MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Balls-into-leaves: sub-logarithmic renaming
in synchronous message-passing systems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Dan Alistarh, Oksana Denysyuk, Luis Rodrigues, and Nir Shavit. 2014. Balls-into-
leaves: sub-logarithmic renaming in synchronous message-passing systems. In Proceedings of
the 2014 ACM symposium on Principles of distributed computing (PODC '14). ACM, New York,
NY, USA, 232-241.

As Published: http://dx.doi.org/10.1145/2611462.2611499

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/101056

Version: Original manuscript: author’s manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

I I I .
I I Massachusetts Institute of Technology

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/101056
http://creativecommons.org/licenses/by-nc-sa/4.0/

Balls-into-Leaves: Sub-logarithmic Renaming
in Synchronous Message-Passing Systems*

Dan Alistarh!, Oksana Denysyuk'?, Luis Rodrigues?, and Nir Shavit?

'Microsoft Research Cambridge
2INESC-ID / Instituto Superior Tecnico
3Tel-Aviv University and MIT

Abstract

We consider the following natural problem: n failure-prone servers, communicating synchronously
through message-passing, must assign themselves one-to-one to n distinct items. Existing literature
suggests two possible approaches to this problem. First, model it as an instance of tight renaming in
synchronous message-passing systems; for deterministic solutions, a tight bound of ©(logn) commu-
nication rounds is known. Second, model the problem as a randomized load-balancing problem, which
have elegant sub-logarithmic solutions. However, careful examination reveals that such solutions do not
really apply to our scenario, because they are not fault tolerant or do not ensure one-to-one allocation. It
is thus natural to ask if sub-logarithmic solutions exist for this apparently simple but intriguing problem.

In this paper, we combine the two approaches to provide a new randomized solution for tight re-
naming, which terminates in O(log log n) communication rounds with high probability, against a strong
adaptive adversary. Our solution, called Balls-into-Leaves, combines the deterministic approach with a
new randomized scheme to obtain perfectly balanced allocations. The algorithm arranges the items as
leaves of a tree, and participants repeatedly perform random choices among the leaves. The algorithm
exchanges information in each round to split the participants into progressively smaller groups whose
random choices do not conflict. An extension of the algorithm terminates early in O(loglog f) rounds
w.h.p., where f is the actual number of failures. These results imply an exponential separation between
deterministic and randomized algorithms for the tight renaming problem in message-passing systems.

*Regular submission. Student paper.
TE-mail: oksana.denysyuk @ist.utl.pt. Address: INESC-ID, R. Alves Redol, 9, Lisbon, Portugal. Tel.: +351 213 100 359.

1 Introduction

In this paper, we consider the following assignment problem: n fault-prone servers, communicating
through synchronous messages, must assign themselves one-to-one to n distinct items, in an efficient dis-
tributed manner. This natural problem has received considerable research attention, and is an instance of
the fundamental renaming problem. In renaming, n processes start with distinct identifiers taken from an
unbounded original namespace, and output distinct names from a smaller target namespace. If the size of
the target namespace is exactly n, then the problem is known as tight (or strong/perfect) renaming, and has
been extensively studied both in shared-memory and message-passing systems, e.g. [4 (7, 2} 9] 19} [3]].

In particular, the above formulation is an instance of tight renaming in a synchronous message-passing
system where t<n processes may crash. Previous work by Chaudhuri, Herlihy, and Tuttle [9] gave an elegant
algorithm in this setting with O(logn) round complexity, and showed this to be optimal for algorithms
which distinguish state through comparisons. These results concern only deterministic algorithms, and we
are interested in studying whether randomization can yield better, sub-logarithmic algorithms.

Randomization is a natural approach for renaming, and has been used to achieve low-complexity solu-
tions in the shared-memory setting, e.g. [2]. Moreover, seen as an assignment problem, renaming is related
to the extensive line of work on randomized load balancing, e.g. [[18}[1} S, [17]. Surprisingly, a careful anal-
ysis of existing load balancing techniques reveals that none of them can be used to achieve sub-logarithmic
tight renaming, since they either are designed for a fault-free setting, or relax the one-to-one allocation re-
quirement. It is therefore tempting to ask whether randomization can in fact be used to obtain a fault-tolerant,
perfectly-balanced allocation in sub-logarithmic time.

In this paper, we answer this question in the affirmative. We present a new algorithm to solve tight
renaming in O(loglogn) communication rounds, exponentially faster than the optimal deterministic coun-
terpart. The algorithm, which we call Balls-into-Leaves, is based on the idea of arranging the target names as
leaves in a binary tree; processes start at the root of the tree, and perform repeated random choices in order
to disperse themselves towards leaves, while minimizing contention. We also present an early-terminating
variant, which terminates in O(loglog f) rounds, where f is the actual number of failures in the execution,
which is again exponentially faster than the best known deterministic version [3].

More precisely, our algorithm works as follows: processes (balls) start at the root of a virtual binary tree,
whose n leaves correspond to the target names. In each iteration, each ball picks a random available leaf
and broadcasts its choice; in case of collisions, a deterministic rule is used to select a winner. The remaining
balls backtrack towards the root, stopping at the lowest node at which the ball can still find an available leaf
within the corresponding subtree. (Please see Figures [I] and 2] for an illustration.) Balls then iterate this
procedure, exchanging information and progressively descending in the tree.

