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ABSTRACT

In many high-performance applications, machines and processes must respond rapidly to
changing system demands. Situations like these commonly employ carefully refined
hardware and sophisticated feedback control to push the limits of performance. As a
supplemental or alternate approach that is equally effective for expediting system
response, greater care can be taken to make more intelligent requests, or commands, on a
system's operation. If designed cleverly, these commands can leverage all known aspects
of system behavior to increase response time and throughput.

This document proposes a new approach for creating commands that maximize the speed
of system response. This technique can be applied to any type of machine, process, or
entity that can be modeled linearly. Of particular interest in this study is the creation of
command profiles that are time-optimal. Defined strictly as the commands that will
move a system from one rest state to another in the shortest amount of time, these types
of command profiles represent an important class of solutions that have received the
attention of many previous researchers. Approaching this problem from a different
direction, it will be revealed that a straightforward three-step procedure can be used to
derive time-optimal command profiles for all types of linear single-input, single-output
systems. Since the constraint equations that result from this approach are both
notationally and computationally simple, this solution strategy can deliver results for
more complex systems faster and more reliably than traditional approaches.
Furthermore, by incorporating additional practical constraints into this solution
framework, it will te illustrated that different types of time-efficient commands can be
derived to satisfy a range of performance requirements. A series of simple system
models as well as a complex mechanical testbed are used to demonstrate the effectiveness
of this technique on a wide class of systems.
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1 Introduction

This work is about moving things as fast as possible. In a time when rapid change is an
inevitable truth, progress mandates that both people and their environments respond with
unprecedented dispatch. Whether you are the foreman of an automated assembly line or
the pilot of a 747, performing tasks swiftly and effectively is c!ways a primary concern.
Engineers and designers have attempted to address these growing concerns by creating
new types of machines and processes that respond faster to specific system demands.
Many of these systems incorporate carefully refined hardware and sophisticated feedback
control to push the limits of performance. As an alternate, and equally effective,
approach for expediting system response, greater care can be taken to make more
intelligent requests, or commands, on a system's operation. If designed cieverly, these
commands can leverage all known aspects of system behavior to increase response time
and throughput.

This document proposes a new approach for creating commands that maximize the speed
of system response. This technique can be applied to any type of machine, process, or
entity that can be modeled linearly. Of particular interest in this study is the creation of
command profiles that are time-optimal. Defined strictly as the commands that will
move a system from one rest state to another in the shortest amount of time, these types
of command profiles represent an important class of solutions that have received the
attention of many previous researchers. Approaching this problem from a different
direction, it will be revealed that a straightforward three-step procedure can be used to
derive time-optimal command profiles for all types of linear single-input, single-output
systems. Since the constraint equations that result from this approach are both
notationally and computationally simple, this solution strategy can deliver results for
more complex systems faster and more reliably than traditional approaches.
Furthermore, by incorporating additional practical constraints into this solution



CHAPTER 1

framework, it will be illustrated that different types of time-efficient commands can be
derived to satisfy a range of performance requirements.

In this chapter, the motivation behind this problem will be considered in greater detail.
Following this overview of the impetus for researching time-optimal and time-efficient
command profiles, the problems to be addressed in this work will be stated in much
clearer and more specific terms. These problem statements will serve as a foundation on
which the work in the remainder of this document will be built. The scope of this work
and an outline of the subsequent chapters will be presenied at the conclusion of this

chapter.

1.1  Problem Motivation

With every passing year, the modern world demands that things change faster than they
did before. In machines, processes, and attitudes, success is often defined by the speed
with which these transitions can be made. In the information storage industry, for
example, the speed of change is the primary performance metric that can make or break a
product. In every computer disk drive or compact disk player, data storage and retrieval
is performed by a read-write head that must scan rapidly from one disk track to another.
The speed at which this read-write head can reposition itself between tracks is directly
related to the speed of information access and the overall performance of the product. As
another example of the importance of rapid change, the modern manufacturing
environment contains many types of automated machines that are used for precision
positioning, assembly, and inspection operations. The performance of these machines is
measured largely by their ability to produce rapid and precise motions. Companies
typically focus considerable attention toward improving the speed of these machines in
order to maximize the throughput of the entire plant.

As with disk drives and manufacturing systems, it is not difficult to think of examples of
automated machines that could benefit by enhancing the speed of operation.
Furthermore, this rationale can be extended beyond mechanical hardware to many other
kinds of systems. The pilot of a fighter jet, for example, would probably be very
interested in the fastest way to change altitude if trying to avoid an oncoming missile.
One could also imagine a stock broker working with a complicated financial model
wondering how to quickly maximize profits by varying his investment portfolio.
Alternately, the operators of a hydroelectric power plant might wish to increase the
plant's power output as fast as possible to meet a sudden increased in demand. In ail of
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these cases, as well as countless others, a knowledge of how to change things quickly
would prove highly valuable.

Understanding how to move things faster can go a long way toward enhancing the
performance of many systems. In some situations, however, this is not enough. Imagine
a manufacturing robot moving so quickly that it tears itself from the factory floor. Or,
how about a weather satellite that can scan the atmosphere with blazing speed but, in the
process, exhausts its supply of fuel. One can imagine that the chairman of the Federal
Reserve has more on his mind when adjusting interest rates than reducing inflation as
rapidly as possible. Since he knows that his economic models are not perfect, he opts for
a prudent schedule of interest rate adjustment in order to reliably and gradually improve
economic indicators. In mnst applications, resting alongside the need for speed is such a

set of practical issues that must also be addressed.

The modern world demands indeed that many systems change in a rapid and desirable
manner. The question that still remains, however, is how to effect this change. As varied
as the performance demands from system to system, so are the strategies for meeting
these demands. A disk drive designer, for example, might choose to use a lighter
material or a different type of actuator to reduce the access time of his drive. As an
alternate approach, he might also decide to outfit his machine with sensors and develop a
high-performance control system to meet more stringent performance specifications.
These two strategies, hardware redesign and enhanced feedback control, are both viable
methods for improving system performance. Many systems, however, do not tolerate
these types of changes. An engineer at a hydroelectric plant, for example, would be
foolhardy to consider building a new dam to better control the power output. Similarly,
commissioning the Space Shuttle to install new sensors on an operating weather satellite
might also prove equally absurd. In situations like these, engineers must focus their
effort on improving performance by working with the system at hand. Even for systems
that can be improved through hardware redesign and feedback control, the designer must
then work with the improved system to further inaximize performance.

The question, then, that remains is how to control the inputs to a given system to achieve
the desired behavior at the system output. How can a crane operator best position a
joystick to maneuver a cargo crate from a transport ship to a train platform as quickly as
possible? What kind of torque profile should a designer specify in a disk drive actuator
to most efficiently move the read-write head from track to track? How should the Fed
vary the interest rate to quickly and reliably control inflation? The answer to each of

13



CHAPTER 1

these questions depends on many different factors. Understanding these factors and how
they influence performance is the key to understanding how to answer these questions.
The following section restates the problem posed by the questions above in more specific
terms. In clearly defining the problem at hand, it is hoped that important factors that
influence the problem will be revealed and possible strategies for solving the problem
will be exposed.

1.2 The Problem Statement
12.1 The Feedforward Control Problem

The problem facing designers who wish to improve the performarce of their systems and
the problem facing this thesis are one in the same. This problem, which can be called
"the feedforward control problem" addresses the question of how to select the input
command for a given system that produces the most desirable output response. As
illustrated in Figure 1.1, the feedforward control problem can be stated as follows:

The Feedforward Control Problem:

Given a known system, what is the input command that will move
the output of the system from one state .o another in the most
desirable manner?

When stated in this form, it can be reaconed that the answer to this question will depend
on four different factors. These four factors are described below.

1. The first factor which influences the profile of the input command that will
best satisfy this problem is perhaps the most obvious; it is the nature of the
change in the system output. The actuator command that will best move a
scanning sensor on a weather satellite over a ninety degree slew will probably
have little resemblance to the command required to complete a three degree

— "
eompn.gtd ""'”“‘I response

Figure 1.1: The feedforward control problem.
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slew.

A second important factor which influences the system response to an input
command is the dynamic behavior of the system. In manufacturing systems,
for example, this becomes apparent as machines are designed to be lighter and
faster. As an unfortunate side-effect of these performance enhancements,
undesirable machine dynamics often become the primary barrier to further
performance improvements. For example, in many high-performance
assembly systems, the speed with which the machine can operate is dictated
not by the time required to execute the positioning maneuvers, but rather by
the time required for unwanted vibrations to settle. Consequently, it can be
argued that the best input command profile for a given high-performance
system cannot ignore the system dynamics.

A third factor that must be considered when answering this question is the
allowable level of the system inputs. One straightforward way to improve the
speed of response in a manufacturing robot, for example, is to employ
powerful actuators. However, due to design limitations, actuator capacity
must often be restricted. As a result, motion commands used for these
systems must be designed to remain within the actuator capability. Given this
constraint, it can be reasoned that the command profiles that deliver the best
system performance must account for the limitations of the system inputs.

In addition to accounting for desired output behavior, system dynamics, and
input limitations, many sy: ms can be sensitive to other performance
variables. For example, for systems that have shifting or uncertain dynamics,
the performance delivered by input commands must remain robust to these
changes. Other systems may have additional requirements such as limitations
on internal loading or energy efficiency. Any useful strategy for creating
command profiles must effectively address these practical concerns.

Although the feedforward control problem, as posed above, is still fairly broad, it has

helped to identify four important issues that influence its solution. It is clear that any

strategy designed to address the stated problem must be able to address these four issues.

As one way of looking at the task at hand, Figure 1.2 illustrates that the probiem facing

this thesis is to uncover a strategy for using information about (1) the desired system

output response, (2) the system dynamics, (3) the limitations on the system inputs, and
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(4) any additional constraints in order to derive an input command that best satisfies the
problem. Before this strategy can be formulated, however, the pioblem statement must
be further clarified in order to define system behavior and performance in more concrete
terms.

122 Clarification of the Problem

The feedforward control problem, as stated in the previous section, is a general staiement
that outlines the basic issues associated with selecting an input command profile for a
given system. This problem statement, however, is far too general to lend insight into a
solution approach. To further clarify the problem, the following assumptions will be
made to limit the scope of the solution approach to more manageable levels:

e First, it will be assumed that the system under consideration can be modeled
linearly. Although ignoring a certain class of systems that cannot be
described by linear representations, this assumption allows all the tools of
linear system theory to be enlisted to help solve this problem. Note that, as
long as the input-output behavior of a given system can be modeled linearly,
this approach can be applied to both open-loop and closed-loop systems.

e Second, it will be assumed that all systems under consideration are single-
input, single-output (SISO). Although the solution approach presented in this
document can likely be extended to multiple-input, multiple-output (MIMO)

Figure 1.2: The problem to be addressad in this thesis.
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systems, it is beyond the scope of this research.

e Third, it will be assumed that the goal of the problem is to transition the
system output rapidly from one rest state to another. In some systems, such as
a CNC milling machine, the goal is to make the system output follow a
desired path as closely as possible. In still other systems, although I am hard-
pressed to think of any, the speed of the output response may be of little or no
importance. Although thece tvpes of systems fall outside the scope of this
research, it is easy to think of countless others that do not.

With these three basic assumptions, the feedforward control problem has been reduced to
one of more manageable complexity. Labeled "the time-efficient control problem," this
reduced problem is illustrated in Figure 1.3 and can be stated as follows.

The Time-Efficient Control Problem:

For a given SISO linear system, G(s), find the input command, u(t),
that will move the system output, y(t), from one rest state to
another in the shortest possible time subject to constraints such as:
(1) actuator limits, (2) robustness to system uncertainty, (3) fuel

usage requirements, etc..

As will be discussed later in this document, this time-efficient problem formulation lends
itself to a particular class of command solutions. These types of solutions can all produce
a rapid state change at the system output while satisfying a variety of additional
constraints. If time is the only performance variable of interest in a system, this problem
can be reduced even further by eliminating all unnecessary constraints. Known widely as
“the time-optimal control problem,"” this most fundamental form of the feedforward
control problem is illustrated in Figure 1.4 and can be stated as follows:

y(t)

) 5
dy .
L—»t .

output response

Figure 1.3: The time-efficient control problem.
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The Time-Optimal Control Problem:

For a given SISO linear system, G(s), find the input command, u(t),
that will move the system output, y(t), from one rest state to
another in the shortest possible time subject to the actuator

constraints: u,, < u(t)<u,,.

Unlike the time-efficient control problem statement, the time-optimal control problem
requires that only two conditions be met: (1) that the system output transition by an
amount dy, and (2) that the input command remain within the actuator limits. These two
problem specifications represent the minimum set of constraints required to ensure a
nontrivial solution to this problem. Furthermore, any command that satisfies this
problem defines the performance baseline for how fast a linear system can be moved
from one state to another. Because of the fundamental importance of this problem
statement, the time-optimal control problem has been the subject of investigation for over
forty years. In this document, the time-optimal control problem will be investigated
thoroughly, and the insights gained from this investigation will be used as a springboard
for launching new strategies to solve the time-efficient control problem.

