
MIT Open Access Articles

The SprayList: a scalable relaxed priority queue

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. 2015. The SprayList: a scalable
relaxed priority queue. SIGPLAN Not. 50, 8 (January 2015), 11-20.

As Published: http://dx.doi.org/10.1145/2688500.2688523

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/101058

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/101058
http://creativecommons.org/licenses/by-nc-sa/4.0/

The SprayList: A Scalable Relaxed Priority Queue

Dan Alistarh
Microsoft Research1

Justin Kopinsky
MIT

Jerry Li
MIT

Nir Shavit
MIT and Tel-Aviv University

Abstract
High-performance concurrent priority queues are essential for ap-
plications such as task scheduling and discrete event simulation.
Unfortunately, even the best performing implementations do not
scale past a number of threads in the single digits. This is because
of the sequential bottleneck in accessing the elements at the head
of the queue in order to perform a DeleteMin operation.

In this paper, we present the SprayList, a scalable prior-
ity queue with relaxed ordering semantics. Starting from a non-
blocking SkipList, the main innovation behind our design is that
the DeleteMin operations avoid a sequential bottleneck by “spray-
ing” themselves onto the head of the SkipList list in a coordinated
fashion. The spraying is implemented using a carefully designed
random walk, so that DeleteMin returns an element among the
first O(p log3 p) in the list, with high probability, where p is the
number of threads. We prove that the running time of a DeleteMin
operation is O(log3 p), with high probability, independent of the
size of the list.

Our experiments show that the relaxed semantics allow the data
structure to scale for very high thread counts, comparable to a clas-
sic unordered SkipList. Furthermore, we observe that, for reason-
ably parallel workloads, the scalability benefits of relaxation con-
siderably outweigh the additional work due to out-of-order execu-
tion.

1. Introduction
The necessity for increasingly efficient, scalable concurrent data
structures is one of the main software trends of the past decade.
Efficient concurrent implementations are known for several funda-
mental data structures, such as hash tables [17], linked lists [14],
SkipLists [13], pools [4], and trees [5]. On the other hand, several
impossibility results [3, 12] suggest that not all data structures can
have efficient concurrent implementations, due to an inherent se-
quentiality which follows from their sequential specification.

A classic example of such a data structure is the priority queue,
which is widely used in applications such as scheduling and event
simulation, e.g. [20]. In its simplest form, a priority queue stores a
set of key-value pairs, and supports two operations: Insert, which
adds a given pair to the data structure and DeleteMin, which re-
turns the key-value pair with the smallest key currently present.
Sequential priority queues are well understood, and classically im-
plemented using a heap [19]. Unfortunately, heap-based concurrent
priority queues suffer from both memory contention and sequential
bottlenecks, not only when attempting to delete the single minimal
key element at the root of the heap, but also when percolating small
inserted elements up the heap.

SkipList-based implementations were proposed [20, 21, 27]
in order to reduce these overheads. SkipLists are randomized
list-based data structures which classically support Insert and
Delete operations [23]. A SkipList is composed of several linked
lists organized in levels, each skipping over fewer elements.
SkipLists are desirable because they allow priority queue inser-
tions and removals without the costly percolation up a heap or
the rebalancing of a search tree. Highly concurrent SkipList-based
priority queues have been studied extensively and have relatively
simple implementations [13, 16, 20, 24]. Unfortunately, an exact
concurrent SkipList-based priority queue, that is, one that main-
tains a linearizable [16] (or even quiescently-consistent [16]) order
on DeleteMin operations, must still remove the minimal element
from the leftmost node in the SkipList. This means that all threads
must repeatedly compete to decide who gets this minimal node,
resulting in a bottleneck due to contention, and limited scalabil-
ity [20].

