (=P (2 Wpaog VCG VCG 4 =490 VCG 4o =28.333+1
400 P9+ PyorP =P 2= Wpgoo VEU pago 400 i 400 = 28.333°1
4
/ P.
: . Pso00 e
PSOO =P 13 + WPsoovCG P300 VCG 500 - W VCG 500 =25.662-ft

b}

P15 =WorH VCG oFH



Appendix D DDGx Mathcad™ model
OFH 10 OFH
VCG gpp =421+ 04D |, VCG gpp =20.922-
Peoo =P 15+ P16+ Wpsoo VCG peoo VCG 600 00
w

6

Total lightship vertical moment is (note that variable payload is deducted):

Pwac =P 100+ P200* P300+ P 400+ P 500+ Peoo+ Wy VCG 700

161

15 OFH OFH

P16 =W orp VCG gFp

P WG =160438.982 “lton-fi

Vertical CG of ightship: V<G g =—— WO VCG | g =25.044°1
Wis- WM

Here we assume that the weight margin's CG location is at the CG of the lightship.
KGyg=VCG g
Variable loads weight group center of gravity and moments:
VCG g =0.732D ;g VCG o =30.601-11 P17 =WE10VCGEo
VCG g3y =0523D py VCG g3 =22.733-1 P1g =WEg3'VCG g
VCG g3 =0.592D vy VCG g3 =25.732-1 P g =WE39 VCG g3y

VCG g4y =103t Pso =Wgap VCG gy
VCG g4 =0.53-Hpqp VCG p46 =16.507-1t Py = W46 VCG pyg6
VCG g3y =0.138D oy VCG p35p =5.998-11 Pyy =Wg59 VCG sy

Total moment: PWGL =P |71—P |81-P |9+P20+P2| +P22~;-WVP-VCG VP

Total variable loads WE|ght WL = WFIOT WF3| +W F32°+ W F41+ W Fa6 WF52 -~ W VP

PwaL
Vertical center of gravity: VCG = W VCG | =13.793-f
L
Wi e KGye+ Wi-VCG
Wr
Stability
CpCy LWL-B*.C
KB =I-(2.4— P X\ KB =12.047-ft BM =——-——£
3| Cw | 12V g
\ . R . GM
GM =KB + BM - KG GM =6.27-i CoMB = —

B

BM =17.457-1
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Design Parameters and Summary

Hull characteristics

C p=0.609 (0.50-0.70 allowed). C x=0819 (0.70-0.90 allowed). Cpp=02

C &580.68-1—1033 (60-90 allowed). CpgT=2.926 (2.8-3.7 allowed). Cpo=11.13 (10-15 allowed).

fi

Hull dimensions

Note that only the full load displacement is to be specified; all other dimensions are evaluated using the
above hull characteristics. After weight convergence check for other requirements compliance.

w

WEL = Hl_P W) =9228-lton (First iteration only).
W =8101.112¢lton W g7 =8127-lton VFLEWFL-34.98-% Fp=0.1139
|
LWL=100- (Eﬂ)3 LWL =465.288-f  B= BTYRL b sogson
CaL JCpCyx LWL
I T=20461" D gt D =41805-1 V p=192009-f°
CpCyLWLB Cplo
Balance Check
Required/Minimal Available Error
Weight: W =8101.112-lton W . =8127-lton ERR =0.003
Propulsion power: P IREQ = 103093.704 “hp P =103100+hp ERR y =0
Electrical plant: KW gpEq = 1931155 &kW KW ¢ =250C kW
Mach. box height: H MmN =22:1t Hppg =31.145-11
Depth: D |oMIN = 33.033-ft D o =41.805-ft
Deckhouse limits:  V ppyax = 367357.909-f V = 1920091’
Deckhouse area:  App = 10207.142-i* App = 18012.101-R°
Deckhouse volume: ~ V pp = 108808.139-1’ V p = 192009’
Total ship area: ATR= 66772943+ ATA= 66738.347-1° ERR , =-0.001
Total shipvolume: Vg =711799.576"1’ V1 = 7114307811
Sustained speed: 29.96 knt V g =30"xnt V MAx = 31581 knt

Initial stability: 0.090-0.135 C gmB =0.105
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Residuary Drag Coefficients Module

This module calculates Gertler residuary drag coefficients for the use of DDGx design Model. It
reads data tables from several data files which must exist on the same directory.

First the data files are loaded into the module. The parameter k represents the coordinates of Cp, s0
the right data files will be read:
k= {i<0

while C y>(i + 1)-0.001

je—i+ 1
i

RESIDI1 := | READPRN(CvI]) if k=1 RESID2 ‘= | READPRN(Cv2) if k=1
READPRN(Cv2) if k=2 READPRN(Cv3) if k=2
READPRN(Cv3) if k=3 READPRN(Cv4) if k=3
READPRN(Cv4) if k=4 READPRN(CvS) if k=4
READPRN(Cv3) if k=5 READPRN(Cv6) othenwise
READPRN(Cv6) otherwise

Next, the coordinates for the coefficients are found:
RR.?=—i- m. = |l«0 n={le0
1 k.nt\ ]
(-\/—_ while RRi>O.S +0.1:1 while C p>0.48 +0.02:1
A/

le~1+1 l—1-+1

Now, values are interpolated for each B/T ratio (2.25/3.00/3.75) and each straddling Cp:

Cp-048-(n- 1)-0.02
Cl R225| = Xh—R.ESIDI“'miT- 0.02 '{_RESlDlnq-l.mi_ RE'S]DIn.mi‘)
Cp-048-(n-1)002
X2c—RE.S[Dln'mi+, r - .(RESlDln+|_mi?, - RE.S]DIn'mI_T,)
RR.- 0.5~ (m. - 1}-0.1
X1 4+ — o] L (X2-XD
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Cp-048-(n-1)-0.02

C2Ry2s, = | X1 RESIDZ, oy + 0.02 '(RES]D2n+ t.m, ~ RESIDZ, 1,
Cp- 048~ (n- 1)-0.02
X2e-RESID2, o 1+ 502 -(REsn)z,, #tms1~ RESIDZ, ooy )
RR; - 0.5 - (m,- 1)-0.1
X1+ — : (X2- X1)
0.1
C y - k0.001 CRraas,
CRryos =ClRy 95+ ———(C2R2.25 -~ C1R2.25 C =
R225, “CIR225,* —ggop —(C2R225,” €V R225)) R2.25, " 7o00
‘ Cp-048-(n-1):002 _ .
CIR3 g0, = |X1<RESIDly 12,m * 50 .(RESIDIM,_,'mi-REs.mln.Tn'mJ
Cp-048-(n-1)002 y ‘
X2¢=RESIDI, 13 0 41+ -5 (RESIDI, 3y 1~ RESIDIy 12,m 1)
RR, - 0.5 - (m - 1)-0.1
X1+ (X2- XI)

0.1

Cp- 048 (n- 1)0.02

C2R300, = |X1—RESIDZ, (12,m ¥ o0 -(RESID2, _ 13, m, = RESID2, . 12,
_ Cp-048-(n-1)002
X2-RESID2, 1. 41+ 502 -(RESlDZM 13.m +1~ RESID2, 12,10 o ,)
RR,- 0.5 - (m,- 1)-0.1
X1+ — . (X2- X1)
0.1
C y - k0.001 \ € Rr3.00,
C =Cl -(C2 -Cl C =
R3.00, %1 R3.00," — 570, ( R3.00,~ “IR3.00,) R3.00, ~ 000

Cp-048-(n-1)002 ,
ClR37s, = X1=RESIDI, 54 m + 502 (RESID, 55 g, = RESID, 24 m )
Cp- 048- (n- 1)0.02 S ) ‘
X2eRESIDl, 4 ;17 0 (RESIDI, 55 1~ RESIDLy 2gm 1)
RR, - 0.5 - (m, - 1)0.l
X1+ — 01' L (X2-XI)
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Cp-048-(n-1)0.02

C2R3 75, = [ XI-RESID2, 3y 003 -(RESIDZH”'mi - RESIDZ,,TN'MJ
Cp-048-(n-1)-0.02 _
X2eRESID2, 4, m 1 + o0 -(RES]D2n+25_mi+, - RESID2, 5y +,)
RR; - 0.5 - (m,- 1)-0.1
X+ (X2- X1)
0.1
Cy - k0,001 CR3.75,
CRr375.=ClR3 75 -(C2r375.- C1R3.75 CRr37s. = '
R3.75, “CIR375, " g oor (C2R3.75,~ C1R3.75)) R3.75, " To00

Now the values for the residuary drag coefficients are returned to the model, and the resistance
calculation continues.
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Appendix E
Extrapolated Residuary Drag Coefficients

The DDGx model employs Gertler’s reanalysis of Taylor’s residuary drag
coefficients [20] for its resistance and powering calculations. Original data in [20] is
provided in tables; numeric data sorted in arrays is taken from [14]. Section 2.5.2
describes the residuary drag computation in details. Since Gertler has conducted his
experiments for a limited parameter range, as shown in Table 2.1, several extrapolation
rules were considered, all of them discussed also in Section 2.5.2. The final adopted
extrapolation rule relies on ASSET algorithm, with a negligible departure for the highest
volumetric coefficient of 0.006.

Data is organized as follows. Tables D.1 through D.6 show the coefficients at
volumetric coefficients of 0.001 through 0.006, respectively. Each picture includes three
blocks of data, corresponding to beam to draft ratios of 2.25, 3.00 and 3.75, respectively.
Every block stores coefficients as a function of the prismatic coefficient and speed to
length ratio. Columns represent constant speed to length ratio, while rows represent fixed
prismatic coefficient. The speed to length ratic varies between 0.5 to 2.0 knot/f*® | in
jumps of 0.1 knot/ft*>*. The prismatic coefficient varies between 0.48 and 0.70 in steps of
0.02. Note that none of these values is shown in the tables - just remember that the upper
left cell of each block corresponds to a speed to length ratio of 0.5 knot/ft>* and prismatic
coefficient of 0.48. All data is multiplied by 1000 (i.e., the computer divides them by
1000). Original experimental results are shadowed. These tables are stored as library files
from which the resistance module reads and interpolates. In an event of deviation from
the specified speed to length or prismatic coefficient domains, end extrapolation is
performed.
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0.21
0.20
0.20