1.3 The Scope of My Investigation

The purpose of my research is to develop new and useful methods for selecting input
command profiles for linear systems. Of particular interest in this work are the time-
optimal and time-efficient commands. These are the commands that are designed to
move a system as rapidly as possible from one state to another and may be subject to an
additional set of practical constraints. By extending and integrating work from a variety
of disciplines, I have formulated a framework for deriving time-optimal and time-
efficient commands for all types of linear systems. As a requisite stepping stone for
creating this general framework, I have proposed a methodology as well as a fundamental
set of necessary constraint equations that can be used to solve the time-optimal control

y(®)

Figure 1.4: The time-optimal control problem.
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problem. Since this approach and the underlying equations are conceptually and
computationally simple, this technique proves to be effective and reliable for deriving
time-optimal commands. Additionally, with the fundamental set of time-optimal
constraint equations serving as a foundation, this approach has also proven to be effective
for deriving timne-efficient commands satisfying a variety of additional practical
constraints.

1.4 The Organization of This Document

In this document, a general solution framework for solving the time-optimal and time-
efficient control problems will be derived, demonstrated, and extrapolated. This research
will be categorized into several different sections, which are described below.

In chapter 2 of this document, a detailed survey of previous research will be presented.
This literature overview will investigate related work in the feedforward control of
flexible systems and focus on two specific disciplines: time-optimal control and input
shaping. For each of these research areas, fundamental principles will be outlined and
their relation to the problems posed in this chapter will be exposed. Chapter 2 closes
with the first statement of the general three-step solution framework that will be applied
throughout the rest of this document.

Given this background, chapter 3 will take the general solution framework from chapter 2
and apply it specifically to the time-optimal control problem. During this discussion, the
fundamental set of constraint equations that govern the time-optimal control problem will
be derived, and techniques for constructing as well as solving these equations will be

presented.

The purpose of chapter 4 is to illuminate the general time-optimal solution approach
presented in chapter 3. In order to do this, several simple mechanical systems will be
considered. For each, time-optimal command profiles will be derived using the
methodology and constraint equations outlined in chapter 3. From this demonstration,
the nature of time-optimal commands for linear systems will be revealed, and the
subtleties of the solution procedure will be exposed.

Chapter 5 of this document looks at techniques for extending the functionality of the
time-optimal solution approach to systems that have more practical performance
constraints. In particular, methods for improving the robustness and taiioring the profile
of time-optimal commands will be considered. From this investigation, it will be
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suggested that the solution approach outlined in this document is a general framework
that can be extended to systems with many different types of constraints other than
strictly time-optimality.

In chapter 6 of this document, some specifics of the solution methodology will be
considered in more detail. In particular, this chapter suggests strategies and performance
issues associated with employing a numerical optimization routine to search for optimal
command solutions. Additionally, by extending the conditions in Pontryagin's Minimum
Principle, it will be illustrated that a simple verification scheme can be developed to
guarantee the optimality of time-optimal and sume time-efficient command profiles.

In order to demonstrate the effectiveness of the ideas in this document on real systems,
chapter 7 presents the results of several experiments on a mechanical testbed. Originally
built as part of the Middeck Active Control Experiment (MACE), this hardware proves to
be an effective candidate for evaluating the usefulness of this approach due to its complex
dynamic behavior.

Given this presentation of a general solution framework and its extension and application
to many different types of systems, chapter 8 of this document summarizes the insights
and conclusions of this research.

Following the conclusions, chapter 9 lists the references considered during this work and
two appendices consider a detailed mathematical treatment of some of the issues explored
in this research. Specifically, appendix A looks at deriving a general analytic solution for
the residual vibration response to a time-optimal or time-efficient command profile. The
result of this derivation proves useful for illustrating the necessity of the time-optimal
constraint equations as well as for deriving new command robustness constraints. In
appendix B, an analytic solution for the integral of a time-optimal command profile is
derived. As discussed in previous chapters, this result assists in the rapid solution of the
problem constraint equations.
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2 Background

The problem of how to move systems rapidly from one point to another is as old as
control theory itself. Similarly, research in optimal strategies for achieving this rapid
motion dates back over forty years to the birth of optimal control. With this long history
of research, it is difficult to know where to begin to describe the state of the art. In this
section, we will move from the general to the specific. The discussion will begin with an
overview of work in the design and control of flexible systems. A large area of research
in itself, many of the recent advances in time-optimal and time-efficient control were
spawned from investigations in new techniques for controlling flexible machines. From
this point, the discussion will turn from feedback to feedforward control. Since this
document is concerned primarily with generating input command profiles, section 2.2
surveys various techniques for deriving motion command profiles for different types of
systems. Two specific command generation techniques, time-optimal control and input
shaping, have particular relevance to the work in this document. Consequently sections
2.3 and 2.4 are devoted to outlining the basic theories and the state of the art for each of
these techniques. From this background on input shaping and time-optimal control,
section 2.5 focuses on identifying the strengths and similarities of these two approaches.
Building on this comparison, it is argued that a promising opportunity for research lies in
creating a new general approach for deriving time-efficient and time-optimal commands.
Section 2.6 proposes an initial framework for this new methodology and introduces key
concepts to be developed in the rest of this document.

2.1 Design and Control of Fiexible Systems

The first step in creating a high-performance machine or system is to design and
construct the hardware. In approaching this task, the design engineer typically faces a
variety of design tradeoffs that influence the construction of the hardware and the
performance of the machine. For machines that operate in speed-critical environments,
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designers often try to maximize the speed of system response by making machine
components powerful and lightweight. At the same time, in order to minimize
problematic vibration, designers must also look to make structural components rigid.
Primarily due te space, weight, and power constraints, this is not always possible. One
strategy for overcoming this design obstacle is to modify the mechanical structure by
adding damping. With increased structural damping, vibrations settle quicker and are
less likely to degrade machine performance. One of the simplest and oldest techniques
for adding structural damping is to use a tuned vibration absorber [1]. Although this is an
old idea, the technique has evolved into a sophisticated tool and many promising
modifications to the method are continually being developed [2]. When design
considerations do not allow for this kind of hardware augmentation, the design engineer
must turn to feedback approaches to eliminate undesirable system dynamic behavior.

In the past fifteen years, research in the area of control of flexible systems has been
abundant. Targeted primarily toward boosting the performance of flexible satellites and
robots, this research has explored a wide spectrum of feedback control concepts. In his
1996 survey paper, Wayne Book [3] presents an overview of some of the work in this
field. Junkins and Kim also provide a thorough treatment of this subject in their recently
published textbook [4]. Although providing a detailed account of the work in this field is
beyond the scope of this document, some effective strategies for controlling flexible
systems can be found in [5-12]. In all of these works, and in many others, closed-loop
control strategies have been demonstrated to work effectively at preserving system
performance in the face of unwanted vibration. From this result, it can be argued that a
good control system is an essential component of a high-performance machine.
However, in some systems, such as ones where sensor feedback is unavailable, high-
performance control is not an option. In these cases, the designer must turn to
feedforward methods for meeting performance requirements. Additionally, even in
systems that employ effective controllers, feedforward techniques can commonly be used

to gain an extra measure of performance.

2.2 Survey of Feedforward Control Methods

As Wayne Book notes in [3], "our best hope to expand the envelope of feasible
performance is a confluence of open- and closed-loop controls, design innovations,
material improvements and sensor and actuator developments.” As discussed in the
previous section, researchers have taken this message to heart and work has been prolific
in both the areas of hardware innovation and closed-loop control. What should not be
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cverlooked, however, is the critical importance of open-loop, or feedforward control,
techniques for enhancing machine performance. While closed-loop control techniques
are necessary for minimizing error in the face of disturbances, they cannot always be
optimized for the task at hand. In a factory robot, for example, the same pick-and-place
task might be performed thousands of times every day. The feedback controller used by
this robot, instead of being finely tuned to effectively accomplish the specific pick-and-
place task, must likely be designed to meet such performance specs as good stability
robustness and disturbance rejection. In situations like these, the onus falls on a
feedforward controller to specify the best command that will move the robot most
effectively. From this rationale, the importance of an effective feedforward controller,
working independent of or alongside a feedback controller, is clear. This section is
devoted to presenting an overview of some of the research that has been performed in the
area of feedforward control. Much of this research can be divided into four categories:
(1) trajectory tracking, (2) command formulation using analytic functions, (3) optimal
control command formulation, and (4) time-optimal and time-efficient command
generation. The first three of these categories are concerned with deriving command
profiles for applications that are not necessarily time-critical. The last category presents
feedforward approaches catered to systems that need rapid response. In this realm of
time-efficient approaches, two specific bodies of work, time-optimal control and input
shaping, will be addressed in detail in later sections.

221 Deriving Commands for Trajectory Tracking

In automated equipment such as milling machines and pen plotters, the speed of the
system response is secondary to path-following accuracy. For situations like these,
feedforward control methods are targeted at generating motion paths that minimize the
machine tracking error. Perhaps the most common approach for achieving these
performance specifications is to use inverse dynamics. Inverse dynamics refers to the
technique for filtering input commands by the inverse of the system model so that the
system output tracks a desired trajectory despite system flexibility. Recent research in
this area has led to new approaches for achieving precise tracking in mechanical systems.
Tomizuka [13, 14], for example, proposed a technique for generating causal command
inputs to allow a system to follow a specified path. In this technique, guidelines were
presented for dealing with uncancellable zeros in the system model without causing phase
distortion in the shaped command. Tung [15] extended this theory by proposing a
technique for improving accuracy by penalizing model error more heavily for lower
frequencies. Asada [16, 17] successfully applied inverse dynamics to a flexible multiple-
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link robot and proposed an efficient computational scheme to generate the shaped
trajectories. By using an inverse dynamics approach to construct shaped commands from
a sum of sinusoids, Tu [18] also demonstrated that flexible systems could benefit from
inverse dynamics feedforward control. Additional techniques for using feedforward
control to enhance trajectory tracking performance can be found in [19-22].

222 Command Formulation Using Analytic Functions

Another approach for generating commands for systems is by using analytic functions
with known frequency- and time-domain characteristics to construct commands with
desirable properties. These techniques are often used, for example, to generate fixed-
time-length commands with reduced energy at the problematic system modes. Some of
the researchers in this area include Aspinwall [23], who proposed a technique for
minimizing residual vibration in flexible systems by generating shaped commands using
Fourier series. Wiederrich [23-26] used finite trigonometric series to generate high-speed
cam profiles to avoid exciting machine vibration. Similarly, Swigert [27] outlined a
method for minimizing modal vibration in a flexible satellite using shaped torque
commands constructed from a finite trigonometric series. Adopting a similar shaped-
function synthesis approach, Meckl [28-31] combined ramped-sinusoid functions to
minimize residual vibration from point-to-point motion in flexible systems. Some
additional techniques for constructing functions to yield desirable motion profiles can be
found in [32-34].

223 Optimal Control Command Formulation

Building on the concepts and tools developed for optimal feedback control, several
techniques have been presented for applying optimal control approaches to the generation
of input commands. Classifying this field of research as optimal control command
formulation, these approaches typically employ optimal control theory to generate shaped
commands that minimize a specific cost index such as command energy or residual
vibration. Perhaps the first application of optimal control to generate feedforward
commands for flexible systems was proposed by Farrenkopf [35]. In his work, an
analytic solution was derived for the input command that minimized structural excitation
and residual vibration in an undamped second-order system. Turner [36, 37], using a
numerical optimal-control solution technique, derived skaped commands that minimized
a weighted sum of state deviaticn and control effort in undamped, nonlinear, multiple-
mode systems. These shaped commands were constrained to produce system response
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with zero residual vibration. In later work, Eisler [38] used a similar numerical
optimization approach to find the minimum-time motion of a two-link robot with actuator
limits subject to constraints on the tracking error and residual vibration of the robot.
Parker [39] applied a dynamic programming and parameter optimization approach to
derive commands for point-to-point motion in cranes. In other work, Bhat [40-46] used a
Linear Quadratic Regulator approach to derive a closed-form solution for the minimum
energy point-to-point command for a flexible system. Last, relying on a full non-linear
model, Meckl [47] proposed a numerical optimization technique for generating
minimum-energy commands to effect point-to-point motion in flexible, nonlinear

systems.

224 Creating Time-Optimal and Time-Efficient Commands

For automated systems that require rapid motion, feedforward commands must be
designed to maximize the speed of response. Numerous methods have been proposed by
designers to create these time-optimal and time-efficient commands, and two, in
particular, are immediately relevant to the scope of this work: time-optimal control and
input shaping. Time-optimal control refers to the field of research dedicated to finding
the input command that will move a system as fast as possible from one point to another.
Much research has been performed in this area in the past forty-five years, and the
following section will attempt to present an overview of some of this work. The second
area of research to be discussed in detail, input shaping, is a field based on a strategy for
deriving time-efficient discontinuous command profiles that suppress residual vibration
and are robust to system uncertainties. Much attention has been focused on this subject
in the past ten years, and section 2.4 will attempt to give a detailed account of this

research effort.

