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A

In-Network Distributed Solar Current Prediction

ELIZABETH BASHA, Massachusetts Institute of Technology, University of the Pacific
RAJA JURDAK, CSIRO ICT Centre, University of Queensland
DANIELA RUS, Massachusetts Institute of Technology

Long-term sensor network deployments demand careful power management. While managing power requires

understanding the amount of energy harvestable from the local environment, current solar prediction

methods rely only on recent local history, which makes them susceptible to high variability. In this paper, we
present a model and algorithms for distributed solar current prediction, based on multiple linear regression

to predict future solar current based on local, in-situ climatic and solar measurements. These algorithms
leverage spatial information from neighbors and adapt to the changing local conditions not captured by

global climatic information. We implement these algorithms on our Fleck platform and run a 7-week-

long experiment validating our work. In analyzing our results from this experiment, we determined that
computing our model requires an increased energy expenditure of 4.5mJ over simpler models (on the order

of 10−7% of the harvested energy) to gain a prediction improvement of 39.7%.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Architecture
and Design—Wireless communication; C.3 [Special-Purpose and Application-based Systems]: Real-
time and embedded systems

General Terms: design, experimentation, measurement

Additional Key Words and Phrases: solar current, prediction, sensor network, energy management

1. INTRODUCTION
Resource-constrained sensor networks require efficient management of their power
usage to ensure long-term operation. Research on energy-efficient sensor networks has
focused on reducing the hardware’s power needs and on developing models and policies
in software to control system behavior. Complementary to these areas is understanding
the energy available to recharge the system. This understanding informs the policies
running on low-power hardware systems, helping create a smarter comprehensive
energy management strategy. The questions then arise of how much power is available
from the environment to recharge the system and how much will be available in future
days? We focus here on solar energy harvesting as a representative case.

Recent work on solar current prediction in sensor networks has focused on
Persistence, where predictions assume a perfect correlation with current observations,
and Exponentially Weighted Moving Average [Hsu et al. 2006; Kansal et al. 2006],
which uses a window of recent measurements to predict future solar current. All of
the existing prediction methods use only a node’s local observation for prediction,
which may include a high degree of variability. One solution to address the local
variability is to base a node’s prediction of solar current not only on its local

Author’s address: E. Basha, Department of Electrical and Computer Engineering, University of the Pacific,
3601 Pacific Avenue, Stockton, CA 95211.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1550-4859/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

ar
X

iv
:1

41
0.

73
67

v1
  [

cs
.D

C
] 

 2
7 

O
ct

 2
01

4



A:2 Elizabeth Basha et al.

Fig. 1. Fleck Node Installed on Campus

measurements, but also on those of its neighbors. While individual node measurements
have similar likelihoods for bias or noise, the joint consideration of multiple node
measurements reduces the variability (following the central limit theorem [Jaynes
and Bretthorst 2003]). Furthermore, the environmental context that determines the
amount of harvestable energy at sensor nodes, whether through sun, wind or water,
is typically common to neighboring nodes, leading to a high degree of correlation in
their conditions. The common environmental context further motivates the need for
collective prediction.

1.1. Solar Prediction Overview
This paper presents a collective solar current prediction model that enables multiple
nodes to participate in the prediction process. Nodes share their solar and microclimate
measurements with neighbors. Collecting all these data and creating these time series
then allows a node to locally predict its future available energy either centrally on its
own processor or in a distributed manner with its one-hop neighbors.

Our solar prediction approach is based on multiple linear regression models. These
statistical models provide a powerful tool for predicting future time series while
remaining simple enough to compute on a sensor network compared to other machine
learning approaches. Prediction involves three steps: (1) gathering an initial set of
calibration data, (2) self-calibrating the model, and (3) predicting the future solar
current. Steps (1) and (2) only run at startup and, after that, they run periodically
or whenever the prediction error exceeds some metrics in order to ensure adaptation
to changing conditions. In the rest of the paper, we refer to step (3) as MLR prediction
to distinguish it from the overall prediction algorithm.

Collective prediction involves a communication overhead relative to local prediction,
as nodes need to exchange their observations regularly. Centralizing the prediction
operations at one node would provide the simplest implementation. However, as
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the network size grows, the communication overhead for transferring readings
from all nodes to a single node becomes prohibitive. Additionally, the storage and
computational constraints for data from hundreds of nodes may also become an issue.
Distributed prediction within a local neighborhood alleviates the scalability issue
and provides fault tolerance in the failure of the single point. Because each node
performs its computation locally, it is more responsive to fine-grained changes in the
environment. We thus focus our work on distributed prediction.

This paper shows the feasibility of a distributed solar prediction strategy by
developing distributed algorithms capable of computing these models and by
implementing the models on a sensor network. The core component of the distributed
algorithms is a distributed pseudoinverse algorithm. To the best of the authors’
knowledge, this paper is the first to propose and develop a distributed version for
sensor networks, which forms a key contribution of our work.

Our models use solar current, humidity, soil moisture, air temperature, and wind
speed to predict future daily average solar current. With over 20 months of data from
an installation in Springbrook, Australia, we improve over previous models by up to
20% using environmental data or spatial data. We also implement these models on
the Fleck platform as shown in Figure 1 and demonstrate their functionality during
a 7-week-long test. With the data from this test, we analyze the energy usage of our
algorithms, determining they require 4.3 × 10−7% of the weekly energy gathered by
the system while providing a 39.7% reduction in root mean squared error (RMSE) over
EWMA models and a 63.9% improvement over Persistence.

1.2. Contributions and Paper Organization
The contributions of this paper are:

— Proposal of a distributed solar prediction model in resource-constrained devices:
Section 3 describes the justification behind our model choice and the multiple linear
model for solving this problem.

— Design of distributed multiple linear regression (MLR) algorithms for predicting
daily solar current on resource-constrained devices: Section 4 motivates the
distributed form, describes the solar current prediction algorithm, outlines the
calibration algorithm, details each of the three sub-steps of the calibration algorithm,
and analyzes the impacts of distributing the algorithm compared to computing it
centrally.

— Validation of the algorithms’ accuracy gains through simulations on several months
of empirical data: Section 5 provides three simulation data sets and provides results
from those data sets, including an analysis of the effects of spatial and temporal data
on the MLR algorithm.

— Empirical evaluation of the algorithms on a small testbed of sensor nodes: Section 6
explains the hardware platform, discusses the implementation of the algorithms on
that platform, describes two field experiments and their results, and analyzes the
energy impact of the prediction method.

In addition to the contributions, the paper describes related work in Section 2,
discusses some insights and future work in Section 7, and concludes with Section 8.

2. RELATED WORK
Our work relates to two different areas: energy prediction in sensor networks and
distributed regression in sensor networks.

Energy Prediction
Past research projects into energy prediction focus on predicting the future harvestable
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energy to input into power management models. [Moser et al. 2008] perform offline
linear programming techniques to predict future energy in addition to control
methods; the paper describes a simulation of this with no field instantiation. [Lu
and Whitehouse 2012] compute offline predictions of sunlight for daylight harvesting.
Their approach combines regression analysis with similarity identification and
ensemble predictions; the work focuses on finer-grained predictions than ours in
addition to its online focus. [Sharma et al. 2010] include National Weather Service
forecasts in an offline model to predict solar panel output; as described in their paper,
the work is specific to their solar panel system with a focus on data analysis and offline
simulation.

[Hsu et al. 2006] and [Kansal et al. 2006] examine a prediction method using
an Exponentially Weighted Moving Average Model; we discuss this approach in our
simulation results. Extensions to EWMA expand the set of data included in the moving
average computation as described in [Gorlatova et al. 2011], [Jiang et al. 2010], and
[Piorno et al. 2009]. [Bergonzini et al. 2010] explore EWMA, expansions to EWMA,
and additional models, including neural networks.