022

0.23
023
024
0.23
0.24

022

022
0.23

0.21

0.20
0.20
0.22
0.22

0.22

0.23
0.23
0.23

0.24

0.23
0.24

0.21

0.20
0.21
0.2

0.22
022

0.23

0.23

0.23
0.24
0.23
0.24

0.21
0.20
0.21
0.22
0.22
0.22
0.25
0.24
0.27
0.30

0.33
0.40

0.21
0.20
022
0.22
0.24
0.28
0.32
0.38
0.43
0.50
0.53
0.63

0.29
0.25
0.26
0.26
0.30

0.38

0.45
0.54
0.70
0.82
0.94
1.11

0.60
0.49
0.46
0.37
0.40
0.41
0.48
0.59
0.74
0.88

1.05

1.21

115
0.97
0.£8
0.75
0.71

065

0.65
073
0.80
0.88
0.98
1.13

177

1.55

1.38

1.20
1.12
1.06
1.3
1.07
1.10
1.15
1.19
1.28

219
1.94
173
1.57
1.47
1.43
1.37

1.37

1.38
1.40
1.41
1.43

238
213
1.91
1.80
1.68
1.63
1.57
1.54
1.54
1.56
1.65
1.57

240
220
200
1.88
175
1.71
1.66
1.64
1.63
1.63
1.63
1.63

|

2.38
2.18
2.00
1.89

1.77

172
1.69
167
1.68
1.66
1.67
1.65

2.30
21
1.98
1.85
1.73
1.70
1.68
1.66
1.67
1.63
1.65
1.65

220
203
1.91
1.79
1.68
1.66
1.62
1.60
1.60
1.60
1.60
1.60

2.10
1.92
1.86
1.70
1.60
1.59
1.56
1.53
1.52
1.52
1.55
1.56

025
0.25
0.26
0.27
0.28
0.30
0.30
0.30
0.33
0.35
0.34
0.33

0.25
0.25
0.26
0.27
0.28
0.30
0.30
0.31
0.33
0.35
0.34
0.35

0.2
0.25
0.27
0.27
0.28
0.30
0.31
0.32
0.33
0.36
0.35
0.36

0.27
032
0.39
0.40
0.42
0.43
0.45
0.42
0.40
0.40
0.40
0.40

0.2¢
0.38
0.46
0.51
0.57
0.58
0.59
0.60
0.62
0.63
0.64
0.65

0.34
0.42
0.48
0.51
0.62
0.68
0.70
0.77
0.85
0.90
1.05
1.20

0.66
0.69
0.66
0.69
0.67
0.71
0.76
0.81
0.90
1.00
1.17
1.37

120
1.10
1.02
0.97
0.88
0.89
0.90
0.90
0.95
1.02
1.12
1.22

1.73
1.60
1.46
1.38
1.32
1.29
1.23
1.20
1.19
1.25
1.25
1.25

2.18
2.06
1.94
1.83
1.7
1.63
1.58
1.54
1.50
1.83
1.63
1.53

240
228
213
2.03
1.90
1.81
1.77
1.72
1.70
1.67
1.69
1.68

2.45
2.35
217
2.10
1.96
1.90
1.83
1.79
175
1.75
1.74
1.74

2.44
232
217
2.09
1.97
1.92
1.87
1.80
1.76
1.77
1.76
1.76

239
225
213
2.04
1.85
1.90
1.85
1.80
1.74
176
1.75
175

230
217
2.08
1.96
1.80
1.86
1.80
1.74
1.70
1.70
1.70
1.70

217
21
2.00
1.93
1.86
1.80
1.73
1.70
1.65
1.63
1.62
1.61

0.30
0.33
0.35
0.37
0.40
0.40
0.42
0.42
0.45
0.47
0.48
0.49

0.30

0.33
0.35
0.37
0.40
0.40
0.42
0.42
0.45
0.47
0.48
0.49

0.30
0.33
0.35
0.37
0.40
0.40
0.42
0.42
0.45
0.47
0.48
0.49

0.41
0.42
0.43
0.41
0.43
0.42
0.45
0.44
0.50
0.56
0.62
0.68

0.48
0.48
0.46
0.47
0.48
0.48
0.52
0.54
0.58
0.67
0.70
0.73

0.47
0.47
0.44
0.45
0.49
0.54
0.61
0.69
0.80
0.90
1.00
1.10

0.64
0.65
0.59
0.58
0.59
0.63
0.73
0.81
0.93
1.05
1.20
1.34

1.20
1.09
0.93
0.87
0.82
0.83
0.81
0.90
1.00
1.09
1.20
1.33

1.87
1.63
1.48
1.34
1.24
1.23
1.18
1.16
1.18
1.23
1.30
1.37

235
213
2.01
1.82
1.65
1.60
1.83
1.63
1.52
1.83
1.52
1.62

2.68
2.45
2.26
2.06
1.90
1.80
1.74
1.77
1.73
1.74
1.71
1.71

2.80
259
237
217
2.00
1.93
1.87
1.89
1.83
1.85
1.85
1.84

2.80
2.60
239
220
2.06
1.97
1.83
1.90
1.88
1.88
1.87
1.87

276
2.58
237
2.20
2.05
1.97
1.90
1.89
1.85
1.84
1.82
1.80

270
2.50
2.31
213
2.00
1.91
1.85
1.80
1.78
1.77
1.74
1.72

260
240
224
206
1.91
1.78
173
1.70
1.69
1.67
1.69
1.70

Table D.1. Extrapolated residuary drag coefficients (x1000), Cr=-0.001,
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0.25]10.25[026]0.35/04110.47]1.03|223}373|484|540|553]5.51|5.39|5.07]453
0.25/0.27/02810.31/0.38] 043|089 190(329|443|505]525|526]|5.12]|4.83|4.37
0.26]0.26|0.27]0.30/0.37] 042 0.82| 1.74 | 3.00| 416 4.80] 5.02| 5.05| 4.90| 4.60 | 4.22
0.28]0.28|0.28]0.30{040|0.47|0.73|1.54|271|3.84|455}480|4.80|468)4.40}4.10
0.28]0.28|028|030{045[060|0.78]1.45|255|365|4.33|458|460]|448{4.24]3.92
02810.28(0.28|032{051]0.77|088]140}245|348|4.12|4.38|4.39|4.30| 410 3.85
0.2810.28]|0.28|037]|059|1.00}1.03|1.41]234|3.33|390|4.17]4.2014.13|3.95|3.80
0.28]0.28/0.28|0401068]1.23|120]154|238|328]3.81]4.04}4.10|4.02|3.86|3.62
0.30/0.30/0.30|043|0.77]| 1.48) 149} 170|241 3.191 3731397399} 3.95) 3.81]3.60
0281029|032[0511089|1.72(1.83]189|246|3.23{369|390(3.95]|380(3.79}3.64
028]028]|032]/060]|098]|197]|210]207|252|324]|368|387|3.92|389)378]|3.61
0.30]0.30|0.37]070]1.11] 222|244 228]264|330]368)387]3.93]|3980;377]3.60

029]0.30]032{050]057[060{1.13]219{3.60|4.90|556|5.80]|5.76]557]525|5.05
0.30/0.30/0.31]051]|062|060| 1.04|19313.29|457|531{550]5.50]540]|5204.80
0.3310.33/0.33]052|066}0.66|0.97|1.75|3.06|4.27|5.00|530]5.30]|525}510(4.90
0.32]0.32|033|052|068}0.71|096|161}280]|4.04]|4.72|500|5.00|5.00}4.80|4.70
0.34]634|034]|054|073{082]100(160}268|380]|442]|471|4.80|477]464]14.40
0.24(0.34|037|055/078(098|1.15|1.65|257|3.62]|4.26[4.40]4.50]4.50|4.40(4.20
0.37}0.38!0.40|057|083|1.17]134|1701255]352]|4.17|445]4.50]455|4.50|4.30
0.3810.38|040|058]|088]1.35]160|185|255]346|4.08|4.34|4.42]4.42(4.35(4.20
0.381038|041]059]094|160|185]|202|254|340}4.05|4.41|4.55|4.50(430}4.00
040]0.40|048]063]|1.02]1.82]207(221]270{344|4.03]|4.27|4.35]425(4.10}3.80
0.40] 040/ 048|070} 1.111207}{240|245|280{348|4.04]4.28|4.35|4.30(4.10}3.80
0.41}041{054]080}124{230]270]271/298]360]4.05|426[4.32|430{4.10}3.80

0.35{0.35]/0.40|053]067|065|113}2303.72|5.00]595]6.40|6.50|6.40|6.10| 5.50
0.38]0.38|042]054|065|063|100]|195|340|467}550|580|5.90(580|550}|5.10
0.41]041|043]|053]060|0.63(0.89(178]3.10/4.33{5.10]535(540|530(5.10]4.90
0.43]0.43]|045]0.53|064(0.70|[091|170]290|4.07|4.79|500[5.10|510{4.90|4.70
0.45]045|045(053|068|081|097|162|273|387]|4.60[495|5.10|5.00|4.90]4.60
045|045/ 047(053|072|091[1.15}1.59|262|3.75|4.48|490|500]5.00|4.90]|4.50
0.48]0.49|05010.56]0.78(1.10[1.35}1.78|264|370|4.40|4.74{480|475]460|4.25
0.48(0.48|0501056|084|1.30|1.60}1.92|263[365]|4.34(465[4.70}4.58]|4.40(4.10
0.5210.52|053]0.63]|093(1.53(185{213|277|363[4.29(461[4.70|4.55(4.35(400
0.53(054|056(070|1.01[1.78(210]232|285|361|4.24|455[460]|4.50|4.25]3.90
055]055]058]|0.79|1.16]2.05|240|257|300]367|4.23]|453|455{440|4.10]3.80
0.58]0.58]|066]090]|130}230(273]283|320j370]4.22]1450[445]425[4.00]370

Table D.2. Exvrapolated residuary drag coefficionts (x1000;, €y 0.002.
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3,40(5.¢

64]1,50] 3,40]5.65[7.33
.60/1.2011,8015.10

2.60/4.60|6.38
7| 5.91
)| 5.58
.83|5.44
67]5.22
.65/ 5.03
68|4.87

6.87

4.99

0] 5.01

5.12

8.18
7.83
7.36
7.00
6.62
6.44
6.12
5.84
5.70
5.70
5.70
5.72

8.38
8.14
7.70
7.39
7.00
6.85
6.54
6.20
6.06
6.02
5.99
6.01

8.35
8.15
7.74
7.39
7.04
6.86
6.59
6.29
6.09
6.10
6.07
6.10

8.16
7.94
7.51
7.20
6.85
6.72
6.48
6.17
6.03
6.02
6.02
6.06

7.68
7.49
7.05
6.77
6.48
6.41
6.20
5.92
5.82
5.85
5.85
5.85

6.86
6.77
6.47
6.31
6.00
6.02
5.96
5.55
5.50
5.62
5.59
5.59

.10]8.30
10| 7.08
.7516.63

6.42
5.96

97|5.59

529
529
5.33
5.35

.45]5.53

5.80

9.42
8.23
7.76
7.50
6.93
6.58
6.26
6.24
6.35
6.27
6.42
6.52

9.83
8.53
8.23
7.95
7.38
6.80
6.68
6.64
6.91
6.64
6.80
6.86

9.76
8.53
8.23
7.95
7.52
6.95
6.76
6.76
7.13
6.77
6.91
6.96

9.44
8.37
8.15
7.95
7.48
6.95
6.83
6.76
7.05
6.61
6.83
6.93

8.90
8.06
7.92
7.63
7.27
6.80
6.76
6.65
6.74
6.38
6.52
6.60

8.56
7.44
7.61
7.47
6.90
6.49
6.46
6.42
6.27
591
6.04
6.12

0.6310.

8.06
7.42
6.91
6.25
5.81
5.80

.1015.75

576
5.64
5.70
579
5.86

9.60
8.74
8.14
7.35
6.91
6.93
6.83
6.85
6.66
6.69
6.67
6.69

10.32
9.21
8.54
7.67
7.43
7.57
7.36
7.34
7.16
7.18
7.14
7.13

10.48
9.37
8.62
7.83
7.66
7.73
7.45
7.42
7.30
7.26
7.7
7.05

10.32
9.21
8.46
7.83
7.51
7.73
7.38
7.23
7.06
7.1
6.94
6.73

9.84
8.74
8.14
7.52
7.36
7.57
7.14
6.94
6.75
6.71
6.46
6.34

8.87
8.10
7.82
7.21
6.91
6.96
6.60
6.47
6.21
6.16
5.99
5.86

Table D.3. Extrapolated residuary drag coefficients (x1000), C,=0.003.
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9.99[11.15
9.43110.74
8.74|10.08
8.08| 9.57
6.18{ 7.34
7.39| 8.74
5.69| 6.67
7.03] 8.16
6.62| 7.74
6.76| 7.72
6.81] 7.74
7.00| 7.81

11.42
1117
10.54
10.10
7.76
9.30
713
8.66
8.24
8.16
8.14
8.21

11.37
11.19
10.61
10.10
7.79
9.32
7.18
8.79
8.28
8.27
8.24
8.34

11.13
10.89
10.29
9.84
7.59
9.13
7.06
8.61
8.20
8.16
8.18
8.27

10.47
10.28
9.66
9.25
7.18
8.70
6.75
8.27
7.90
7.93
7.95
8.00

9.35
9.30
8.86
8.62
6.64
8.17
6.50
7.76
7.47
7.62
7.59
7.64

12.52| 14.21
9.72(11.30
9.07(10.62
8.95[10.45
7.86| 9.14
7.32| 8.62
6.94] 8.23
7.22] 8.51
7.23| 8.61
7.26 8.51
7.67| 8.90
7.97| 8.97

14.82
11.70
11.26
11.07
9.74
8.90
8.78
9.05
9.38
9.01
943
9.43

14.72
11.70
11.26
11.07
9.92
9.1
8.88
9.22
9.67
9.18
9.59
9.57

14.23
11.49
11.15
11.07
9.86
9.1
8.98
9.22
9.57
8.97
9.48
9.52

13.42
11.06
10.83
10.63
9.59
8.90
8.88
9.08
9.14
8.66
9.03
9.08

12.91
10.21
10.41
10.41
9.10
8.50
8.48
8.76
8.50
8.02
8.37
8.42

11.02( 13.12
9.75|11.49
9.08| 10.69
8.35] 9.83
7.80f 9.27
7.59( 9.06
7.29] 867
7.36| 8.75
7.27| 8.60
7.35| 863
7.95| 9.16
7.56| 8.62

14.11
12.11
11.22
10.26
9.97
9.91
9.34
9.37
9.24
9.26
9.82
9.20

14.33
12.32
11.32
10.46
10.27
10.11
9.45
9.47
9.42
9.36
9.86
9.09

14.11
12.11
11.11
10.46
10.07
10.11
9.36
9.23
9.12
9.16
9.53
8.69

13.45
11.49
10.69
10.05
9.87
9.91
9.06
8.87
8.72
8.65
8.88
8.18

12.12
10.65
10.27
9.64
9,27
9.10
8.37
8.26
8.01
7.94
8.23
7.56

Table D.4. Extrapolated residuary drag coefficients (x1000),

(.w[ =, 004
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0.40
0.42
0.42
0.42
0.43
0.44
0.45
0.45
0.47
0.46
0.45
047

041
0.42
042
0.42
043
0.44
0.45
045
0.47

048

0.46
0.49

048
0.46
0.43
0.45
0.46
0.48
0.50
0.50
0.53

0.57

0.58
0.68

0.70
0.60
0.52
0.52

0.55

0.58
0.63
0.70
0.78
0.86
0.95
1.08

0.88

0.72

0.67
0.70
0.71
0.95
1.10
1.26
1.40
1.58
1.75
1.93

1.10
0.90
0.83

0.94

1.26
1.70
2.11
263
3.10

3.70

4.20
4.90

2.60
1.90
1.60
1.57
1.73
2.00
2.45

3.05

3.70
4.46
5.33
6.30

6.00
4.45
4.15
3.80
3.40
3.45
333
3.64
4.10
464
5.28
6.00

9.70
9.00
8.10
7.20
6.80

6.50

6.35

6.15.