In addition to time-optimal control and input shaping, many other techniques exist for
creating time-efficient commands. For example, some researchers [48-50] have set
conventional digital filtering techniques to the task of command profile design. Work in
this area has revealed that these filtering approaches can be effective for deriving
relatively fast commands that avoid exciting unwanted system vibration. By constructing
command profiles from a series of correctly timed pulses, other researchers [51-55] have
illustrated that rapid motion can be produced in some flexible systems without residual
vibration. These techniques and others have successfully demonstrated that many
approaches can be adopted for creating time-efficient commands for flexible systems.
The following two sections focus on two particular techniques that have demonstrated
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widespread use and acceptance: the first, time-optimal control, stands alone for its power
and generality, and the second, input shaping, gains distinction for its simplicity and
practicality.

23 Time-Optimal Control

The time-optimal control problem, as stated in section 1.2.2, is concerned with finding
the fastest possible ways to move systems from one state to another. Much of the
research in this field can be divided into two schools. The first school, comprised of
work performed primarily in the 1950's and 1960's, was concerned with developing the
underlying mathematical theory for time-optimal control. Due in part to the complexity
of these initial approaches and since energy-based control methods promised greener
pastures, work in this area was largely abandoned. More recently, perhaps in the past
fifteen years, a new school of work has formed. This new approach to time-optimal
control has been driven by expanding research efforts in the control of flexible structures
as well as new computer capabilities. The resuit of this new school of work has been the
development of new techniques for solving for time-optimal command profiles for a
small class of flexible systems. This section proposes to present an overview of the state
of the art in time-optimal control and will address both underlying principles as well as
recent advancements in this field. This discussion will begin by describing the origins of
time-optimal control as found in Pontryagin's Maximum Principle and the Bang-Bang
Principle. Approaches for applying these theories to nonlinear systems will then be
addressed followed by an overview of recent work in deriving time-optimal commands
for linear systems.

23.1 Pontryagin's Minimum Principle and the Bang-Bang
Principle

For over forty years, researchers have been investigating strategies for finding time-
optimal commands. Much of this research has resulted from Pontryagin's original
formulation and investigation of the time-optimal control problem [56]. In this original
work, Pontryagin outlines a set of necessary conditions that the time-optimal control for a
system must satisfy. Specifically, these conditions require that the time-optimal control
which transitions a system from a fixed initial state to a desired final state must
necessarily satisfy the following conditions: (1) it must satisfy the system state and
costate equations , (2) it must remain within the given actuator limits and minimize the
Hamil*tonian, and (3) it must result in a Hamiltonian value of zero over the time-length of
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the command. The mathematical details of this principle are avoided here but outlined in
section 6.2.1 of this document. Also, a comprehensive treatment of this principle,
including a detailed derivation, can be found in {57]. A less detailed overview of the
fundamentals of the principle can be found in [58]. Due to its generality, Pontryagin's
Minimum Principle proved to be a theory of far-reaching impact. Not only did it allow
researchers to make strong claims about the nature of time-optimal commands for linear
and nonlinear systems, but its result can be applied with equal efficacy to SISO and
MIMO systems alike.

Stemming from the powerful insights of the Minimum Principle, the Bang-Bang
Principle further postulates about the nature of the shape of time-optimal commands.
Phrased by Hermes [59] as follows, the Bang-Bang Principle states that "...if it is desired
to have the system change from one state to another in minimum time, then it is
necessary at all times to utilize the power available; that is, to use bang-bang control.”
With this assertion, the time-optimal command for a given system, must have a value that
always maximizes, in a positive or negative sense, at least one of the system actuators.
For a system with a single input, the time-optimal command, such as the one shown in
Figure 2.1, must always saturate the system actuator. The resulting command profile for
such a system will consist, therefore, of a series of positive and negative pulses with a
finite number of times where the command value switches between the positive and
negative limit. This observation greatly simplifies the time-optimal control problem by
reducing the solution space of possible command profiles to simply the set of possible
switch times.

Figure 2.1: A typical time-optimai command.
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232 Time-Optimal Control of Nonlinear Systems

Pontryagin's Minimum Principle provides powerful tools for assessing the time-
optimality of system commands. Unfortunately, applying these tools to the task of
deriving commands for a given system is not immediately straightforward. For very
simple systems, some analytic solutions for time-optimal commands exist [57], but in
general, commands must be derived numerically. A number of techniques have been
proposed for doing this, but all are numerically intensive and largely too unreliable to be
applied to a wide ciass of systems. The general approach for deriving time-optimal
commands typically relies on solving a two-point, boundary-value problem (TPBVP)
with one endpoint that is free in time. An iterative approach can be employed to solve
this problem, solving the state and costate equations during every iteration, in order to
find the initial costate vector that meets the problem specifications and optimality
conditions. Scrivener and Thompson [60], in their literature survey of work in this area,
discuss a number of different techniques used to approach this problem. Additional
iterative techniques for solving the TPBVP using linear programming or the shooting
methods can be found in [61, 62]. A more recent approach called switch-time
optimization (STO) is discussed in [63].

Although solution techniques are numerically complex and unreliable, many researchers
have set these algorithms to the task of deriving time-optimal commands for nonlinear
systems. Schiller [64-67], for example, derived commands for a nonlinecar multi-link
rebot and incorporated additional consiraints such as joint motion limits and obstacle
avoidance. Liu and Singh [68] used Meier's STO algorithm tc derive time-optimal
commands for nenlinear systems with improved robustness to parameter uncertainties.
Additional examples of time-optimal commands for nonlinear systems can be found in
[69, 70].

233 Time-Optimal Control of Linear Systems

When concerned strictly with linear, time-invariant systems, the claims that can be drawn
from Pontryagin's Minimum Principle can be further strengthened. First, as long as the
desired final state can be reached by an input command that remains within the actuator
limits, the time-optimal control for a linear system will exist and be unique. Second, the
three general conditions that the time-optimal control musi satisfy are not only necessary,
as was the case for nonlinear systems, but they are also sufficient. With these statements,
it can be safely postulated that, if any command profile satisfies the three conditions
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outlined in Pontryagin's Minimum Principle, it must necessarily be the unique time-
optimal control solution for a given system.

Given these powerful assertions about the nature of time-optimal commands for linear
systems, some generalizations can be made about the shape of time-optimal command
profiles. As dictated by the Bang-Bang Principle, any time-optimal command for a linear
system must saturate the system actuators from the initial time of the command until the
time that the system reaches its desired final state. After this terminal time, the time-
optimal command must then adopt the profile required to maintain the system at its
desired final state. For systems that have poles and no zeros, after the final switn, the
time-optimal command must necessarily remain at a constant value. More specifically, if
the system has any rigid-body poles, the final value of the command must be zero, and if
there are no rigid-body poles, the final command value must be set to the level required
to keep the system at its desired terminal state. The profile of a typical time-optimal
command for a system with just poles and no zeros is shown in Figure 2.2.

When a system has zeros as well as poles, the profile of the time-optimal command is
somewhat different. Again, the Bang-Bang Principle requires that the command saturate
the system actuators from the initial time to the time that the system reaches its desired
final value. However, the profile of the command after this final time can now adopt a
wider range of possible values. The only requirement for this portion of the command is
that it maintains the system at its desired final state. Consequently, since the system has
zeros as well as poles, any command profile that has the appropriate initial conditions and
drives the system strictly at the frequencies of the system zeros will not influence the
system output. As a result, any command profile that is a linear combination of the initial

Figure 2.2: A typical time-optimal command for a system
with poles.
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condition response at the frequencies of the system zeros will be a potential candidate for
the terminal component, or tail, of the time-optimal command profile. An example of a
typical time-optimal command profile for a system with poles and zeros is shown in
Figure 2.3. As illustrated, this command has two components: (1) the pulse train which
delivers the system output to its desired final value, and (2) the tail which maintains the
system output at its desired final value. Since the tail of the time-optimal command
provides an additional degree of flexibility in the possible solution space of the optimal
command profile, commands designed for both poles and zeros can often result in much
shorter system response times than commands designed for poles 2lone.

Both the time-optimal command for a system with poles and the time-optimal command
for a system with poles and zeros contain a pulse train with a finite number of switches.
Although the exact number of switches in this pulse train is not always known, some
general statements can be made to bound the possible number of switch times. By
convention, the number of switches refers to the number of times the command profile
transitions between the upper and lower actuator limits; the transitions at the initial time
and the terminal time are ignored. First, for the case where the system under
consideration has only real or rigid-body poles and no zeros, the number of switches in
the time-optimal command profile is exactly equal to n-1, where n is the number of
system poles. If the system has complex poles as well as real and rigid-body poles and
no zeros, the number of switches in the time-optimal command will be finite and have a
lower bound of n-1. In general, the exact number of switches in the time-optimal
command for systems with complex poles will depend on the desired state change; the
larger the state change, the more switches that will be required in the time-optimal
command. For systems with zeros, the minimum number of switches required in the

Figure 2.3: A typical time-optimal command for a system
with poles and zeroe.
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time-optimal command can be reduced by one for every zero in the system. For example,
for a system with real poles, rigid-body poles and zeros, the minimum number of
switches is (n-1)-r, and the maximum number of switches is n-1, where n is the total
number of system poles and r is the total number of system zeros. For systems with
complex poles as well, the lower bound on the number of switches is (n-1)-r, and the
upper bound is finite but dependent on the desired state change.

By applying these general principles about the nature of time-optimal commands for
linear systems, several researchers have made some important insights about time-
optimal command solutions for specific types of systems. In some early work, Barbieri
[71] and Dodds [72] looked at linear systems with a single undamped flexible mode and
made general statements about finding values for the command switch times without
using complex numerical search routines. Pao [73] investigated systems with damped
flexible modes and outlined basic properties as well as a set of algebraic equations that
the time-optimal commands must satisfy. Investigating new strategies for deriving time-
optimal commands for linear systems with multiple flexible modes, several researchers
[74-80] have proposed techniques for deriving time-optimal commands by solving a set
of algebraic constraint equations. These algebraic constraint equations were formulated
by making some general insights about symmetry properties of the time-optimal
commands and the mathematical interpretation of the problem boundary conditions.

Building on the initial developments about deriving time-optimal commands for systems
with flexibility, several researchers also proposed techniques for extending this work to
derive time-efficient commands with more desirable properties. In particular, several
researchers [68, 81-84] proposed methods for including additional constraint equations
into the time-optimal formulation in order to derive robust, time-optimal commands. The
resulting command profiles still displayed a bang-bang shape, but included additional
switches and a longer overall time to better tolerate systems with dynamic uncertainty.
An example of a robust, time-optimal command profile is shown in Figure 2.4.
Following a similar approach, researchers [85-89] have also explored ways to incorporate
fuel-usage constraints in order to create time-efficient command profiles with better fuel-
usage characteristics. These fuel/time-optimal command profiles, like the one shown in
Figure 2.5, displayed a typical bang-bang nature but also contained idle periods between
the actuator pulses. Last, researchers [90-93] have also explored techniques for adding
smoothness constraints to typical time-optimal bang-bang profiles. The resulting near-
time-optimal commands, while no longer retaining the bang-bang profile, excited less
vibration in the structure upon implementaticn.
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Although focused almost exclusively on systems with solely flexible modes, the
technique: developed in the past fifteen years for deriving time-optimal command share
some similarities that deserve note. First, largely due to the complexity of numerical and
iterative approaches for solving this problem, much of the recent work in this area has
focused on making statements about the general nature of optimal commands in order to
reduce the size of the solution space. From these insights, researchers have developed
algebraic equations that relate the properties of the time-optimal command to the specific
problem constraints such as zero residual vibration. Because of the simplicity of these
resulting equations, some analytic solutions for very simple systems have been proposed.
More importantly, it has been illustrated that these algebraic constraints can be solved
effectively using an optimization algorithm. Furthermore, since optimizations are not
always guaranteed to yield a global optimal solution, some researchers (77, 94-96] have
proposed a simple and method for verifying the optimality of command profiles using the
conditions from Pontryagin's Minimum Principle. This new approach, which combines
an optimization of algebraic constraint equations with a simple optimality verification
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Figure 2.4: A typical robust time-optimal command.
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Figure 2.5: A typical fueltime-optimal command.
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scheme, has been illustrated, for the case of systems with flexible modes, to deliver
solutions much faster and more reliably than conventional iterative solution methods.

24 Input Shaping

First proposed by Singer and Seering in 1989 [97, 101], input shaping is a technique for
shaping system commands to suppress unwanted system vibration. Due to its simplicity
and effectiveness, even in the face of substantial system uncertainty, this technique has
seen widespread use and development in the past decade. Originally developed as a
method for filtering input command profiles in real-time, researchers have extended this
work in many directions. Most recently, due to similarities in the command structure
between input shaping commands and time-optimal commands, researchers have applied
the basic principles of input shaping to the task of creating time-optimal command
profiles.

The purpose of this section is to present an overview of input shaping research performed
in the past decade with particular attention toward advances made in addressing the time-
optimal control problem. This section begins with a discussion of the basic theory of
input shaping followed by a survey of the various extensions that have been made to this
theory since its conception. Since the popularity of this technique is largely a measure of
its effectiveness, an attempt will be made to mention many of the recent applications of
input shaping that have been reported in the literature. Given this overview of the theory
and use of input shaping, this section will then turn to the time-optimal control problem
and outline the work that several researchers have done to apply input shaping techniques
to solve this fundamental problem.

