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Reconfiguration Planning for Pivoting Cube Modular Robots

Cynthia Sung, James Bern, John Romanishin, and Daniela Rus

Abstract— In this paper, we present algorithms for self-
reconfiguration of modular robots that move by pivoting. The
modules are cubes that can pivot about their edges along the
x̂, ŷ, or ẑ axes to move on a 3-dimensional substrate. This is
a different model from prior work, which usually considers
modules that slide along their faces. We analyze the pivoting
cube model and give sufficient conditions for reconfiguration to
be feasible. In particular, we show that if an initial configuration
does not contain any of three subconfigurations, which we
call rules, then it can reconfigure into a line. We provide
provably correct algorithms for reconfiguration for both 2-D
and 3-D systems, and we verify our algorithms via simulation
on randomly generated 2-D and 3-D configurations.

I. INTRODUCTION

Modular robots consist of multiple connected modules,
each with limited capabilities, that can be reconfigured
to produce complex functionality as required by a task.
Among the self-reconfigurable modular systems that have
been developed [1]–[7], pivoting has emerged as a simple but
powerful motion predicate [7]. In this paper, we describe a
model for pivoting cubes in 3-D. We consider reconfiguration
in both 2-D and 3-D settings and demonstrate that barring
certain subconfigurations allows us to guarantee reconfigura-
tion in O(n2) moves. We provide provably correct algorithms
for performing such reconfiguration. These are not optimal
but are the first correct algorithms for the 3-D pivoting cube
model. We perform simulations on random 2-D and 3-D
configurations and show that in many cases, reconfiguration
does not require the upper bound of n2 moves.

Pivoting modules, although prevalent in hardware [5], [7],
are not well-studied. Pivoting modules sweep out a volume
that extends past their initial and final positions, and any
reconfiguration algorithm must take this motion constraint
into account. An O(n2) algorithm for 2-D pivoting modules
was given in [8] but the model relaxed connectivity con-
straints compared to what many modular robots require and
allowed movements that are often not physically realizable.
Nguyen et al. [9] considered 2-D pivoting hexagons while
requiring strong connectivity (connectivity through faces)
and provided sufficient conditions for reconfiguration in
O(n5/2) moves. In [10], pivoting squares were reconfigured
using a stochastic approach, and work in [5] analyzed the
same system using meta-modules. A model for pivoting
cubes in 3-D was introduced in [7], but the planning problem
was not addressed. To our knowledge, there have been no
studies of reconfiguration for pivoting cubes in 3-D.
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In contrast, in sliding models, modules move by trans-
lating along the faces of adjacent modules. When strong
connectivity is enforced, reconfiguration for 2-D shapes can
be completed in O(n2) moves [11]–[13], or in O(n) rounds
for synchronous distributed settings [14]. 3-D versions of the
problem have also been studied under the restriction that the
initial and final configurations have no holes [15]. In [16], the
3-D sliding cube model enabled locomotion over arbitrary
obstacles. Unfortunately, because of the additional clearance
required for pivoting modules, none of these algorithms can
be used on the pivoting cube model.

The crystalline model [1], [17] enables shape metamor-
phosis via expansion and contraction of modules. 2-D ver-
sions of these modules reconfigure in O(n log n) moves
and O(log n) time steps when grouped into 2 × 2 meta-
modules [18]. Similarly, 3-D reconfiguration can be per-
formed in O(n) moves with 2 × 2 × 2 meta-modules [19].
Again, these algorithms do not work on pivoting modules be-
cause of the clearance requirements associated with pivoting.

The paper is organized as follows. Section II provides
a description of the pivoting cube model, and section III
gives the problem definition. Sections IV and V introduce
algorithms for reconfiguration in 2-D and 3-D, as well
as proofs of correctness. Section VI contains results of
simulations for random 2-D and 3-D configurations using the
proposed algorithms. Finally, we conclude in section VII.

II. PIVOTING CUBE MODEL

The pivoting cube model differs from other theoretical
models in its motion constraints. Cubes locomote by pivoting
(rotating) about the edges they share with other modules (ref.
Fig. 1). Because a cube is longer along a diagonal than along
a side, pivoting requires that cells adjacent to the initial and
final positions also be empty. The result is that modules even
with no neighbor along a face are sometimes unable to move.
This is a significant difference from the sliding cube model.

In our model, a module pivots by the maximum angle
possible until it contacts another module. If a module does
not share an edge with another module parallel to the pivot
axis, it will not pivot.