5.30

6.40

6.80
7.05

12.59
12.12
11.23
10.20
9.73
9.23
9.04
8.48
7.02
8.40
8.74
8.81

14.04
13.81
12.96
12.09
11.55
10.93
10.58
9.85
8.20
9.60
9.93
9.83

14.38
14.36
13.55
12.75
12.21
11.62
11.32
10.44

8.73
10.15
10.44
10.33

14.33
14.39
13.64
12.75
12.27
11.65
11.40
10.59

8.77
10.28
10.58
10.49

14.02
14.01
13.23
12.43
11.95
11.41
11.21
10.39

8.69
10.15
10.50
10.41

13.18
13.21
12.42
11.69
11.31
10.88
10.72

9.97

8.38

9.86
10.20
10.07

11.78
11.95
11.39
10.89
10.45
10.21
10.31
9.35
7.92
9.47
9.74
9.61

0.47
0.48
0.50
0.52
0.52
0.53
0.55
0.53
0.56
0.58
0.58
0.60

0.47
0.48
0.50
0.52
0.52
0.53
0.55
0.53
0.57
0.58

0.58

0.62

0.53
0.52
0.54
0.54
0.56
0.57
0.58
0.62
0.66

0.73

0.77
0.88

0.87
0.81
0.75
0.72
0.70
0.73
0.76
0.80
0.87
0.96
1.10
1.31

1.10
0.97
0.90
0.87
0.93
1.01
1.13
1.28
1.46
1.63
1.84
2.07

1.29

1147

1.08
1.07
1.25
1.69
2.13
2.58
3.09
3.60
417
4.70

2.73
2.25
1.90
1.80
1.87
2.21
2.74
3.32
3.94
4.74
5.74
6.45

6.10
4.90
450
3.80
3.60
3.45
3.65
4.04
4.55
5.17
5.95
7.05

12.00
9.00
8.20
7.50
6.70
6.25
6.10
6.75
6.80
7.20
7.90
8.40

16.33
12.50
11.44
10.82
9.50
8.80
8.42
9.16
9.10
9.17
9.82
10.15

18.53
14.53
13.40
12.64
11.05
10.36

9.98
10.80
10.84
10.75
11.40
11.42

19.33
15.05
14.20
13.39
1.77
10.70
10.65
11.49
11.81
11.39
12.08
12.01

19.20
15.05
14.20
13.39
12.00
10.94
10.76
11.70
12.18
11.60
1227
12.18

18.57
14.77
14.07
13.39
11.92
10.94
10.88
11.70
12.05
11.33
1213
12.12

17.50
14.22
13.67
12.86
11.60
10.70
10.76
11.51
11.51
10.93
11.57
11.56

16.83
13.13
13.13
12.59
11.00
10.21
10.29
11.12
10.71
10.13
10.72
10.71

0.55
0.58
061
0.62
0.64
0.64
0.68
0.68
0.70
0.73
0.74
0.77

0.56
0.58
0.60
0.62
0.64

0.64
0.70

0.68
0.72
0.73
0.75
0.77

065
0.65
0.67
0.70
0.70
073
0.75
0.77
0.82
0.84
0.90
0.95

1.00
0.94
0.90
0.87
0.83
0.81
0.87
0.87
0.98
1.09
1.20
1.34

1.32
1.16
1.07
1.05
1.10
1.15
1.25
1.37
1.57
1.77
2.00
2.20

1.60
1.35
1.30
1.36
1.53
1.79
2.30
2.55
3.05
3.60
4.10
4.30

2.86
2.48
2.20
2.10
2.18
2.43
2.85
3.35
3.98
4.65
5.35
5.85

5.90
5.15
4.50
4.05
3.80
3.80
3.90
4.27
4.80
5.30
5.90
6.40

10.40
8.80
7.90
7.40
6.90
6.50
6.30
6.20
6.50
6.80
7.20
8.60

13.98
12.09
11.03
10.39
9.78
9.30
8.83
8.60
8.52
8.61
8.81
9.94

16.63
14.24
13.00
12.22
11.63
1.1
10.50
10.23
10.07
10.12
10.15
11.34

17.89
15.01
13.63
12.76
12.51
12.16
11.31
10.96
10.82
10.86
10.87
12.09

18.17
15.27
13.76
13.01
12.89
12.40
11.45
11.08
11.03
10.98
10.92
11.96

17.88
15.01
13.51
13.01
12.64
12.40
11.34
10.80
10.68
10.74
10.56
11.42

17.05
14.24
13.00
12.50
12.38
12.16
10.98
10.37
10.21
10.14

9.84
10.75

15.38
13.20
12.49
11.99
11.63
11.16
10.14
9.67
9.39
9.31
9.12
9.94

Table D.5. Extirapolated residuary drag coefficients (x1000). €= 0.003.
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1.31f3.10

04]2.20
94 1.81
03/1.72

7.15
5.14
4.70
4.16
3.70
3.79
3.84
4.24
4.76
5.20
6.16
5.88

11.55
10.40
8.17
7.89
7.39
7.15
7.31
7.16
6.15
7.18
7.93
6.91

14.99
14.01
12.72
11.18
10.58
10.15
10.41
9.87
8.15
9.42
10.20
8.63

16.72
15.96
14.68
13.25
12.56
12.02
12.18
11.46

9.52
10.77
11.59

9.63

17.13
16.59
15.35
13.97
13.28
12.78
13.04
12.15
10.14
11.38
12.18
10.12

17.07
16.63
15.45
13.97
13.34
12.81
13.13
12.32
10.18
11.53
12.34
10.28

16.70
16.19
14.98
13.62
12.99
12.55
12.91
12.09
10.09
11.38
12.25
10.20

15.70
15.26
14.07
12.81
12.30
11.97
12.35
11.60

9.73
11.06
11.90

9.86

14.03
13.81
12.90
11.93
11.36
11.23
11.87
10.88

9.20
10.62
11.36

9.41

7.42
5.53
5.00
4.26
4.12
3.82
4.11
4.56
5.15
5.89
6.78
7.35

14.60
10.15
9.1
8.41
7.66
6.92
6.87
7.61
7.70
8.20
9.00
8.76

19.87
14.10
12.71
1213
10.87

9.74

9.49
10.33
10.31
10.44
11.19
10.58

22.55
16.39
14.89
14.18
12.64
11.46
11.25
12.18
12.28
12.24
12.99
11.91

23.53
16.98
15.78
15.02
13.46
11.84
12.00
12.96
13.38
12.97
13.76
12.52

23.37
16.98
15.78
15.02
13.73
12.11
12.12
13.20
13.80
13.21
13.98
12.70

22.60
16.66
15.63
15.02
13.64
12.11
12.26
13.20
13.65
12.90
13.82
12.64

21.30
16.04
15.19
14.42
13.27
11.84
12.12
12.98
13.04
12.45
13.18
12.05

20.48
14.81
14.59
1412
12.58
11.30
11.59
12.54
12.13
11.54
12.21
11.17

7.12
6.07
5.06
4.50
4.22
4.25
4.10
5.02
5.51
6.33
7.05

7.59

12.54
10.36
8.87
8.22
7.67
7.26
6.63
7.29
7.46
8.12
8.60
10.20

16.86
14.24
12.39
11.54
10.87
10.39

9.29
10.12

9.78
10.28
10.53
11.79

20.06
16.77
14.60
13.57
12.92
12.41
11.05
12.04
11.56
12.09
12.13
13.45

21.58
17.68
15.31
14.17
13.90
13.59
11.90
12.89
12.42
12.97
12.99
14.34

21.92
17.98
15.45
14.44
14.32
13.85
12.05
13.04
12.66
13.12
13.05
14.19

21.58
17.68
15.17
14.44
14.04
13.85
11.93
12.71
12.26
12.83
12.62
13.54

20.57
16.77
14.60
13.88
13.76
13.59
11.55
12.20
11.72
12.11
11.76
12.75

18.55
15.55
14.03
13.31
12.92
12.47
10.67
11.38
10.78
11.12
10.90
11.79

Table D.6. Extrapolated residuary drag coefficients (x1000), C=0.006.
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Appendix F
DDGx Evolutionary Fortran 90 Optimization model

The complexity and intensity of the design model, written using Mathcad
worksheet, as well as the search algorithms, require a more advanced computing tool.
Fortran 90 is a modification of the long known Fortran 77 language, with many enhanced
capabilities, most of them improve the interface with the user. The software also
incorporates professional mathematical and statistical IMSL™ libraries, applicable as
intrinsic functions. In this application two numerical solvers are used, for the power and
area balances. Fortran 90 compiler is compatible for Fortran 77 codes. A description of
the basics is found in [40].

Computer codes for genetic algorithms exist in the market, as reported in [11], for
example. A lot of effort has been made to create a comfortable interface in the DDGx
code. Its structure is very modular, allowing the addition of new operators or updated
search parameters. The code is used for both unconstrained and constrained exploration.
Based on the terminology and methods discussed in Chapters 3, 4 and 5, the program asks
the user for the required search process, as shown in Figure F.1. In this illustration the
exploration involves randomly population initialization of 30 individuals, a maximum of
100 generations, a rank-based selection mechanism with uniform selective pressure, one-
point crossover and non-uniform mutation at an update rate of 0.3. No penalty is exerted.

Population initialization (y/n/f) ... y
Population size ... 30

Total number of generations ... 100
Selection algorithm (c/r/b) ... r
Selective pressure (u/n) ... u
Crossover splits (0/1/2) ... 1

Mutation type (u/n) ... n

Mutation probability ... 0.3

Penalty function active (y/n) ... n

Figure F.1. DDGx optimization code interface window.
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After the required data is entered, the computer begins with the exploration and
optimization procedure. It prints the current generation and chromosome number, and at
the completion of any generation, before starting to evaluate the next one, writes the
information shown in Figure F.2. The printed data enables control on the progress of the
process.

0 Duplicated chromosomes.
6 crossovers.

5 mutations.

2 feasible chromosomes.

Best ever so far ... .1207
Feasible best ever so far ... .1109
Convergence counter ... 0

Figure F.2. DDGx optimization code intermediate report.

The program may read separately from two input files, depending on the
population initialization method, and writes to three output files. There are other two
initialization alternatives. In a forced initialization, a pre-defined population, from the file
DDG _forced.in is processed. This is of interest when the performance of two algorithms
is compared: it eliminates any possible advantage of one algorithm due to a randomly
created better start point, say a super-individual. The third option is without initialization.
In this case only one chromosome, its genes stored in par.in data file, is evaluated, so a
complete design report of that ship can be read. This option is needed after an optimal
solution has been found by the computer: a complete naval architectural record is given
only for the last resolved chromosome, which is not necessarily the optimum.

The program writes to three different output files. A generation-based report,
containing average and maximum payload fractions at each generation, is written into
DDG report.out file. From this file the fitness versus generation curves are constructed.
An example is shown in Figure F.3.

Gen F_av_feas max_gen_feas F_av max_gen span*100.0 Dupl Feasible

1 .1089 .1109 .1073 .1207 €.6065 0 2
2 .1143 .1204 .1126 .1207 4.6415 14 3
3 .1195 .1204 .1150 .1207 5.1991 20 2
4 .1185 .1204 L1171 .12¢8 4.7688 15 2
5 .1152 .1204 .1180 .12¢8 5.5182 13 2
6 .0000 .0000 .1180 .12€8 5.5124 7 0
7 .0000 .0000 .1206 L1272 4.4213 12 0
8 .0000 .0000 .1233 L1273 4.3949 12 0
9 .0000 .0000 .1253 .1273 3.3832 14 0
10 .0000 .0000 .1265 L1273 1.1208 18 0
11 .0000 .0000 .1265 L1275 1.2326 19 0
12 .0000 .0000 .1258 .1275 1.9734 18 0
13 .0000 .0000 .1257 .1275 3.6485 22 0
14 .0000 .0000 .1265 .1275 1.4994 22 0
15 .0000 .0000 .1268 .1275 1.3125 24 0
16 .0000 .0000 .1269 L1275 1.2912 21 0
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17 .0000 .0000 .1266 L1277 1.4718 14 0
18 .0000 .0000 .1267 .1277 1.4130 15 0
19 .0000 .0000 .1266 .1281 1.2545 9 0
20 .0000 .0000 .1270 .1281 1.0534 18 0
21 .0000 .0000 .1271 .1281 1.7647 20 0
22 .0000 .0000 .1273 .1281 1.2054 23 0
23 .0000 .0000 L1272 .1281 1.0807 21 0
24 .0000 .0000 .1269 .1281 2.1328 18 0
25 .0000 .0000 .1273 .1281 1.4574 19 0
26 .0000 .0000 .1267 .1281 2.0926 16 0
27 .0000 .0000 .1272 .1281 1.5819 20 0
28 .0000 .0000 .1273 .1281 1.3076 21 0
29 . 0000 .0000 .1275 .1281 1.2138 20 0
30 .0000 .0000 .1266 .1281 2.2426 20 1]
31 .0000 .0000 .1270 .1281 2.0711 17 0
32 .0000 .0000 .1274 .1281 1.2545 21 0
33 .0000 .0000 .1276 .1281 .6823 22 0
34 .0000 .0000 .1274 .1281 1.0767 18 0

Convergence after 34 generations.

Selection process ...

Selective pressure ... u

Crossover type ... 1

Mutation type ... n

Mutation update probability ... .30
Penalty function ... n

Best ever feasible fitness ... .1204
Generation# ... 2

Cp ... .700

Cx ... .890

cdl ... 87.31

Cbt ... 3.40

CD10 ... 12.00

Crd ... .280

Best ever fitness ... .1281
Generation$# ... 29

Cp ... .700

Cx ... .900

cdl ... 76.60

Cbt ... 2.80

CD10 ... 14.98

Crd ... .000

Figurce F.3. DDG_report.out sample ouput file.

A complete description of all chromosomes evaluated in the exploration is written
to DDG chrom.out output file. A sample of this file, for the last generation only, is
illustrated in Figures 2.14 and 4.4. In this large file the saturation of the population as the
process converges can be seen, as in Figure 4.4. The computer does not provide technical
report for every ship explored, because this would create a huge file. Instead, it writes the
characteristics of just the very last vessel calculated, into the file DDG.out. An example is
given in Figure 2.13 for the DDGS51, and Figure 5.7 for the thesis optimal ship.

Figure F 4 displays the flowchart of the code.
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For simplicity, none of the involved subroutines are displayed. The structure of the self-
balanced model is illustrated in Figure 2.1. This is especially true in the structure of the
genetic operators, which, because of their several alternatives, employ various subroutines.
Ship design, particularly in preliminary stages, does not require significantly high accuracy.
Therefore, all parameters in the code are declared with their default precision.

The physical unit system used in the evaluation is the U.S. units system. Refer to
the Mathcad ship model in Appendix D for more details, as Mathcad tracks the units as it
calculates. In all cases the expression in Fortran are converted to the required U.S. units
by means of constants. In many cases, even though an expression could have been
simplified, it is kept unresolved for clarity.