24.1 The Basic Theory of Input Shaping

In its basic form, input shaping is a strategy for shaping command inputs by convolving
them with a sequence of impulses. The sequence of impulses, called the input shaper, is
selected based on information about the system modes of vibration. For the case when a

-l

shaped command

Figure 2.6: Generating a shaped command using input shaping.
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step command is shaped using an input shaper, the resulting command profile is a
staircase, as shown in Figure 2.6. This shaped command, if designed correctly, will
deliver the system from its initial value to its desired final value without exciting
unwanted system vibration. Since this approach relies on impulses, or sharp changes in
the command profile, the resulting commands are very time-efficient and can typically
deliver the system to its destination faster than many other methods.

Much of the value in the input shaping approach resides in its simplicity. Typically,
input shapers are designed by solving a set of algebraic constraint equations. These
algebraic equation are derived from the fact that the system must have zero residual
vibration and can be solved analytically for some simple systems. The result of these
analytic solutions are a set of special purpose impulse sequences that can be implemented
readily in a variety of systems with flexibility. Much of Singer's original work [97-101],
in addition to thoroughly investigating the basic theory and its properties, focuses on
these basic impulse sequences that are highly effective at eliminating unwanted vibration
in systems with a single flexible mode. Additional work by Hyde [102-104], as well as
Singer, looks at numerical approaches for deriving input shapers for systems with
multiple modes. These approaches typically rely on an optimization routine to solve a set
of nonlinear algebraic equations, and results have demonstrated input shapers can be
derived quickly and reliably for systems with up to around six to ten modes of vibration.

The concept of using correctly timed staircase profiles to create commands that eliminate
unwanted vibration, although fully explored by Singer, was originally presented by Smith
[105, 106] about forty years ago. Known as posicast control, this technique presented
guidelines for timing the transitions in a staircase command profile using knowledge
about the system vibration modes. Since its original presentation, many researchers {107-
111] have illustrated that these commands can produce time-efficient and vibration-free
motion in flexible mechanical systems. A primary advantage of Singer's input shaping
over posicast control is the use of robustness constraints to yield commands that can still
perform effectively in the face of system uncertainty. The robustness constraints rely on
taking the derivative of an analytic expression for system residual vibration and yield
command profiles with a longer time-length but better tolerance to system uncertainty.
Because of this inherent robustness, input shaping has seen much success when applied to
a wide class of flexible systems with varying degrees of uncertainty.
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One way to gain insight into the principles and operation of input shaping is to consider
its interpretation in several different domains. Figure 2.7 offers a schematic of how input
shaping can be interpreted in four different domains: (1) the time domain, (2) the
frequency domain, (3) the Laplace domain, and (4) the discrete domain. For the purposes
of this discussion, consider a step command shaped by an input shaper consisting of two
impulses in the time-domain. The resulting shaped command, which is a two-step
staircase, can then be applied to either an open- or closed-loop flexible system to produce
output motion without residual vibration. In the frequency domain, the input shaper
resembles a notch filter. If the magnitudes and the times of the impulses in the sequence
are selected correctly, this notch will align with the resonant frequency of the system, and

Figure 2.7: The interpretation of input shaping in four different domains.
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the resulting shaped command will excite little vibration at this mode. In the Laplace
domain, the input shaper contains an infinite number of zeros placed at periodic intervals
along the imaginary axis. I{ the shaper is designed correctly, the lowest frequency zeros
of the shaper will rest at the identical location of the system complex poles. Since these
shaper zeros cancel the system poles, the system response will display no vibration at the
canceled mode. by selecting a sampling interval coincident with the impulse spacing in
the input shaper, a discrete domain representation can also be formulated. As shown in
Figure 2.7, the input shaper consists of a pair of complex zeros and an equal number of
poles at the z-plane origin. As in the Laplace domain, when designed correctiy, these
zeros exactly cancel the system poles, resulting in a system response with no problematic
vibration.

Now, in the case where input shaping is designed with enhanced robustness, the same
multi-domain interpretation can also be applied. In the time-domain, robust input shapers
typically require more impulses in the shaper and produce a staircase command with
more steps. This results, in the frequency domain, in a notch filter with a wider notch. In
the Laplace and discrete domains, this enhanced robustness is manifested by the presence
of additional zeros located at or near the frequencies of the system poles. Typically the
number of zeros in the shaper and their proximity to the system poles can be used to
tailor the level of robustness required in a given system.

242 Extensions to the Input Shaping Theory

Research in the past decade has led to many extensions of the basic input shaping theory
in many different research areas. These areas of active research include: (1) developing
new techniques for deriving shaped inputs, (2) proposing different strategies for tailoring
the command robustness to system uncertainty, (3) implementing input shaping in an
adaptive framework, (4) proposing new kinds of constraints on shaper performance such
as system deflection and fuel usage, and (5) applying input shaping techniques to
improve trajectory tracking. This section will attempt to give an account of much of the
work that has been performed in these areas to date.

Perhaps the most active area of input shaping research in recent years has been in the
realm of new derivation strategies for shaped commands and impulse sequences. Many
researchers have explored a range of new derivation tools as well proposed new types of
sequences for reducing vibration in flexible systems. In particular, several researchers
have proposed strategies for using zero-placement in the discrete domain [112-114] as
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well as the Laplace domain [115-117] for deriving input shapers for both single- and
multiple-mode systems. Additionally, researchers such as Singhose and Rappole have
investigated specific classes of shaped commands and proposed analytic expressions and
design heuristics to aid in the derivation of certain types of impulse sequences [118-125].
By building on a representation proposed by Singer [99] called vector diagrams,
Singhose described new strategies for deriving impulse sequences using graphical
methods [126-129]. By modifying constraints to allow for negative impulses, Rappole
and Singhose have also illustrated that shaped commands can be shortened for some
systems and still effectively suppress unwanted vibration [130, 131]). Crain and Singhose
have investigated properties of two-mode shapers and suggested guidelines for their
construction [132, 133). In recent work, Pao [134] presented new techniques for deriving
input shapers for systems with multiple actuators, and Singhose [135] has applied neural
nets to the task of creating input shapers.

Another active area of research in the field of input shaping has been formulating new
methods for improving the robustness properties of shaped commands. In a technique
proposed by Singer [136], a method was outlined for better controlling shaper robustness
by explicitly specifying problem constraints at sampled frequencies in the frequency
domain. In a related approach, Singhose [137, 138] proposed that command robustness
could be better tailored to system uncertainty by designing input shapers that better place
shaper zeros at and near problematic system frequencies. The resulting sequences, called
multi-hump shapers, can then be incorporated into an optimization strategy to specify
precisely the desired robustness of a given shaper [139, 140]. In more recent work, Pao
[141] has suggested an approach for better tailoring input shaping robustness to known
uncertainty in the damping and frequency of the flexible modes of a system.

Although input shaping was originally developed for linear, time-invariant systems, many
researchers have investigated adaptive implementations of input shaping to better apply
the technique to systems with time-varying and configuration-dependent dynamics. In
particular, Khorrami [142] employed a nonlinear controller and a single-mode shaper to
eliminate vibration on a two-link flexible arm. In this approach, a real-time FFT
algorithm was used to identify system modes and update both the coniroiler and shaper
parameters adaptively. In a similar approach, Magee and Book [143-146] employed an
adaptive approach to implement a two-mode shaper on a two-link robot. Using analytic
solutions combined with an interpolated lookup table, Rappole [118] proposed another
method for implementing input shaping adaptively on a two-link flexible robot. Last, in
work by Tzes [147-149], an adaptive input shaping scheme was presented that uses a
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non-collocated controller with acceleration feedback and a real-time frequency
identification scheme. In this case and the others mentioned, input shaping was
demonstrated to effectively produce the desired machine motion without residual
vibration in the face of changing system modes.

By appending the basic input shaping equations with new types of constraints, recent
research has revealed that a variety of shaped commands can be created with certain
desirable properties. For example, for some systems it is desirable to regulate the amount
of deflection experienced by a system during motion. By incorporating this condition
into the input shaping formulation, Banerjee and Singhose derived new types of
deflection-limited shaped commands [150-153]. Similarly, in some systems with limited
fuel, command profiles with better fuel usage characteristics are required. By modifying
the command structure tc include idle periods, Singhose developed a new class of shaped
commands with desirable fuel-efficient properties [154-156]. Last, by combining both
fuel-efficient command characteristics with deflection limiting constraints, recent
research has also revealed that commands can be created with both of these desirable
properties [157, 158].

Although not specifically designed with the task of trajectory following in mind, the
vibration suppression properties of input shapers have led many researchers into
investigating the effectiveness of shaped commands for tracking applications. Work in
this area has revealed that certain types of shaped commands can yield better trajectory
following performance in flexible systems than unshaped commands [159-162].

243 Applications of Input Shaping

Due to its ease of implementation and robustness to system uncertainty, input shaping has
been applied with much success to many types of open- and closed-loop systems. As an
area of particular interest, many researchers have investigated the interaction of shaped
commands with closed-loop control methodologies. Specifically, by applying input
shaping to a controlled two-link flexible robot arm, Hillsley and Yurkovich [163, 164]
noted that the use of input shaping with an endpoint-feedback controller provided
superior performance over each technique alone. Similarly, Khorrami [165, 166] noted
that, when combined with a nonlinear feedback controller, input shaping proved effective
at enhancing the performance of another two-link flexible robot. Lim [167] also
demonstrated success when integrating input shaping with high-performance control.
Finally, although input shaping was designed to be a strictly feedforward technique,
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several researchers [168-172) have shown enhanced system performance when a shaper
is included inside the feedback loop.

Out of the many possible applications for input shaping, two primary application areas
that have benefited from input shaping techniques are flexible robots and flexible space
structures. For example, in two early applications, Christian [173] and Yurkovich [174]
demonstrated the effectiveness of the technique on multi-link flexible robots. Magee and
Book [1785, 176] also applied input shaping with success to reduce vibration in a Schilling
manipulator. In the area of flexible space structures, Singh [177, 178] demonstrated ways
to reduce vibration in 3-d slewing maneuvers of flexible spacecraft by applying input
shaping. Additionally, Banerjee [179] successfully implemented input shaping on a
model of a long spaced-based antenna, and Chang [180] collected experimental results
from a satellite testbed in 1-g. In more recent experimental work, Tuttle [181]
demonstrated the effectiveness of input shaping on space-based systems by collecting
data from an experimental testbed flown aboard the Space Shuttle Endeavour in March of
1995.

In addition to flexible robots and space structures, input shaping has seen implementation
on a variety of other system tvpes. Some of the applications that have been reported in
the literature are summarized here. In order to eliminate measurement-corrupting
vibration in coordinate measuring machines, several researchers [182-187] have enlisted
input shaping. Additionally, input shaping has also seen success when applied to cranes
for eliminating swinging in the payload during operation [188, 189]. As a testament to
the wide applicability of this technique, researchers have demonstrated success when
using input shaping with such applications as force control [190, 191], spherical motors
[192], and fluid-pouring systems [193]. Other examples of input shaping applications
can be found in [194-197].

In addition to applying input shaping to a wide class of systems, several researchers have
drawn comparisons among input shaping techniques and other feedforward control
approaches. For example, some results presented by Bhat [41] compared input shaping,
optimal-control techniques, and Fourier synthesis and concluded that all techniques were
effective at reducing system vibration since they placed the shaped command zeros at the
system poles. Kwon [198] and Rattan [159] also drew some comparisons between input
shaping, digital filtering, and inverse dynamics, and Wie [199] looked at the performance
of input shaping versus closed-loop techniques. In other work, Pao [200] and Singhose
[201] made comparisons among different input shaping techniques, and Singer [98, 202],
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Singhose [203], and Bodson [204] compared input shaping to digital filtering. Research
results revealed that, although input shaping is inherently a digital filtering technique,
conventional digital filters, since they are not intended for mechanical systems, cannot
equal the performance of input shapers.

244 Input Shaping and Time-Optimal Control

In Singer's original formulation, input shaping was intended to be used for shaping
arbitrary actuator commands with a sequence of impulses. Because the impulses in this
sequence were constrained to be positive in amplitude, the resulting transfer function of
the shaped command, in addition to having reduced energy at the system natural
frequencies, was guaranteed never to exceed unity gain. Consequently, the resulting
shaped commands had the desirable property of eliminating residual vibration in the
modeled system modes while not exciting unwanted vibration in unmodeled system
modes. By relaxing the constraint that impulse amplitudes be positive, Singer [99]
illustrated that shorter commands could be derived that still cancelled vibration at the
modeled system modes. Singhose [205, 206] further demonstrated that the same input
shaping constraint equations could be used to derive bang-bang command profiles for
flexible systems. By comparing these bang-bang commands to traditional time-optimal
command profiles, it was revealed that they were indeed time-optimal [207, 208]. From
this work, it became clear that the input shaping equations and solution approach,
arguably more simple than conventional techniques, could now be used to derive time-
optimal commands for linear systems with flexible modes.