The model in this paper makes the following assumptions:
• A pivoting module rotates about an edge that it shares

with another module (the pivot edge).
• A pivoting module sweeps out a volume that must not

intersect other modules.
• This swept volume lies within one layer (along the pivot

plane), which is perpendicular to the pivot edge.
• Except during pivoting, modules sit on a cubic lattice.

In addition, we enforce strong connectivity, that is
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(b) Pivot by π

Fig. 1. Pivot moves that a module can perform. The green module pivots
about an edge until it comes into contact with another module. The shaded
gray area indicates the sweep volume of the pivot move. All grid cells
containing gray must be empty in order for the module to pivot.

• Modules that are connected must share a face.
Since a pivoting module need share only the pivot edge with
another module, the two are not necessarily connected.

III. DEFINITIONS AND PROBLEM DEFINITION

A configuration C consists of n unit cube modules i on a
cubic lattice, in which modules intersect either at a face, at an
edge, or not at all. We assign a global coordinate system so
that modules are positioned at integer coordinates (xi, yi, zi).
Each position in the lattice is called a cell, and it can be either
empty (no module at that location) or occupied.

Two modules i and j are connected if they share a face,
i.e., if they share two coordinates and the third is different by
only one. In this case, module j is called module i’s neighbor.
The connectivity graph of a configuration C is a lattice graph
G = (V, E) with vertices V = {i : i is a module in C} and
edges E = {(i, j) : i and j are neighbors}. A configuration
is called connected if its connectivity graph is connected.
The complement of G is the connectivity graph of the free
space. It contains one or more components, one of which
is unbounded. We define the boundary O of configuration
C to be the set of modules i ∈ C that neighbor cells in the
unbounded component. The bounded components are holes.

Certain modules on the boundary of a configuration are
extreme modules, which are modules with minimum or
maximum x, y, or z coordinate values. We identify them by
the directions in which they are extreme. For example, the
(+ẑ,+ŷ,−x̂) extreme module is found by considering the
modules with maximum z coordinate and out of those with
the maximum y coordinate, taking the one with minimum x.

A. Reconfiguration

Modules can pivot about the edges of other modules
to change the configuration. If a module in a connected
configuration is able to pivot without disconnecting the
remaining configuration even temporarily, then we say the
module is mobile. The mobile setM is the set of all modules
i ∈ C that are mobile. We assume that modules pivot in
lockstep, and we discretize time according to the number of
steps t = 0, 1, · · · . Reconfiguration, then, is the problem of
finding a sequence of configurations (C0, C1, · · · , CT ) from
an initial configuration to a goal configuration such that
the transitions between the configurations at each time step
consist of only valid, non-colliding pivots. That is:
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Fig. 2. Pivot plane of a module pivoting from cell G.

Problem 3.1 (Reconfiguration): Given two connected
configurations C0 and Cgoal both of size n, find a sequence
(C0, C1, · · · , CT ), subject to:
• Termination. CT = Cgoal
• Validity. At each t ∈ {1, · · · , T}, Ct is the result of a

set of modules in Ct−1 pivoting.
• Collision. At each t ∈ {1, · · · , T}, the modules pivoting

between Ct−1 and Ct do not sweep overlapping volumes.
• Connectivity. The configuration remains connected

through the entire transition from C0 to CT .
The problem is feasible if there exists such as sequence. The
environment is assumed to be obstacle-free.

B. Reversibility

Reversibility is the property that the effect of a pivot can
immediately be undone by another pivot; that is, that the
sequence (C0, C1, C0) is a valid sequence. Figure 1 shows
the two possible pivot types in our model. Pivots by π
that maintain connectivity are reversible since the pivoting
module is connected to the same neighbor after pivoting as
before, and the volume swept out during the move is the same
forwards and backwards. Of greater interest is pivots by π

2 .
Property 3.2: Pivoting by π

2 is reversible if the pivoting
module has a neighbor in the pivot plane prior to the move.

Proof: Consider a module that pivots by π
2 , and label

the cells along the pivot plane as shown in Fig. 2. The module
begins in cell G. The neighboring cells must satisfy:
• Collision-free. Cells B, C, and F are all empty.
• π

2 stop. One of cell E or K is occupied.
• Pivot edge. One of cell K or L is occupied.
• Neighbor. One of cell H or L is occupied.