Internal changes to the code require a Fortran 90 compiler and linker. Note that a
trial to run the program on a 66MHz 486 computer at MIT has failed. The CPU could
not complete even one generation, and typically stalled after approximately five
chromosomes.

A listing of the source file is given on the next page.
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program ddg
! Performes qgenetic algarithm seacch process for ship design.
! For units refer to Mathcad medel; they are in U.5. system.
use msimsl
use mstlib
real kal,Vguess(l),YDK(1l),LWL,Myreq,FWg,C_p(30),2_2(30),C_d1(30)
r=al C_br(30),2_Dl0O(32),C_rd(30),F_p(30),ma:x_gen,mai_gen_feas
real max_ever feas,max_ever,ma:x_gen_prev
integer infa(l),pop_size,gen,ga2n_max, feas_counter
~haracter-l pop_method,select_meth;d,ﬂrl,er!,er3,er4,er5,9r6,er7,&
mut_rtype,cen_act,press_method
character*2 warning_weight
external bal
common/param/Cp,Cx,Cdl, Coc, D10, Crd
ommon/dimenl/T, B, HDK, D10
ommen/dimen/ LWL, VEL i
common/balance/Adr,Ada,t¥gyreq, t¥y, Vs, Cgmk, Fp,warning welght
ommon/qenes/C_p,C_x,C_dl,C_bt,C_D10,C_rd
ommen/ fitness/E_p
3mmon/£alsed/Hr
common/limits/Cpmin,Cpma::, Cxmin, Cumax
Cotmax,ZD10min, CDlOma" Cramin,Crdmax
anmﬁnljnhnrljﬁn,1=n ma:
! Limits of e: clunion
Cpmni

Q ¢
2}

1)\'1

Q

Cdlminr,Cdlma:, Toctmin, &

! File
contalrlng gener
'y Yy tman_gern_feas', 'F_av', tman_jyen', &
cheomeoun ', stanus=" ! orile

::xta‘n'nJ gene -

! Imicializacion . (random or TYER) .

101 write(-,14} initializacion (//h/:) cen !
rﬁa](' T
: '”').dﬂd (poe_mzthodine. 'n').anad. i

-p_meun;d.u..
writs (-
gt 10

'£')) then
3) 'Rnswer y,n oor L.

n'y then ! Only crne chrom ts evaluaned,

JEN_INE
openlé,file='c:\thesiS\analysls\par.in’,statuﬁ='old')
read(3, >

2 ogenerations ... !
115 wricef(-, ic/c/e) ..

cand. (select_met

&

i.re, oty LaEn .

cd.ne.'t Then
,3) ‘Rnswer 7, £, r o.'



Appendix F DDGx Fortran 90 Optimization Model 179

116

117

-
-
[> 4]

119

120

77

‘ ' This 1

write(*,14) 'Selective pressure (u/n) ... '
read(~,~) press_method
if{(press_method.ne.'u').and. (press_method.ne.'n'}} then
write(~,3) 'Answer u or n.'
Joto 116
endif
vrite(~,14) 'Crosscver splits (0/1/2) ... !
read(*,*}) nn
if((rn.ne.0).and.{nn.ne.l).and. (nn.re.2)) then
write(~,3) 'Choose 0O, 1 or 2.°
goto 117
endit
write(*,l4) 'Mutaticn type {(u/n) ... !
read(~,~”) mut_type
LE((mut_type.ne.'u’).and. (mut_type.ne.'r')) then
writel(*,3) 'Choose u for uniform or n for nen urifcorm.
gots 116
endif
write{(~,14) 'Mutaticon probability ... !
read(~,~) Puw
{f{(Pup.le.0.0).or. (Pup.qge.1.0}} then
write(¥,3) 'Mutation probability sut of range.'
goto 119

endit

s
"y
=
5
ot
-
I
=

acvive (yrrr) oo !

eyt oand. (pen_act.ns.'n')) then

urite| YAanswer Y oor n.'

4
'~
L

eradi f

write(>
Fin=1,0-

—_
et
[
ny
=
™
|
1
—
.
o
~
N
<
Al
L
E"
W
o
o
—
Y=
rn
~1
A
[n}
3
<
[al
@
Ial
R

a single gens.

! Records the generaticn of Cittest feasible chromosome.

Cx ever
il eve
cbt ever

CD1D_ever

-

max_

ferced. in',status=':14")

ad (3,71 C_pli),C i), 0 dL(i),C bt (i), 0 _Dio(iy, 0 _rd(i)

endif
Ao 110 gen=l,gen_inan
v )
w 3} 'Generatlion B',Jen
\04 )
wrine(19,! Yt et YAl Wt ODE0Y, Y0t e, PArea Y, &
GH=', Y6, Y DLOr, S

o

IR |

ToUNnTEr=0

a:_ien_feas=&.0
n_aupl=s

00 Yoow evaluares the filtress <f chrom

100 i=i,poe size

‘ warn!njlweigh.=';

=

at generation 'gen'.

BToTInVergence STAtus.
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er4q="' "' ! Flag for poor initial stabilirty.
er5=" "' ! Flag for excessive initial stability.
ers="' " ! Flag for non feasible deck height.
eri="' ! ! Flag for non feasible dkhs volume.

write(*,19) 'Generation #',gen,
1£f(pop_method.eg.'n') goto 102
Cp=C_pli)
Cu=C_xn (i)
Cdl=C_dl{i}
Cbt=C btii)
CD10=C_D10(1i)
Crd=C_rd!1i)
! Accelerate the computation by search for identical chromosome.
d> B4 m=1,i-1
li((Cp.eq.C_p(m)).
{Cdl.eq. C_dl(m))

‘== Chromosome #',1

and. (Cx.eq.C_x(m)).and. &
.and. (Cbt.eq.C_bt(m)).and. &

{CD10.eq.C_D10(m)).and.{Crd.eq.C_rd(m)}} then
n_dupl=n_dupl+l
Fp=F_p(m)
write(19,54) Cp,Cu,Cd},Cot,CDL0O,Crd, Fg,
&
‘Duplicated sclution - chromosomeh',m
write{+*,3) 'Duplicared chromosome.’
gots 108
andif
24 [l vhe ifua
! Iterative salwer for 3
10z Yguess(l ¢ Iritial guess for deckhouss wolume,
call "nal(:a1,lu.w 0 'l,u l,ﬁ.l,l, 0 MJuﬂa JVDE, AT
PZifwarning weight.eq. coro{infe(l).gn. 2Oy then
TE=0.0
wreite(18,52) g, 8,04, Cen, DG, Crd, F
gots 103
endif

write(lo, )
VD=VDK (1)

write{l9,1) 'Ceckhouse volume', VD, '[ft 3]

of ship (wther than weight and space).

weite(10,°)
write(10,3)
write (10,7
write(l0,4)

! Checkinyg balance

"Balance/Ffeasicility Status ...'

'Category','kequindllinimal' 'Rvallakcle!

write(10,6) 'Deckhcuse area [(ft  3)',Adr,~da
write{(ld,3) 'Electriz plant [(nW]', ﬂljvc4,hdj

famin=19,9%

rrive(10,5) 'Sustained speed',Vamin,Vs
"3mom'n .55

1,135

(1G,10) *Inirial svakilicy', Zawbomin, Oy
write(lo,ll) Cymbmar
Hmomin=22.0
Dlomin=man{0.21*6+T, LWL/ 15, Hmomin +HDE)

{f(Crd.ge.0.5) Dlimin=ma:(0.21"E+T+Hr, LWL/15+Hr, HmEmin+HDH)

write(10,5) 'Depth [ft]',Dldmin,DLld
VDmax={2-5=4"HOE/Tand (20, 00) ) "HOH -G, 6 LIWL- 1. ]
write(:10,7) "Manimal deckhiuse volume (D60 3], VYDman, Vh

Fpmin=9.075

write(1l0,10) ‘Fayload fraction', Fpmin, £
b 233 I

sloselln)

iflAda.1n JRAr) erl="

POy, Lo bR rey) ax !

Pf(Ve,lt.Ysmin) eri="n"

LE{Cyme, e Cymeming era='nt

LEymwe. yr.ogmbma) ersS='t

LE(D10,1t.Dlomin) ecG=":"

1E(YD. gt . VDmar) eri="n?

fE(vD, 1t.0.0) =2cl="'-

if((Ada,geAAr) . and. (FWy.ge FWgred) cand. (Vs.ge.Vamin) cand. &
(Cqmb.gﬁ Cgmbmin) cand. {(Cymo. le.Tgmbmaz) and. 4
(DL, ge,.Dlomin) .and. (VD.1e.VDma:) ) then

call keepyy(2000,500)

write(19,52) Co,f:,7dl, 70,
F_feas=F_feas+Fp
fras_counter=Ieas_
TE(Fp.guemai_gsn_

cDlo, Crd, Fi

counter+l

feas) mau_jen_feas=fp
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if(Fp.yt.max_ever_feas) then
max_ever feas=Fp
k _feas=gen
Cp_ever_feas=Cp
Cx_ever_feas=C:
Cdl_ever_feas=/.dl
Cht_ever_feas=Chbt
CD10_ever_feas=CDly
Crd_ever_feas=Crd

endif

else
1f(pen_act.eq.'y') then
ERR_area=0.0
ERR_speed=0.0
ERR_stacil=0.0
ERR_D10=0.0
ERR_VD=0.0
{f(erl.eq, ERR_area=(Adr-Ada)/Adr-10C0
{f(er3.eq. ERR_speed=(Vsmin=-Vs)/Vsmlin~ 100
If{erdi.eq. ERR_stabll={Cgymbmin-Cgme ) /CgmemlnT 100
{flerb.eqy. ERR_stakil=(Cgmb-Cymemar} /Cymbma~ 100
{fler6,eq. ' ERR_DL1O=(D1Omin=D10)/Dldmin~100
Li(erT. ey, ') ERR_VD=(VD=VDma:0) 7V Diman~ 100
PG YT (ERR_areatERR_spesdrERR _snacile 4
LOTERROVIY
alt ‘,'_
PN DAY L AP S I A b T o P U P
CH S
PITE .

eraif

call resparyiladd, 500
Litpep_menhiia, e 'n')

F=sum(f ) ! oTital Cf prpatation,
=pspce stze Doaverage Tinrens,
AT el Dowayloar fracnbon o F generanlion,
ne, i Foav feanst feqntleas inner b Ry v ge Tl neas

aming feasicle

srlgumifE p=F avytronstp g _stne=liin i slte
gt F_av_feas,man_gen _Teas, F_av,mal_jgen, spant Don, o

Lalinter

IR S N SR T P
e ')y tall A

IR P L LA PR B

'
’
i)
on '
e
Voral e faen
Seaghce it el e et T e

. S geel
el

' AT T
“raalt -
veall_Jen_pretsoan LR ]
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if(nint(le4'max_gen].eq.nint(1e4'maz_gen_prev)] thern
n_converjes=n_converge+l

else
n_convergjes=i

er3if

max_Jen_prev=max_Jen

E3
£
e(*,13) 'Cinvergence clunter ... ',n_converje

thern

i {1
write(1l8,2) 'Zinvergence after',gjen, 'generati '
gzt 109
118
138 )
iz,

te{lt,l3) 'Se vo'yselecn metniz

tejl,l3;, 'Ge sho'yfress_rethis

Te|ls s ',nn

tefls mut_type

ce{l cacllisy L., Pup

Teil ke _ace

Tell

Te et yman ever Seas

Te

Te E:

e
3 4
] <
bl -
I 4 i
- ‘.
) -
L 4
. .
. H
L3 4
: .
1 4
. ‘.
.= ¢,
. b
M v
ta 5.
‘) v o T, el ] - Z Co. . .
- - ] IR ] IR v 1y “p -y €
1 . -
T i
-3 [
s 144
| 4H

3l £ R
. o tea
33 L
54 HIP
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stop
end

real function pal(VD)
This function bears the whole m2del, but actualy is used to calculate the
area balance error. At each entrance to this functian the welght is teing kalanced,
and the resultlng area error is calculated.

real LWL,rW3,FW24avy,RG,FW3req

character~Z warning_weight

commen/earam/Cp, C, 38, Clt, CDLO, Crd

comman/dimen/ LWL, VEL

commen/dimenl/T,E, HOM, D10

common/propuls/ipeny, Pepengy

common/man/loNE, HA

commonselact/llg
F/WESE, W

a,trlyreq, iy, Vs, Came, T, warning_welight
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! Tankage volumes.
call tank(E,Ve,Vmay, SHPe, tW24avy, Pi,Vk)
! Weight.
Vt=Vht+VD
call weight(Wtl,pPi,Ve,LWL,CN,Ts,Ng, KW, VD, Dav, KG,HHFIE, ERRw, Hnk )
if(ERRw.<t.N.01) then
<1 se(l0,status="'delete')
goto 100
endit
Fp=Wp/Wtl
write(10,5) 'Payload fractien',Fp

! Space rejuirements and balance.
call space(Mpeng,tl3,Ts,ZN,Vht,Vau:,Vek,VD,Atr,Ata,Adr, Ada)
bal=Ata-Atr

! Initial stabllicy.
call svabll (KG,Cgmi)

1 ,e510.3e2,,a)
2 ,E6.2,5,3)

3

5 , 5.3}

é s £5.2)

surtine

! This subroutine - ATES T
! as well as the enidurarncs JHE.

use msims!
real LWL, sustain
enternal

coomm

:
A lon-0, 704 Z
A2 ToTed, 2810 z
IATS 5

3tss

5s=5

3s5d=

3=5

wri

'Speed and Reslstance ...