Our main technical contribution is showing that this natural strategy is fault-tolerant, and in fact con-
verges extremely quickly to a perfectly balanced allocation. Our argument has two parts: we first exploit
the concentration properties of the binomial distribution to bound the maximum contention on a name after
©(loglogn) communication rounds to be O(polylog n), with high probability (w.h.p). Second, we fix a
root-to-leaf path, and prove via a technical argument that all O(polylog n) balls (except one) will disperse
themselves off the path within the next O(log log n) rounds, again w.h.p. Therefore, each ball reaches a leaf
within O(log log n) rounds w.h.p.

Since the number of leaves matches the number of balls, Balls-into-Leaves solves tight renaming. Given
that comparison-based deterministic algorithms take €2(log n) rounds, this result establishes an exponential
separation between such algorithms and their randomized counterparts. (Our algorithm is also comparison-
based.) Moreover, Balls-into-Leaves guarantees deterministic termination; in particular, it will complete in
a linear number of rounds, even in unlucky runs.

We extend the Balls-into-Leaves algorithm to ensure early termination. Roughly speaking, an early-
terminating algorithm terminates faster when there are fewer failures, so its running time becomes a function
of the number f of failures rather than n. We do so by introducing an initial phase that ensures that balls

take advantage of a small number of failures in this round, descending deeply into the tree. With this mod-
ification, the algorithm terminates in O(log log f) rounds w.h.p., where f is the actual number of crashes.
Furthermore, in a fault-free execution, it terminates in constant time.

An examination of the argument (in particular, the concentration properties of the binomial distribution)
suggests that our complexity upper bound for Balls-into-Leaves is in fact tight. However, proving tightness
remains an open problem that requires new lower bounds on randomized renaming. Given our own attempts,
we conjecture that obtaining such bounds will be challenging, as lower bounds for other variants of renaming
have required subtle topological or reduction techniques, e.g. [[14} 8} 2 [12].

Due to space limitations, some proofs in this paper are deferred to an optional appendix.

2 Related Work

Renaming is introduced in [4] for an asynchronous message-passing system where t<n/2 processes
may crash. The authors show that tight renaming is impossible in this model, and give an algorithm for
(n+t—1)-renaming. Subsequently, the problem has been extensively studied in both message passing and
shared memory. We limit the related work discussion to the synchronous message-passing model considered
in this paper, and we direct the reader to [/, [2] for a survey of renaming in other models.

In synchronous systems, wait-free tight renaming can be solved using reliable broadcast [6] or consen-
sus [15] to agree on the set of existing ids. This approach requires linear round complexity [11].

Tight renaming in synchronous message-passing is first studied by Chaudhuri, Herlihy, and Tuttle [9].
They define comparison-based algorithms, which distinguish states only through comparisons, and show
such algorithms are vulnerable to a “sandwich” failure pattern, which forces processes to continue in indis-
tinguishable (order-equivalent) states for 2(log n) rounds. This yields an Q(logn)-round lower bound for
deterministic comparison-based algorithms, which the authors match via an elegant wait-free algorithm [9].

Order-preserving renaming (where decided names preserve the order of their original ids) was consid-
ered by Okun [19]. The author finds a new connection between the problems of renaming and approximate
agreement, and shows that this approach also has round complexity of O (logn). This algorithm is not
comparison-based. This approach was extended by [3] to provide early termination. The round complexity
of this extension is O(log f). Interestingly, the authors also observed that the algorithm in [19] terminates
in constant number of rounds if the number of actual faults is bounded by n > 2f2. This is because with
few faults approximate agreement can be solved in a constant time.

The algorithms surveyed above are deterministic. On the other hand, randomization has been employed
as a tool to improve resilience in a synchronous system prone to Byzantine failures [[10]. The authors give a
tight renaming algorithm with round complexity of O(log n), which tolerates n — 1 Byzantine failures under
an oblivious adversary. By contrast, the present work uses randomization to improve the round complexity
in a system with crash failures against an adaptive adversary.

Tight renaming can be seen as a balls-into-bins load-balancing problem, where n balls must be randomly
placed into n distinct bins. Early work on this problem addressed a scenario in which balls are placed into
bins by trying randomly in sequential order, e.g. [[13]]. Since then, the problem has been extensively studied
in different scenarios, e.g. [[18 |1, 15]]. In particular, the closest model to ours is the one where balls are placed
by contacting bins in parallel, motivated by distributed load-balancing with bandwidth limitations.

Several algorithms have been proposed for this setting, e.g. [[1,[17], which show that significant complex-
ity gains can be achieved over the naive random balls-into-bins strategy. For a complete survey of existing
results on parallel load-balancing, we refer the reader to [16]. To the best of our knowledge, none of the
known parallel load-balancing techniques can be used to obtain sub-logarithmic wait-free tight renaming.
Existing work either relaxes the exact one-ball-per-bin requirement [17], or requires balls to always have
consistent views when making their choice (which cannot be guaranteed under crash faults).

3 System Model and Problem Definition

Model. We consider a round-based synchronous message-passing model with a fully-connected network
and n processes, where n is known a priori. Each process has a unique id, originally known only to itself.
Computation proceeds in lock-step rounds. In each round, each process can send messages to its neighbors,
receive a message from each neighbor, obtain a finite number of random bits, and change state. Up to t<n
processes may fail by crashing. Crashed processes stop executing and do not recover.

Renaming. The renaming problem is defined as follows. Each process starts with initial id in some original
namespace, and it must decide on a new name in some target namespace 1. ..m, where m > n is a parameter
of the problem, such that the following conditions must hold [4]:

e Termination: Each correct process eventually decides on a new name.
e Validity: If a correct process decides, it decides on a new name in 1. ..m.
e Uniqueness: No two correct processes decide on the same new name.

When m = n, the problem is called tight renaming.