An interesting alternative has been to relax the strong ordering
constraints on the output for better scalability. An early instance of
this direction is the seminal work by Karp and Zhang [18], followed
up by several other interesting proposals, e.g. [6, 9, 25], designed
for the (synchronous) PRAM model. Recently, there has been a
surge of interest in relaxed concurrent data structures, both on the
theoretical side, e.g. [15] and from practitioners, e.g. [22]. In partic-
ular, Wimmer et al. [28] explored trade-offs between ordering and
scalability for asynchronous priority queues. However, despite all
this effort, it is currently not clear whether it is possible to design a
relaxed priority queue which provides both ordering guarantees un-
der asynchrony, and scalability under high contention for realistic
workloads.

In this paper, we take a step in this direction by introducing
the SprayList, a scalable relaxed priority queue implementation
based on a SkipList. The SprayList provides probabilistic guar-
antees on the relative priority of returned elements, and on the run-
ning time of operations. At the same time, it shows fully scalable
throughput for up to 80 concurrent threads under high-contention
workloads.

The main limitation of past SkipList-based designs was that all
threads clash on the first element in the list. Instead, our idea will
be to allow threads to “skip ahead” in the list, so that concurrent
attempts try to remove distinct, uncontended elements. The obvious
issue with this approach is that one cannot allow threads to skip
ahead too far, or many high priority (minimal key) elements will
not be removed.

Our solution is to have the DeleteMin operations traverse the
SkipList, not along the list, but via a tightly controlled random
walk from its root. We call this operation a spray. Roughly, at
each SkipList level, a thread flips a random coin to decide how

many nodes to skip ahead at that level. In essence, we use local
randomness and the random structure of the SkipList to balance
accesses to the head of the list. The lengths of jumps at each level
are chosen such that the probabilities of hitting nodes among the
firstO(p log3 p) are close to uniform. (See Figure 1 for the intuition
behind sprays.)

While a DeleteMin in an exact priority queue returns the ele-
ment with the smallest key—practically one of the p smallest keys
if p threads are calling DeleteMin concurrently— the SprayList
ensures that the returned key is among the O(p log3 p) smallest
keys (for some linearization of operations), and that each opera-
tion completes within log3 p steps, both with high probability. Our
design also provides anti-starvation guarantees, in particular, that
elements with small keys will not remain in the queue for too long.
The formal proof of these guarantees is the main technical contri-
bution of our paper.

Specifically, our proofs are inspired by an elegant argument
proving that sprays are near-uniform on an ideal (uniformly-
spaced) SkipList, given in Section 3.2. However, this argument
breaks on a realistic SkipList, whose structure is random. Precisely
bounding the node hit distribution on a realistic SkipList is sig-
nificantly more involved2 Given the node hit distribution, we can
upper bound the probability that two sprays collide. In turn, this
upper bounds the expected number of operation retries, and the
amount of time until a specific key is removed, given that a nearby
key has already been removed. The uniformity of the spray distri-
bution also allows us to implement an optimization whereby large
contiguous groups of claimed nodes are physically removed by a
randomly chosen cleaner thread.

In sum, our analysis gives strong probabilistic guarantees on the
rank of a removed key, and on the running time of a Spray opera-
tion. Our algorithm is designed to be lock-free, but the same spray-
ing technique would work just as well for a lock-based SkipList.

A key question is whether a priority queue with such relaxed
guarantees can be useful in practice. We answer this question in
the affirmative, by examining the practical performance of the
SprayList through a wide series of benchmarks, including syn-
thetic high-contention tests, discrete-event simulation, and run-
ning single-source shortest paths on grid, road network, and social
graphs.

We compare our algorithm’s performance to that of the quiescently-
consistent priority queue of Lotan and Shavit [21], the state-of-
the-art SkipList-based priority queue implementation of Lindén
and Jonsson [20] and the recent k-priority queue of Wimmer et
al. [28].3

Our first finding is that our data structure shows fully scalable
throughput for up to 80 concurrent threads under high-contention
workloads. We then focus on the trade-off between the strength
of the ordering semantics and performance. We show that, for
discrete-event simulation and a subset of graph workloads, the
amount of additional work due to out-of-order execution is amply
compensated by the increase in scalability.
Related Work. The first concurrent SkipList was proposed by
Pugh [24], while Lotan and Shavit [21] were first to employ this
data structure as a concurrent priority queue. They also noticed that
the original implementation is not linearizable, and added a time-
stamping mechanism for linearizability. Herlihy and Shavit [16]
give a lock-free version of this algorithm.