1w, vl nman)

call coorer{speedman, 1OL0, 0,00l vl vl nma)

'Hanimal speed’,Vian, ' (knt]!

welve (10,0 'Zrdurancs hoorsepiwer', SHie, ' [hp!!

format (2, a)

[

[P

retyurn
end

! This funcrion Wer Calante iU sustalned speed Ciraition,
TGS
sustain=1.z%
return

er.3
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real function speedmax(v)

! This function defines the required power balance for maximal speed condition.

commor/propuls/tpenyg, Phpenyg
speedmax=shp{v)/0.97-Npeng*Popeng
return

end

real ftunctian shp(u)

! This functlon salsulates shaft horsepower of the shlp at a glven speed.

real LWL,WZF1(31),WCEZ(3l),interp
common/gparam/Cp, C, Cdl, Cot,CD1 0O, Crd
common/dimen/ LWL, VTl
common/dimenl /T, B8, HDK,D10
comman/propul s/tpeny, Popeng
common/wet /S

common/prop/ D

EMF=1.0%

HElns=0

ro=1.3%903 ! Gea water density In {lbf s Z/7fv 4],
R=U/sqre (LWL) ! V here in knots, because Gernler tanles

V=0J~1.69 ! Canvert to [(ft/sec].
! Fricticonal resistance.

RM=LWL-YV/1, 2

CFE=0,0757 (1ol (R =)l

RE=0.0 v~ 3 (OF«0, 0005) vVl
! Reslduary resistanss,

BERS =5 i (R, TATSIS)
0L STt 3TORTES YT s L 100
open{ld, filestrivnhesisvanaly
do 1 1=, 3l

v (LG, 7)) WOEL(L)  WIFC (L

e
Wiorelnn=rn
RR=RRTIE
! Bave hull total re
RT=RAR-RF
! Effertlve hirre piwey

PEEH=RT -/ 3

! Bave null, o

CORPEE(=qe= T LWLy Ay b =@ LWLy D=0 DR LWLSR LT

(np=ses 3/t B),
Crprop=l. o
Cps(h &qeT=0 olan Ll » ey
vEin By0 R PEEK
feifins.eq.n) PESIns=0.0
PEADE=!, ALl Dg
Aus=1, 08B~ (D10

PEAS=D, YA Aur o

DAL 3 RAL VAL dray,
PET=¢ZeH-rEAT F-FEAN ! Tinal elfestlve pow
EHP=PET-EIF
shp=LHE 0 07 !oShafn hoirsepover,
return
e

.

subroutine resla(R, CRTER)

! Thia subroutline
real LWL, ~(3n,18), interg
chavasnep e filel
UMD A am e T, T,

nrest dd ey LWL, Y

FestEl s LELe e

sisavtorn_huil.pen!,status=stold?

SVerten

saloulanes Gernler pesjduacy drag ccefflolent,

Are

i

k).

185
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This

case(2)
filel='c:\thesisVanalysis\Cv2.prn'
fileZ='c:\vthesis\analysis\Cv3.prn'
case(3)
filel='c:\thesisVanalysis\CTv3.prn'
file2='c:\thesisvanalysis\Cvd.pon!'
case(4)

£i lel= ci\thesisvanalysis\Cvd.prn!

filel='civthesisvanalysis\CvS.prn!
case(5)

filel='c:vthesisvanalysis\Cv5.prn!

filel='ci\thesisvanalysis\Cv6.prn'

case(6)
filel='s:\thesisvanalysis\Cv6.prn'
tilel="'c:\vthesisvanalysis\Cvdé.prn'
end selerct
rpen(l5,file=filel,status="'xld")
da 1 1=1,36
readf{ls,-) (2(i,31,3=1,1%)

sontinue
Tlose(15)

ard 3
=1n:erp(‘lr,w),ﬁ(n Tym), 0,430,002
interg (- L,J’1),:(h'l,m71l,u.41’“
S=interp{nl, nl, 003 =)0, 1,0
“'l(‘l'*-L,m),?(r*li,m),ﬁ.4ﬂﬂ
FLL‘?IL'l;,M’ll,'(h*‘j,ﬂ’:),
hsinrerp (il 005 (=) 70
ecrpfoinrla,m), sinel ,u),;
Sem=1) 0 ‘JA" 5,'!
vl s =l )’" PR “ou R
sratus='21A%)

Sir,mi s insl,m) el
"(ls,!'A"l ), "('l’l,llx” ], !
y S m=l ) T,
,m), e i3, m), o

Zomel ,.€hv; gl

',F}

A
ol

Ln'nlh
end

real furcni

interpliyi,yl,nl, I
clon pericrmes linmar interpolation.
interg ; S NS
return

&red

surriutine
e uriuh

oo odimern

186



Appendix F

DO=2.011827T-6.36215e~6"LWL**2+2,78064%e-2~LWL
D20=0.014 LWL~ (2.125+1,25e-3*LWL)+T
FO0=D0-T

F10=D10-T

F20=D20-T

Apro=LWL/0.98* (FO+4~FlO+F20)/6
Fav=Apuvo/ LWL

Dav=Fav+T

CH=LWL~EBE~Dav/1leb

Cw=0,278+0.836Cp
Vhaw=Fav-=2*tand(10,0) *LWL+LWL*E*Cw~Fav
Bmax=B+Z*tand(10.0}*Fav
Blow=Bma:-2*tand(10.0)*Hr
Vhl=Crd* LWL~ (Emax+Blow) /2 Hr*Cw
Vht=Vil+Vhaw=Vhl

write(lo, <)

write{l0,1) 'Space Avallavle ...'
write{l0,~)

write{l10,2) D', DO, ' [fe]"

write(l0,2) D10, D10, " [fe)!
write(10,2) 'DZ0O',DZO,"[fc]!
write(lo,3) 'Total hull volume',Vhe,'[fr 3]"

format (2:, a)

Lormat (20
format (o, a,t

return

Itevariy
Yime=1

&rd

subrcunline el

real rvimil, Flin, el
oo/ dimern s LWL, Ve
comnon/3imenlsT,EL R
AR At /LN HE  HA
Toanmen /e le sty

AT, r3mE b, BRI re g, PIIS PRI a0y

VT

PRe=0, 00521 3T
Prim=101, 4

FWops=0,0

PE(Wops. gn.0.o) PMrps=0, 000 25T
HT=lOr1E

Po=0, 235707

FVhn=0,00017 7 Vnt
PWa=0. 65T
FVsery=0, 3493
FVInE = -1

e long fir nern electrical Ay RME
VIR v lune,

LRI NS AT S S RS AYINVE S RVERS ML

L RHN ]
Jaun=~

Prh=0L0

Mac=l, 7 0l 1T HT e T (UT=me=aun ) 2 LAy

E=tMinp=-rinrbliv - lac-rigpay
Prlaps ((FVe =) /plinf b ogn. o, il thern
Frimil=t
{J“"H
enalf
PMIRE b= EDNE - ERNE p T L
Py req=tamt s (Lig=1j /4
PO Ev(plim Il = IR NIVE S MY
PG A y=ELNE R,
Wrine(io,")
wrlte(lo, ) 'Zlertriral Loaas L.
write(lo, i

write(lh,3) 'Wirter cruise &l

e loral

DDGXx Fortran 90 Optimization Model

StV dave, Vau, PWgre)
This subrounine fa lates wlecoplios cad oard auntlilacy nachinery vooms
toral volume, AL L

real LWL, We,r s, e PR g, P, P T, FTArn, b, s e ry, RN, PG A

Loadt R, (nw

187
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write(l0,3) 'Marginal winter cruise electrical load',FWmflm, '[KW]"
write(10,3) '24 hours average electrical load',KW24avy, '[kEW]!
write(l1Q,3) 'Poawer required per generator',rWgreq, '(kW]?!
write{1d,4) 'Auxiliary machinery rooms volume',Vaux,'{ftv 3]°

2 format (2x,a)
3 format(2:,a,t45,£6.1,::,a)
4 format(2x,a,t45,17.1,::,a)
return
end

subroutine tank(E,Ve,Vmax, SHPe, KW2davy, Pi,VLhk)
! This subroutine calculates fuel weight and volume of all tanks.
common/liquid/WESG, WESZ , WE41
comman/man/!o, HE, NA
real FWZ4avy
WF42=64.4
NT=NO+NE
Pebavyg=1.1>GHPe/0,97
rppe=Pepavy/ (£i/2.0)

rnpe=Ve/Vma:
rype=rppe/rnge
SECpe=0.4097 ' {le/hp~hr).
SfCepe=5fCre/rpope~{7.218e=-2%anp (1. 282 rnpe )+ 0, 362G rape~ 5
exp (0,72 3 rnee))
Il
it
if
R
FR 1
Wep=£E/Ve~ et a Volltonsg
F3l4=
reg=egl4/ 02
[
08 WA i yEN |
1.4727 U et hic) .
22107179 )
A LTNE IR RO E D
LT SEENgels
FRyavg=1,0E~FRysp
Wee=E/VYe Wl dav)~ FRyavy/ 22400 4G
WESl=(Uop-Woe) /a
Vi=1.,02-1.05742,3-WEq)
Vhi=1.02-1,05-43, 00542
WE46=17.4
V1e=1,0271,05739,43°VIF46
WES2=lIT-7.13
Vor=1 .02 36-1ESL
Vsew=(1UT+lA) -2 005
Vwaste=0, 02"V
Voal=0.,1%"V
Vehk=Vi+Vni+ViatVuw+Vsew+Vwaste+Voal
write(la, )
write(10,1) 'Tankage ...'
write(1l0,")
write(10,2) 'Fuel weight',WE41l, ' [loon]!
write(ld,3) 'Fusl ranks toetal vilume!,VE, '[fe 3]
write{l(,3) 'Eallast rtank volume',Voal, '[Zcv 31
write(13,3) 'Torval vanbs wvolume!,Vop, ' [{fc 3)!
foormat (2,
z farmac|
3 tormar (2
return
end
sucroutine welght (WEl, vi,%ve, LWL, 2N, Ts, g, £3y, VD, Daw, 16, LIHE TE, A
ERRW, Hme)
! This sucrcurine caloulates tine welght {(fall loaa ard lighn wvelight).

real LWL, ¥y, H3ma
common/welg/We
comman/ Ligquid/ueds, WESZ, W
commin/g o/ D
Sommen/man /o, e, A
commzn/dimenl /T, g, HD:, DL
Y E=0, 008
romary=7.5

il
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Wvp=334.8
VCGvp=23.7
Wpl00=81.C
VCGpl00=30.1
Wp400=17&.5
YCGp40=45.5
Wp500=15.7
VCGp5a0e=32,2
WpBO0=4, <
VC3p600=0,10

Wp700=314.%

VCGp1U0n=35.3

Wi98=56.5

VCG498=-5.125

W237=03.0

VCG237=0.0
Wom=PLi~(3.0+12.4-(Fi~1le-5-1)-~2)/2240.0
Ws=0.41"LWL
Wpr=0,174"De~ " (53.497-0.0333"Dp) /2240, 0
We=0.235" (Ws+Wpr)

Wst=Ws+Wo+Wor

WZ=WomrHst+W237

WiI=80,0+0, 0282711y~ V)

15e-57""t

fEhle-iTVr

HT=HO+E

ICENRES VI AN ARSI RICER- TS EASAL BIWS AV  AAd VI Y iy g § SO A 3 8 1
“le-4-117.0

W535=10.0

WE=rlau+Wps00+ s 33+ W5 3+lres

Wofh=d.l8e-4Vr
Wefp=0.57 (HT=9,5)

Rt fp-Wpdao

W=kl 700

Woh=0.9371 1357 (1. 634 2y~ 0157 1701 0=, 295)
Wih=0,00152-VD

W17l X

RRR=T
Wl=Fop s Wikl 7L+ 20+ Wp L
YmZ4=WHE~ (Wl =Wl b3+ +WE+ME 1T
Wls=Wi+Wl+Wirliq-tIS+VG+WT 70l
WE3L=T~2.35-3"Ta

ATII=0 0007 LY TeTNT+0. 0045 0T

WELO={ 236-HE-400- (10+1) ) /2240,0

W=l s+ Wrn s Lr W4 8- WESI-WE 3L +VF I I+0ELD
ERRw=ans ( (We=WEl) /W)

PE(ERRW. T 0.0} whern

Wil=Wc

return

endif
VeGeh=0.51"010

VCG3h=D10+1, 5-HOK

VCGLEa=0, 57010

VCG171=010+0. 137 L1L

I AR el AV UE T A ale s RS BTV RSN s SIETNE 30 DEE R R TiM s DU RS 3T RO NETN G LAE TR NN
YCGRm=0, 57010

VCGar=4.82+0, 35T

PIOO=WEMT G0 =Ys VOGS T AW I 3T 5T

VeGAOOL=GL.557 010

BI0G=R3C VG300

WCGLe=0106G

VeGon=8.6+0, 46287010

VEGor=0,27DbL0

P4O0SLcTVEGL s+ W~ VEGa e+ oe ™ VEGoo v 33 - VOGS A8 + M 00 VOGRS O
YOGaun=0,9"(D10-2,4)

E5O0=Raun T/ CGaunsWp SO CGE S 00

VG Eh=0, 65700

YrGofp=4.2+0, 47010

POHOO=Y

Lo Eh e s Er b B G E W S0 T VOSSO

ey
I RNINE

U

YOG a=Eugs (i)

a-tmZ4)
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VCGFLl0=0,732+D1l0

VCGF31=9.523"Dav

VCGF32=0.592~Dav

VCGE41=10.3

Hmb=D10-1!HPIE~HDK/ 2

VCGE46=0.83"Hmo

VCGF52=0,138%Dav

Pwgl=WF10-VCGELO0+WE3 1 " VOGE31+WE3Z-VCGF32+WE4 1 vVCGEA L +WES6-VOGEI G+ e
WESZ-VIGES2+Wyp - VCGvp

KG=(Pwy+iw3al)/WerbGmary

write(lo,")

write(i0,1) 'Welght and Center <f gravity ...'

write(lad, =)

write(1G,2) 'Lightweight!,¥Wls, '[lten]’

write{ld,3) 'Vertical €3 of lightship',VCGls,'(fr]!

writefld,2) 'full load displacement',We,'[lton]!

write(id,3) '"Werctlcal ©F avt full lead', K5, ' [fc]!