4 Balls-into-Leaves Algorithm

The algorithm treats processes as balls and target names as bins, where each ball wants to find an
exclusive bin for it. The algorithm organizes the n bins as leaves of a binary tree of depth log nﬂ Balls have
unique labels (the processes’ initial ids), and they can communicate by broadcasting messages.

The algorithm at a high level. Each ball starts at the root of the tree and descends the tree along a random
path. As balls descend, they communicate with each other to determine if there are collisions. Collisions
occur if many balls try to go to the same leaf or, more generally, if many balls try to enter a subtree without
enough capacity for them. For example, if all n balls at the root tried to enter the left subtree, they would
collide since the subtree has capacity for only n/2 balls. When balls collide, the algorithm assigns priorities
to them based in part on their unique label; balls with higher priorities keep descending, while the others
stop. Because balls pick random paths, very few collide at higher levels, so balls quickly descend the tree
and soon after find an exclusive leaf for them.

Local tree, candidate path, remaining capacity. The binary tree has log n levels. To finish in O(log log n)
rounds w.h.p., balls must descend many levels with a single round of communication. To do so, each ball b;
keeps a local tree, containing the current position of each ball, including itself. Initially, all balls in the local
tree of b; are at the root (Fig. [I). In a single round, a ball b; picks a random candidate path in its local tree:
starting with its current position, b; successively chooses the left or right subtree to follow for each level,
until the leaf is reached. The choice between left and right subtree is weighted by the remaining capacity
of each subtree (within b;’s local tree). The remaining capacity is the number of leafs of the subtree minus
the number of balls in the subtree. Say, if one subtree has no remaining capacity, b; chooses the other with
probability 1. In this way, b; picks the entire candidate path to the leaf locally, without communication with
other balls and without regard to collisions. Ball b; does not yet go down its path (this will happen later).
Rather, b; broadcasts its path and waits for the paths of others; this requires a round of communication.

Collisions, priority. Once ball b; has received the candidate paths of other balls, b; can calculate new
positions of these balls. Ideally, a ball just follows its candidate path. But b; may find that candidate paths
collide: more balls may try to enter a subtree than the subtree’s remaining capacity. In this case, b; allows
balls with higher priority to proceed, while others must stop where the collision occurs (and the rest of their
candidate path is discarded). The priority is determined by an order < p where smaller balls under < i have
higher priority.

Definition 1 (Priority Order <pr) Let n; and n; be the current nodes of balls b; and b;. Then,
bi <pbj <= (depth(m;) > depth(n;)) V ((depth(n;) = depth(n;)) A (bi < bj)).

'To simplify exposition, we assume 7 is a power of two.

3888 23
Q000 9
0000 Q9 o
1 100 100
2 3
8 8 o
ARRSRREANRNARA WILL I
(a) All balls at the root (a) All balls choose the first leaf (b) Choices are well distributed
Figure 1: Initial configuration Figure 2: After one phase

Under <R, balls are ordered by their depth in the tree (balls downstream ordered first), breaking ties by their
unique labels. To implement these priorities, b; iterates over all balls b in <y order; for each b, b; lets b
follow its candidate path until b reaches a full subtree—one with no remaining capacity. If b is lucky, it ends
up at a leaf in b;’s local tree; otherwise, it stops at a higher level. Irrespective of where b stops, the algorithm
ensures that there is enough space below to accommodate it. Because balls lower in the tree have a higher
priority, this space cannot be displaced subsequently by balls higher in the tree. Figures [I] and [2] show the
local tree before and after new positions are calculated.

Failures, synchronization, termination. A ball may crash while broadcasting its candidate path; some balls
may receive this broadcast, while others do not. The result is that the local tree of balls may diverge. To
resynchronize, after b; has updated its local tree using the candidate path, b; broadcasts its current position,
and waits to learn the position of other balls; this requires a round of communication. Based on the received
information, if necessary b; corrects the positions of balls in its local tree; if b; does not hear from a ball in
its tree, b; removes it (the ball has crashed). If b; finds that every ball is at a leaf, it terminates. Otherwise, it
picks a new candidate path for itself and repeats the entire procedure.

Detailed pseudocode. Algorithm|[I]gives the detailed pseudocode. Initially, each ball b; broadcasts its label,
receives labels from other balls, and inserts them at the root of its local tree (Line 1). Then, b; repeatedly
executes the main loop (Lines 2-26); each iteration is called a phase, and each phase has two communi-
cation rounds. In round one, b; first chooses its candidate path (Lines 5-10) one edge at a time, where the
probability of each child is the ratio of remaining slots in either subtree (Line 6). Then b; broadcasts its
path (Line 11). After receiving the paths of others, b; iterates over the balls b in <y order, to compute their
new positions. Each ball b moves down its path as long as the subtree has remaining capacity (Lines 12-18).
Balls that do not announce their paths have crashed and are removed from the local tree (Lines 19-20). In
the second round (Lines 22-28), b; sends its position, receives positions of other balls, and updates its local
tree, again removing balls which fail to send their positions. If all balls in the local tree have reached leaves,
b; terminates. It is easy to change the algorithm to allow a ball to terminate as soon as it reaches a leaf. Such
modification requires additional checks that have been left out in favor of clarity.

4.1 Tight Renaming using Balls-into-Leaves
We now prove that the Balls-into-Leaves algorithm solves tight renaming in O(loglogn) communica-
tion rounds w.h.p. The process with original identifier id; runs Balls-into-Leaves for the ball labeled id;. It
then returns the (left-to-right) index of the leaf where the ball terminates, and outputs this rank as its name.
Name uniqueness follows from the fact that no two correct balls can terminate on the same leaf (The-
orem|I)). Validity follows because the number of leaves is n. Termination and complexity follow from the
complexity analysis of the Balls-into-Leaves algorithm.