In addition to providing a much more convenient procedure for finding time-optimal
commands, the similarities between input shaping and time-optimal control suggested
possible methods for enhancing the performance of time-optimal commands. In
particular, by applying the same robustness strategies originally developed for input
shaping to time-optimal commands, researchers [95, 209-211] illustrated that time-
optimal command profiles with improved robustness could be derived easily. Work by
Pao and Singhose [207] also revealed that the robust, time-optimal command for a certain
system was equivalent to the time-optimal command for the same system augmented with
additional poles at the system modes of vibration. Furthermore, by adapting input
shaping insights to the time-optimal control problem, Singhose [212] developed new
methods for creating time-optimal commands with better fuel-usage properties, and Pao
[213] proposed a simpler analytic procedure for creating bang-bang commands that were

near time-optimal.



CHAPTER 2

25 The Next Step

As the profusion of research outlined in this chapter indicates, considerable work has
been done in the area of feedforward control, and, in particular, in the area of creating
time-optimal and time-efficient commands. In the case of timec-optimal control, many
algorithms have been developed for deriving command profiles for a wide range of
systems. Built on the strength of Pontryagin's Minimum Principle, these approaches can
be applied to many kinds of linear and nonlinear systems without loss of generality.
Unfortunately, due the nature of the constraints in Pontryagin's principle, iterative search
routines can be numerically intensive and solutions can be elusive. Largely due to this
inherent complexity, these types of solution approaches have seen limited application on
complex systems. More recently, as a product of research in the area of flexible systems,
new methods have been presented for creating time-optimal commands for systems with
flexible modes. In these techniques, researchers developed new types of algebraic
constraint equations that allowed for easier solution of the time-optimal control problem
for some simple linear systems with flexibility. Following a similar strategy, but
approaching the problem from a different field of research, input shaping has recently
proven effective for creating time-optimal command profiles as well. Originally
designed to suppress residual vibration in flexible systems, the input shaping theory relies
on solving 2 set of constraint equations that describe the vibration characteristics of the
system. Using these same equations, but with different requirements on the command
amplitude, input shaping has yielded time-optimal solutions for linear systems with
flexibilitv. This approach, since it relies on a set of simple algebraic equations, is both
numerically and conceptually simple and has been demonstrated to effectively reduce
vibration in many different types of systems. Furthermore, since the technique can be
easily augmented with additional constraints, many researchers have successfully
developed time-efficient commands with a range of enhanced qualities, such as improved

robustness and fuel efficiency.

Research in the past haif-century has made considerable progress investigating the
creation of time-optimal and time-efficient commands. General but complex algorithms
have been proposed to solve the time-optimal control problem, and many simple solution
strategies have been developed for systems with flexibility. What is yet uﬁavailable.
however, is a simple approach that can be applied with complete generality to all types of
linear systems. Such an approach should combine the simplicity, practicality, and ease of
implementation of input shaping with the generality and strength of Pontryagin's
Minimum Principle. As summarized in Table 2.1, recent work has unearthed solutions
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for the time-optimal control of linear systems with flexibility and, in some cases, rigid-
body modes as well. These new solutions are straightforward to derive since they depend
on a simple set of constraint equations. The work in this document outlines a new
solution method that follows a similar simple approach but can be applied to systems
with any combination of linear dynamics. This approach retains the simplicity of input
shaping, but can also be extended to a much broader class of systems. Additionally, since
this approach builds on the input shaping method, it can be easily adapted to create time-
efficient commands with different desirable properties.

Table 2.1: The types of linear system dynamics addressed by
time-optimal command derivaticn approaches.

26 A New Approach for Creating Time-Efficient and
Time-Optimal Command Profiles

As outlined in the previous section, the purpose of this document is to present a new
practical approach for deriving time-optimal and time-efficient command profiles for all
types of linear systems. This approach must be general enough to apply to a wide class
of systems and simple enough to allow for quick and effective solutions. Furthermore,
this approach, if truly general, must be able to encompass the results previously reported
in the literature for specific solutions to the time-optimal and time-efficient control
problems. Although the details of this methodology will not be presented until later
chapters, the overall solution framework can be summarized in three steps. Originally
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presented in [214], these three steps prescribe a general procedure that can be used to find
all types of time-optimal and time-efficient commands and can be described as follows:

Step 1: Select a candidate command profile.

Time-optimal and time-efficient commands represent a special subclass of
optimal command profiles designed to move systems rapidly from one point to
another. As a result, they all have similarities in structure that can be leveraged to
better find a solution. Specifically, as discussed in section 2.3.3, time-optimal
and time-efficient commands are typically composed of a staircase or pulse train
with a finite number of discontinuities. In some cases, namely for systems that
have zeros, this pulse train or staircase can be followed by a tail made up of a sum
of exponential terms. Due to this unique construction, the profile of these
commands can typically be described completely by a small number of
parameters. The solution space of these parameters, then, outlines the entire
family of solutions for the optimal command profile. As will be illustrated in the
rest of this document, navigating the solution space of possible command profiles
using a small number of command parameters greatly reduces the computational
complexity of this problem. As a result, solutions for time-optimal and time-
efficient commands are easy to identify and implement.

Step 2: impose the problem constraints.

Given a parameterized analytic expression for a candidate command profile, the
next step toward finding an optimal solution is imposing the problem constraints.
Typically, the problem statement, such as the time-optimal and time-efricient
control problem statements outlined in section 1.2.2, specifies the exact nature of
the constraints required for a specific problem. These constraints, however, are
most commonly expressed as conditions on the system performance in response
to the input command. For example, in the case of the time-optimal control
problem, it is required that the system output transition by a specified amount and
come to rest. In order to explore the solution space of possible command profiles
that meet these conditions, these constraints on the performance of the system
output must first be translated into constraints on the command profile itself. This
expression of the problem constraints in terms of the parameters that describe the
input command is very much at the heart of this approach. In subsequent
chapters, it will be illustrated how a minimum set of constraint equations can be
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derived to bound the optimal solution space. As will be discussed, these
equations are algebraic and of manageable complexity and, consequently, allow
for rapid and reliable solution.

Step 3: Solve and verify.

Given a family of candidate command profiles and a set of properly formulated
constraints that structure the solution space, the only remaining problem is solving
the constraints to find the optimal solution. For some very simple systems, the
problem constraiats can be solved analytically to yield an optimal command
profiie. In most cases, however, solution requires a numerical optimization.
Since optimization algorithms can be vulnerable to suboptimal local minima, an
effective solution strategy should also provide a means for verifying the
optimality of the result. As will be discussed in chapter 6 of this document, by
using the conditions prescribed by Pontryagin's Minimum Principle, not only can
solutions for time-optimal and time-efficient commands be derived quickly and
reliably, by they can also be verified as optimal for certain classes of problems.

With this three-step procedure in place, the following chapters will illustrate in detail how
this approach can be applied to derive optimal command profiles. However, faced with
the vast array of possible solutions for time-optimal and time-efficient commands, an
investigation strategy must first be adopted to direct this research effort. To better
understand this development approach, first consider Figure 2.8. This figure prescnts a
schematic representation of the possible solution space of optimal command profiles. As
the coordinate frame in the figure indicates, this solution space can be measured along
many different performance axes such as system response time, command robustness to
system uncertainty, and fuel usage. Since this research is concerned strictly with time-
optimal and time-efficient commands, of particular interest is the family of solutions that
optimize the system response time. As depicted in the figure, one can imagine that these
types of solutions are bounded on one side by the time-optimal control solution. This
solution delineates the fastest possible point-to-point response of a given system. By
incorporating additional problem constraints, commard profiles can build on this time-
optimal foundation to create many different classes of commands that are not strictly
time-optimal but have different desirable properties. Examples of these time-efficient
commands include robust, time-optimal commands, fuel efficient commands, and input
shaping commands. In order to select a place to start in searching this vast solution
space, it is a logical choice to begin with the strict time-optimal problem. Not only does
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this problem represent a well-defined point in the solution space, but it also defines a

reasonable performance baseline from which all other time-efficient commands can be
referenced.

Given this argument, the development of the solution approach presented in this
document will proceed as follows. First, chapter 3 will apply the general framework
outlined in this section to the task of solving the time-optimal control problem.
Constraint equations will be derived and a solution methodology will be detailed that can
be used to find time-optimal solutions for all types of linear systems. Chapter 4 will
elucidate this framework with a few simple examples. From this point, chapter 5 will
focus on expanding the problem statement to include additional desirable constraints on
command performance. Suggestions will be made and examples will be presented for
appending the basic set of time-optimal constraint equations with new constraints that
yield commands with enhanced properties such as improved robustness. From this
development, it is hoped that the methodology presented in this document will be seen as
not only as a practical solution to the time-optimal control problem but also as an
expandable framework for building a larger class of more desirable time-efficient
commands.

Figure 2.8: The optimal command profile solution space.
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3 Creating Time-Optimal Commands for
Linear Systems

This chapter outlines a general procedure that can be used to derive time-optimal actuator
command profiles that will transition a system from one rest state to another as fast as
possible. In this derivation, it is assumed that the optimal command will deliver the
system from a known initial rest state to a desired rest state without exceeding the
specified actuator limits. Furthermore, it is assumed that the given system behavior can
be represented perfectly by a linear system model. Given these assumptions, the three-
step procedure outlined in the previous section will be used to derive time-optimal
commands. Once it has been illustrated that this procedure can deliver reliable solutions
to the time-optimal control problem, later chapters will suggest how practical constraints
can be incorporated into this framework to yield more desirable optimal command
profiles.

The development in this chapter will proceed as follows. First a complete description of
the time-optimal solution approach for linear, SISO systems will be presented. This
presentation will follow the three-step framework described in section 2.6. In step one of
this framework, a general parametric equation will be defined to represent all of the
candidate time-optimal command profiles. In the second step, a set of equations will be
derived to impose the constraints established in the problem statement. These equations
will compose thc minimum set of necessary constraints required to properly bound the
time-optimal solution space. In the third and final step, recommendations will be made
for solving the constraint equations in order to extract the desired time-optimal command
profile for a given system. With this derivation complete, section 3.4 will turn to the
specific solution of the time-optimal control probiem for systems with only denominator
dynamics. This particular solution, although only applicable to a limited class of linear
systems, proves to be extremely useful for its simplicity. Finally, following a brief
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discussion about the influence of nonminimum phase zeros on the nature of the optimal
command profiles, an overview will be presented of the equations and solution approach
presented in this chapter.

31 Step 1: Select a candidate command profile.

As discussed in section 2.3.3, Pontryagin's Minimum Principle and the Bang-Bang
Principle dictate that the time-optimal command profiles for linear systems necessarily
have a certain structure. For systems with no zeros, this structure is a simple pulse train
with a finite number of pulses. For systems with both poles and zeros, the time-optimal
command consists of a pulse train followed by a tail that is a linear combination of the
responses at the frequencies of the system zeros. Figure 3.1 illustrates a typical time-
optimal command profile for a system with any type of linear dynamics. As this figure
suggests, the structure of this command can be described by a small number of
parameters such as the switch times, the switch amplitudes and the amplitudes of the
components in the tail. More accurately, by defining some variables to represent these
values, an analytic expression for a candidate time-optimal command profile can be

written as
u(t)= Y a;l(t—t,)+ 3 ce” " Ut-t,), 3.1
=0 j=!

where 1(t) is the unit step command and

a = the amplitude of the steps in the pulse train,

, = the switch times of the pulse train,

Figure 3.1: A typical time-optimal command profile.
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¢, = the coefficients of the exponential terms in the command tail,
z = the system zeros,

n = the total number of switches, excluding the first, and

r = the number of system zeros.

Note that, since the values of the system zeros, z;, can be complex, the coefficients, c;,
corresponding to these complex zero values must also be complex so that the value of the
command, u(t), is purely real. Using the same notation defined above, the Laplace
Transform of the candidate time-optimal command can be expressed as

UGs) =1§°:aje‘“" +e™ 2 5 (32)
§j=0 i=1 ST Z;

Given a linear system model, the number of system zeros, r, and their values, z;, can be
completely determined. Also, since the pulse train of a time-optimal command must
always saturate the system actuators, the specified system actuator limits can be used to
directly determine values for the step amplitudes, a,. Consequently, for a given time-
optimal control problem, the only unknowns that remain in equations 3.1 and 3.2 are the
number, n, and values of the switch times, t;, and the tail coefficients, c;. As the
following sections illustrate, if the problem constraints can be expressed in terms of these
unknown command parameters, a solution algorithm can be employed to identify optimal
values for the command profile.

3.2 Step 2: Impose the problem constraints.

As outlined in section 1.2.2, the time-optimal control problem places a strict set of
constraints on the system response to a time-optimal command profile. In order to
understand how these constraints influence the selection of an optimal command profile,
they must first be expressed mathematically in terms of the parameters that define the
input command. Additionally, to avoid over- or under-constraining the problem solution,
the resulting constraint equations should represent the minimum set of necessary
conditions required to characterize the desired time-optimal command soluticn.