1 formav (
z formac ( 2
3 format(2x,a,n45,£5.2,:7,a)
return
end
suorou St Vaun, Ve, YD AT, AT A, A3, fuda)
! This suorourd N regulremenna,
oo nemar i, N,
o 3imern ]
Ahab=54.10
HUT=110+1E
Rhl=Aahae~ (HT-1A)-~31
L
FE
A
AT
Al
“h DilAnr
Ad JprrAadlcAdmrAdn-Adle
Va3
~T
l'lt
wrlte (1l colums Ealance L,
wrins{ld, )
write(10,2) 'Required hull area', Ahe, '{in 2]
write (10, 2y ‘Availacle hull arvea',Aha,'{fv 2}
write(10,3) 'Required hull volume!',Vihe, '[fc 31
write(l0,3) 'Availacle hull +wolume', Vha, '{fc 3]
write(10,2) 'Rejguired deckhouse area',hdr,'[ft 2}
write(19,.) 'Avatlawle a: Yiie o)
wrizae(10,3) 'rRequired deschhouse wvolume! , Vdr, ' 3]0
wrelte(10,3) 'Avallaole dechkhe *lic 3

!
se volume!',VD, '
write(l0,Z) 'Total required area',fAtr,'{fc Z]°
write(ld,2) 'Total avallanle area',Ata,'| |
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write(l0,3) 'Total required volume!,Vrr,'(ft” 3]
write(ly,3) 'Tortal avallable vaolume!,Vea, '[fuv 3]
for mat(““,a)
ffrm«:l

[P

I'Et urn
erd

suproutine s:ﬂtil(??,‘;"c‘

! This sumroutinh caloulares {ninlal srvacllicy pavameters.
real nG,LWL,:E

mmon/param/ g, O

mmarn/aimenl/T,E,

semmeens dimerns LWL, Y

3870

1,03, T cplo,Crd
HOH, Dl
FEl

=0, 2 7%+0,
Cles=2.537+1,44"0Cw
FBAT/ 37 (L. 4=Cp~Cu/ )
BM=LWL-E-~-3-Cin/12/VE]
GM=FE+EM=F5
Came=GM/E
write (1o, )
write(l0,
write(l
write{ln, )
write (10, 2)
write(10,2)
wrine (10,3)
forman{ln

f'fna*l'

‘Initial Stability .....°

Lav 10 v

search,

_ed (3

intejer 1
TOMMmIG/ et
commitie Ll

~otmal n,CCium
[ DI ;=-,p;p siz
vli)=gere
Ly=geref’
(ll‘l“hﬁ(

[

3,m1h,,:1m1 ,Totmirg,

1 continue
rETLLN
end

real functl gene(Cwin,
! This funcrticn randomly raliularte

real ran(l)

call rrnan(l, ran)

gene=Cmivns (Cman-Crin) rran(l)

Cerurn

values €10 yenes.

and

subroutine _ F e SLIe, )en)
! This subrourine X ST suletre wheel pased on

real

integer por
Somnsn/ TITn
GHID SW VY Il Y RPN

en(l0,file='2iviresisvana

)

-
—
T

containing selection regoro,
write {0, 01} '"Classical seleccion, after evaluyatlon

o mY L, gen
write (2o, ")
' CE_pd i)t eyt i el T _sel gl

wieel .

(iyr%
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qli1=0.0
do 2 j=1,:\.

4
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Jiir=qi)+p(l)

cantinue
continue
'Rotation' »f the wheel,

[

e times.

pop_siz

cail rotation(pop_size)

101 format (2= ,a 1_)

102 format(t4,a,td,a,tl’,
return
end

a,t25,a,t33,a,t39%,a)

subroutine select_ranh(pop_sl:e,qen,select_method,press_method)

! This subroutine
use msimsl
real
integer pop_si

character~l selec
_P

commen/titness/FE
COmMmMON/ P Lob/ g, g

constructs the roulette wheel based aon

rank.

F_p(30),dummyl (30),p(30),4(30)
ze,gen, k(30)

t_method,press_metned

if(press_method.eq.'n') 43=-0.06"(gen/100.0)+0.98
if(press_methoed.eq.'u') g9=0.94

al=(1.0=-33)/({).0-gqy~~rop_size) ! First term in series; designed as to get a
total sum of 1.0,
open{2d,flle="c:vthesisvanalysis\DDG_select.out', status="replace’) ! Flle
containing selecticn report.
w:ite(ﬁO,lOl) 'Rank rased selecticrn, after evaluaticon <f Jzneratis
on yJen
wrltﬂ(-u,lu 'SGelacrticn pressure paramster ...', 07
write(20G, )
write (20, 102) ViV, VF n (i), el it e(i) Y, i _sel (i)
write(In,~) B B
do 1 i=l,pop_size ! Inivialization of vector k.
=)

=

zontinue
call svegpips

! Creation of the

p_size,-F_p,dummyl, k)
ette wheel,

H

Hinus sign to get descending <rder.

y=a(iy+e(d)

dg 2 1=1l,pup_sicze
k(i) =al-gy=~(i-1)
- continue
do 3 i=1, e
Qii)=0.0
do 4 9=1,1
afi
4 continus
3 contlinue

! YRoetation' of the whesl,

if{select_m=t

101
102 fer 3t(t1,1 TS,a,t
103 formatv{Zi,a,:,I5.3
return
end

pug _size Timas,
rotation (g
rot_oaker (g

suproutine rovation{pop_size)

! ruTATRS

This sukbroutine
real E_pi{30),

the roulerte wheel pop size Times and perforns selectlon,

(30),(30),9(30)

integer vop_size,i_sel(30)
Tommnon/ £ ss/f ¢

! the wheel,

thlh(l—' )

'Ratation’
sall

wE

10 ST A M Y & | B

pop_size times,

e, r)

do 5 =1, e
j=1
tedr(it.leail)) then
_sel(i)=3
ire (20, 100) L, F pti), ety gt oii), i_sel(i)
- 1S
endii .
d:x & whils{o{l).gu.q(ilt)
j=irl

continue
i

wr1c9("0,10

o) selll]

LeF_plba,ptiy, gy, octin, i_
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5 continus
wrive (20, ")

! Reproductian,
call r

cdustt{pop_size,i_sel)

100 farmat(lx,i2,ln,568.4,20,56,4,22,86.4,22,15,53,6::,12)
return
end

sucroutine rot_taker(pop_size)
! This subroutine ratates the roulette wneel one time, but with pop_size ejualy
! spaced markers, according to Baker's selecticn method.

real F_c(30),c(30),p(30),0(30)

intejer pop_size,i_sel(30)

suproutine
' Tnls suproutine
' ospuns.

v, faseld rnoroulsnre vheel

bl
3
] nninus
Aupary=T
b DA
self{ijy
1o sentinue -
Ainmy s
b4
Losellin
11 Tontinuae -
Aummy="_ra
12 i=il,cee z
Covati)y=dumry il _selily;
12 sonninue
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F_eii)=3dummyii_s=l{i))
13 zontinue
return

end

subroutine crossaever{pop_size,gen,nn,n_cress)
! This sucroutine performes the Ccrossover genetic operator, <n the chrimosomes
! selected for next Jeneration.
! nn-number of splits when crossaver is performed.

real C_pl(30),7_x(3%),C_dl(39),C_br(30),C_DI0(30},C_rd(30),c(30)

real <c1(6),c2{G),c{Ah)

integer pop_sice,gen,cross(30),1_dis(18),r2(1)

common/gjenesfC _p,C_x,C_d},C_br,C D10,C_rd

Pc=0.25 ! Probacility of crossover,

a=1.0

crosscvered Chrimosames.

s fared /S B8 STHC)

if{l-n_rcriss.re.aTinnin_

In Tase of an oursven npumnper of

intl, o

VogT k.3 Ther

I T3E=EN

.l
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mlcross(i))=cl(2)
dl(ﬁross(L)) =cl(3)
_br(crass(i})=<s1(4)
_D10(cross(i))=cl(5)
z Ld(:!DSS(l))=:1(6)
o] p(,rnss(1+1))=
_s{cross(i+li)=
C_dl( ross{i+l))
C bt{cross{i+l))

)

)

')O(’)(’)O

C _DlO(crass(i+l
P_rd(ﬁrﬁss(lfll
continue
return
end

subroutine mutaticn(mut_type,pop_size, Pm,n_mutat)

! This subroutine mutate< randum‘" selected genes.

real C_p{30),C_(30),C_41(30),C_bt(30),C_DLd(30),
inteqer pop_si:e
character*l mut_type
commzn/gjenes/C _p,C

C_rd(30),c(6)

w,C_dl,C_bt C_DIG C cd

ccmmun/YLmlts/Ppmln,Cpma 1, Cxmin, Cxm dlmln,Cdlmaz,Cbtmln, &
Cbhtmaz:, CD10min,CD1 Oma::, Crdmir, rdma;
n_mutat=0o
do 1 i=1,poe_size
call rnun(G,rJ
if(minval(r).le.Pm) n_mutat=n_mutat+l
P (murt r"ce..].'u') thﬂn
.le.fFm) = L(L)—]=n=(upm1n,CLmn:)
-le.Pm) C_:n{i)=genes(Cumin,Cima)
.le.fm) C 'd(i)=gsne(¢rdmin,¢rdmaz)
.le.pm) ©C dl(i)=gene(Cd1min,Cdlma:)
e bm) C_CI0O(i)=gene(CDlOmir, Z01ldma:)
le.tm) Z_ kT (i)=9&ne(Zbtmin, Cotma:)
els=
le Bm) Z_pii)=7_p(i)+delroa(Cpmin, Cpma, _-(ll]
3 ( (i)=C_ (i)+delta{Cumir, Cuma:: i)
e _rd(i)=C_ Li(1,+a=lta(PLam1n,CLima ,: rd(iyg
le.fm) €_di(:) T dl(i)+3el ta(Cdlmin, Cadlman, T _31(i))
le.fm) ﬁv0(i)—u_Dlﬂ(i)+Jelta(PDIUmln,CD‘vma:, D)
i)
lesbm) 2 ko ti)=C_boiij~dsltaloumin, Cotma,  on(i))
ervdif
cantinue
return
erei
real fupcticon deltz{Cmin, Cman, )
! This function ps reero uniforn mutation wvalues.
real r{i)
integer v _dis(l), b, gen,gan_man
SOMMIN/ YEne s JEN, JEN_MAL
o=_
call rrand(l, l,r_dis)
zall rrun(l,r)

if(r_dis{l).eq.1) then

delta=-(C-Cmin)~{1-{r(l}))~~((l=-3en/gen_ma:)~~k))
else B
delta=s(Cmax=C)"(l=-(r(l))~-*(({l-3en/gen_maz)*~k))
endif -
retulra

end

195
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Appendix G
DDGx Final Local Optimization Fortran Mode|

After the overali optimal hull is obtained from the evolutionary program of
Appendix F, an additional local optimization, near the optimal hull, is performed using the
hill climbing technique. The Fortran code written for that purpose uses the same self-
balanced ship design model of Appendix F, since they both use the same fitness function.
Figure G.1 displays the flowchart of the code.

The start paint of the exploration is the best chromosome found using the
evolutionary strategies. The algorithm then randomly picks one gene, and changes it
randomly by plus or minus its required precision,

gene' = gene + Agene (G.1)

where Agene is the required precision, described in Table 5.4. If, for instance, the
prismatic coefficient gene is selected, its new value may be Cp+0.001 or (,-0.001. The
new chromosome is then evaluated for the payload fraction using the same ship
engineering model. If the new hull is feasible and lighter than the original one, it replaces
it and the process is repeated. In case that the new vessel is non-feasible, or its payload
fraction is lower, the process is repeated with a different selected gene. The number of
iterations is limited to 50. The code also counts the number of times an improvement is
obtained.

The analogy to hill climbing is clear: the computer walks in many directions in an
effort to find a higher position on the hill. In this approach in which the climber does not
view the whole hill the exploration is for a local maxima. However, it is believed that the
payload fraction function is continuous, and that the starting point extracted from the
genetic search ensures that this is an overall maxima.
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//"'———“"—--~-,
( Startpoint |
——

iter_counteF1 «———
{ i

l |
Chcose gene
—_—

randcmly
No [

L v

- ~
s ~

. Yes -iter_countei~ Change gene
e -—

RS

(\ Stop j \\\ >50? //> r
R Self-balanced
x ' | DDGx model |
| T -— i
I '

' iter_counter=

| iter_countert1 |

| | N

' z Yes |
é

No . _ .
————  Feasible?

|
v |

No -Befterthan = Yes |
~.optimum? .-~

Figure G.1. Hill climbing Fortran code flowchart.

An example of an output from the program is shown in Figure G.2. The results of
the first run of Table 5.5 are shown. The program writes the chromosome of each
solution that provides a higher payload fraction. The small climbing steps create small
improvements each time. Cases for which significant improvements occurr are rare.