4.2 Correctness
The correctness follows from ensuring that, in every view, the subtrees never exceed their capacities.

Algorithm 1 Balls-into-Leaves Algorithm

Data Structures and Functions

Data Structures

e binary tree with n leaf leaves;
e path;: an ordered set of nodes;

Operations over the tree:

Remove(b;) removes b; from the tree;

CurrentNode(b;): current node of b;;

UpdateNode(b;,n): removes b; from its current node and places it at node 7;

OrderedBalls() returns a set of all balls in the tree, ordered by < r (first by their depth in the tree, then by ids);
RemainingCapacity(n): number of leaves in the subtree rooted at node 1 minus number of balls in that subtree;
n.LeftChild(), n.RightChild(), n.isLeaf() are operation over nodes of the tree.

Additional Functions

e First(): first element in a set;
e Next(): iterator over a set (returns the next element in a set, advancing to the next position);
e RandomCoin(p): returns heads with prob. p, or tails with prob. (1 — p).

Code for Ball b;
1: Initialize: broadcast (b;); Vb; received: insert b; at the root;
2: repeat > begin Phase ¢ < 1,2, 3, ...
3 1 < CurrentNode(b;); > begin Round 1 of Phase ¢
4: path; < {n};
5: while not 7.IsLeaf() do > choose path randomly
6 coin — RandomCoin(Remaiging?apac(ijty(n.LeftChild()));
. . emainingCapacity(n)
7 if coin = heads then 7 < 7.LeftChild();
8 else 1 < n.RightChild();
9: path; < path; U {n};
10: end while
11: broadcast (b;,path;); > exchange paths
12: for all b; € OrderedBalls() do
13: if (b;,path;) has been received then > move balls in the priority order
14: 7 < path; .First();
15: while remainingCapacity(r)> 0 do
16: 7 < path;.Next();
17: end while
18: UpdateNode(b;,n);
19: else
20: Remove(b;);
21: end for > begin Round 2 of Phase ¢
22: broadcast (b;, CurrentNode(b;)); > synchronize
23: for all b; € OrderedBalls() do
24: if (b;,n;) has been received then
25: UpdateNode(b; ,1;);
26: else
27: Remove(b;);

28: end for
29: until Vb; € OrderedBalls(): CurrentNode(b;).IsLeaf();

B(n,p) is the binomial distribution with parameters n and p. By abuse of notation, B(n,p) also denotes a
random variable that follows the binomial distribution.

Fact1 If X~B(M,p), Y~B(M’',p), and M < M’, then Pr(|E[X] — X| > z) < Pr(|E[Y] = Y| >).

Fact2 If0 < p <1 X~B(M,p), Y~B(M,3), then Pr(|[E[X] — X| > 2) < Pr([E[Y] - Y)| > z).

22
Fact 3 (Chernoff Bound) If X~B(m,p), then Pr(|E[X] — X| > x) < ™ zme(=5)

Figure 3: Notation and facts from probability theory used in the proofs.

Lemma 1 For any phase ¢ > 1, in any local view, the number of correct balls in each subtree < the number
of leaves in that subtree.

Theorem 1 In the Balls-into-Leaves algorithm, correct balls terminate at distinct leaves.

The proofs of correctness and deterministic termination are intuitive and have been moved to Appendix [A]

5 Complexity Analysis

In this section, we prove that Balls-into-Leaves terminates in O(log log n) rounds with high probability.

For clarity, we first consider a failure-free execution. We then show that faults do not slow down the
progress of the protocol. (Intuitively, collisions are less likely as the number of surviving balls decreases).

Without crashes, local views of the tree are always identical, and we therefore focus on one local view.
The analysis consists of two parts. In the first part, we show that, after O(loglogn) phases, the number of
balls at each node decreases to O(log2 n). In the second part, we consider an arbitrary path from the root
to the parent of a leaf. We use the fact that there are O(log® n) balls at each node, and show that the path
becomes completely empty during the next O(loglogn) rounds, with high probability. By a union bound
over all such paths, we obtain that the tree is empty w.h.p.

We first prove useful invariant of Balls-into-Leaves algorithm that we call Path Isolation Property. In-
formally stated, this says that no new balls appear on any path from the root.

Lemma 2 (Path Isolation Property) For any phase ¢ > 1 and path 7 from the root, the set of balls on
in ¢ is a superset of balls on 7 in ¢ + 1.

Proof By construction, balls can only move down the tree. Fix some node 1 on path 7. The only way new
ball b; at some node (4 in phase ¢ reaches 7 in phase ¢ + 1 is by constructing in ¢ a path from p that contains
1. Thus, by construction of a binary tree, y is on 7. g

We use some notation and facts from theory of probability, shown in Figure [3]

5.1 Part1 - Bounding the Number of Balls at a Node

We now give a lower bound on how fast the number of balls at each node decreases. Consider some node
7, and let pM and (1—p)M be the remaining capacities of its left and right subtrees, respectively, for some
integer M, and 0<p<1 in phase ¢. By construction, at most M balls reach 7. The balls that get stuck at 7 in
phase ¢+1 are those which had 7 on their paths in ¢, but did not fit in a subtree below 7. By Lemmal[l] these
balls have enough space in the sibling subtree of 7. We use the notation balls(n, ¢) to denote the number of
balls at node 7 in phase ¢. We denote by b4, (¢) the most populated node in phase ¢.