When the module pivots, it moves to cell F. The conditions
for reversibility of this pivot are:
• Collision-free. Cells B, C, and G are all empty.
• π

2 stop. One of cell H or L is occupied
• Pivot edge. One of cell K or L is occupied.

The collision and pivot edge conditions are the same in both
forward and backward moves. If the pivoting module had a
neighbor in pivot plane, then that neighbor satisfies the π

2
stop condition and the pivot is reversible.

In connected configurations, irreversible pivots occur when
the pivoting module, which must have had a neighbor to be
connected, had neighbors outside the pivot plane (Fig. 3).

With reversible pivots, we can simplify the original prob-
lem to the following:

Problem 3.3 (Reconfiguration into a Line): Given a con-
nected configuration C0 of size n, find a sequence
(C0, C1, · · · , CT ), subject to:



Fig. 3. Irreversible π
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pivot. The two yellow modules are connected via the
rest of the configuration (not shown). Since modules pivot until they contact
another module, subsequently pivoting back would result in a pivot by π.

(a) Configuration (b) Center slice (c) Modules able to pivot

Fig. 4. Example of a configuration that cannot reconfigure. (b) View of
center slice. (c) Modules that are able to pivot are highlighted in green.
Pivoting any of these modules will disconnect the configuration.

(a) Rule 1 (b) Rule 2 (c) Rule 3

Fig. 5. Inadmissible subconfigurations. Occupied cells are filled in solid
gray. Empty cells are outlined in dotted lines.

• Termination. CT is a line.
• Validity. At each t ∈ {1, · · · , T}, Ct is the result of a

set of modules in Ct−1 performing reversible pivots.
• Collision. At each t ∈ {1, · · · , T}, the modules pivoting

between Ct−1 and Ct do not sweep overlapping volumes.
• Connectivity. The configuration remains connected

through the entire transition from C0 to CT .
A solution to this problem implies a solution to Problem 3.1
since if two configurations C0 and Cgoal can each reconfigure
into lines, then C0 can reconfigure into Cgoal by first recon-
figuring into a line and then performing the sequence for
Cgoal in reverse.

C. Admissible Configurations

There exist configurations where no module is mobile
(ref. Fig. 4). To enable reconfiguration, we introduce inad-
missible subconfigurations, shown in Fig. 5, which we call
rules. Configurations that contain no instance of a rule as a
subconfiguration, up to rotation and mirroring, are said to
obey that rule. It was shown in [9] that if a hexagonal lattice
configuration obeys the hexagonal equivalent of rule 1, then
there exists a mobile cube on the boundary. Since rule 1 is
not sufficient to guarantee this property in a cubic lattice
(ref. Fig. 6), we include two additional rules. Connected
configurations that obey all three rules are called admissible
and can reconfigure into lines.

IV. RECONFIGURATION IN 2-D

Two-dimensional configurations are those with constant x,
y, or z coordinate. For simplicity of notation, we assume that

Fig. 6. 2-D configuration that obeys rule 1 but has no mobile module on
the boundary. Mobile modules are green, boundary modules are gray. The
red dotted line indicates an instance of rule 2.

Algorithm 1: RECONFIGURE2D(C0)

Input: An admissible initial configuration C0

1 T ← 0; qi ← empty queue
2 e← (+ŷ,+x̂) extreme module of C0
3 N ← modules in O ∩M in counterclockwise order

starting from (xe, ye), excluding e
4 while not a line do

// Next module to pivot (Alg. 2)
5 (i, qi)← NEXTMODULE(qi, CT ,N )

// Move module to the tail
6 repeat
7 CT+1 ← CT with module i pivoted clockwise
8 T ← T + 1
9 until xi = xe AND yi > ye // i is extreme

10 Update N
11 end
12 return (Ct)Tt=0

all modules have the same z coordinate and write the position
of a module as (xi, yi). We also restrict modules to pivot only
about +ẑ or −ẑ, which we call pivoting counterclockwise
and clockwise respectively. Under this restriction, all pivots
are reversible as long as the configuration is connected. A
description of the algorithm and proof of correctness follow.