From the time-optimal problem statement, three distinct constraints can be identified.
The first of these constraints requires that the system begin and end at a rest state. This
constraint, labeled the dynamics cancellation constraint, necessitates that any dynamics
excited by the time-optimal input command must also be canceled by the command by
the time the system reaches its final value. The second constraint imposed by the time-
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optimal control problem requires that the boundary conditions be satisfied. In particular,
this constraint specifies the initial time of the time-optimal command and demands that
the time-optimal command transition the system output by the desired amount. The third
and final constraint imposed by the time-optimal control problem necessitates that the
time-optimal input command never exceed the system actuator limits. This constraint,
for obvious reasons, is called the actuator limits constraint.

In the remainder of this section, algebraic expressions will be derived to capture each of
these three problem constraints. For each of these three cases, the exact intention of the
constraint will be expressed mathematically and related to the parameters that define the
candidate command profile in equatior 3.1. Following this derivation, the resulting
constraint equations will then be used to solve for the unknown values of the command
profile that best satisfy the time-optimal control problem.

321 The Dynamics Cancellation Constraint

The dynamics cancellation constraint is largely responsible for the effectiveness of the
solution approach outlined in this chapter. Based on the intuitive concept of pole-zero
cancellation, this section will outline how a powerful set of algebraic equations can be
formulated to prevent time-optimal commands from exciting unwanted system dynamics.
These equations, although general enough to apply to all types of linear systems, are
simple enough to ailow for fast implementation and solution. Furthermore, as iilustrated
by the detailed derivation in Appendix A, these equations can be shown to be necessary
conditions for any time-optimal command profile. This section will proceed by first
deriving the dynamics cancellation constraint equations for systems that have no repeated
roots. Following this derivation, the more complex yet general equations for systems
with repeated roots will be presented. For each derivation, the resulting equations will be
presented in both standard mathematical form as well as a convenient matrix notation to
allow for easy implementation.

3.21.1 The Dynamics Cancellation Constraint Equations for Systems
with No Repeated Roots

The dynamics cancellation constraint is a mathematical statement of fact that the time-
optimal command must move the system from one point and bring it to rest at another.
Previous research [48, 105, 113-115, 146] in the area of flexible system control has noted
that, for the case of flexible modes, this constraint can be impiemented by designing an
input command that has zeros at the complex system poles, as depicted in Figure 3.2.
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More specifically, Bhat [41] writes, "the necessary and sufficient condition for zero
residual vibration is that the Laplace transform of the time-bounded control input have
zero component at the system poles." This is an equivalent statement to the zero-
vibration condition in Singer's input shaping approach [97] and can be used to derive a
set of constraint equations governing the optimal command solution. However, unlike
traditional command shaping approaches, the work in this document will illustrate that
the dynamics cancellation principle applies not only to oscillatory modes, but to real
modes, rigid-body modes, and minimum-phase zeros as well. Furthermore, by
performing a complex derivation of the linear system response to a time-optimal
command, Appendix A demonstrates that the dynamics cancellation equations developed
in this section are necessary conditions for the time-optimal control of a linear system.

Another view of the dynamics cancellation requirement for optimality is illustrated in
Figure 3.3. In this illustration, the optimal input command for a given system, G(s), is
generated by filtering a step command using a shaper, D(s). In order to yield a shaped
command, u(t), that matches the time-optimal command profile of Figure 3.1, this shaper
must necessarily be identical to the impulse response of the time-optimal command
profile, where the time-optimal impulse response, d(t), is defined as the derivative of the
time-optimal command, u(t), itself. In the ideal case, the time-optimal command would
move the system output from one point to another instantaneously. Therefore, the most
desirable system response would be the one that most resembles, in some sense, a step

Figure 3.3: Another view of the dynamics cancellation requirement.
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command. Given that the input to the shaper, in the context of Figure 3.3, is also a step
command, it can be argued that the time-optimal shaper, D(s), would be the nne that
exactly cancels the dynamics of the system, G(s). In general, finding a D(s) to exactly
cancel G(s) is not often possible. However, since the time-optimal impulse response is
the derivative of the time-optimal command profile, u(t), it will necessarily contain a
series of impulses. Additionally, for the case of systems with numerator dynamics, it will
also contain a tail with dynamic components at the location of the system zeros. If
designed correctly, the tail of a time-optimal command will cancel any system numerator
dynamics by placing poles at ihe locations of the system zeros. This can be seen in
equation 3.2, by observing that the value of U(s) is infinite when s is equal to the system
zeros. The sequence of impulses from the pulse train of the time-optimal command,
however, will have a Laplace Transform with an infinite number of zeros. If designed
correctly, the time-optimal command can be constructed to place some of these zeros at
the system poles. The impulse response of the time-optimal command will be the one
that has exactly one zero at every system pole.

With this understanding, we will now proceed to derive the dynamics cancellation
constraint equations for linear systems with no repeated roots. The goal of this derivation
is to compose a set of simple equations that ensure that the time-optimal command has
poles that cancel the system zeros and zeros that cancel the system poles. As described
above, by properly constructing the tail of the candidate time-optimal command, the
resulting command profile is automatically guaranteed to contain poles at the system
zeros. The task at hand, then, is to fashion constraint equations that ensure that the time-
optimal command also has zeros at the system poles. Since the location of the command
zeros are determined by the switch times of the optimal command profile, these equations
should provide a mathematically simple representation for relating the known system
dynamics to the switch time values in the candidate time-optimal command.

We will begin the derivation from the fact that, as described above, the impulse response,
d(t), of the time-optimal command, u(t), must be designed to have zeros at the locations

of every system pole:
.B{d(t)}L:P =D(s),., =0. (3.3)

fori=1,2, ..., m, where p, is the i-th sysiem pole, and m is the total number of system
poles. This is equivalent to saying that the Laplace Transform of the derivative of the
time-optimal command must have exactly one zero at each of the system poles:
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d
— = =0. 34
.8{ ™ u(t)}Lp sU(s)le 0 34)

By substituting the expression for U(s) from equation 3.2 into this result, the following
algebraic or, more specifically, trigonometric equation can be derived:

n . _ rcs
Yae™ +e™y ——
=0 =1 S =2

=0, 3.5)

=Py

fori= 1,2, .. m. This expression is the general form of the dynamics cancellation
constraint for linear systems with no repeated roots. It expresses the requirement for rest-
to-rest motion in terms of the parameters that define the command profile. In order to
properly constrain the search for a time-optimal command profile, this expression must
be evalnated for every system pole, p,, including real, complex, and rigid-body poles. For
rea! and rigid-body poles, this expression will yield a single real-valued constraint. For
complex pole pairs, this equation will yield the identical result for each complex-
conjugate pole. This result, however, will have a complex value, and its corresponding
real and imaginary parts must both be set to zero to properly enforce the constraint.

To better facilitate the computer implementation of this dynamics cancellation
requirement, a simple matrix expression can be defined that imposes the constraint in
equation 3.5 for every system pole. Before this expression can be presented, however, a
convenient set of vectors must first be defined:

P,

s= =system poles, (3.6)

a= =pulse train step amplitudes, 3.7

c= =coefficients of the command tail, (3.8)

z=[z, 2z, - z,|=system zeros,and (3.9
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t=[t, t, - t,]=command switch times, (3.10)
where,

n = the total number of switches, excluding the first,
m = the total number of system poles, and
r = the total number of system zeros.

Given these vector definitions, the matrix form of the dynamics cancellation constraint
can be written as

exp(—st)a + M. *exp(-st, ) =0, where 3.11)
M=(1/(1-(1./s)z))c. (3.12)

Note that, in these expressions, the function exp() refers to the element-by-element
exponential rather than the matrix exponential, the operator .* refers to the element-by-
element multiplication, and the operator ./ refers to the element-by-element division.
These equations can be easily entered into a linear algebra software package, such as
Matlab [2!5], to evaluate the dynamics cancellation constraints. Substituting the vector
definitions into these matrix equations and calculating the result will yield a column
vector with m elements. Each of these elements represents the value of equation 3.5
evaluated at each of the m different system poles.

An example of the Matlab code required to implement these constraints is shown in Table
3.1. As this listing illustrates, only three lines of code are required. Additionally, since
the equations are algebraic and implemented as vector operations, computational
requirements are small. In this code, the values of all the constraints are returned in a
vector. This vector, which can contain both real and imaginary components, must be
completely zero for the command that satisfies the time-optimal control problem. Note
that, since the constraint equations for complex pole pairs are identical, only one of the
poles in the pair needs to be evaluated for the dynamics cancellation requirement. Also,
since the dvnamics cancellation constraint for the first system rigid-body mode is
automatically satisfied by the correct selection of the pulse train amplitudes, it can also be
ignored in constraint calculation. This point can be better seen by evaluating equation
3.16 for the rigid-body pole, that is, for s = 0.
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Table 3.1: Matiab code to implement the dynamics cancellation constraint
for systems that have no repeated roots.

Given the vectors, s, a, ¢, 2, and t defined according to
equations 3.6 through 3.10, this code calculates the
dynamics cancellation constraints for systems with no
repeated roots and returns them in the vector dc_constr.
Any time-optimal command must necessarily yield a value
of zero for each of these constraints

oP oP dP dP oP oP

n = length(t);
M= (1./7(1-(1./s)*z)) *¢c;
dc_constr = exp(-s*t)*a + M.*exp(-s*t(n));

3.21.2 The Dynamics Cancellation Constraint Equations for Systems
with Repeated Roots

For systems with repeated roots, the dynamics cancellation equations prove to be
somewhat more complex to express. Despite this added notational complexity, these
equations still retain the computational simplicity of the equations for systems with no
repeated roots. As a result, solutions derived using these equations can still be found
quickly and reliably. Furthermore, due to their unique properties in the Laplace doinain,
these constraints will prove valuable in later chapters for deriving time-efficient
commands with enhanced robustness to system uncertainty. The derivation in this
section will proceed by first developing the general mathematical equations and then a
convenient matrix expression to impose this constraint. In order to illustrate the
manageable implementation complexity of the result, an example of possible computer
code to express these equations will also be presented.

The dynamics cancellation constraint for systems with nonrepeated poles is given in
equation 3.5. For systems that have more than one pole at a single location, there must be
one unique constraint equation for every pole in the system. For the first pole at a
location, equation 3.5 still applies. However, for additional poles, a new type of
constraint is required. In general, for a system that has q. repeated poles at a single
location, the required constraint equations for each of the poles are

pole I: sU(s)L:p' =0

pole2: dBUB) g

ds s=p,
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pole 3: %nl =0
=Py

-
poleq: T CUG) g (3.13)

ds‘l'r'|
=Py

where U(s) is the Laplace Transform of the candidate time-optimal command, u(t), and p,
is the value of the repeated system pole. By substituting the expression for U(s) in
equation 3.2, we can rewrite these equations as

poe 1 [22—!—][0

i= =187%

(XK}

=0, (3.14)

‘Ir‘l n _ r cs
pole g iﬁ[Zaje Ype Yy ]

4 —e—17Z.
=0 =1
j i i dly=p,

where the variables in this expression are defined zs in section 3.1. Therefore, if a system
has a pole of multiplicity 3 at a certain location, p;, then three equations in this series
must be used te properly sp~-ify the dynamics cancellation constraint for that pole
location.

Now, in order to implement these equations, the analytic solution for the multiple
derivative in the dynamics cancellation constraint, as in the above equations, must be
found. This can be done more easily by placing the above equations in the form

d(‘li-!) n - . r c.Z.
—ds(q"” j=Zoajc ' e -; c’.+s—_LzLj =0. (3.15)
=Py

Aithough not shown here, a little math will illustrate that this expression is identical to
the ones in equation 3.14 for the case where q;, = 1, 2, ..., q, where q represents the
multiplicity of each system pole, p,. For example, for a system with two identical poles,
the first poie, p,, would have q,=1, and the second, p,, would have q,=2. Any
nonrepeated system poles would have g, = 1. Evaluating the derivative in this equation
analytically yields equations of the following forms:
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For a single pole at s = p,, that is for q;=1, equation 3.15 becomes

[Zaje M te Z(c +S—Lz)]|‘, =0.

j=0

Similarly, for a second pole at s = p;, q,=2, equation 3.15 becomes

2 - e c.z. cz
Yate™ +e™ Y |ct, +—2t, +—L1
i=0 i (s—z;)) ° (s—z)

Again, for a third pole at s = p,, q;=3, equation 3.15 becomes

2 - = cz 2c.z. 2c.z.
Zajtfe “ +e “'Z cjt§+ Dl g2y g 4—o
=0 = (s—z) ~ (s-2) (s—z))

j=I

=0.

=P,

By coserving the pattern followed by this series of equations, insight can be gained about
a general analytic expression that can capture all of these constraints. This expression
can be written as follows:

{ia"‘?' e e [ " "+Z(Bq,( )) ,-) (q-“]}

j=0 j=1

=0. (3.16)

i=p,
For a repeated pole of multiplicity q,, this expression must be evaluated q, times, once
for every q;, = 1, 2, ..., q;. In this equation, the variable qu represents a function that

determines the value of the coefficient for the appropriate term in the equation. This
function can be calculated recursively using the formula

'y = 1, fork=1
B,k = 0, fork #1
B, (k) =B, _,(K)+(k—1)-B, _,(k~1). (3.17)

Table 3.2 lists a range of values for this function B that were calculated using this

formula.