# Cp Cx cdl Cbht CcD10 Crd Fp

0 .70 .90 90.0 3.08 12.99 .00 .12529
1 .70 .90 90.0 3.08 13.00 .00 .12531
2 .70 .90 90.0 3.08 13.00 .00 .12534
3 .70 .90 90.0 3.07 13.00 .00 .12537
4 .70 .90 90.0 3.07 13.01 .00 .12538
5 .70 .90 90.0 3.07 13.01 .00 .12542
6 .70 .90 90.0 3.07 13.02 .00 .12543
7 .70 .90 90.0 3.07 13.03 .00 .12544
8 .70 .90 90.0 3.07 13.04 .00 .12545
9 .70 .90 90.0 3.07 13.05 .00 .12547
10 .70 .90 90.0 3.07 13.06 .00 .12548
11 .70 .90 90.0 3.07 13.07 .00 .12549
12 .70 .90 90.0 3.07 13.08 .00 .12550
13 .70 .90 90.0 3.07 13.09 .00 .12551
14 .70 .90 90.0 3.07 13.10 .00 .12552
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15 70 .90 90.0 3.07 13.11 .00 .12554
16 70 .90 99.0 3.07 13.12 .00 .12555
17 70 .90 90.0 3.06 13.12 .00 .12558
18 76 .90 90.0 3.C6 13.13 .00 .125%59
19 70 .90 90.0 3.06 13.14 .00 .12560
20 70 .90 90.0 3.06 13.15 .00 .12561
21 70 .90 90.0 3.06 13.16 .00 .12562
22 70 .90 90.0 3.06 13.17 .00 .12563
23 70 .90 90.0 3.06 13.18 .00 .12564
24 70 .90 90.0 3.05 13.18 .00 .12567
25 70 .90 90.0 3.05 13.19 .00 .12569
26 70 .90 9G.0 3.05 13.20 .Cc0 .12570
27 70 .90 90.0 3.05 13.21 .00 .12571
28 70 .90 90.0 3.05 13.22 .00 .12572
29 7¢ .90 90.0 3.05 13.23 .00 .12573
30 70 .90 ©90.0 3.05 13.24 .00 .12574
31 70 .90 90.0 3.05 13.25 .00 .12575
32 70 .90 90.0 3.05 13.2¢ .00 .12576
33 70 .90 90.0 3.05 13.27 .00 .12578
34 70 .90 90.0 3.04 13.27 .00 .12580

Best ever fitness ... .12580

Number of improvements ... 34

Cp ... .700

Cx ... .900

cdl ... 90.00

Cbt ... 3.04

CD10 ... 13.27

Crd ... .000

Figure G.2. Example of output file of hill climbing optimization program.

The listing of the source file appears in the following pages.
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program ddg _hill climbing
Perfcrmes hill <limblng search process for ship design.
For units refer to Mathcad medel; they are in U.S. system.

use msims!

use mstlib

real bal,Vjuess(1l),VDK(1),LWL,tWyrey, kWy,gene(6,2)
integer into(l),trlals_counter,r _dls(l)
character~2 warning_welight

external bal

comman/param/Cp,Cr,C4l,Cht,CD10, Crd
common/dimenl /T, B, HDK, D10

common/dimen/LWL, VIl
ommon/balance/Adr, Ada, KWjreq, KWy, Vs, Camb, Fp,warning_weighr
ommon/raised/Hr

Limits »f explored solution space.

Cpma
Cumin=0.7
Cuman=0,9
Cdlmin=563.0
Cdlma:=90.0
Cbtmin=2.3
Cobtmar=3.7
CDlomin=10.0
CDl0ma:
Cramin=0,
Crdman=0.49
seen (3, 011
read(3, )
read(3,~) :
read(3,~) Tdl_starc

read(3,~) Tot_starc

read(3, ) 2DLO_starc

read(),”) Trd_start

clusell)

Fp_man=0.0

Improav=-1

trials_counterso
open(l3,file='c:\thesis\analysis\hlll.cut',status="replace')
write(19,29) '§','Cpt,'Ct, 04l Coe Y, 'COLOY, ' CedY, P Ft

jJenes required arturacy.

105

if(crials
write(+,24)

Jene(l,2;=0.001
gene(2,2)=0.001
Jene(3,2)=0.01
Jene(4,2)=0.01
Jene(5,2)=0.01
Jene(s,2)=0,01
JIunter gt Sa) ot L

cunter, 'triala,!

gene {1,
gene(Z,1
Jene (3,1

gene {6, 1)="Crd s

call rnund{l, s, r_dis)

Jgene(r_dis(l),l)=ciimbiny(gene(r_3is(l),1),gene(r_disil),2))

Cp=gene(l,1)
Cu=gens(2,1)
Cdl=gere(3,1)
Cot=3ene(4,1)
CDId=gena(5,1)
Crd=gene (&,1)

! Chech deviatio,n from silutlon space.,

ff((Cp.lr Cpmin) cor o (Tpogt.Comaz) cor. (2o leaaming cor,
(Coogt.Coman) cor, (Cdl. e Tdlmin) cor s (241, g Cdlma) Lor.
{Cot.lt.Cotmin).or o (Cet.gn.Cotman) .o (CDLO L. CDLOmin) Lo,

(CD10.gr.2dldmas) wor. (Crd. le.Codmin) sor. (Srdogr.Crdma) ) then

trlals_counter=trials_counter+l
Jote 105
endlf

Iterztive sclver for deckhouse volume.

Vguess(1)=243500.0 ' Inicial guess for deckhouse valume.

call zreal(kal,l10.,0,0,01,0.1,0.1,1,2d,Vguess, VDK, Info)
If({warning_welght.eq.'en'} oo, (Infe(l).gu.20)) then

199
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unter=trials ccuntec+l

endit
write(l:,~)
VD=VDr (1)
write(lu,1) 'Deckhouse volume',VD, ' {ft 3)°

! Thecking balance of ship (other than weight and svace).
write(l0,~)
write(ld,3) 'Balance/Feasicility Status ...'
writelio, )
write(10,4) 'Category', 'Required/Minimal', *Availakle’
write(10,8) 'Deckhouse area (ft™3]',Adr,Ada
write(10,8) 'Electric plant [kW}',FW3rea, :Wa
Vsmin=29.46
write(10,5) 'Sustained speed',Vsmin,Vs
Cgmemir=02.09
Cgmeman=0.138
write(10,10) 'Initial stacilievy',Camemin,Camc
writs (10,131} Cymbman
Hmemin=22.0
Dlomin=max (.21 E+T, LWL/ 15, Hmomin+HDF)
if(Crd.ge.%.5) DlOmin=ma:x(0.21vB+T+Hr, LWL/ 15+Hr, Hmbmin+HDE)
wrize{(l2,5) 'Depth [(Z]',D10min, D12
VDlman=({l-E=4-¢ 4 RSNV E I g X

e

3 e Tare!

110 ear
rite
wvrite
write
write
write
write
write
wrlte
writ
1
3
+ 410
5 43 !
3 52 }
7 42 j
P a3 ;
p] 42 j
. 3
)

Ll S T T T o
o~ G N L e

3
g
e
5

format(ln,a,c25,%
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-~
-7

25

o9

30

farmat (2
fn'mat(-“

format (=
m'mat('._, g
t35,£7.3)
st.p
end

real function cal (VD)

This function tears rthe whole midel, tut actualy is used to calcoulate the
area balance errcr. At each entrancte te this function the weight is teing balanced,

and the resulting area errar is

cilculated.

real LWL,rW3,FWZ4av), G,
charaster~2 warning_weight

sommon/u "amlPu,C:,Cal, bt,CDLY,Zrd
ﬂmmnnt:‘m=PIFW! Vil

'ﬁmm:n/man/HC
coamman/select syl g
:ommonlliqu azd? 8,WrEs

e, tl3, Vs, Ty, T, warning welighn

Do~y

[ ]

“ {1
write (10, 8) 1LEt, CDLG
wreive{1d,8) 'y Crd
L &i
E I3 7.'L [
T= 1 'P“'LHT':
DlO=lWL/mDLls
wrine|
wrinel !
vrlne|
writed '
writed '
wrinel
wrine|
welne|
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! Available space calculatlons.
call availspac(Cp,Crd,Vht,ClH, Dav)
! Electrical load calculaticns.
Pi=Hpeny~Fopeny
call electric(Vht,VD,Pi,wcps,HW34avg,Vaux,KWgreq)
! Tankage volumes.
~all tank(E,Ve,Vmax,SHPe,KWEJavq,Pi,Vtk]
! Meight.
Ve=Vht+VvD
call weight(Nfl,PL,V:,LNL,CN,TS,NQ,KWQ,VD,st,KG,HHPIE,ERRw,Hmb)
if(ERRw.3t.0.01) then
close(10,status="'delere’)
Jats 100
endif
Fp=Wp/Wil
write(1q,5) 'Payload fracztian',fp
! Space requiremsnts an
<all space(.penv,Hg,Ts,CH,th,V.ux,Vtk,VD,Atr,Ata,Ad:,Ada)
bal=Ata-acr
! Initial stabiliny.
call stapil(:G,T

Jimo )

1 format{2x,a,ti5,2s10.3e2,x,3)
2 formarv{2m,a,t45,358.2,::,a)
3 MAT | y
5 rmact(
[ Tmat |
return
and

SHPe, Vs, Vma)
ustained and maxima
uses ajdici

! s
! as well as the endurance SHD. T
use msimsl
rexl LWL,sustain,sceed
ernal i

(a7}

LvZlEr+ 0. 289 Con~

MO S

(LI R |

0.451~Ze--

I VARG

nmu .

Nt~
I wminn
a

(Sl

bov e e ) QL
“t oty
DD A
—~ e~ ) de
[}

Iyl
W
-
a
=
"
w
P
T
L
LR

Sl nman)
Vs, ' {knn !t

max=10c<

call zoren({seeedma:,10.0,0.001,71,v>, nma)

Vmai=v_

wrlte(10,3) 'Manimal speed',Vma:, *(knt)!
SHPe=shp(Ve)

write(10d,2) 'Zndurance shafrt horsepawer', SHee, ' (np)

1 format(l:x:,a)
2 Eormat ( a,t45,1£7.1,:,a)
3 format({2:,a,v45,55.2,:,a)
return
er3

real functicn sustain(v)
st defines the required vower palance for sustained speed condition.
sommon/ecorul s/ lpena, Poeeng

202
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sustain=1.

25+shp(v) /0, 97-Npeng~Popeng

return
end

real function speedmas (vl

' This function defines the rejuired power balance for manimal
commen/propulsslipeny, Poperng
speedman=shr{v)/0.97-Hpeng* Fbpeng
return
end

speed

real function shp(U)

! This tunction calculates shaft horsepower of the ship at a given speed.

real LWL,WCF1({31}),WCF2(31),interp
comman/param/Cp, Cx,Cdl, Cot,COL10, Crd
common/dimens LWL, VIl
common/dimenl/T,B,HDK,D10Q
comman/propuls/Hpeny, Pbpeng
common/wet/S

conditiom.

commans o/ o

PME=1,05

Nfins=q

ro=1,93086 ! Sea water density in [lef*s 2/fr 4.

R=U/rsa Vokerve in knots, cecause Gertler tables avs ir
V=U-1. Vo T: [St/ser).

i-nal vesistans
AM=LWL=V/ 2

ur-“.ﬂnalll

RE=0.5"po =S~ {(TE+0, 0003 -Vl

! Residuary resistance,

sall resid(R,CRTSS)

RRTSG=0.5 " ro~3~CRTES-V -2/ 100G
open(i5,file='si\thesisVanalysis\Woon_hull.prn', stanus="old’)
do 1 i=1,31

read{15,~) WOFL(L),HIFEI(1)

y—

sontinue

while (R.ge WCFI(3-1))
3=3+1
end Jdo

WoF=interp (WOF2 (31, WIFZ{+1) ,WOFL (] ), MTFL(1+1),R)
RR=RRTIS~VWTF
! Bare hull total resistance.
RT=RR+RE
! Effective horse power.
PEEH=RT~V/E50 !
CDAPP=(~42=-9-LWL~~*3+9e=-&~LIIL -~
[hp~sec 37ft 5].
corop=1.
Dp=(0. 54 T+0.013'LWL)’Cprap
PECins=0.025"PEEH
if(”flﬁb..J.U' PELins=u
PEAPP=1. 3 LWL*Dp~CDAFE~V - 3-FE2iina !
v=1.u5 E- (D1=T+3-HDK)
PERS=N., I8~ AWT 0, 0O 3B 1T~V > 3/5560 ! AL drag,
PET EH+PEAPEFPEAR ! Tortal effectlive pow
ERE=PET " EME
shp=CHP/ 0. &7 !
return
end

Eare hull, converted to (hg].
=0, nnj“LWL+5 0717)~le=571.

Appendages, in [hpd
i ihyged.
er, in

[l

subroutine resid(R,7ZRTSS)
! This subroutine calculates Gertler
real LWL, c(35,18),interp
chacacter~29 tilel,filel
common/paran/Cp, Cin, Cdl, Cot, 2DLY, Crd
commoen/-dimen/ LWL, V C1
Cy=VEl/LWL~~-3
k=0
1E(0v.1t.0.001)
1E(Cv. gt 0.006)
do whiile (Cv.oge.
b=h+1
end do

reslduary drag coefficlent.

Cy=0,001
Cu=0,0006
{h+1}~0.001)

Ba--3

“Wﬂl.
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select casel(k)

snTine
l-se(lE)

S G e P

RERN oy

0 ode a0

i=interc{cin,mj,
lnterp(:(n,mé‘),:fnvl,n-‘)

jum R
=
D
"~
™

Terg .4
nTers _1,mv1),‘(n*_5,w -l,..1~—u H*’(h-‘),U.%S
I5=ir, LB (m=1) 7 S*m 0 1, nb

S=int _R__a el

D=inT

S=int

AT

F=TR3

o

case(l)
:nthesisVanalysis\Cvl.prn!
:\thesis\analysis\Cv2.pren!

case(Z)

t\thesgisvanalysis\Cvl.prn
:\thesis\analysis\Cvi.prn

nt
n'

filel='z:\thesis\analysis\Cvi.prn!
fileZ='c:\thesis\vanalysis\Cvi.prn'

el='c:\thesis\analysis\Cvi.crn'
el :\tnesis\analysis\Cv5.prn'

e :\thesisvanalysis\Cvs.prn!
leZ='c:\thaesisvanalysis\Cvé.orn!