A. Algorithm Description

Our algorithm is similar to that in [9]. It takes as input an
admissible configuration C0 and reconfigures it into a line as
shown in Algorithm 1. The algorithm works by finding the
(+ŷ,+x̂) extreme module and building a tail off of it in +ŷ
direction. Individual modules are selected greedily (line 5)
using the procedure in Algorithm 2 and pivot clockwise until
they reach the end of the tail (lines 6–9). In particular, to
find the next module to pivot to the end of the tail, we
start at the extreme module and search the boundary O
of the configuration in a counterclockwise direction for the
first mobile module i such that either (type 1) module i
can be removed from the configuration without rendering
it inadmissible, or (type 2) there exists a trio of modules
(i, j, k) that form part of an instance of P3, depicted in Fig. 7.
In the case of a type 1 module, the module i pivots to the
end of the tail, and the search process restarts. In case of
type 2 modules, all three modules i, j, and k pivot to the
end of the tail in that order before a new search begins.



Algorithm 2: NEXTMODULE(qi, C,N )

Input: A queue qi of modules, an admissible
configuration C, and a list N of mobile
boundary modules in counterclockwise order

1 if qi is not empty then
// Choose next module in the queue

2 i← qi.pop()
3 else
4 i← first module in N such that C \ i admissible

OR i in an instance of P3

5 if C − i not admissible then
// Type 2

6 Find j, k such that (i, j, k) in an instance of P3

7 qi.push(j)
8 qi.push(k)
9 end

10 end
11 return (i, qi)

j ik

Fig. 7. Subconfiguration P3. Occupied cells are filled in solid gray. Empty
cells are outlined in dotted lines.

B. Analysis

To show correctness of this algorithm, we make use of the
following lemmas.

Lemma 4.1: A mobile module i pivoting on the boundary
of an admissible configuration C is able to traverse around
the entire boundary.

Proof: Module i is able to pivot at least once by
definition. Furthermore, a module that has just pivoted is
able to continue pivoting in the same direction. Consider
Fig. 2. Without loss of generality, assume a module in the
gray cell G just pivoted π

2 clockwise from cell F. (Note that
a module pivoting by π must pass through cell F.) In order
for the module to have pivoted to cell G, cells B and C must
be empty. Since the module pivoted from cell F, cell F must
now be empty. Since cells B, C, and F are empty, regardless
the state of other cells, the module is able to pivot clockwise
again. Thus a module is only unable to continue pivoting if
such a pivot would disconnect the configuration.

There are two ways for a pivot to disconnect a configura-
tion: 1) the pivot disconnects other modules from each other,
or 2) the pivot disconnects the pivoting module. The second
case is prohibited by rule 1. As for the first, when the module
pivoted initially, the configuration must have been connected
by definition of mobile. The module cannot be necessary for
maintaining connectivity between other modules, no matter
how many times it has pivoted.

So a mobile module is able to pivot around part of the
boundary of C and return to its original position. Further-
more, since C obeys rule 3, the module cannot ‘skip over’
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Fig. 8. Figure for Lemma 4.2. Neighboring cells of module i. Occupied
cells are filled in solid gray. Empty cells are outlined in dotted lines.

parts of the boundary. That is, neighbors of the module’s
initial and final positions must be neighbors of each other.
The module is able to traverse around the entire boundary
of the configuration.

Since the tail is part of the boundary, Lemma 4.1 indicates
that any mobile cube is able to pivot to the end of the tail.

Lemma 4.2: Given an admissible configuration C that is
not a line, there exists a mobile module i that satisfies the
search criteria in Algorithm 2, line 4.

Proof: Either there exists a mobile module i ∈ O of
type 1 or not. If it exists, then this module satisfies the
criteria. If it does not, we show that there must exist an
instance of P3 on the boundary.

Let B be the block tree of the connectivity graph G of
C and take only the subgraph BO ⊆ B where every block
contains a module in the boundary O. Choose an arbitrary
leaf b ∈ BO. Unless BO is a single vertex, b contains a
module ` that is also contained in a different block of BO (`
is a cut vertex in the connectivity graph of C). Since b is a
leaf, there can only be one, so all modules on the boundary of
b other than ` must also be in O. Furthermore, the boundary
of b must form a simple cycle; otherwise there exists a
boundary module with only one neighbor and removing that
module from the configuration would leave the configuration
admissible, which contradicts our original assumption.

Of the extreme modules of b, choose a module i that is not
the extreme module of C and that has a different x coordinate
from `. Say this module is the (+ŷ,+x̂) extreme. The
neighboring cells are depicted in Fig. 8. Since the boundary
of b is a cycle and i is on the boundary, i must have two
neighbors (cells labeled j and A). Furthermore, since i is
extreme and has a different x coordinate from `, there can
be no modules in the cells labeled B. There can be no module
at C, or else C − i would be admissible, which contradicts
our original assumption. Therefore, there is a module at k.
The cells labeled D must be empty since C is admissible.
Hence the modules at (i, j, k) form an instance of P3.