In order to correctly specify the dynamics cancellation constraints for a given system,
equation 3.16 must be specified once for every system pole, p;. In each equation, the
value of q, corresponding the each system pole must be used. As stated before, for
nonrepeated system poles, q; = 1, and for repeated poles of multiplicity q;, q, =1, 2, ...,

G-
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Table 3.2: Selected values for the function fi.

Bol 1 2 2 o o

p‘(k)13660
B,(k)1 4 12 24 24 O

Bl 1 5 20 60 120 120

Given this general expression for the dynamics cancellation constraints that can
accommodate systems with repeated roots, a matrix equation can be developed to allow
for easy implementation. Specifically, by using the vector definitions in equations 3.6
through 3.10, the following equation can be defined:

ql
exp(-st)T" Va+ [at‘n“' 4 (Zﬂq. (k) F"‘t‘n“""’]h]. *exp(-st,)=0, (3.18)
k=1
where the following definitions hold

exp( ) = element-by-element exponential of a matrix or vector,
.() = element-by-element math operation,

T = diagonal matrix with the switch time vector, t, along the diagonal,
oa=Yc,,
)=1

B( ) is defined as in equation 3.17,
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( 1 1 1
P 'l'zl P—Z P —Z,
F=|p,-z ) : »and
1 1
me—zl h pm_zr_
c,z,
h=c*z" = c,.zz
C.2

rer

For a system with poles all having the same multiplicity, q;, equation 3.18 can be
evaluated once for every value of g;, where q,= 1, 2, ..., q, to impose all of the necessary
dynamics cancellation constraints. In general, all poles in a given system do not have the
same multiplicity. In these cases, equation 3.18 must be first be calculated for every pole
with a multiplicity of 1, and then for only the poles of multiplicity 2, 3, etc.. In order to
aid this calculation, a multiplicity vector, q, can be defined. This vector contains the
corresponding multiplicity value, q,, for every system pole, and, consequently is the same
length as the vector s. For example, in a system with poles s = [-4 -6 -6]", the
corresponding multiplicity vector should be q = [1 1 2]. Using this definition, Table 3.3
lists a segment of Matlab code that is a possible implementation of equation 3.18 for
systems with poles with different multiplicities. From this listing, it can be seen that the
full implementation of the dynamics cancellation constraint for any kind of linear system
requires less than twenty lines of code. Additionally since all of the calculations in this
code are algebraic and can be expressed largely as vector operations, the computational
requirements of this code are small. By incorporating this code, as well as the other
problem constraints, into an optimization routine, solutions for the time-optimal
command for any kind of linear SISO system can be found.
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Table 3.3: Matlab code to impiement the full dynamics canceliation constraint
for systems that can include repeated roots.

% Given the vectors, s, a, ¢, 2, and t defined according to
% equations 3.6 through 3.10, this code calculates the complete
% set of dynamics cancellation constraints and returns them

$ in the vector dc_comstr. Any time-optimal command

% must necessarily yield a value of zero for each of these

% constraints. This code also requires the multiplicities of

% each system pole to be stored in the vector q.

dc_constr = [);
n = length(t); r = length(=z);

T = diagl(t);
alpha = sum(e);
beta = 1;

h=c.*(z.");
for qi = 1:max(q),
ind = find(gr=qi); 8 = s(ind); q = q(ind);
E = exp(-s*t);
Etn = exp(-s*t(n));
¥ =1./(s*ones(l,r) - ones(length(s),1l)*=);
val = 0;
for k = 1l:qi,
val = val + (beta(k) * (¥.”k) * (e(n)~(qi-k)));
end; .
R = B*(T"(gi-1))*a + (alpha*(t(n)~(qgi-1)) + wval*h).*Etn;
dc_constr = [(dc_constr; R];
beta = [beta 0] + [0 cumsum(ones(l,qi)).*betal;
end;

322 The Boundary Condition Constraint

In additicn to the dynamics cancellation constraints, the problem boundary conditions
must also be established mathematically. Specifically, for the time-optimal control

u(®)

b

Boundary . 4 _
Condition1° *=? §

Figure 3.4: The time-optimal control problem boundary conditions.
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problem, as illustrated in Figure 3.4, two boundary conditions are required. The first sets
the initial time of the optimal command to zero and is trivial to implement:

t, = 0. (3.19)

The second boundary condition, which requires that the system output change by the
desired amount, dy, is more complicated to express. In general, if the dynamics
cancellation constraints are successfully satisfied by an optimal command profile, at the
end of the pulse train of the optimal command, the system output, y(t), will remain at rest
at some final value. The boundary condition constraint must be selected to ensure that
this value agrees with the specified dy. One possible way to do this is simulate the time
response of the system to the candidate optimal input command and impose the following
constraint:

y(t,)=dy. (3.20)

If this approach is used in a numerical optimization of the problem constraints, the
system state-transition matrix would have to be calculated during every iteration. This
numerically intensive procedure would likely result in undesirably long solution times.

A better approach for expressing the second boundary condition is to use the Final Value
Theorem [216] to derive a single expression relating dy to the unknown command
parameters. This can be done as follows. First, from the system transfer function, an
expression can be derived for the Laplace Transform of the output response, Y(s):

(O}

Us) = G(s) =» Y(s) = G(s)U{s). (3.21)

Now, from the Final Value Theorem,

dy = Ii_rg(s G(s) U(s)). (3.22)

Substituting the expression for U(s) in equation 3.2 into this equation yields

dy=lin3[G(s)[iaje-"’+e'"'i o D (323)
s j=0

Now, in general, the system transfer function, G(s), can be rewritten in the form

_s™N(s)

= 5D’ (3.24)

G(s)
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where rbp is the number of rigid-body poles, that is poles at the s-plane origin, in the
system, rbz is the number of rigid-body zeros, that is zeros at the s-plane origin, in the
system, and N(s) and D(s) contain only non-rigid dynamics. Depending on the number of
rigid-body poles and zeros in the system, the soluiion of equation 3.23 can take on three
different forms. Each of three cases will be considered independently:

Case 1: G(s) has excess rigid-body zeros (rbz > rbp).

In this case, applying the Final Value Theorem reveals that the final value of the
system in response tc the time-optimal command will always be zero. In general,
if G(s) has any uncancelled zeros at the s-plane origin, it will be impossible to
transition the output from one rest state to another using a bounded input. For
example, for the case of a system with a single rigid-body zero, the type of
command profile required to move the output to a new rest state is a ramp. Since
this type of command will eventually exceed the system actuator limits, there is
no time-optimal command that will satisfy the problem constraints.

Case 2: G(s) has no rigid-body poles or zeros (rbz = rbp).

In this case, equation 3.23 can be written in the following form:

_ . [ N(s)
dy—l_’o(D( ))[2 a,(l)+ (1)2 ] (3.25)

which then reduces to

dy-lsLnJ[D( ))Z a,. (3.26)

Therefore, implementing this constraint is straightforward. All that is required is
that the sum of the step amplitudes multiplied by the transfer function steady-state
gain is equal to dy. Since the transfer function steady-state gain can be readily
determined from the given system model, this condition can be met by properly
selecting the step amplitudes. More specifically, given that the values for all of
the step amplitudes except the last, a,, must be set so that the command profile
saturates the system actuators, their values are dictated by the given actuator
limits. Corsequently, equation 3.26 can be used to directly calculate the optimal
value for a, to meet the specified boundary conditions.
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Case 3: G(s) has excess rigid-body poles (rbz < rbp).
In this case, equation 3.23 takes the following form:

N(s)
dy =1 E D+ 3.27
y= s—bOD()) [ i+ ()2__] (3.27)

j=0 j=1

Due to the rigid-body poles in the system transfer function, this equation has a
(1/0) term. Additionally, since the dynamics cancellation equation for the rigid-
body pole, which can be derived from equation 3.5 for s=0, results in the
expression

Ya=0, (3.28)
=0
it can be scen that equation 3.27 will be indeterminate of the form (0/0). Since
this is the case, L'Hospital's Rule [217] can be invoked to calculate the limit in
equation 3.23. L'Hospital's Rule states that if f(x) and g(x) are zero at x=a, then

) _ )

im ) (3.29)
e g(x)  g'(x)|_,

This rule can be applied as many times as necessary to reach a determinate result.
For very simple systems, L'Hospital's Rule can be used to solve for the boundary
condition constraints by hand. However, it is difficult to derive a general analytic
expression for the solution of equation 3.23 using this approach. A better
approach, that is conceptually simpler , easier to implement in computer code, and
numerically comparable is the following.

For a system with rbp rigid-body modes,

N(s)

D)’ (3.30)

G(s) =

the Final Value Theorem can be used, as before, to relate the system dynamics
and input command to the desired output response, dy:

dy = lsi_gg(s G(s)U(s))

= lim( NG | L sU(s))

s—=0 D(S) Srbp '
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_ N(s) 1 .
l.l_l.tol( D(s)) l'_’o( ‘S U(s)} (3.31)

Now, since by the Final Value Theorem, we know that the expression
1
=13 ’ =1 —
dv= ;ll_rg(sG (s)U(s)) = 1‘1_1.13(8 x U(s)) (3.32)

implies that dv is the steady-state output of some system, G'(s), to the candidate
time-optimal input command, u(t). As implied by equation 3.32, and illustrated in
Figure 3.5, this system has the transfer function

1

G'(s)= - (3.33)
Following this logic, we can then combine equations 3.31 and 3.32 to yield the
simpler expression

dy = lim| — NGs) -dv. (3.34)

s—0 D(S)

Now, since dv is the steady state output of a system that consists of a cascade of
simple integrators to the input command, u(t), an expression for dv can be
formulated as follows:

(rbp)
dv= ( Tu(t) dt] . (3.35)

In other words, dv is equal to the rbp-th integral of the candidate command profile
evaluated at t=0o. Given the block diagram in Figure 3.5, and the facts that (1) the

transfer function N(s)/D(s) has no rigid-body poles or zeros and (2) the time-
optimal command will move the system output, y(t), from one rest state to
another, then it can be determined that dv will almost always approach some firite

Figure 3.5: Another view of the boundary condition constraint.
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steady-state value as t goes to eo. Consequently, equation 3.35 will almost always

yield 2 valid result. The only exceptions to this statement are the cases when the
time-optimal command has a tail that has undamped or unstable oscillation. In

these situations, the integral in equation 3.35 will not converge as t goes to oo.

However, as will be discussed later in this chapter, creating time-optimal
commands with undamped or unstable oscillation is bad design practice and
should never be implemented on a real system.

Therefore, by combining equations 3.34 and 3.35, an expression for the second
boundary condition can be finalized:

. (N®)) (rbp)
dy—l‘l_t'rol(D(s)) { Iu(t)dtj R (3.36)

In order to implement this equation, all that is required is to take the limit of
N(s)/D(s), which is trivial given the system transfer function, and to integrate u(t)

from O to o rbp times. To perform this integration, a numerical integration

routine could be performed during the problem optimization, but this is very
numerically intensive. A better approach is to use an analytic solution for the
integral of the time-optimal command profile to calculate this expression.
Appendix B presents the derivation and resulting algebraic equations that can be
used to analytically evaluate this integral. These equations and their computer
implementation are highly streamlined and require very little computational
effort.

323 The Actuator Limit Ccastraint

The final constraint required to bound the solution space of the time-optimal control
problem is perhaps the most straightforward to implement. This constraint, called the
actuator limit constraint, ensures that the input command prefile never exceeds the

specified system actuator limits, as shown in Figure 3.6. For the case of a time-optimal
command profile that contains no tail, the actuator limits are enforced by properly
selecting the pulse train amplitudes to meet, but not exceed, the given actuator limits.
When a tail is appended to the pulse train in the optimal command profile, a little more
care must be taken to impose this constraint. Specifically, the second term in equation
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3.1 can be used to calculate the profile of the tail during the solution of the constraint
equations:

U () =Y ¢, e ™It -t,). (3.37)
j=l
By requiring that the tail profile at all times remain within the actuator limits, an
additional constraint equation can be formulated:

U, Suu(t)su,.. (3.38)

To implement this equation in an optimization routine, equation 3.37 must be evaluated
over a reasonable time-length at some sampling interval. From the result, the maximum
and minimum value of the command can be determined and constrained by equation
3.38.

33 Step 3: Solve and verify.

The three types of constraint equations derived in Step 2 constitute the minimum set of
constraint equations required to determine the solution for a time-optimal command
orofile. In some cases, for very simple systems, these equations can be solved
analytically. Some of these solutions are outlined in chapter 4 of this document.
However in most cases, the constraint equations are too complex to succumb to analytic
solution and must be solved using an optimization algorithm.