Our work also provides a energy harvesting prediciton method. A key difference
between these approaches and our work is their focus on hourly predictions; expanding
their models to daily predictions of the form we attempt in this paper either requires
multiple years of data or reverts to a form of EWMA that we discuss in Section 5.1.
Additionally, our work utilizes a more complex, richer set of input data and provides
in-situ, local predictions. Unlike previous models, our prediction model is based on
multiple linear regression and can readily support any combination of environmental
variables and spatial neighbor data to forecast available solar energy.

Distributed Regression
Only a small amount of research exists in performing distributed regression on a
sensor network. [Guestrin et al. 2004] provide a distributed regression algorithm
to help reduce the amount of data the network needs to communicate while
allowing reasonable reconstruction of the node measurements back at the source.
Their approach assumes sparse matrices and utilizes kernel linear regression, a
special case of linear regression. In implementing kernel linear regression, they use
Gaussian elimination to compute the weighting parameters. Our approach uses a
different, orthogonal method of computation; this method decreases the limitations
on the matrix structure and removes the numerical issues seen with Gaussian
elimination [Golub and Loan 1996].

Our work here describes algorithms of similar flavor as in [Basha et al. 2008] in the
context of a different problem. We present a fully decentralized solution as compared
to the centralized results in [Basha et al. 2008], which suggested distributed solutions
as future work, but focused on validating the use of regression models for river flood
prediction and developing a sensor network system to support it.

Key in the development of distributed solutions is the distributed pseudoinverse.
This calculation does exist on multi-processor systems; examples include [Benson
and Frederickson 1986; Golub and Loan 1996; Milovanovic et al. 1992; Pan 1990].
Sensor networks differ from standard multi-processor work in several regards:
lower processing capability, smaller memory, and wireless communication where
broadcasting to all is easier than point-to-point communication with each node. These
differences require innovations in the computation of the distributed pseudoinverse.
To our knowledge, no prior work develops a distributed pseudoinverse for wireless
sensor networks; this is a useful contribution of our work to the general sensor network
community. Aspects of this work were introduced and discussed in [Basha 2010].
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3. PREDICTION MODEL
In this section we describe a statistical model for predicting future daily average
solar current using local measurements from a spatially-distributed sensor network.
This prediction can provide a key input into energy management of sensor networks,
enabling intelligent policies and efficient usage of this resource.

3.1. Model Justification
Statistical models utilize in-situ measurements and a recorded time history of these
measurements to develop spatially-distributed models. By using only the observed
record of data, these models can self-calibrate and morph to accommodate changes
within the network, the environment, and other factors. This makes them ideal for
the purposes of sensor networks where deployments are dynamic, the surrounding
environment may not be fully understood, and autonomy of the network from human
intervention is desired.

Within statistical models, we choose to focus on the class of linear models,
specifically multiple linear regression. These models provide strong predictions within
a computational framework that a sensor network can compute. Sensor networks
have limited computational and energy resources; defining a model that has the
option to run on the network provides support for direct use of the prediction on the
nodes for energy management. MLR models allow for this in-network computation,
unlike other machine learning approaches. Additionally, the models lend themselves
to automated calibration approaches that are computationally tractable as well as
online and incremental computation. Finally, the model structure adapts to the data
types and ranges available, another benefit when considering rapidly scaling sensor
networks.

3.2. MLR Model
The multiple linear regression model linearly combines N weighted past observations
of all relevant variables at time t to predict a future variable of interest at time t+ TL.
To determine the weighting factors, the model looks at a past history of these variables,
defining a training set of time TT which outlines a matrix of these past observations.
Calibration then consists of inverting this matrix and multiplying it by the actual
observations of the prediction variable. As an aside, to place our models in the context
of the widely known autoregression models (such as AR, MA, and ARIMA), regression
models form the larger class of which AR models are a specialized form. AR models
focus on predicting outputs of shock-driven systems, where the variables used for the
prediction directly relate, or are errors related to, the variable being predicted [Box and
Jenkins 1976]. This relationship leads to the “auto” descriptor of these models and the
weighting parameters used to define the relationship have definitions related to the
autocorrelations of the process. These models do not allow the use of other variables;
once we include measurements other than a single node’s solar current, we need to use
multiple linear regression (MLR) models.

Using MLR models, we wish to predict:

b = f(φ, θ, ρ) (1)

where b is the future daily average solar current. Variable b is a function of φ,
a time history of daily average solar current; θ, a time history of our neighbors’
daily average solar current; and ρ, a time history of the node’s other environmental
measurements such as humidity, air temperature, leaf wetness, wind speed, and other
values. These latter two sets of variables help outline the external factors affecting the
amount of energy harvestable by solar including weather and seasonal conditions. The
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regression model provides flexibility in defining these sets, allowing the sets to reflect
the variables available in the network.

Algorithm 1 outlines a multiple linear regression model for predicting solar
current using past solar current, nearby neighbors’ solar current, and any available
environmental variables. In the algorithm, Lines 15 through 18 setup the calibration

Algorithm 1 Solar Current Prediction Model
1: φ : past daily average solar current
2: θ : vector of other nodes solar current
3: ρ : vector of other environmental measurements
4: N : # past solar current values used
5: Q : # other solar current values used
6: P : # environmental values used
7: b : predicted daily average solar current
8: e : prediction error
9: TT : training time window

10: TL : prediction lead time
11: TR : recalibration time window
12:
13: TTL = TT − TL;
14: . Compute initial coefficients and prediction
15: φN ← [φ(1 : TTL −N), .., φ(1 +N : TTL)]
16: θP ← [θ(1 : TTL − P ), .., θ(1 + P : TTL)]
17: ρQ ← [ρ(1 : TTL −Q), .., ρ(1 +Q : TTL)]
18: X ← [φN , θP , ρQ]
19: C = ((X ∗XT )−1 ∗XT ) ∗ b(1 + TL : TT )
20: b(1 + TL : TT ) = X ∗ C
21: . Recompute using prediction error
22: e = b(1 + TL : TT )− φ(1 : TT − TL)
23: X ← [φN , e, θP , ρQ]
24: C = ((X ∗XT )−1 ∗XT ) ∗ b(1 + TL : TT )
25:
26: for t = TT + 1 to ... do . Predict
27: if (t%TR) == 0 then
28: . Recalibrate coefficients
29: e = b(t− TT : t)− φ(t− TT − TL : t− TL)
30: φN ← [φ(t− TTL : t−N), .., φ(t− TTL +N : t)]
31: θP ← [θ(t− TTL : t− P ), .., θ(t− TTL + P : t)]
32: ρQ ← [ρ(t− TTL : t−Q), .., ρ(t− TTL +Q : t)]
33: X ← [φN , e, θP , ρQ]
34: C = ((X ∗XT )−1 ∗XT ) ∗ b(t− TT : t)
35: end if
36: . Compute prediction
37: e = b(t− TL)− φ(t)
38: φN ← [φ(t−N), .., φ(t)]
39: θP ← [θ(t− P ), .., θ(t)]
40: ρQ ← [ρ(t−Q), .., ρ(t)]
41: X ← [φN , e, θP , ρQ]
42: b(t+ TL) = X ∗ C
43: end for
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In-Network Distributed Solar Current Prediction A:7

matrix. For each variable, we can use any number of past values to define the linear
prediction; in calibration each past value becomes a column within the matrix. For
example, in using the past solar current observations, we could only use that occurring
at t, or we could add t−1, t−2, etc. as we design the actual implementation of the model.
In our algorithm description, we define the number of past values that the model uses
as N , Q, and P for the node’s solar current (φ), the neighbors’ solar current (θ), and the
environmental measurements (ρ), respectively. We load the matrix, X, with this data
set over the calibration window defined. Line 19 performs the calibration step and
generates a coefficient vector, C. To include the prediction error in the model, we then
predict over the training window we just used by multiplying our calibration matrix
by our coefficients (Line 20). We subtract the observed record from this prediction,
thus generating our error, and include this in our new calibration matrix of Line 23.
Recomputing the coefficients based on the new calibration matrix occurs in Line 24
and, with these coefficients, we begin predicting the future solar current in Line 26.
This loop continues forever, recalibrating after a full recalibration time window passes
(Line 27), computing the prediction error based on the latest observation (Line 37),
and predicting future solar current (Line 42).