Lemma 4.3: Pivoting a type 1 mobile module to the end
of the tail of an admissible configuration C produces an
admissible configuration.

Proof: Pivoting a module to the end of the tail has the
same effect as removing it from the original configuration
C and adding a new module to the end of the tail. Adding
new modules to the tail does not affect the admissibility of C
since the tail is grown in the +ŷ direction off the (+ŷ,+x̂)
extreme module and there can exist no other modules with



Fig. 9. Two modules arbitrarily far apart on the boundary of an admissible
configuration may still collide.

a greater y coordinate. Removing a type 1 module from C
does not render it inadmissible by definition of type 1.

Now consider type 2 mobile modules. Fig. 8 shows that
modules i, j, and k are all on the boundary, module j is
mobile once i pivots, and module k is mobile once j pivots.
All three modules are able to pivot to the end of the tail.

Lemma 4.4: Pivoting a sequence of type 2 mobile mod-
ules to the end of the tail of an admissible configuration C
produces an admissible configuration.

Sketch of Proof: As mentioned for Lemma 4.3, we only
have to consider the effect of removing i, j, and k from the
configuration. This does not render C inadmissible, as can
be seen by checking Fig. 8 against the rules.

Combining these lemmas gives us our main result.
Theorem 4.5: Algorithm 1 reconfigures any admissible

2-D configuration of size n into a straight line configuration
using O(n2) pivot moves.

Proof: Correctness: For any admissible configuration
C0 that is not a line, Lemma 4.2 states that Algorithm 2 will
return a module i. By Lemma 4.1, the module can pivot to the
end of the tail, and by Lemmas 4.3 and 4.4, these pivots do
not affect the admissibility of the configuration. Therefore,
mobile modules will continue to be identified and pivot to
the tail until the configuration is a straight line.

Pivot Moves: Up to n modules must pivot to the end of
the tail, and each pivots up to n times. The total number of
pivot moves is at most n2.

This bound is tight since Θ(n2) moves are required to
reconfigure a horizontal line into a vertical line.

Sometimes, a configuration is rooted at a module that
cannot pivot and is thus immobile. In this case, all lemmas
hold except Lemma 4.2. Because of the root, certain modules
between the root and the extreme module will also be
rendered immobile. However, the block tree analysis holds,
and the final configuration will not contain any cycles.

Corollary 4.6: Algorithm 1 reconfigures any admissible
2-D configuration with an immobile root into an admissible
chain configuration with one end at the root.

C. Parallel Moves

In the proposed algorithm, one module pivots at a time. Al-
lowing multiple modules to pivot simultaneously will speed
up the process but also introduces the possibility of collisions
between two pivoting modules. Even when a configuration
is admissible, two modules arbitrarily far apart in distance
along the boundary may collide if they pivot simultaneously
(ref. Fig. 9). Mobile modules would have to keep track
of the locations of all other moving modules in order to
completely avoid collision. To avoid these situations, we can

(a) Configuration (b) Slice Graph

Fig. 10. Configuration and its corresponding slice graph. Each layer is
colored in different color. The red and green slices are locally extreme.

restrict configurations such that any two pivot edges on the
boundary are a distance more than 2

√
2 units apart, which is

the length of two diagonals. We call this the parallelization
criterion. When this criterion is satisfied, it can be shown that
modules pivoting more than 4 units apart on the boundary
of a configuration are guaranteed not to collide. Using the
same procedure as in Algorithm 1 but with each module
waiting only until the previous one has advanced 8 units
along the boundary before pivoting (pivoting modules may
free modules up to 4 units ahead) yields the following result.

Corollary 4.7: An admissible configuration C of size n
that satisfies the parallelization criterion can be reconfigured
into a straight line in O(n) time steps.

D. Reduced Space Requirements

Although we use the (+ŷ,+x̂) extreme module to build
the tail, any extreme module can be chosen. Practically, this
allows some time and space savings for general reconfigura-
tion. Rather than building a line of length n and then running
the steps backwards to produce a goal configuration, modules
that reach the tail of the initial configuration can continue to
build the goal configuration starting at its (−ŷ,+x̂) extreme.
This decreases the width of the space required to be the sum
of the widths of the initial and final configurations.