The basic procedure for finding optimal commands begins by setting the values of the
command amplitudes, a,, from the given actuator limits and taking an initial guess for the
command switch times, ;. A constrained optimization algorithm, such as the one in the

Figure 3.6: The actuator limits constraint.
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Matlab Optimization Toolbox [218], can then be used to search for the shortest set of
switch times that satisfy equations 3.16, 3.19, 3.36, and 3.38. From the result, equation
3.1 can be used to calculate the profile of the time-optimal command. Although search
times rely heavily on the quality of the initial guess, they are typically on the order of
seconds due to the simplicity of the constraint equations presented in this chapter

Since optimization algorithms can be vulnerable to suboptimal local minima, this solution
approach cannot guarantee that the time-optimal command will always be found.
Fortunately, Pontryagin's Minimum Principle provides a set of necessary and sufficient
conditions to verify the optimality of a given command profile. These conditions can be
used to complement an optimization routine and ensure that the solution procedure
presented above always returns a time-optimal result. Chapter 6 of this document
discusses both solution approach and the verification algorithm in greater detail.

34 The Reduced Equations for Systems with Only
Poles

As discussed in section 2.3.3, time-optimal command profiles for systems with poles and
zeros contain a pulse train followed by a tail. For systems that have only poles and no
zeros, the tail is not required. As a result of this simpler command structure, the
constraint equations for systems that contain only poles are far less complex than those
for the more general case. Due to this simplicity, these reduced equations often prove
useful for deriving quick solutions for many kinds of systems. For example, many
systems can be modeled accurately using solely denominator dynamics. When this is the
case, the reduced equations should be used to derive the time-optimal command profile.
Additionally, in some systems, such as ones with a high degree of dynamic uncertainty,
the presence of a tail in the input command might be undesirable. In these cases, the
system numerator dynamics can be ignored during command derivation to produce a
command profile with only a pulse train and no tail. This section will proceed by first
presenting an expression for a candidate command profile for a system with only poles.
Based on this expression, the reduced form of the three problem constraints will be
outlined, and suggestions will be made for the implementation and solution of these
equations.

34.1 The Candidate Command Profile Equation

For a system with only poles, the time-optimal command will consist of a pulse train.
Consequently, the analytic expression to represent this family of commands is simply
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u(t)= Y a;l(t—t)), (3.39)
j=0
where the notation is the same as defined for equation 3.1. Similarly, taking the Laplace
Transform of this expression yields the result

U(Gs) = lia e (3.40)
s

342 The Dynamics Cancellation Constraint

Following a similar approach as in section 3.2.1, the equations that describe the time-
optimal command profile can be used to derive constraints that ensure rest-to-rest motion
in the system output. This derivation relies on the fact the time-optimal command must
have zeros at the locations of the system poles. Without going into the details of this
derivation, the resulting reduced form of the dynamics cancellation constraint equations
is presented below.

3421 Dynamics Cancellation Constraint Equations for Systems with No
Repeated Roots

Using the same notation as in equation 3.5, the dynamics cancellation constraint for
linear systems with only nonrepeated denominator dyramics can be stated as

(Zaje—slj] =0, (3.41)
=0

=p;

where this equation is evaluated at the value of every system pole, p;, fori=1, 2, ..., m.
Furthermore, by using the vector definitions in equations 3.6 through 3.10, this constraint
can be expressed in a compact matrix notation:

exp(-st)a=0, (3.42)

where exp( ) is the element-by-element exponential. This matrix expression yields a
vector of constraint values with one value for every system pole. Not only is this
expression computationally simple, but it can be expressed with a single line of Matlab
code.
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i
3422 Dynamics Cancellation Constraint Equations for Systems with
Repeated Roots
For systems with repeated poles, the reduced form of the dynamics canceilation
constraint takes on a slightly different form:

(Za tie” ) =0. (3.43)
Is=p,

For a repeated pole of multiplicity q,, this expression must be evaluated q times, once
forevery q,=1, 2, ..., q;. In matrix notation, this equation can be written as

exp(-st) T*"a=0, (3.44)

where the notation is the same as in equation 3.18. For a system with poles all having the
same multiplicity, q., this equation can be evaluated once for every value of q;, where g, =
1,2, ..., qq, to impose all of the necessary dynamics cancellation constraints. For systems
with poles of different multiplicities, the Matlab code in Table 3.4 can be implemented to
impose the required dynamics cancellation constraints.

Table 3.4: Matlab code to implement the dynamics cancellation constraints
for systems with just poles.

Given the vectors, s, &, and t defined according to
equations 3.6 through 3.10, this code calculates the
set of dynamics cancellation constraints for systems
;wlth just poles and returns the result in the vector
dc_constr. Any t1me-opt1mal command muet necessarily
yield a value of zero for each of these constraints.
This code also requzres ‘the mult;pl;c;t;es of

each system pole to be stored in the vector q.

o ®® o 0p P o

dc_constr = [];

= exp (-8*t) ;

qi = 1l:max(q),

R = B(find(g>=qi),: )*(!“(ql-l))*l:
dc_constr = [dc_comstr; R];

end; ‘

343 The Boundary Condition Constraint

The boundary condition constraints for systems with only denominator dynamics remain
largely the same as the general expressions in equations 3.19 and 3.36:
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i, =0,and (3.45)

N
dy = lim Dzs;) (T (t)m] . (3.46)

The only difference in these equations is the evaluation of the imegral of the time-optimal
command profile. As discussed in Appendix B, since this command profile contains only
a pulse train and no tail, its analytic integral can be evaluated and expressed more
expeditiously.

344 The Actuator Limit Constraint

As mentiored previously, for the case of a time-optimal command profile that contains
no tail, the actuator limits are enforced by properly selecting the pulse train amplitudes to
meet, but not exceed, the given actuator limits. Since time-optimal commands for
systems with only poles contain only a pulse train, no additional equations are required to
enforce the actuator limit constraint.

3.5 A Note on Nonminimum-Phase Zeros

For systems with zeros, the procedure outlined above produces a command with a tail
made up of components at the locations of the system zeros. When these zeros are
nonminimum phase, the resulting tail of the optimal command will be unstable by nature,
as shown in Figure 3.7. As a result, at some finite time, the optimal command designed
for a system with nonminimum-phase zeros will exceed the prescribed actuator limits.
By the original problem statement for the time-optimal control problem, solutions for
command profiles that exceed the actuator limits are not allowed. Consequently, it can

Figure 3.7: Time-cptimal comisands for nonminimum-phase systams.
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be argued that the tail of any time-optimal command cannot contain any components
from the system nonminimum-phase zeros.

Given this rationale, the question then becomes whether the dynamics of system
nonminimum phase zeros can be leveraged in any other way to reduce the system
response time. It is known from the dynamics cancellation constraint that incorporating
any uncancelled dynamics into the command profile will either increase the time-length
of the command or cause unwanted system residual vibration. Consequently, it can be
argued that, outside of direct pole-zero cancellation, there are no additional dynamic
properties that can be added to the command profile to compensate for the nonminimum-
phase zeros. The time-optimal command, therefore, for a system with nonminimum-
phase zeros is identical to the time-optimal command for the equivalent system with
identical steady-state gain and the nonminimum-phase zeros removed. For example,
consider a system with a transfer functicn that contains a nonminimum-phase zero, z '

(s-2,)(s+2z,)
s(s+p,)s+p,)’

G,(s)= (3.47)
where the values of z,, z,, p,, and p, are all positive. Now, by removing the
nonminimum-phase zeros from this transfer function while preserving its DC gain, a new
trensfer function can be created:

_ ~z2,(s+2,)
s(s+p,)(s+p2)'

G,(s (3.48)
Following the rationale outlined in this section, it can be argued that the time-optimal
command for this modified system is identical to the time optimal command for the
system in equation 3.47. Therefore, as a general practice, for systems with nonminimum-
phase zeros, time-optimal commands can be derived effectively simply by ignoring any
nonminimum-phase numerator dynamics.

36 Summary

This section has outlined an approach for deriving time-optimal commands for linear
systems. As part of this approach, a set of governing equations has been presented for
defining the structure of the optimal command profile and specifying the problem
constraints. These equations are summarized in Table 3.5 and Table 3.6 for the general
solution case and the specific case of systems with only poles. In order to implement
these equations, knowledge is required about three system features. First a linear system
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model is required to identify the system poles and zeros. Second, the actuator limits must
be specified, and, last, the desired system output response must be known. From this
information, a time-optimal command can be created by enumerating the constraint
equations and employing an optimization routine to search the solution space. Since
these equations are algebraic, solutions can be found rapidly and reliably. Additionally,
by using the simple matrix notation suggested in this chapter, implementation can be
equally streamlined.

Table 3.5: Summary of the governing equations for the time-optimal control
of systems with both poles and zeros.

Equation 2 L -

describing the u(t)=zajl(t—tj)+2cje e —-t,)
command i=0 i=l

profile.

Cancellation

Zajt;h -t +e' [C t(‘h ”+2(Bq|< )) i j) t(‘l.-k):|}

Constraints j= i1

Boundary t,=0

Condition N (bp)

Constraints dy = li (s)) Iu(t) dt
s—0 D(s)

Actuator Limit u,, <u,,(M)<u_.

Constraint
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Table 3.6: Summary of the governing equations for the time-optimal control

of systems with just poles.
Equation m. | u(t)=2ajl(t—tj)
da‘.“‘l : v nl : =0

Actuator Limit none required
Constraint
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4 Examples of Time-Optimai Commands
for Some Simple Systems

Chapter 3 has outlined the general procedure and necessary equations to derive the time-
optimal command for any SISO linear system. In order to illuminate how this approach
can be applied to real systems, several simple examples will be considered here. This
chapter begins with a look at three very simple systems with only denominator dynamics.
For each of these three systems, the constraint equations will be used to derive analytical
solutions for the time-optimal command profiles. Although these solutions are very
simple and straightforward to derive, it is hoped that this exercise will clarify the details
of the solution approach and highlight key features of time-optimal command profiles for
linear systems. After this look at commands for systems with only poles, an analytic
solution will be derived for a system with two poles and one zero. This solution will
illustrate the form of the constraint equations as well as the resulting command profiles
for systems with both poles and zeros. Since analytic solutions for time-optimal
commands are only available for the most simple systems, section 4.5 of this chapter
looks at command profiles for a more complicated spring-mass system derived using
numerical optimization.

41 A System with One Rigid-Body Pole

A mechanical system with a single rigid-body pole is shown in Figure 4.1. This system
has the transfer function

L

G(s) = 4.1)
ms

In this problem, it is desired to transition the mass from its initial velocity to a specified
final velocity as quickly as possible using a bounded force input. Although this is a
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simple problem, a formal approach will be taken to illustrate the procedure for deriving
time-optimal commands.

Step 1: Select a candidate command profile.

As discussed in section 2.3.1, the Bang-Bang Principle dictates that the time-
optimal command profile must always saturate the system actuators.
Furthermore, for this system, it can be seen that a single actuator pulse of finite
duration can be used to transition the mass to the desired final velocity. Based on
this understanding, the time-optimal command profile can be constructed, as
shown in Figure 4.1. Using the command profile equation outlined in Table 3.6,
the parametric equation describing the time-optimal command profile for this
system can be written as

F() = F,, l(t—ty) - F, 1(t—t,) 4.2)

Step 2: Impose the problem constraints.

As equation 4.2 illustrates, the magnitude of the time-optimal command is com-
pletely specified by the given actuator limits. The remaining unknowns,
therefore, are the switch times. In order to find values for these unknowns, the
problem constraints must be met. Since the actuator limits are already met by the
chosen candidate command profile, only the dynamics cancellation constraint and
the boundary conditions must be imposed.

To satisfy the dynamics cancellation requirement, the equation in Table 3.6 can be
invoked to yield the following expression:

Figure 4.1: The time-optimal command for a system with one rigid-body pole.
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~8o _ -8y =
(Fue™ —Fnue™ ) =0 4.3)
This equation easily reduces to
F.. -F.. =0. 44)

This equation is a statement of the fact that the final value of the time-optimal
command for this system must be zero. Since the amplitudes of the time-optimal
command were already selected to meet this condition, the result is trivial.

In addition to the dynamics cancellation constraint, the two boundary condition
constraints must also be imposed: the first one sets the initial time of the
command, and the second ensures that the command delivers the system to the
desired final velocity. As in Table 3.6, these constraints can be stated as follows:

t, =0, and “4.5;

t
dv=l-_‘l'*‘(t)dt=i-Fm(tl -t5), (4.6)
m m
where dv is the desired change in velocity of the system response.

Step 3: Solve analytically.

By combining equations 4.5 and 4.6 the following result can be reached for the
value of the final command switch time, t,:

ty =2 @7

With this equation, the time-optimal command is completely specified for the
system with one rigid-body pole. Figure 4.2 illustrates the time-optimal
command and response for this system, where m = 1 kg, the desired change in
velocity is 0.5 m/s, and the actuator limits are £1 N.

42 A System with One Real Pole

A system with one real pole is illustrated in Figure 4.3, and can be described by the
transfer function

1

G(s) = .
s) ms+b

(4.8)
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In this system, it is desired to change the velocity of the mass by a specified amount as
quickly as possible. The identical procedure that was used in the first example will also
be used for this system to derive the time-optimal command.

Step 1: Select a candidate command profile.

The first step in creating the candidate command profile is to specify the
amplitude and the number of switches. For the system in Figure 4.3, it can be
reasoned that the time-optimal command requires two switches, one to turn the
actuator full-on while the mass is accelerating, and one to set the actuators to the
level required to maintain the desired final vel