Algorithm 1 describes the overall model and a centralized version of the operations.
We next can consider how to distribute this among the nodes, especially the storage of
the data within the network and the complex calibrations of Lines 19, 24, and 34.

4. DISTRIBUTED ALGORITHMS FOR SOLAR CURRENT PREDICTION
To implement this model, we divide the problem into two parts: prediction and
calibration. Prediction computes the future daily average solar current and, to avoid
confusion with the general goal of prediction, we will refer to this as MLR prediction
since that is our method. This computation occurs at regular intervals for the duration
of the network operation. Calibration computes the coefficients necessary to perform
MLR prediction based on a data set of past measured values. Calibration occurs once
this data set exists within the network and only sporadically after that. We develop
distributed algorithms to perform both computations within the sensor network.

Note that these algorithms operate on top of the existing communication protocols
of the network. The algorithms utilize the existing ability to route packets to other
nodes and efficiently combine broadcast messages from a range of protocols similar to
methods described in [Hansen et al. 2011]. Thus any node can reach any other node
without additional overhead or operation in our algorithms.

This section provides a motivation for distributing the prediction, a description
of the distributed prediction algorithm, an outline of the distributed calibration
algorithm including the sub-algorithms, and an analysis of the computation and
memory requirements.

4.1. Motivation for Distributed Prediction
Our goals in performing these in-situ models are to optimize communication of the
model (thus saving energy), optimize computation, and optimize the usefulness of the
prediction. Achieving these goals requires distributed algorithms and shared storage
of the matrix. A useful prediction model requires incorporating a wide variety of
data into the matrix, possibly more data than a single node can store. To store the
matrix, we need to distribute the data among the network, which provides a secondary
benefit by ensuring the prediction is more robust to node failures. Because we have to
distribute the data matrix storage, we can distribute the computation also, sharing the
computational load and reducing the communication load. This achieves all our goals
and motivates our distributed algorithms.
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A common argument against distributed computation is the existence of a base
station or gateway node of higher computational power nearby, or the nearby presence
of a central location to provide the computation. Some deployments do fit these
scenarios with systems located on campuses or within communication reach via high-
powered gateways. However, some deployments and applications do not, especially in
the area of environmental monitoring where we focus.

Intermittent connectivity with a sensor network gateway may preclude centralized
solar prediction. Distributed prediction, on the other hand, supports delay-tolerant
sensor networks and networks with mobile gateways. Consider a group of static nodes
that are disconnected from their gateway for prolonged periods (such as when an
Unmanned Aerial Vehicle acts as a mobile gateway), but still need to sample and
log sensor data locally for later uploading. These nodes would need to locally predict
available solar energy among themselves. A distributed prediction approach thus
enables the nodes to act autonomously and independently of their connectivity to a
base station.

Other logistical reasons also favor distributed prediction. Deployments in remote
areas may not have reasonable communication range back to a central office or may
not allow for the power necessary to run a higher power gateway (lugging batteries
into forests is not always feasible). Additionally, these deployments may utilize the
same processing unit for the gateway as the rest of the network. Designers may
choose this latter design option as it allows redefinition of who is the gateway, reduces
gateway power requirements, and simplifies the system. However, it then provides no
computational benefit for centralized algorithms.

Where gateways do exist that could provide centralized computation, issues of
scalability and fault tolerance arise. At some point, the number of nodes needing
individual predictions will exceed even the computational capability of the gateway
and/or the communication requirements to reach all the nodes will exceed those needed
to perform local distributed computations.

Additionally, the gateway will fail; it is just another node, albeit a more powerful
one. When this node fails, repair may take several days, depending on location, while
the system flounders without the centralized control the gateway provided. In the case
of energy management, the system could follow policies that lead to an overall decline
in performance resulting in a shorter system lifetime, or, more drastically, the failure
of individual nodes.

All of the above reasons confirm the usefulness of distributed algorithms, especially
to support the overall general case and allow deployment of sensor networks wherever
we want, not limited by the need for gateway communication, easy access, or
centralized control.

4.2. MLR Prediction
We compute the MLR prediction of the daily average solar current as a linear
combination of scaled variables. This computation could occur centrally (depending
on the number of variables). Distributing it shares the computation with limited
additional costs as the network already communicates measurements and status; we
can simply add the scaled variables to these pre-existing messages with only a small
number of byte transmission costs incurred. We thus compute:

bt+L = xt0at0 + xt1at1 + ...+ xtnatn (2)

in a distributed fashion using Algorithm 2. In this format, a is a vector containing
a node’s variables at time t consisting of solar current, that node’s environmental
measurements, and neighbors’ solar current. The sub-index j indicates which variable
as all atj values are measured at the same time t. Variable x is a vector of the
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In-Network Distributed Solar Current Prediction A:9

weighting parameters, provided by our distributed calibration algorithm. Variable b
is our prediction.

Algorithm 2 Distributed MLR Prediction
1: for Each node i do
2: Measure j values of at
3: τi = atjxtj
4: Transmit τi
5:
6: Receive from all other nodes τk 6=i

7: bt+L = τi + τk 6=i

8: end for

In Algorithm 2, each node measures some portion, j, of the a values at current time,
t. Here we allow nodes to maintain more than one variable of the computation and,
while j suggests that each stores the same number of variables, all of the algorithms
allow for an unequal number of variables stored by each node (in cases where this
reduces communication for example). The node then multiplies these a values by its
portion of the stored x values and communicates the result to the other nodes. Each
node, upon receiving the prediction components from the other nodes, adds the other
components to its own MLR prediction component, thus computing its own prediction
L time intervals in the future, bt+L.

Nodes have two options for determining a prediction of its own solar current. First,
assuming the solar current of one node correlates well with the other nodes (such as
might be the case if all are placed with full solar exposure), all nodes can collaborate
on predicting the solar current of one node, computing the MLR prediction value, bt+L.
All participating nodes then use that value as their prediction. To achieve this, each
node maintains some portion of the data and the associated weighting coefficients. In
a centralized MLR prediction, nodes would have to communicate data values to the
central node anyway; this distributed form communicates aggregated weighted values
instead, reducing the number of values to communicate and sharing the computation.

Or, if the similarity in solar current does not exist, the nodes each compute their own
solar current prediction based on their own solar current measurements. Distribution
occurs when including neighbors’ solar current measurements and environmental
variables; the latter should correlate well among the nodes allowing all to share the
same measurements. With each node performing a MLR prediction, a node already
maintains its solar current values and just needs to store additional weighting
coefficients for its neighbors. Sharing environmental variables allows nodes to divide
them equally among the network, storing some portion and associated weighting
coefficients. The increase in precision due to the increase in data available to the model
offsets the potential increase in communication (potential as the number of values
communicated is small and the system can append them to existing messages).