Lemma 3 For some node n, let pM and (1 — p) M denote remaining capacities of its left and right subtrees
respectively, in some phase ¢. If M' < M balls choose between the left and right subtrees of 1) in ¢, then,
forany x > 0, Pr(balls(n, ¢ + 1) > z) < Pr(|2 — B(M, })| > z).

Proof Choosing between the left and right subtrees of 1 can be seen as choosing between two bins with
capacities pM and (1 — p) M. Each of the M’ < M balls chooses independently between the two bins with
probabilities p and (1 — p) respectively. If there is space in the chosen bin, then the ball is accepted; if the
bin is full, then the ball is rejected. Since M’ < M, there are three cases: either both bins are filled (perfect
split), no bin has been filled, or exactly one bin has been filled, and there is some overflow. Note that, in the
first two cases, 7 is empty in phase ¢ + 1.

If one bin has filled, then, w.l.o.g., assume it is the left bin. Let Y be a random variable that counts
the number of balls that have chosen left. Clearly, Y ~ B(M’,p). Then, the number of rejected balls is
Y — Mp. Since Mp > M'p=E[Y],Y — Mp <Y — E[Y].

From Fact we obtain that Pr(|Y — E[Y]| > z) < Pr(|% — B(M, 3)| > =). O

Let us now consider what happens after the first phase.

Lemma 4 Let i be the depth of node n. Then, for some constant ¢ > 0, we have that
Pr (balls(n, 2) > c(g; log n)%) <L

Proof Initially n balls start at the root.
The initial capacity of the subtree rooted at 77 is 5;. Then, at most 5; balls reach 7). Define Y, ~ B(5;, %)
Applying Lemma [3|and the Chernoff bound (Fact [3)),

Pr(balls(n,2) > @) < Pr (|E[Y,] = Yy| > (3 logn)?) < L. 0
The analysis of the next phases is more involved, since we do not know the exact remaining capacities

of each subtree. Therefore, we consider the worst case scenario by assuming that any node n has enough
capacity to accommodate all balls on the path from the root to 7.

Lemma S For any ¢ > 1, node 7, and some const. ¢ > 0,
Pr (balls(n, p+1)> c(bmaz(¢))% log n) <L

Proof By the path isolation property (Lemmal|2)), the only balls that may attempt to choose between subtrees
of n are those on the path from the root to 7. Let ¢ be the depth of 5. The total number of balls on path 7 is
at most i X by (). By Fact|l] the probability to have more rejected balls is the highest if we inflate the
remaining capacity of the subtrees of 77 t0 i X byqa2 ().
Thus, by Lemma 3] the probability that at least x balls get stuck at 7) can be bounded as follows,
Pr(balls(y, ¢ + 1) > z) < Pr (Xbmaz (@) _ B 5 bypaa(6), %)’ > c) .
By the Chernoff Bound (Fact[3),
Pr (‘M ~B(i X biae(6), %)\ > (i X bymaz () 1ogn)%) <L
Since i < log n, the claim follows. U

Lemma 6 For some constant ¢’ > 0, after O(loglogn) phases, Pr(balls(n, ¢) > O(1)log?n) < %

c

Proof Fix some constant ¢ > 0. By LemmaH, Pr (balls(n, 2) > ¢(nlog n)%) < 4.

1loglogn

By Lemma Pr (balls(n, p+1)> c(bmax(gb))% log n> < L. Since n2 = O(1), we pick some

1c2log logn
constant ¢y such that n2 =1

Let f(z) = x%clog n. Taking x = ¢(nlog n)%, fezloglogn () = 21og? n.
Applying Lemma] and then Lemma [j]iteratively for 2 log log n phases, we obtain that
Pr (bimaz (1, c2loglogn) > c?log?n) < czlogloge

nC
c2 loglogn 1
gc g <

n(c—s) ’

and the claim follows. O

Therefore, there exists some small const. € < 1, such that

| 00 100
O (@)
(@) (@)
@] [®]
[©) @) [©) @]
o ‘ o‘ ‘) ‘ ‘ o) o ‘ 0 ‘ ‘O ‘ F 0
(a) entire tree (b) 5 balls on the rightmost path and 5 empty

bins reachable from the path

Figure 4: Closer look at a path in a possible configuration

5.2 Part 2 - Bounding the Number of Balls on a Path

Lemma |§I shows that, after O(loglogn) phases, the number of balls on each path is at most O(log® n)
w.h.p. In the following, we complete the argument by showing that all inner nodes of the tree are empty
after another O(log logn) phases.

To show this, instead of looking at nodes, we focus on paths from the root to a parent of a leaf (there
are n/2 such paths). By the path isolation property (Lemma , new balls never appear on a path. (In other
words, new balls arriving at a node can only come from nodes higher on the same path.) We show that at
least a constant fraction of balls escapes from each path once every two phases. Intuitively, this analysis
captures how fast balls disperse within the tree.

Formally, let us fix a phase ¢ and a path 7 from the root to a parent of a leaf. Let 71,72, . . ., 1og n, b€ the
nodes on 7, ordered by depth. A gateway node (or simply a gateway) is a child of »; that is not on 7. For
uniformity, we combine both children of the last node on 7 (tree leaves) into one gateway meta-child || For
instance, in the sample configuration from Figureda] consider the rightmost path (highlighted in Figure [4b));
all the left children of nodes on 7 are gateways. By construction, the sum of remaining capacities of all
gateway subtrees (corresponding to empty leaves reachable from) is equal to the total number of balls on
m. In phase ¢, most balls on the path propose paths going through these gateways.