V. RECONFIGURATION IN 3-D
Our algorithm for 3-D configurations is similar to that for

2-D configurations. In order to determine which modules to
move to the tail, we divide the configuration into 2-D slices.

A layer of a configuration C is a cross-section L ⊆ C
with constant x, y, or z coordinate. For example, the 2-D
(z = 2)-layer of C is all modules with z coordinate equal to
2, L = {i ∈ C : zi = 2}. The 1-D (x = 1, y = 0)-layer is a
line L = {i ∈ C : xi = 1 AND yi = 0}. A slice is a maximal
connected component of a layer.

Every 3-D configuration can be represented
by a slice graph GS = (VS , ES), where VS
contains all the slices of C cut along one axis and
ES = {(S1,S2) : S1 and S2 contain neighboring modules}.
For this algorithm, we use slices cut along the ẑ axis
(Fig. 10). A slice is called locally extreme if either all
neighboring slices have z coordinate less than its own or all
neighboring slices have z coordinate greater than its own.

A. Algorithm Description

Similarly to the 2-D algorithm, modules are chosen se-
quentially and moved to a tail, which in this case grows



Algorithm 3: RECONFIGURE3D(C0)

Input: An admissible initial configuration C0 whose
holes are convex

1 T ← 0; qi ← empty queue
2 e← (+ẑ,+ŷ,+x̂) extreme module of C0
3 GS = (VS , ES)← slice graph of C0
4 while not a line do
5 Pick a slice Si ∈ VS to deconstruct

// Deconstruct slice Si
6 eS ← (+ŷ,+x̂) extreme module of Si
7 rS ← root module of Si
8 NS ← mobile modules on the boundary of Si in

counterclockwise order starting from
(xeS , yeS , zeS ), excluding eS and rS

9 while Si not empty do
10 if isempty(NS) then

// Si is a chain; choose the
extreme module

11 i← eS
12 eS ← extreme module of Si − eS
13 else

// Next module (Alg. 2)
14 (i, qi)← NEXTMODULE(qi,Si,NS)
15 end

// Move module to the tail
16 P ← reversible path from (xi, yi, zi) to tail
17 repeat
18 CT+1 ← CT with i pivoted one step along P
19 T ← T + 1
20 until xi = xe AND yi = ye AND zi > ze
21 Update NS
22 end
23 GS ← GS − Si
24 end
25 return (Ct)Tt=0

in the +ẑ direction off the (+ẑ,+ŷ,+x̂) extreme module e.
The full procedure is provided in Algorithm 3. The algorithm
works by dividing the 3-D configuration into its 2-D slices
and breaking down these slices sequentially.

a) Choosing a slice (line 5): The slice graph GS of the
input configuration is constructed, and a slice Si ∈ GS is
chosen to move to the end of the tail. Slices corresponding
to tail modules are ignored. If there is more than one slice,
Si is chosen such that 1) GS−Si is connected, 2) the extreme
module e is not in Si, and 3) Si is locally extreme. Once
the modules in the slice have pivoted to the end of the tail
(we say the slice is deconstructed), a new slice is chosen.
We call the movement of one slice to the end of the tail one
stage. The last slice to move to the end of the tail is the slice
containing the extreme module e.

b) Deconstructing a slice (lines 6–22): Since the con-
figuration must remain connected throughout reconfiguration,
a root module rS , which is a module with a neighbor not in

(a) Convex (b) Nonconvex

Fig. 11. Convex vs nonconvex configuration. (b) is nonconvex because the
slice containing the red modules is not connected.

Si, is marked immobile (line 7). All modules in the slice are
then moved to the end of the tail in an order similar to the
2-D algorithm, leaving only a chain configuration behind.
At this point, the chain is also moved to the tail, starting at
the extreme module eS of the slice and ending at the root
(lines 10–12). Path planning for individual modules uses a
breadth-first search starting at the end of the tail. For each
cell (x, y, z), the reachable cells are found by simulating
a module at (x, y, z) pivoting about ±x̂, ±ŷ, and ±ẑ. Only
cells reachable by reversible pivots are kept. It can be shown
that the module can reach at least 4 distinct positions.

B. Analysis

Algorithm 3 reconfigures any admissible configuration
with only convex holes into a line. A hole is convex if
every 1-D layer of the hole is connected (ref. Fig. 11).
In configurations with convex holes, every 2-D slice of the
configuration contains a module that is on the boundary.