The first option reduces computation and communication while generating a
reasonable solar current prediction to input into power management systems; the
second improves each node’s prediction with an increased cost in computation and
communication, and decrease in scalability. Choosing between the two depends on the
structure of the network, similarities between node placements, and requirements for
precision in the solar current predictions. For simulation validation, we only focus on a
single node running its own MLR prediction based on its own historical measurements
and on historical measurements from its neighbors; for field experiments, the system
uses the first method with a single node aggregating the MLR prediction for everyone.
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Fig. 2. Flow of Calibration Algorithm

4.3. Calibration
The calibration step provides the weighting coefficients by computing:

X = ((AAT )−1AT )b (3)

where A is the matrix of historical measurements of solar current and environmental
conditions, b is the vector of past observed solar current L time steps after the last solar
current values in A, and X is the computed coefficients. ((AAT )−1AT ) is the standard
Moore-Penrose pseudoinverse of a real matrix, which also includes a computationally
intensive square matrix inverse and three matrix multiplication steps [Golub and
Loan 1996]. To perform this computation on a sensor network centrally is infeasible
and undesirable as A is usually too large to store on one sensor node (much less all the
additional storage necessary for the pseudoinverse computation); therefore we need
a distributed algorithm where each node maintains some number of columns. As no
distributed pseudoinverse exists for sensor networks, we need to innovate on existing
algorithms.

We break the problem into three steps as shown in Algorithm 3: (1) a QR
decomposition to reduce issues related to the rectangular nature of A, (2) a
singular value decomposition (SVD) to compute the necessary pieces, and (3) a final
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pseudoinverse step to combine all the pieces into a solution. We discuss each of these
algorithmic steps in detail.

Algorithm 3 Distributed Calibration
[Q,R] = qr(A) . Dist. QR Decomposition: Alg. 4
[U,R, V ] = svd(R)
xopt = V R−1(QU)T b . Pseudoinverse: Alg. 5

Distributed QR Decomposition
The QR decomposition requires as input any matrix A, which is of size m × n where
m ≥ n. It then decomposes A into Q of size m×n and R of size n×n. This decomposition
allows for squaring off and shrinking the matrix used by the SVD, a key component of
the pseudoinverse.

We compute the QR using a modified Gram-Schmidt form as outlined in Algorithm 4
[Golub and Loan 1996]. This form decomposes the matrix in column order allowing us
to store some number of columns per node. To ease explanations, we assign an equal
number of columns to each node, specifically p columns per node.

At the beginning of the algorithm, each node has p columns of A, consisting of m
past data values already gathered by the node. We perform the computation in place,
replacing the columns of A with columns of Q. For additional storage, the computation
will need np data values stored for R and m temporary values.

The algorithm begins with Node 0, which is the node storing column 0. This node
computes the l2 norm of the Q0 column (||Q0||2 =

√∑m
i=0Q0(i)2 ) to fill the R00 entry

and then divides the Q0 column by that value to obtain the decomposition final value
for Q0 column. It then communicates the Q0 column to all other nodes. Each node
uses the data to update its own columns. If Node 0 stores more columns (p > 1), it
retains control and computes final values for both R11 and Q1, communicating Q1 to
the other nodes. Control switches to Node 1 when the algorithm reaches column p. As
it finalizes its columns, it communicates them and the algorithm continues, switching
control after every p columns. The algorithm terminates once all columns have been
computed, resulting in a Q matrix of size m × n and a R matrix of size n × n, with Q
completely replacing A. Each node maintains p columns of Q and R. By performing the
QR decomposition, we can focus our remaining operations on the much smaller, square
R matrix, simplifying communication and reducing concerns about the structure of the
matrix (condition, linear independence, etc.).

Singular Value Decomposition
The Singular Value Decomposition (SVD) uses R, the smaller matrix, to generate the
components of the pseudoinverse: U , R, and V ; each is a n×n matrix. Because, for this
application, n is small, we compute this portion centrally and reduce communication
overhead; we do need to first collect the data at a central node as R is distributed
among the system following the QR decomposition.

We compute the SVD based on a cyclic Jacobi procedure for mesh processors outlined
by Brent et al. [Brent et al. 1985]. Because this step occurs after the QR decomposition,
we ensure the input matrix, R, is square with dimensions n × n. If n is odd, the
algorithm pads the matrix with a column and row of zeros to make it even.

This algorithm works on a block level with the smallest block being a 2 by 2 matrix.
The node computes a diagonal block of the matrix and then normalizes the values to
properly order the singular values in R. Finally, these values scale the non-diagonal
blocks of the columns, the U matrix, and the V matrix. Once these computations
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Algorithm 4 QR Decomposition
Q← A
R← 0

Node 0 begins:
R00 = ||Q0||2 =

√∑m
i=0Q0(i)2

Q0 = Q0/R00

Communicate Q0 to other nodes

for Node = 0 : n/p− 1 do
Node receives Qi column
for k = p(Node) : p(Node+ 1)− 1 do

Rik = QT
i Qk

Qk = Qk −RikQi

if (i+ 1 == p(Node)) or (i == k) then
Rkk = ||Qk||2 =

√∑m
i=0Qk(i)2

Qk = Qk/Rkk

Communicate Qk to other nodes
end if

end for
end for

complete, the node rotates the data values and continues the computation until the
rotation finishes and the stopping condition is reached.

Distributed Pseudoinverse Combination
Finally, once we complete the SVD, we combine the various sub-matrices to compute
the coefficients, which consists of computing A+ = V R−1(QU)T and then multiplying
by b. Algorithm 5 describes how we perform this computation in the case where n is
small enough to allow a centralized computation of the SVD.

We can split the computation into a centralized portion computed by Node 0 and
a distributed portion computed by all nodes. Node 0 computed the SVD so has
matrices U , V , and R (which is diagonal so only n values). It first computes V R−1UT ,
resulting in a n × n matrix. Knowing the final multiplication by b allows us to
optimize the computation by multiplying QT by b before communicating these values.
Each node has p columns of Q and p values of b; the transpose allows each node
to compute QT b (Qb would require storing rows and additional communication to
reshuffle Q after Algorithm 4). Nodes then communicate their portion to Node 0, which
performs the last multiplication step to compute the weighting coefficients. The system
completes calibration by communicating these values to those nodes participating in
the distributed MLR prediction.

4.4. Algorithmic Analysis
We now analyze our algorithms to determine the impact on computation, memory, and
communication. Table I shows the requirements of our distributed approach compared
to a fully centralized model. For the distributed case, we assume each node maintains
one variable, which is the worst case scenario and results in n nodes for the network.
Therefore, in the table, m defines the number of time samples for each variable while
n defines the number of variables as well as the number of nodes in the network.

For both computation and memory, the centralized approach reflects the
requirements of the node performing the centralized computation. The distributed
case states the requirements for the controlling node, which must compute and store
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Algorithm 5 Pseudoinverse Combination for Linear Regression
Central node computes the following:
V = V R−1

T = V UT

Each node i computes the following:
qi = QT

i bi
Each node transmits qi with the central node storing the result vector of length n

xopt = Tqi

Table I. Analysis of Distributed and Centralized Algorithms - Results are for the Most Impacted Node in
Both Cases

Calibration MLR Prediction
Centralized Distributed Centralized Distributed

Computation O(m2n3 + n3 +mn) O(m2n2 + n3 +m) O(n) O(n)
Memory O(mn+ n2 + n2) O(m+ n+ n2) O(1) O(1)

Communication O(n) O(n) O(1) O(1)

more than the other nodes. Each explores the most impacted node; however, in
the distributed case, the communication load is shared across all nodes while the
centralized root node has the highest communication load of all the nodes. In the
centralized case, then, the leaf nodes can have a light communication load, which could
lead to a longer overall system lifetime if the sink responsibility can move between
nodes in the case of the original central sink node losing power.