1="c:\thesis\vanalysis\Cv6.prn'
z :\thesisVanalysis\Cv6.prn!

status='ald')

Cin,m) o ir+l,my, 008
v-’;,r(h-’.m-‘\

T),‘(F"J w)
nvl),:tu-l:

22,0.5-(m=1) ,0.53+m= 0.1, R)

s{n+l3,m)

[al
m
[

oo

.1, R)

e P S
L327n=1y, 0.

)

AT

h,.L,

T, .l.

v, Ce)
I, e

-,

'(n—’),..4“+n 027N, TR

U _"q-l)'

beags0, 0, )

.-:"-l 4-)

Ty TR
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common/dimen/LWL,VEL

comman/dimenl/T,B,HDR, D10

common/raised/Hr

Hr=9.5
DO=2.011327-T-5,.38215e-6~LWL~*2+2,750649%e-2"LWL
D2O=0.014~LWL~ (2.125+1.25e=3*LWL)+T

F0=D0-T

F10=D1¢-T

F20=D2¢=T

APro=LWL/§. 33~ [FO+4~F10+520})/6

Fav=Apra/LWL

Dav=Fav+T

CN=LWL-EBE~-Dav/ie5

Cw=0.273+1.336Cp

Vhaw=Fav-~2-tand(10.Q) "LWL+LWL~E~Cw~Fayv
Bman=B+2-tard(10.0)~Fav
Blow=Bmax=-2-tand(10.0) ~Hr

Vhl=Crd~LWL~ (Bmax+Blow) /2 Hr*Cw
Vhet=Vil+Vhaw-Vhl

write(l0,~)

write(l0,1) 'Srace Available ...'

write(ld,v)
write(10,2)

format (2, a)
format (i, &,
format(l:n, a,
return

end

suprcutine eleccris{Vhe, VD, 21, Weops, rW2iavg, Vaus, tWgrey)
This subroutine caflculates electrical load and auniliary machinery roioms
total volume.All ds in
real LWL, 3, s, tWe, tlim, tops, B, P, B30nn, tWa, Foise v, ERIng, 5l ay
eal FWmIl, Wb, Rohe, Fas, PlmE L, PNy re, P2, PRI avy

m:on/dimenl/T,E,
snman /o, e, A

EDHE=1

FVis=0. z
VT=Vht+VD
FWe=0. 00021 3°VT

Fim=101.4

FPlzos=0, 0

PTE(Woes. gt 0.0} EMops=0, 001 35NT
HT=HQ+!E

W=D, 2357 0T

serw
electrical load and AR wvoluine,
PIMMR v lume,
! Flrst juess.
D 0mrmils 341100
OGR4 (VT=Vmo=Vau:)
re=0. “{rWh=rpay) +rdicps
FWac=0,67 (0, Lo HT+ 0 00087 - (VT=-Vme=Vau:) =0, 17 Floay)
f=tlInp+rain sriac+rMpay
ff(abs{{FMmIl=-2)1/00mEl) .9t 6.21) then
Pamtl=<
Jote 1
andif
FWmEIlm=E M SEHF Wkl L
tWgreg=timilms (Hg=1)/70.%
P Z4=0 .5 (FIInI L =13

Fvh=0.

de-bs ) P - R
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FIR N Y

[ PO

format (2
format(
format (Z2:

write(10,*)
write(10,2)
write(10,*)
write(10,3)
write(l90,3)
write(lQ,3)
write(1G,3)
write(l0,4)
a)

return

end

Electrical Leoads ...'

'Winter cruise electrical load',FWmfl,'(kW]'

‘Marginal winter cruise electrical lcad', KWmilm, * (kW]
'24 hours average electrical load',KW24avg, ' [kW] "

‘Pawer required per gernerator',KvWgreg, ' (kW]

'*Auxiliary machinery rooms volume',Vaux, ' [£ft-3]"

a,t45,6.1,:,a
=,a,td45,£7.1,=,

subroutine tari(E,Ve,VYma:,SHPe,tW24avy, Pi,Vrk)

! This subroutine calculates fuel weight and voiume of all tanks.
common/liquld/WE4S, WESZ, WEAL
common/man/l0O, NE, HA

real KWZiav3y
WE42=64.1
HT=MO+HE

Pebavg=1.1vSKPe/0.97

rppe=

FRSE

Petavy/(Fi/2.0)

2pe

w

vyl 2240.0

3T0.45L 0, 925)

!o[ib/ReTie

/eyt (0. 2B2L50,. 7178 rygy)
glaTPgIi/rnIsavy
LO4TSECgeld

1.05-FRysw

davyT FRgavy/Z240.0

£ o) /0, 95
VE 1.d5740. 37HES
VhE=1.0271.05%43. 0-WE4Z
WE 5
V1 12105738, aHELS

Vsews= (1IT=1
Vwaste=0.!

Vial=0.19-VE

VeV IV EsV oVt Y sew-ivaste+Veal

write(l0,7)
write(10,1)
write(ld, )
write(lo, )
writelld,3
write{ld,3)
write(ld,3)

eTurn
end

subroutine we

ERRw, Hmk:)

=3 m oo

! This suoroutine caleoulates the welght (full
real LWL,rWy,HGmary,KsG
common/welg/voos

comman/ Liguid/WESE, WeSl, WSl
common/eroe/ DE

ight (WELl, i, Ve, LWL, CH, Ts, Hy, £y, VD, Dav, FG, UHPLE,

toad ana ligho weight).
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commen/man/NO, HE, NA
common/dimenl/T,B,HDK, D10
WME=0.005
KGmarg=0.5
Wvp=334.8
VCGvp=23.7
Wpl00=81.Z2
VCGpl00=40.1
Wp400=175.5
VCGp400=45.5
Wp500=15.7
VCGpS500=32. 2
WpG0oN=0.0
VCGp6Go=0,0
Wp700=314.6
VCGp700=35.3
W498=26.5
VCG498=-3.95
W237=0.0
VCG237=0.0
Wom=PL{*(9.0+12.4*(Pivle=-5-1)**2)/2240.0
Ws=C.41vLWL
Wpr=0.174*Dp*~(5,497-0.0433*Dp)/2240.0
Wo=0.,235 (Wa+Wpr)
Wst=Ws+Wo+lpr
Wlstem+sr +W 37
W3=50.0+0, 0352 g™y
i 45e=-5Vr
Lo
Wos=0, 47 {(WpdoosWic+ier)
Wi=WEd QOrbil c+tloortloo ey 55
[593=H"e~5-\Vt
HT=HO+IE
Wan= (0, 000772 Ve -1, 4a43+5. 14 Ve+6,19°Ve 0. T224+377.*IT+2. 74 F1 )&
“le-4+117.2

W593=10.0
WE=Wau+WERSNN+H5a3+W5 99+ ops
Woth=4.18e-4*Yr
Wofp=0,37(1T=-6.5)
W=t thi+bla fpttpa oo
WI=WR7 60
WEh=0,983>1.135~ (1. 68341l 2+167.1721-C1=-103, 233)
Wdh=0,00168-VD
WiTi=2.0
WLEO=0, 0735 (Wokh+W2+WI+IN+VIS+WG+WT)
W1=Wkh+Wih+W171+W120+MR10G
W2 d=WME" (WL+WI+WI+WI+WS+RE+WT )
Wls=W1l+W+WI+WJ+WS+WE+WT +10n2 4
WE31=lT~2.46e-3*Ts
WEIZ=0, 00071 TS HNT+0.0039~UT
WELO= (236 HE+400% (1O+1))/2240.0
We=Hls+Wvp+WEJ 1 +WELCHUESZ+WE3IL+WEI2+WELO
ERRw=abs ( (Wt-tf]}/Wr)
i€ (ERRw.gt.0.01) then

Wil=Wt

return
endlf
VCGobh=0.51"D10
VCGAh=D10+1. 5~ HDF
ViEGLAOG=0, 501
VCGL71=D10+0, 153~ LWL
P1O0=Whh = VEGER+WAh* VEGAR+W L BG-VES1A0+01 TL-VEGL T+ LOn-VEGR L0
VEGobm=0.,5- 01 '
VOGst=4.5+0, 35T
P200=Wem~VOGhn+Wst - VI2Gst+W 2 3T-/0G1 31
VCG3n0=0,55+D10
PINO=W3I*VIZGI00
VCGLle=DLO :
VCGeo=5,6+40.46_5-D10
VCGeoe=0,54D10
PA00=WLo*VOGE e+ W e VEGoatWer sV OGoc+ WS 935 VOG S8+ Wpd 00+ VG400
VCGau:=n,9¢ (H1G=-9.4)
P5D0=Wau* VCGau+Wp 500 VOGR500
VCGoth=0,65D10
VCGafp=4.2+0. 47010
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PEOU=W=Th*VCGofh+Wofp*VCGofp+Wp 600~ VCGpEL0
P700=Kp700*VCGp?00
Pwg=P100+P200+P300+P400+P500+P600O+PT00
VCGls=Pw3/ (Wls-Wm24)

VCGF10=0.732-D1l0

VCGF31=0.523*Dav

VCGF32=0.592~-Dav

VCGF41=10.3

Emb=D10-1IHPIE~HDE/Z
VCGF46=0.53*Hmb
VCGF52=0.138"Dav

Pwgl=WE1O-VCGFlO+WF3L-VCGE3I1 #ME32-VCGFIZ+WEI L~ VCGEA L+ WF46-VCOGEI6+8

WES2~VCGESZvWyp~VYCGvp
KG=(Pw3g+EFwgl)/Wt+KGmarg

write(l9,~)
write(1d,1)
write(io,")
write(ld,2
write(10,3)
write(l10,2)
write(10,3)

1 format (2:x,a)
2 for
3 for
retucn
end

suproutine seacs (Hoeng, g, Ts, 0, e, Vaun, Ve, V0, A, ~ta, ~ar, Ada)

mat{2:r,a,t+5,37.1,:3,a
mat{l:,a,t45,58.2,12,a

'Weight and Center of gravity ...'

‘Lightweight',Wls,'[ltan] !

'VYertical ©5 of lightship',VCGls, '[ft]!
'Full load displacement',Wt,'(lton]!
'Vertical 3 at full load',KG,'[ft]"’

N
\
)

! This subroutine calcsulates space rejgulirements.

commen/man/Ho, HE, A

comman/dimenl/T, &, HDI, D1
commasn/3ust/IDIE, HHPIE, HiHeIE
ADEA=3T3.0

ADEC=3464.0

AHEA=5173.0

AHEC=6282,17

AIE=189.1

AGIE=3E.7
Adpr=1.153"ADrA+1.37ADPT
Rhpr=1.15~AHPA+1, 237 AHPT
Acnio=2125.0

Ed9;75.0'HO
Adl=Acoic A3

Rhap=30.0

ARl=2

[KIREE DI
2T LADER
SiE=12.10)
AhsE=1750.0-CH
=liveny AL

Adie=l.4~MDIE (Arie+seiz)
Ahie=l.i" (NHeIE ACie+litieIZ~Aelis)
Ahr=Ahpr+ahl+Rhs+hhef+Rhie
Vhr=HD: ARt
Adr=ragcifdl+yRim+Rdn-SAdle

VA r=kDri~Adr

Atr=Ahr+adr

Ver=Vhr+Var

VmE=133820,10
VEasVhet-Vmk-Vaus-Vek
Aha=VhasHDE

Voa=Vha+VD

Ada="YD/HDF

Ata=fha+rAida

wrlitef/1d,”)

wrlte(lD,1l) 'Areasvilume Balance ...
write(l0,7)

write{ld,2) ‘'Reguired hull area',Ahr,'[fr Z]°
write(l0,2) 'Avallable hull area',Aha,'[ft Z]'
write(lo,3) 'Required hull velume',Vhe,'(ft 3!
write(l0,3) 'Availacle nrull volumef,Vha,'[ft 3]
write{(l0,2) 'Regulired deckhouse area',Adr, '{ft
write(lD,2) 'Avallacle dechkh:iuse area',Adz2,'|[ft
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Wit~

write(ld,3) 'Required deckhouse volume',Vvdr, *[(fr 3]

write(l1d,3) 'Availakle deckhouse voliume',VD,'[ft 3)°

write(l0,Z) 'Total required area',Atr,'[ft 2]’

write(10,2) 'Total availatle area',Ata,'lft ' 2]"

write(l0,3) 'Total required volume',Vtr,'(fr"3)°"

write(10,3}) 'Total available volume',Vta,'(ft3]"
format(2:x,a)

format(2x,a,t45,£7.1,:1,a)
format(2x,a,t45,1f6.1,=,a)
return

end

subroutine stabil (KG,Cgmb)

! This subroutine calculates initial stabllity parameters.

Grt) =

real KG,LWL,KB
common/param/Cp,Cx,Cdl,Cbt,CD1O,Crd
common/dimenl/T, B, HDH,DLO
common/dimen/LWL,VEL
Cw=0.278+0.536"Cp
Cit=-0.837+1.44*Cw
KB=T/3*(2.4-Cp~C:x/Cw}
BM=LWL*B~*3*Cit/12/Vfl
GM=KB+EM=FG
Came=GH/E
wolte(10,7)
write (10,1} 'Iniciaz Stacilicy ...,
write (10, ")
write(iv,Z) 'rs',rE,"
write!1d,)
write(10,2)
writs{ld,3)
format{l:, 2}
Tarmat{l:
format{lo,a, T
return
end

real function climcing(:,d:)

! This function Juesses new value for the specified gene.

integer r dis(!)

call rnund(l,Z,r_dis)
if(r_dis(l).ey.1l) climbing=:+d:
if(r_dis(l).eq.2) climbing=u-d:
return

end
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