Lemma 5.1: Given an admissible configuration C with
only convex holes, there exists a slice Si that satisfies the
selection criteria for line 5.

Sketch of Proof: When there is only one slice, that slice
is chosen. Now consider if there are more slices. If there is
a slice that does not contain the extreme module e and has
one neighbor in GS , this slice satisfies the criteria. Otherwise,
consider the block graph BS of GS . Similarly to the proof of
Lemma 4.2, pick an arbitrary leaf block b ∈ BS (that does
not contain e if there is more than one), and choose a locally
extreme slice that is not also in a different block and does
not contain e (there is at least one). This slice satisfies the
selection criteria.

Lemma 5.2: The resulting configuration at the end of each
stage is admissible and has only convex holes.

Proof: We prove this by induction. Assume the config-
uration is admissible with only convex holes at the end of
one stage. Then this must also be true at the end of the next.
Note that the initial configuration satisfies this condition.

Similarly to Lemma 4.3, the tail does not affect admissi-
bility or the shape of any holes, so we only must check the
removal of the slice. Since an entire slice is removed, rule 2
cannot be broken unless it was broken before the stage began,
which would contradict the inductive hypothesis. Since the
slice is locally extreme by our choosing, rules 1 and 3 also
cannot be broken unless some rule was broken before. The
slice was chosen to maintain connectivity of GS , so the
configuration remains connected and therefore admissible.
Finally, removing an entire slice will not turn a convex hole



(a) (b)

Fig. 12. Paths to reach the end of the tail. The bright yellow module is
the moving module. Light yellow cells indicate cells that the module passes
through. (a) The module pivots about the boundary of its slice to the extreme
position, then to the slice below. (b) The module pivots to the slice above,
across the top of the slice, and into a cell in Ge.

nonconvex. So the configuration must remain admissible and
have only convex holes at the end of each stage.

Although the configuration is admissible between stages,
it may not be admissible while a slice is in the process of
deconstructing. During a stage, it is only necessary for a slice
to be able to completely deconstruct (i.e., there exist paths
to the end of the tail for every module in the slice).

Lemma 5.3: Let C be an admissible configuration with
only convex holes at the start of a stage, and Si be the slice
chosen in line 5. Suppose m modules from Si have pivoted
to the end of the tail. If the configuration and Si remain
connected, then there exists a reversible path along which a
mobile module i in Si can pivot to the end of the tail.

Proof: Consider the configuration C with Si re-
moved. The result is admissible by Lemma 5.2. Suppose
a module j is placed in an empty cell neighboring a
module on the boundary. By Lemma 4.1 and connectiv-
ity of the slice graph of C, module j is able to tra-
verse around the entire boundary using only reversible
moves. We can therefore construct a connected graph
Gc = (Vc, Ec) where Vc contains all empty cells neigh-
boring modules on the boundary, and Ec = {(j, k) :
a module at j can reach cell k via a reversible pivot}.

Now take the connected slice Si, where m modules have
already been removed. Delete from Gc any cells that are
still occupied by modules in Si. Of the components of the
resulting graph Gi, exactly one contains the extreme module
e. Call this component Ge. If module i pivots to a cell in Ge,
then it can follow the paths in Ge to the end of the tail. We
show that module i is able to reach a cell in that component.

Assume without loss of generality that Si is locally
extreme in the +ẑ direction. The cells in Gi with neighbors
in Si must have a z coordinate of either zi or zi − 1.
Furthermore, all cells with z coordinate equal to zi − 1
belong to the same component; otherwise removing Si would
disconnect the configuration. Suppose Ge is this component.
Then i is able to reach a cell in Ge by pivoting about −ẑ
to neighbor the extreme module of Si (ref. Lemma 4.1),
pivoting about −x̂ to a cell with z coordinate zi − 1, and
then pivoting across the bottom of Si to a cell in Ge (valid
by rule 1). Fig. 12(a) shows an example of this path.

Suppose that Ge is a different component. Since Si obeys
rule 1, a module that neighbors a module in Si is able to
rotate about ±x̂ or ±ŷ to a position on top of the slice

(z = zi+ 1). Since C was admissible, it is also able to cover
the top of the slice by pivoting about ±x̂ and ±ŷ. So, module
i can pivot to the top of the slice, then across the top of the
slice to a cell where it can pivot into a cell in Ge (Fig. 12(b)).