On the communication side, in a centralized approach, all messages have to converge
on the root node. In converging on the root, the nodes communicate via a collection tree
topology, which has a known communication pattern and known scaling limitations.
As the number of nodes grows, each packet needs to be transmitted and forwarded
multiple times in a multi-hop collection tree with the number of transmissions
dependent on the network topology. We use the average case where the network
topology is a binary tree for the centralized approach. For the distributed approach,
the nodes follow a daisy chain where one node initiates the prediction and passes the
responsibility to the next node, requiring 2n iterations of broadcasting and waiting for
replies. As the table indicates, the communication load at the bottleneck node is equal
between the two methods with both requiring O(n) messages transmitted and received
(although the total overhead may differ). The centralized approach still needs to gather
all the data while the distributed approach shares the computation and storage load,
requiring intermediate communication for the model without the communication of all
the raw data.

In examining the table, we first analyze MLR prediction. Here centralized
and distributed approaches have similar results due to the constant factors. The
computation similarity occurs as the most impacted node is either the central one,
which then has to compute the full MLR prediction for everyone, or a distributed
node, which computes its own MLR prediction based on received messages. For
communication, the centralized node needs to send one message with the prediction
while the distributed node sends one message with its weighted value. If we assume
the centralized computation occurs as the node receives measurements from the other
nodes, the centralized node only stores the MLR prediction value. The distributed node
only needs to save its MLR prediction as well, which will begin as its own weighted
value. These results support our earlier discussion that distributed MLR prediction is

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 Elizabeth Basha et al.

not essential although it does provide some fault tolerance properties in that the result
does not depend on only one node, and some local autonomy for nodes to continue to
predict solar power in delay-tolerant networks.

Examining the calibration side of the table, we see that the distributed approach
requires a lesser amount of computation and memory per node. Both computation and
memory are split into three components to reflect the requirements of each of the three
sub-algorithms. For these algorithms, m needs to be greater or equal to n. Therefore,
both computation and memory are dominated by the mqnp terms. These terms are
larger by a factor of n for the centralized approach. Table II provides some insight
into what this means for the scalability of the approach. Notice that we use the term
“semi-distributed” to indicate that we are examining a version where the SVD step
is centralized and all other steps are distributed; this version supports the hardware
implementation more completely and Section 6 will discuss it further. We outline the
computation in terms of operations without consideration for how fast the processor
performs and the memory in terms of values without defining the representation of
those values, providing a system independent view. Centralized quickly grows beyond
the memory bounds of most microcontrollers, making the processing and computation
quite difficult for larger sensor networks.

Fundamentally, for the calibration, this type of computation is not scalable centrally
and must be distributed to be computable on a sensor network. The next question is
how effective is the model is at the prediction of solar power.

5. TESTING: SIMULATION
In this section we describe our simulation testing in Matlab to verify the functionality
of this model in predicting solar current. We simulate model functionality in different
seasons, using different environmental sensors, and including spatial features through
neighbors’ solar data.

5.1. Simulation Data
We suggest that multiple linear models can accurately predict solar current, but need
to verify this claim. We have two existing data sets from a rainforest deployment
in Springbrook, Australia that provides the relevant parameters. This rainforest is
a subtropical location with a winter characterized by temperature variations but
with little rainfall or cloud cover to impact solar energy harvesting and a summer
characterized by little temperature variations but significant rainfall and cloud cover
that does impact solar harvesting.

One data set consists of one year of solar current, humidity, soil moisture, air
temperature, leaf wetness, wind speed, and wind direction, gathered by 10 sensor

Table II. Intuition of Analysis Results for Overall Algorithm

Calibration MLR Prediction
Algorithm Matrix Size (m× n) Computation (ops) Memory (values) Computation (ops) Memory (values)
Distributed 10× 10 8252 262 10 1
Linear 100× 10 456812 442 10 1
Regression 100× 20 1914267 882 20 1

1000× 10 45037412 2242 10 1
Semi- 10× 10 305864 450 10 1
Distributed 100× 10 754424 630 10 1
Linear 100× 20 4248949 1860 20 1
Regression 1000× 10 45335024 2430 10 1
Centralized 10× 10 351250 910 29 1
Linear 100× 10 4869250 12610 29 1
Regression 100× 20 40609400 16420 39 1

1000× 10 450999250 1020610 29 1
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Fig. 3. Springbrook Data Sets: (a) 2008 Winter Data and (b) 2009 Summer Data

nodes. Due to some small gaps in the operation of the network and gateway node,
we split the first data set into a summer data set of three months from January
through March and a winter data set of four months from June through September.
Our second data set occurs after the network size grew to over 50 nodes and consists
of over two months of data in May through June of 2011. Figures 3 and 4 display the
measurements for these data sets. Despite averaging them on daily boundaries, we
still see a non-linear time series with no trends in solar current values from day to
day. There also appears to be no obvious correlation between the solar current and the
temperature or the humidity in the 2008-2009 data.

5.2. Testing and Validating Algorithms
Next we implement Algorithm 3 in Matlab. We predict the future daily average solar
current two days in advance using seven days of data for calibration and training
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Fig. 4. Springbrook 2011 Fall Data

(a value chosen based on the amount of existing data, ideally this would increase as
more data arrives), starting with the scenario where the model uses environmental
variables and no neighbors’ information. To the measured values, we also add the
three possibilities: (1) recalibrating when the error exceeds a threshold and at least
four days of new data exist in the matrix, (2) including the prediction error in the
calibration matrix, and (3) including the first derivative of the solar current in the
calibration matrix. We do not know which other variables most correlate to the solar
current so vary all parameters and run the model over each possibility. To determine
which combination provides the best prediction, we evaluate the predicted time series
using the root mean square error (RMSE) between the predicted and observed as well
as the largest absolute error value. Table III outlines the combinations with the best
results over both metrics.

To understand the bounds and convergence of the model, we compute the mean
of the error between observed and predicted (also known as the mean residual) and
the 95% confidence interval around this residual. The confidence interval provides a
probabilistic bound on how much the residual will vary from the mean, allowing us to
provide probabilistic bounds on the error and the convergence of the model. Equation 4
outlines the computation of the confidence interval [Ramsey and Schafer 2002].

ConfidenceInterval =
t1−c/2 ∗ s
sqrt(n)

(4)

where s is the sample standard deviation, n is the sample size, c is the confidence
interval, and t1−c is determined from established lookup tables [Ramsey and Schafer
2002]. Table III shows these values in the last two columns for all models.

In addition to the metrics, we compare our results to two other locally computable
methods: persistence and exponentially weighted moving average (as suggested
in [Hsu et al. 2006; Kansal et al. 2006]). Persistence predicts that nothing
will change and the future solar current value will be equal to the current
solar current value. Exponentially Weighted Moving Average (EWMA) computes
bt+L = αbt+L−1 + (1− α)xt, a linear combination of the current prediction and a recent
solar current measurement (xt) that is weighted by a parameter α which we set at
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0.15 as outlined in [Hsu et al. 2006]. EWMA as implemented in [Hsu et al. 2006;
Kansal et al. 2006] focuses on hourly predictions and utilizes historical data from the
same hour on past days. Our focus in this paper is primarily on daily solar current
prediction, so we adapt EWMA to use daily historical data, noting that this algorithm
was originally geared toward using hourly historical data. Our adaptation uses the
past set of daily historical data instead of the same day on past years due to the lack of
sufficient historical data for the same day of the year. We believe our modified EWMA
provides a fair comparison point for our models in this paper.