We now show that, if ball b; is among the highest priority balls that have chosen the same gateway, then
b; will escape from path 7 either in phase ¢ or ¢ + 1.

Lemma 7 Consider node n; on m and let c; be the remaining capacity of its gateway subtree. If m balls
choose that subtree in ¢, then at least min(m, ¢;) balls escape m in ¢ and ¢ + 1.

Proof Let ball by, be among the min(m, ¢;) highest priority balls that have chosen the gateway at ;. Then,

by, is in one of the following scenarios.

Case 1: b, attempts to move down towards 7;, and stops at some node 7; above 7;. This happens because
the subtree down on 7 has exceeded its capacity. In this case, in ¢ + 1, by, tries the gateway subtree at
n; and, by Lemma that subtree has enough space to accommodate by.

Case 2: by, reaches 7;. By assumption, by, is among min(m, ¢;) highest priority balls that have chosen the
same gateway. Thus, b, escapes 7 into the gateway subtree of mEI

If by, is in Case 1, it escapes path 7 in phase ¢ + 1. If by, is in Case 2, it escapes 7 in phase ¢. There are at

least min(m, ¢;) such balls, and the claim follows. O

We now bound the probabilities with which balls try each gateway on 7.

2Obviously, a collision in a subtree with 2 leaves is solved within one phase.
3In Case 2, ball by, can stop somewhere else deeper in the tree, but this no longer affects the analysis of 7.

Lemma 8 Let M; =, ;; balls(n;, §) be the number of balls on the subpath of w from the root to n;. If
c; is the remaining capacity of the gateway subtree of n;, then M; balls try this gateway in ¢ with probability
at least ¢; /M.

Proof (Sketch) Recall from Lines 5-9 of Algorthim |I]that balls construct paths trying between the children
of each node with probabilities indexed by their remaining capacities.

Intuitively, each ball competes on a subtree with every other ball that can reach the same subtree. And,
by construction, the remaining capacity of all subtrees reachable from some path from the root is equal to
the number of balls on this path. Note that the total remaining capacity of the subpath from the root to 7;
(i.e., all gateway subtrees and the non-gateway subtree at 7);) is M;. Thus, every ball tries the gateway at n;
with prob. at least ¢; /M. O

In the following, we show that at least a constant fraction of balls escape 7 in every two phases.

Lemma9 Let M be the total number of balls on in phase ¢. For some const. ¢ > 1, less than % balls

have escaped T after ¢ + 1 with prob. < e=e

Proof By Lemma L M; balls try the gateway at 7;
By Lemma | for any v > 1, & < ¢; highest priority balls that choose the gateway at 7);, escape 7 in ¢ or
o+ 1 Deﬁne as success the event that some ball chooses the gateway at 7;. By Lemma(g] such an event
occurs with prob. at least ¢; /M; among M; tries. Thus, the number of successes follows B(M;, A). From
the Chernoff Bound (Fact[3),

M;

Pr(B(M;,) <ci— %) <e 7.
Recall that Zlgz‘glogn ¢; = M. Considering all 7;, 1 < ¢ < logn on 7, the sum of successes is less than
M — % with prob. < e_%. Since 7 is arbitrary, the claim follows. (|
From the above lemma, it follows that all M balls on 7 escape the path within O(log M) phases, with
probability at least 1 — (1/e)®(M

Lemma 10 Consider a path m containing M balls. After O(log M) phases, the probability that w remains

non-empty is at most < e~ <, for some constant ¢’ > 0.

Proof Fix cto be a constant. By Lemma@ at least = M balls escape from 7 after phase ¢+ 1, with probability
at least 1 — e~ . Starting with M balls, and 1terat1ng in Lemma @ over the remaining balls for 2clog M
M
phases, we obtain that the probability that 7 is not empty after 2c log M phases is at most 2clog Me™ < <
M

e (=9 for some small constant € < 1. O

Finally, we combine the two parts of the proof in the following theorem.

Theorem 2 Balls-into-Leaves terminates in O(loglogn) rounds with probability at least (1 — #) where
c > 0 is a constant.

Proof From Lemma @ after O(log log n) phases, the probability there is a path with more than O(log® n)
balls, is less than ﬁ for some const. ¢ > 0. Taking M = O(log®n) balls on path 7 from the root to
a parent of some leaf, by Lemma and a union bound over all such n/2 paths, the probability that some
path is not empty is less than /, for some constant ¢ > 0. Putting together the above results, we get
that the probability that the tree stlll has a populated inner node is at most , ~— where ¢/, ¢’ are constants.
By construction, the algorithm terminates when all balls have reached leaves. Choosmg some constant
¢ > ¢/ + ¢”, the algorithm terminates in O(log log n) phases with probability > 1 — L.

Since each phase consists of 2 rounds, the claim follows. g

5.3 Crashes

To show that crashes do not slow down termination, we continue the analysis of some path 7 that starts
at the root. By construction, at the end of each phase, in every local view, the position of each surviving ball
b; is updated according to b;’s local view. We thus focus on the progress of b; in its local view.

Iterating on each phase ¢ which contains at least one failure, we compare the local view V of ball b; in
¢ with its hypothetical view V' in an execution with a failure free ¢. First, note that views V and V' are
equivalent if b; has not seen a failure. Now, assume b; has seen a failure in V.