So as long as the configuration and Si remain connected,
a mobile module i ∈ Si can pivot to the end of the tail.

Lemma 5.4: Let C be an admissible configuration with
only convex holes and Si be the slice chosen in line 5. The
slice Si can be deconstructed.

Sketch of Proof: According to Lemma 5.3, mobile
modules in Si can pivot to the end of the tail as long
as Si and C remain connected. Since modules are chosen
according to Algorithm 2 (line 14), Si remains connected.
In addition, the root module rS ensures that C remains
connected. Therefore, mobile modules in Si will pivot to the
end of the tail as long as Algorithm 2 returns a module i.
According to Corollary 4.6, this will occur until Si is a chain
starting at rS and ending at eS . When Si is a chain, Gi is
one connected component, and eS is able to pivot to the end
of the tail in a process similar to that described in the proof
of Lemma 5.3, leaving a slice rooted at rS and ending at a
new extreme module. Continuing in this manner leaves Si
and C connected, until rS becomes the sole module in Si
and pivots to the end of the tail along a path in Gc.

Combining these lemmas yields our main result:
Theorem 5.5: Given an admissible 3-D configuration C0

of size n whose holes, if any, are all convex, Algorithm 3
reconfigures C0 into a straight line configuration. Moreover,
the algorithm terminates in O(n2) pivot moves.

Proof: Correctness: By Lemma 5.1 and 5.2, for any
admissible configuration with only convex holes that is not
a line, there exists a slice such that removal of the slice
keeps the configuration admissible and all holes convex. By
Lemma 5.4, that slice is able to be completely deconstructed.
Therefore, slices will continue to be identified and modules
moved to the tail until the configuration is a straight line.

Pivot moves: Up to n modules pivot up to n times, for a
total of at most n2 pivot moves.

All the pivot moves are reversible, so this algorithm also
solves the general reconfiguration problem for admissible
3-D configurations with convex holes. We conjecture that a
similar algorithm in which slices are partially deconstructed
to open up holes will also work for nonconvex holes.

VI. SIMULATION RESULTS

We have implemented the algorithms and simulated them
on 1000 random admissible configurations of size varying
from 5 modules to 110 modules. All runs successfully
reconfigured the starting configuration into a line. Examples
can be found in the accompanying video. Figures 13 and 14
show the number of time steps to reconfigure random 2-D
and 3-D configurations respectively. The upper bound of
n2 is shown for reference. For nonparallel algorithms, the
number of time steps equals the total number of moves. In
both the 2-D and 3-D case, this number grew as n2, although
no configurations achieved the worst case estimate. We also
implemented and simulated the 2-D algorithm with parallel
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Fig. 13. Number of moves required for reconfiguration of random 2-D
admissible configurations using the basic and parallel 2-D algorithms, with
example configurations overlaid. While the total number of moves required
is quadratic in n, the parallel algorithm can complete in O(n) time steps.
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Fig. 14. Number of moves required for reconfiguration of random 3-D
admissible configurations with convex holes. The upper bound of n2 moves
is indicated by a dotted line. Example random configurations are also shown.

moves, which completes in a linear number of time steps as
shown in Fig. 13. In no simulation did modules collide.

VII. DISCUSSION

In this paper, we consider reconfiguration for modular
robots under the pivoting cube model. We present three rules
that are sufficient to guarantee feasibility of reconfiguration
for 2-D configurations and for 3-D configurations with
convex holes, and we provide algorithms for reconfiguration
into a line in O(n2) pivot moves. We also parallelize the 2-D
algorithm to complete in O(n) time steps. Our algorithms are
provably correct and verified in simulations.

Our algorithms guarantee reconfiguration under certain
conditions, but as mentioned in Section III-C, there exist
configurations for which reconfiguration is infeasible. We
are currently characterizing these types of configurations and
investigating the class of configurations for which recon-
figuration is feasible but may not be solved using greedy
approaches. In addition, the algorithms proposed here are
centralized and nonoptimal. Although we demonstrated that
the 2-D algorithm could be parallelized, such parallelization
requires imposing further constraints on the configuration,
and individual modules must still use global knowledge to
check whether the configuration is admissible to start. For
systems with large numbers of modules, it is preferable
that modules make decisions about pivoting using only local
information. Future work includes distributed approaches to
reconfiguration with the pivoting cube mode, as well as more
optimal solutions to the general reconfiguration problem.
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