In comparing these models, for the winter data set, we see the results in Table
III, which shows our MLR model based only on environmental data improves over
Persistence by 15% and improves over EWMA by 16%. For the summer data set, we
similarly can compare the environmental only MLR model to Persistence and EWMA,
seeing improvements of 19% and 15%, respectively. The residual mean indicates that
our model has a tendency to underpredict in summer; on average this underprediction
is 1.4mA with a 3.5mA confidence interval around this mean. EWMA and Persistence
overpredict in summer, as seen by the negative mean values, and both have a larger
(compared to our model) confidence interval around their means at 4.2mA and 4.4mA
respectively. In winter, our model has a residual mean of 1.4mA, which is also an
underprediction, and the confidence interval around this mean is 4.5mA. EWMA and
Persistence both also underpredict on average at a value less than our model, but
with a larger confidence interval around that band that suggests more variability
in those predictions. Overall, these results suggest that our model has a better
error bound on its results with a consistent underprediction that ensures the system
continues to operate. Overpredicting would allow the system to use more energy than
it actually accumulates, thus decreasing the network lifetime; underpredicting ensures
the system has energy remaining after the day ends and will lead to an increase in the
network lifetime.

The different behaviors between winter and summer reflect the occurrence of more
outliers in winter. This winter had several days of abnormally high solar current in
July along with a several periods of flat solar current in June and August. Independent
of whether these behaviors accurately reflect the weather or indicate startup issues
with data collection, the models still capture the overall behavior and bound the error
within reasonable ranges.

We also use the summer data set to explore the impacts of neighboring solar
measurements, thus providing a spatial aspect to the data, as well as exploring
a combination of neighbors’ data and environmental data. Utilizing neighbors’
measurements could provide more richness to the solar data by indicating regional
trends or help in situations where environmental sensors do not exist. Our results
show that environmental data alone provides the best predictions for the MLR
model with improvements of 4% over neighbors’ only and 5% over the combination.
Intuitively, the combination may be providing too much data as we then require the
model to use both neighbors’ data and spatial data leading to an overfitting issue.
However, these percentages are quite small while these two variations on the MLR
construction improve over Persistence by 16% and 14%, respectively, and over EWMA
by 12% and 10%. This indicates that any of the different structures of the MLR model
will provide improved predictions compared to existing methods.

5.3. Spatial Analysis
Given these results, we now focus on spatial data as the most general case that
does not require any additional sensors at the node for solar prediction. We explore
the utility of neighbors’ solar current measurements within the model to better
understand how these nodes aid the prediction. We examine the relationship between
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Table III. Results of Different Models Predicting Daily Average Charge Current for Data Set 2008

Model Type RMSE Maximum
Absolute
Error

Mean
Residual

95%
Confi-
dence
Interval

Winter
Our Model 3 Solar, 1 Wind Direction, 1 Wind Speed,

1 Leaf Wetness, 1 Soil Moisture, Use
Prediction Error, Recalibrate

24.41 10.26 1.43 4.45

Persistence 28.06 18.44 0.64 5.85
EWMA 29.13 15.22 0.71 5.58

Summer
Our Model: Env. Only 1 Solar, 1 Wind Speed, Use Derivative 16.67 3.40 1.74 3.54

Our Model: Spatial Only 3 Solar, 10 Node21, 1 Node7, 9 Node9, Use
Derivative

17.33 4.75 2.78 3.29

Our Model: Env. & Spatial 1 Solar, 10 Node21, 8 Node7, 7 Node9, 1
Wind Speed, Use Derivative

17.63 4.29 3.10 3.33

Persistence 20.59 6.33 -0.60 4.39
EWMA 19.68 5.23 -0.57 4.19
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Fig. 5. Springbrook 2011 Deployment with Cluster Nodes Indicated by Node ID

solar current predictions for nodes in different locations, which we classify as either
sunny, shady, or border (a node at the edge of the canopy cover). Given a node located
in a sunny region, we want to know if it is better for that node to only use its own
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measurements, a collection of other sunny nodes, a collection of shady nodes, or some
mixed combination. Here we utilize a more recent data set from 2011 with over 50
nodes and select representative nodes from our different classifications. Our selection
of clusters consists of representative clusters and not all possible clusters; in choosing
nodes, we focused on ensuring disjoint clusters with clear classification labels. This
resulted in 10 different nodes used for our analysis that somewhat cover the region
and limits the use of border nodes (which we could misclassify). Figure 5 indicates the
locations of these nodes in the region.

Using Node 1 as the primary node, we predict two days in advance using seven
days for calibration as computed for the 2008 data. Figure 6 shows the results for
Node 1 predicting only using its own data and the MLR model, Persistence, EWMA,
a collection of three neighbor clusters over various locations types, and using all nine
neighbors from those clusters. For our neighbor clusters, sunny includes nodes [3, 4, 5],
shady includes nodes [19, 20, 30], and mixed includes nodes [21, 23, 47]. The results show
that our MLR model can reduce the RMSE by up to one third over previous methods
when a diverse group of nodes is involved in the prediction, while grouping shady nodes
together to perform the prediction yields a slightly smaller RMSE improvement and
a higher maximum error. Self prediction and homogeneous sunny groups using MLR
performed comparably to Persistence and EWMA in terms of RMSE, but sunny groups
do reduce the maximum error. Performing the prediction with all nine neighbors has
significantly higher error. These results suggest that solar prediction for a single node
based on a small number of neighboring nodes with spatial and solar measurement
diversity is beneficial. Our future work will explore automating the selection of which
nodes to include in clusters. A possible first order solution is to choose nodes by physical
proximity in situations where the network topologies clearly cluster without issues of
overlap.
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Fig. 6. Results of Spatial Analysis: Note that bars represent RMSE values and the dotted line represents
Max Error

6. TESTING: IMPLEMENTATION
We implemented our algorithms on a physical sensor network platform to verify their
functionality and feasibility in a real world scenario. This section first describes the
hardware platform and implementation of the algorithms on that platform, followed by
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the first field algorithm and its results, the second field algorithm and its results, and
an analysis of the energy requirements based on data collected from the experiments.

6.1. Fleck Platform
The implementation uses the FleckTM3b platform for empirical validation. The node
is a low power wireless sensor network device designed by CSIRO specifically for
outdoor applications such as environmental monitoring. The FleckTM3b employs the
ATmega1281 microprocessor running at 8MHz with 4K bytes EEPROM, 8K bytes
SRAM, and 128K bytes program flash. This low power microcontroller is combined
with the Nordic NRF905 digital transceiver, which enables the Fleck to communicate
at 50Kbps across 1km with a 915MHz quarter-wave whip antenna while consuming
less than 100mW of power. This platform can sense onboard temperature and power
usage and is easily interfaced to numerous external sensors via the external sensor
connector block and the daughterboard expansion bus. On the software side, it runs
Fleck OS (FOS) [Corke and Sikka 2008], a cooperative threading operating system
designed specifically for sensor networks.

For this installation, we used FleckTM3b nodes powered by AA batteries that
recharged with a 2.4 Watt solar panel [Corke et al. 2010] as shown in Figure 1.
The nodes were specifically designed for validation of the power systems and
communication systems so did not have environmental sensors.

In terms of the communication underlying our algorithms, we use Remote Procedure
Calls (RPC) as described in [Corke et al. 2010] for communication among the nodes.
Each node A broadcasts an RPC request to the next node B in the chain and waits to
receive a reply. Once B sends the reply, it assumes responsibility for the next step in
the algorithm. Node A receives the RPC reply to learn that responsibility has passed
to node B.

6.2. Algorithm Implementation
We implemented the algorithms of Section 3 on the network with the algorithms
running directly on the FleckTM3b nodes. The algorithms ran on top of the Fleck OS
software and fit within the node’s program memory. On the MLR prediction side, the
sensor nodes average the measured solar current over the day and then perform the
MLR prediction computation as outlined in Algorithm 2.