We show that b; is at least as likely to escape from 7 in V, as it is in V. First, we note that if b; has seen
a failure in some disjoint subtree, or the crashed ball had lower priority than b;, then, by construction, such
a failure does not affect the progress of b;. Consider now a failure which occurs in a subtree of b;. Such
a failure implies that, in V, the total capacity of all gateways on 7 is larger than the number of balls on 7.
Thus, b; is at most as likely to be among the first highest priority balls that have chosen the same gateway in
¢. Since the choice of b; and 7 is arbitrary, the argument applies to every ball in every view.

6 Early Terminating Extension

We now extend the algorithm to terminate more quickly in executions with fewer crashes. Without
failures, balls can use their unique labels to pick distinct leaves in one round: balls exchange their labels,
and each ball chooses a leaf indexed by the rank of its label in the ordered set of all labels. But collisions
may occur due to failures. A single crash can cause up to n/2 collisions: the ball with the lowest label bjowest
sends to every second ball (by label order) and then crashes, so that all other balls collide in pairs.

If balls use this scheme to deterministically pick paths in the Balls-into-Leaves algorithm, it is easy to
see that the paths are well distributed; in the first phase, the tree collapses into small subtrees of depth 2 in
every local tree. But the balls cannot use deterministic paths in every phase, otherwise the algorithm’s round
complexity would be no better than 2(logn), due to the lower bound of [9]].

We combine the deterministic and randomized approaches, by first deterministically collapsing the tree
into disjoint subtrees of depth O(log f) (where f is a number of failures that have occurred in an execution),
and then resorting to randomization. The modified Balls-into-Leaves algorithm works as follows. In Round
1 of phase 1, replace Lines 5-10 in Algorithm I with the following: ball b; constructs path deterministically
towards the leaf ranked by b; in OrderedBalls(); the rest of phase 1 is executed as in the original algorithm.
In the remaining phases, b; executes the code of the original algorithm.

Theorem 3 In a failure free execution, the modified algorithm terminates deterministically in O(1) rounds.

In an execution with f failures, we show that the algorithm terminates in O(loglog f) rounds w.h.p. (the
proof can be found in Appendix [B)).

#) where

Theorem 4 The modified algorithm terminates in O(loglog f) rounds with prob. at least (1 —
c > 0 is a constant.

7 Conclusion

Extending the classical balls-into-bins technique, we proposed Balls-into-Leaves, a randomized algo-
rithm that places n balls into n leaves of a tree in O(log logn) rounds w.h.p. An extension of the algorithm
provides early termination in O(loglog f) rounds w.h.p. when there are f failures, and deterministic ter-
mination in O(1) rounds in failure-free executions. These results imply an exponential separation between
deterministic and randomized algorithms for tight renaming. An open question is whether the Balls-into-
Leaves algorithm is optimal for this problem. Answering this question requires new lower bounds for ran-
domized renaming. We conjecture that obtaining such lower bounds will be challenging, given that lower
bounds for other variants of renaming have required subtle topological or reduction techniques.

10

References

[1]

[10]

[11]

[12]

[13]

[14]

[15]

Micah Adler, Soumen Chakrabarti, Michael Mitzenmacher, and Lars Rasmussen. Parallel random-
ized load balancing. In Proceedings of the Twenty-seventh Annual ACM Symposium on Theory of
Computing, STOC *95, pages 238-247, New York, NY, USA, 1995. ACM.

Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seth Gilbert, and Rachid Guerraoui.
Tight bounds for asynchronous renaming. Accepted to J. ACM. Available at: http://cs-
www.cs.yale.edu/homes/aspnes/papers/asynchronous-renaming.pdf, September 2013.

Dan Alistarh, Hagit Attiya, Rachid Guerraoui, and Corentin Travers. Early deciding synchronous
renaming in O(log f) rounds or less. In Proceedings of the 19th International Colloquium on Structural
Information and Communication Complexity, SIROCCO ’12, Reykjavik, Iceland, June 2012.

Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Riidiger Reischuk. Renaming in an
asynchronous environment. J. ACM, 37(3):524-548, July 1990.

Petra Berenbrink, Kamyar Khodamoradi, Thomas Sauerwald, and Alexandre Stauffer. Balls-into-bins
with nearly optimal load distribution. In Proceedings of the 25th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’13, pages 326-335, Montreal, Canada, 2013.

Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. J. ACM, 32(4):824—
840, October 1985.

Alex Brodsky, Faith Ellen, and Philipp Woelfel. Fully-adaptive algorithms for long-lived renaming.
Distributed Computing, 24(2):119-134, 2011.

Armando Castafieda and Sergio Rajsbaum. New combinatorial topology upper and lower bounds
for renaming. In Proceedings of the Twenty-seventh ACM Symposium on Principles of Distributed
Computing, PODC °08, pages 295-304, Toronto, Canada, 2008. ACM.

Soma Chaudhuri, Maurice Herlihy, and Mark Tuttle. Wait-free implementations in message-passing
systems. Theoretical Computer Science, 220(1):211-245, June 1999.

Oksana Denysyuk and Luis Rodrigues. Byzantine renaming in synchronous systems with ¢ < N. In
Proceedings of the 32nd ACM Symposium on Principles of Distributed Computing, PODC 13, pages
210-219, Montreal, Canada, 2013. ACM.

Danny Dolev and Raymond Strong. Polynomial algorithms for multiple processor agreement. In
Proceedings of the 14th Annual ACM Symposium on Theory of Computing, STOC 82, pages 401—
407, San Francisco (CA), USA, 1982.

Eli Gafni. The extended bg-simulation and the characterization of t-resiliency. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing, STOC *09, pages 85-92, Bethesda, Maryland,
USA, 2009. ACM.

Gaston Gonnet. Expected length of the longest probe sequence in hash code searching. J. ACM,
28(2):289-304, April 1981.

Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability. J. ACM,
46(6):858-923, November 1999.

Leslie Lamport, Robert Shostak, and Michael Pease. The byzantine generals problem. ACM Trans.
Program. Lang. Syst., 4(3):382-401, July 1982.

11

[16] Christoph Lenzen and Roger Wattenhofer. Tight bounds for parallel randomized load balancing. CoRR,
abs/1102.5425, 2011.

[17] Christoph Lenzen and Roger Wattenhofer. Tight bounds for parallel randomized load balancing: Ex-
tended abstract. In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC
11, pages 11-20, San Jose, CA, USA, 2011. ACM.

[18] Michael Mitzenmacher. The power of two choices in randomized load balancing. IEEE Transactions
on Parallel and Distributed Systems, 12(10):1094—1104, Oct 2001.

[19] Michael Okun. Strong order-preserving renaming in the synchronous message passing model. Theo-
retical Computer Science, 411(40-42):3787 — 3794, 2010.

12

A Correctness

We now prove that in the Balls into Leaves algorithm correct balls terminate at distinct leaves.

We first notice that, at the beginning of each phase, the positions of all correct balls are synchronized
across the views. Positions are considered at the beginning of a phase.

Proposition 1 For any phase ¢ > 1, if balls b; and b; are correct, then the tree position of b; at ball b; is
the same as the position of b; at ball b;.

Proof We proceed by induction on the phase index. At the beginning of phase 1, this holds since all n
correct balls have broadcasted their labels and have been placed at the root in local views of all correct balls
(Line 1).

For the induction step, assume by contradiction that the claim holds in ¢ > 1, but not in ¢ 4 1. This is
only possible if b; has not sent its position to b; in ¢ (Line 22 of Algorithm|[T). However, since b; is correct,
b; must have executed Line 22 in phase ¢. Contradiction.]

This implies the following.

Proposition 2 For any phase ¢ > 1 and any local view, the number of correct balls in each subtree is <
the total number of balls in that subtree.

The priority order <p ensures that the descent of correct balls is simulated consistently across views.

Proposition 3 For any phase ¢ > 1, if b; and b; are correct, then either b; <g b; in every view, or b; >R b;
in every view.

Proof By Proposition [I] the position of correct balls is synchronized across the views. Assume, w.l.o.g.,
b; < b;. Thus, by definition of the order <g, b; <pr b; in each view.]

Below we restate and prove Lemmal[I]

Lemmal[l| For any phase ¢ > 1, in any local view, the number of correct balls in each subtree < the number
of leaves in that subtree.

Proof We prove the claim by induction over the phase index ¢. For ¢ = 1, the claim holds since all n balls
are at the root of the tree.

Assume the claim is true for ¢ > 1. Since each subtree contains at all least correct balls (Proposition ,
and (Proposition , balls simulate the descent of correct balls in a consistent order (if b; <g by, b; is moved
before by), when b; simulates the descent of each ball locally, every ball (including b;) stops in a subtree
where it still fits among at least all correct balls. g

We now prove Theorem I]
Proof of Theorem (1] From Proposition |1|and Lemma [1} after correct ball b; reaches a leaf and announces
its position, all correct balls have b; at its leaf in their local views and thus never propose a path to that leaf.
By algorithmic construction, balls do not move once they have reached the bottom. O

Finite Deterministic Termination
We now prove the algorithm terminates always in a finite number of rounds.

Lemma 11 Ifno failures occur in some phase ¢, at least one ball at an inner node reaches a leaf in its local
view of the tree.

13

Proof Let b; be the highest priority correct ball among the balls at inner nodes (not leaves) at the beginning
of ¢. By algorithmic construction, b; chooses in Round 1 a path to an empty leaf in its local view of the tree.
Since by assumption no crashes occur, balls receive identical sets of paths and move balls down in the same
order. By algorithmic construction, balls at the leaves are not moved. So, b; is the first to move down in its
own view and thus it will reach the leaf chosen by its path. (|

Since by Lemma [| processes require at most n fault-free phases to reach the bottom, and there are at most
t < n faults in total, the algorithm terminates in O(n) phases deterministically.

B Early Termination
In the following, we restate and prove Theorem 4]

Theorem@ The modified algorithm terminates in O(loglog f) rounds with prob. at least (1 — #) where
c > 0 is a constant.

Proof Let i be rank of ball b; among the surviving balls. Assume b; has not seen & < f failures. The rank
in its local view has shifted right by at most k£ with regard to other views. On the other hand, all surviving
balls have b; in their local views. Thus, at most k& — 1 other survivors see their ranks in the interval i..(i 4 k).

Consider binary representation of leaf ranks. We note that each subtree that contains some leaf is indexed
by the binary prefix of the leaf rank. From the previous discussion, the surviving balls collide on at most
[log f7] least significant bits. Thus, in every local view, collisions occur at the depth at least logn — [log f]
in phase 1.

In the subsequent phases, balls in disjoint subtrees propose non-overlapping paths. Therefore, the rest of
the execution is equivalent to running at most W < n parallel instances of Balls into Leaves with
at most f balls each. From Theorem [2] and for a sufficiently large const. ¢ > 0, the claim follows. ([l

14

	Introduction
	Related Work
	System Model and Problem Definition
	Balls-into-Leaves Algorithm
	Tight Renaming using Balls-into-Leaves
	Correctness

	Complexity Analysis
	Part 1 - Bounding the Number of Balls at a Node
	Part 2 - Bounding the Number of Balls on a Path
	Crashes

	Early Terminating Extension
	Conclusion
	Correctness
	Early Termination