Algorithm 3, the calibration of the model, requires a more complicated implemen-
tation. To start, each node knows what columns of the matrix it maintains, granting
the node with column 0 master control of the operation. We will denote each node as
xi where i defines the order each node has in storing the columns of the matrix (i.e. x0
stores the first set, x1 stores the second, etc.). While for this test we fixed these values,
the nodes could dynamically decide this placement as well.

Each node runs a state machine-like control loop defining where the node is in the
algorithm. The control loop begins in the waiting state with x0 determining when to
start based on a defined calibration window. Node x0 then transmits a command to
load the data for the start of the algorithm causing all nodes to transition to the QR
algorithm state, where each operates as outlined in Algorithm 4. Upon completion of
the QR algorithm, x0 requests the R and the QT

i bi values from the other nodes and
commences the SVD state. The other nodes return to the waiting state at this point.
Node x0 then completes the SVD state and pseudoinverse state, concluding with a
transmission of the new coefficients for the MLR prediction algorithm to the other
nodes. All nodes save their portion of the coefficients and x0 transitions to the waiting
state, completing the algorithm. Once the next calibration window occurs, due to any

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



In-Network Distributed Solar Current Prediction A:21

number of policies such as an increase in the prediction error or a scheduled cyclic
calibration event, the algorithm and state machine begin again.

In addition to implementing these algorithms, we ensured fault detection, correction,
and tolerance in this implementation. The network will handle any of the following
issues:

— All zeros in the first column data
— Q columns received out of order
— Q column not received
— R column not received
— Coefficients all zero

If the data is all zeros in the first column (indicating no solar current measurements
exist yet or potential errors with the solar charging system), the algorithm will not
commence and will retry later. For errors where columns are not received or arrive
out of order, the algorithm will fail gracefully and retry later. If at the end of the
algorithm, the coefficients received are all zeros, the nodes will not load these values,
but maintain the old values and wait for a retry of the algorithm. Currently there is no
data replication to ensure successful completion of the algorithm upon complete failure
of a node; we leave this for future work, but believe there are many simple policies to
fix this.

The final program on the Fleck occupies 36,842 bytes in program flash, which is well
within the 128K flash memory of the platform. Our experiments use node group sizes
of up to 5 nodes, which means that m = 5, and corresponds to a RAM footprint of
5 ∗ 5 ∗ 32 bytes = 800 bytes (as each solar value is 32 bytes). This RAM requirement
does not present an issue for the 8K RAM on the Fleck.

6.3. Experiment 1
Our first field experiment addresses proof-of-concept questions and proves the overall
operation of the system. For the experiment we used three nodes placed on the CSIRO
ICT campus as shown in Figure 1.

We ran the system for over seven weeks. Initially, the system measured every 15
minutes, predicted every 15 minutes, and calibrated every 90 minutes. The predictions
predicted the solar current two measurement intervals in the future, or 30 minutes.
Figure 7(a) shows one week of the data from this time period, aligned and averaged to
the hour. The prediction performs reasonably well compared to the observations. An
interesting phenomenon occurs in the graph with two sharp down spikes between the
daytime period and the nighttime period. At night, the system actually is measuring
the nighttime lights that illuminate the campus (an unforeseen effect). The two spikes
then reflect when those lights turn on and off. Our predictions capture this unusual
behavior as well.

After approximately three weeks, we changed the system parameters to test the
calibration algorithm more rigorously. We shortened the measurement window to two
minutes and the calibration window to six minutes. This also shortened the prediction
window to four minutes (as the system still defined it as two measurement intervals).

Over a two week period, the system attempted 2773 calibrations. 2679 of these
were successes and 94 failed, resulting in a 96.6% success rate. The failures all
occurred early on as a result of one node having a low initial battery voltage. This
node shut down until the next morning when it received sufficient solar energy to
resume operation. However, the system correctly identified the failures when the
node did not contribute to the algorithm with the remaining active nodes timing
out and returning to the “wait” state of the control flow. They continued to attempt
calibration and eventually succeeded, all without user intervention. These instances
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of low power states, while not ideal for our operation, also argue the need for smart
energy management and the usefulness of our system.

To connect the test to our daily average predictions from simulation, we analyzed
the overall data set to see how well it predicted the daily average solar current. We
averaged both the observations and predictions; Figure 7 compares the observations,
the MLR predictions from the system, and an offline prediction by the EWMA model.
Our predictions match the observations well and better capture the peaks compared
to the EWMA model.

Table IV. Results of Models Predicting Average Hourly and Daily Charge Current for Data from
CSIRO Test

Hourly Daily
Model Type RMSE Max Abs Error RMSE Max Abs Error
Our Model 2.04 0.98 0.91 0.91
Persistence 3.61 22.33 2.52 7.70
EWMA 1.95 4.93 1.51 5.75

We also analyze the RMSE error and maximum absolute error for the hourly and
daily averaged data sets. Table IV lists these values, which verify the graphical
analysis. Regarding EWMA in this table, hourly uses the model as described in [Hsu
et al. 2006; Kansal et al. 2006] while daily uses the modified version described in
Section 5.1.

For hourly predictions, we see the benefit of the specialized historical data in the
EWMA model as it provides the lowest RMSE error with a 4.5% improvement over
our model. However, EWMA exhibits a 403% increase in maximum absolute error over
our model. Our model greatly improves over Persistence by 44% for the RMSE and
95.6% for maximum error. For daily predictions, our model has the lowest RMSE and
maximum absolute error compared to both Persistence and EWMA. It reduces the
RMSE by 64% and 40% over Persistence and EWMA, respectively, and the maximum
absolute error by 88.1% and 84.1%.

These results indicate that our model works well over time, as seen by the RMSE
numbers, and instantaneously, as seen by the maximum error numbers. While the
intent of our model is for larger daily time windows, it also achieves reasonable
performance at the hourly time frame. These numbers could improve further by
incorporating more diverse neighbor data as we explored in Section 5.1. Additionally,
our model underpredicts as seen in the graphs, providing a conservative estimate
of future solar energy. This leads to the model saving power. An overprediction
could mislead the nodes into thinking more energy exists than really does, thus
implementing a more power hungry mode of operation and leading to node failure.
By underpredicting, the system utilizes less power than necessary, ensuring reserves
exist for overly cloudy and rainy weather.

Overall, this test demonstrated a functional and correct implementation of the
algorithm on the platform, connecting the theory to the real operation of the
algorithms.

6.4. Experiment 2
To scale the experiment up and examine spatial coverage issues, we performed a
second field experiment of 10 nodes operating over four months. The nodes were
divided into two five-node groups and placed at different campus locations with
different solar exposure. Each group had its own master node and consisted of nodes
within one-hop range. The nodes also transmitted their data out of the network to the
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Fig. 7. (a) One Week of Observed and Predicted Data from Test 1 and (b) Daily Average Solar Current
Observed and Predicted from Test 1

base nodes and gateway located on the campus. These nodes did not participate in the
computation, but received the data and recorded it to a database with web access.

Nodes measured solar current every five minutes and averaged the data over
15 minute intervals. The master predicted the future solar current 30 minutes
ahead with calibration occurring every 1.5 hours. This provided enough events to
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Table V. Energy Requirements for Models

Model Type Computation Ops Computation
Energy (mJ)

Communication
Msgs

Communication
Energy (mJ)

Our Model: MLR Prediction 5 2.38× 10−4 2 1
Persistence: Prediction 0 0 0 0

EWMA: Prediction 3 1.43× 10−4 0 0
Our Model: Calibration 8400 0.4 6 3.1

ensure functionality without overloading the communication system. After setting the
experiment up, we monitored it sporadically, verifying that our algorithm functioned
properly in a larger network size.

During the experiment, the campus experienced quite a lot of stormy weather
including one storm classified as a natural disaster, affecting the overall operation of
the system at different points: power failures of the gateway node, central database
corruption, and limited solar recharging, to name a few. From these experiences,
we determined that we need better energy management. We had not connected our
prediction to the actual energy management of the node; if we had, we might have
reduced measurement windows and other behaviors to conserve energy and ensure
continual operation during the storms.

However, when the nodes had sufficient power, they did continue to run the
algorithms. Based on the overall counts of 766890 calibration attempts and 82258
errors, we saw a 89.3% success rate in computing the calibration algorithm over the
entire time period. Overall, this demonstrated that we can scale the algorithms to
larger node sizes and that more work is needed in linking outputs of the prediction to
an energy management strategy.

6.5. Energy
Despite the improved predictions, we must ask whether it makes sense from a energy
standpoint to perform a more complex model. Table V outlines the relevant numbers.

First, from the prediction side, computationally, Persistence performs the best as it
requires no computation while our model and EWMA differ by two operations, leading
to a 9.5 × 10−5mJ increase in energy in order to compute our model. Distributing the
MLR prediction for our model requires two 32-byte messages, which requires 1mJ
of energy, while the other methods have no communication requirement and, thus,
require no energy.

On the calibration side, only our model requires calibration. This calibration, using
the parameters of our field test, requires roughly 8400 operations (only 6.7ms of
processing time). On our 8MHz Fleck platform operating at 3.3V and requiring 18mA
active current, this results in 0.4mJ of energy. Communicating the messages required
for calibration consists of six messages at a maximum transmit power of 100mW and
data rate of 50Kbps, requires 3.1mJ of energy. To put these numbers in perspective,
during our field test, the system gathered 37.5mA daily (on average). This resulted in
1.07 × 104J of energy daily (296.7Wh). As the trend for our model is underpredicting,
we would easily recover the energy costs of computing our model through the energy
savings incurred by using the prediction to manage power. For instance, if the sensor
node sets the sensor sampling rate based on the predicted energy that it will have
available, using our model allows the node to set the sampling rate more accurately for
its energy budget. In return for this energy expenditure, we see a 39.7% improvement
in our solar current prediction over EWMA and a 63.9% improvement over Persistence.
Table VI outlines the key results. The significant improvement in prediction accuracy
for a small energy overhead confirms the benefits of our distributed regression model
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Table VI. Summary of Key Results

Daily Energy Harvested 1.07× 104J
Extra Energy Required 4.5mJ
Prediction Improvement 40-60%

for solar prediction and more informed energy management on sensor nodes.

7. DISCUSSION AND FUTURE WORK
Based on these results, we elaborate on several aspects of the system.

First, we saw single node failures during our testing, but avoided multiple node
failures. What would happen if a multiple node failure occurred? Should any nodes
other than the master node fail, the network would continue to attempt calibration,
miss the needed communication, and cancel the rest of the algorithm. Should the
master node fail, the calibration would not occur. Future work entails adding data
redundancy to the algorithms such that the failure of a node still allows the calibration
algorithms to continue.

Another thing to note regarding these results is that the failure of the calibration
algorithms does not mean the failure of the system. In cases where the calibration
fails to complete, MLR prediction does continue with the old coefficients. Energy
management can still proceed with predictions of future solar current; however the
coefficients may be less accurate. Slightly less accurate predictions will not cause our
network to fail. Any time series prediction will oscillate around the real values, but
the aggregate behavior should match the real solar current behavior; this is what we
see in our work. As long as the aggregate matches and predictions do not oscillate too
far from the real behavior (oscillations which we do not see in our work), any energy
management system will be able to maintain operation. Some days will require using
more energy from the power storage system than expected, but this will be corrected
on those days where extra power is stored. Overall, the predicted solar current will
lead to a more comprehensive energy management system, which should ensure the
continual operation of the network.

Additionally, we can explore the trade-offs regarding the time windows for sensing,
prediction, and calibration. All the timing is sensitive to the phenomena and data being
predicted, but we can make some generalizations. Small time windows for sensing
and prediction occasionally result in models too sensitive to perturbations within the
data; the system then requires more frequent calibration to adjust and some amount of
smoothing. For the case of solar current at a medium time scale (approximately of the
order hours), the cyclic nature of the data with high values during the day but near
zero values at night can confuse the model, ensuring it does not accurately predict
either. In our results, Figure 7(a) sees the model not quite matching the nighttime
values and, on occasion, not quite reaching the heights of the daytime values. Accurate
models at these medium time scales might require operating only with one portion of
the cycle, but the movement of the transition points between night and day and vice-
versa can still cause difficulties. Larger time scales, such as the daily values we use,
smooth over the cycles and perturbations to ensure a data set more amenable to time
series predictions. However, this does require more time to gather data for calibrating
and recalibrating based on seasonal trends in the data. Our choice of daily time
windows ensures a reasonable prediction while minimizing the amount of computation
(and thus power usage) needed by the model, allowing more time for monitoring the
environment and the operational goals of the sensor network.

We also want to consider the definition of the matrix and determination of
appropriate policies. We used the existing simulation data to define reasonable model

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



A:26 Elizabeth Basha et al.

structures and chose fixed windows for calibration and MLR prediction. Ideally, the
system would dynamically determine this, either in a central or distributed approach,
allowing for a more adaptable model. This would also allow for a variety of prediction
windows and dynamic growth of the calibration window as more data arrives. With
dynamically defining these parameters, we need to also decide the optimal strategy
for predicting, whether it makes more sense to utilize the same prediction for a node
cluster or have each node predicts its own current. This relates to node density and
the variability of the environment. A more heterogeneous setting may lead to better
individual predictions while a homogeneous setting to cluster predictions; also, a large
network most likely will need a combination of approaches. To achieve this, we first
must include manual methods for defining these policies and then consider automated
methods. We leave this for future work, recognizing the importance of answering these
questions to enable a portable prediction model.

Finally, an interesting direction for future work is to further explore the relationship
between prediction accuracy on one hand and the spatial and measurement diversity
on the other. Our results from Figure 6 indicate some interesting opportunities to
improve estimation quality through the grouping of small groups of nodes with diverse
solar measurement profiles. Further study is required to establish persistent trends
regarding the impact of the number of nodes in a prediction group and the degree of
diversity in their solar measurements on the solar prediction accuracy.

8. CONCLUSIONS
Optimizing energy usage on sensor nodes is a key issue for sensor networks. In this
paper, we describe a model and distributed algorithms for predicting future daily
average solar current. We develop a distributed pseudoinverse algorithm usable in
a wide range of applications. We verify the functionality of these algorithms through
simulation and a month-long field experiment on our platform.

Predicting solar current enables better power management in sensor networks.
For example, a power management system could use the solar current prediction
to determine that insufficient energy will be harvested over the next two days
to support the current operations. A power management planner could use this
information to plan the system operation with fewer communication rounds, less data,
or perhaps compressed data, trading off power and communication for computation,
data resolution, and solution accuracy. Overall, better power management means
longer operation of the network, providing more monitoring of the environment, more
data, and a more useful sensor network. Our work equips sensor networks to provide
better energy management and does so in a very usable, general form. Anyone can use
our algorithms to predict future energy on any sensor network with solar recharging.
The model utilizes any combination of climactic and spatial variables available on the
platform; the only requirement is the system measures its solar current.

Moving forward we will explore dynamic model definition, allowing better adaption
of the models to changing networks and new installations. We will also explore the
scalability of the model to larger sized networks and further approaches to improved
energy prediction to ensure longer lived networks.
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