Sundell and Tsigas [27] proposed a lock-free SkipList-based
implementation which ensures linearizability by preventing threads
from moving past a list element that has not been fully removed.
Instead, concurrent threads help with the cleanup process. Unfor-

2 We perform the analysis in a restricted asynchronous model, defined in
Section 3.1.
3 Due to the complexity of the framework of [28], we only provide a partial
comparison with our algorithm in terms of performance.

tunately, all the above implementations suffer from very high con-
tention under a standard workload, since threads are still all contin-
uously competing for a handful of locations.

Recently, Lindén and Jonsson[20] presented an elegant design
with the aim of reducing the bottleneck of deleting the minimal ele-
ment. Their algorithm achieves a 30−80% improvement over pre-
vious SkipList-based proposals; however, due to high contention
compare-and-swap operations, its throughput does not scale past 8
concurrent threads. To the best of our knowledge, this is a limitation
of all known exact priority queue implementations.

Other recent work by Mendes et al. [7] employed elimination
techniques to adapt to contention in an effort to extend scalabil-
ity. Even still, their experiments do not show throughput scaling
beyond 20 threads.

Another direction by Wimmer et al. [28] presents lock-free pri-
ority queues which allow the user to dynamically decrease the
strength of the ordering for improved performance. In essence, the
data structure is distributed over a set of places, which behave as
exact priority queues. Threads are free to perform operations on a
place as long as the ordering guarantees are not violated. Other-
wise, the thread merges the state of the place to a global task list,
ensuring that the relaxation semantics hold deterministically. The
paper provides analytical bounds on the work wasted by their al-
gorithm when executing a parallel instance of Dijkstra’s algorithm,
and benchmark the execution time and wasted work for running
parallel Dijkstra on a set of random graphs. Intuitively, the above
approach provides a tighter handle on the ordering semantics than
ours, at the cost of higher synchronization cost. The relative perfor-
mance of the two data structures depends on the specific application
scenario, and on the workload.

Our work can be seen as part of a broader research direction
on high-throughput concurrent data structures with relaxed seman-
tics [15, 26]. Examples include container data structures which
(partially or entirely) forgo ordering semantics such as the ren-
dezvous mechanism [2] or the CAFE task pool [4]. Recently, Dice
et al. [10] considered randomized data structures for highly scalable
exact and approximate counting.

2. The SprayList Algorithm
In this section, we describe the SprayList algorithm. The Search
and Insert operations are identical to the standard implementa-
tions of lock-free SkipLists [13, 16], for which several freely avail-
able implementations exist, e.g. [8, 13]. In the following, we as-
sume the reader is familiar with the structure of a SkipList, and
give an overview of standard lock-free SkipList operations, then
focus on our Spray (DeleteMin) procedure.

2.1 The Classic Lock-Free SkipList
Our presentation follows that of Fraser [13, 16], and we direct
the reader to these references for a detailed presentation and pseu-
docode. A useful general observation is that the the the data struc-
ture maintains an implementation of a set, defined by the bottom-
level lock-free list. Throughout this paper we will use the conven-
tion that the lowest level of the SkipList is level 0.
Pointer Marking. A critical issue when implementing lock-free
lists is that nodes might “vanish” (i.e., be removed concurrently)
while some thread is trying access them. Fraser [13] solves this
problem by reserving a marked bit in each pointer field of the
SkipList. A node with a marked bit is itself marked. The bit is
always checked and masked off before accessing the node.
Search. As in the sequential implementation, the SkipList search
procedure looks for a left and right node at each level in the list.
These are adjacent nodes, with key values less-than and greater-
than-equal-to the search key, respectively.

The search loop checks whether nodes are marked and skips
over them, since they have been logically removed from the list.

H

...

Sprays

p polylog p

Figure 1: The intuition behind the SprayList. Threads start at height
H and perform a random walk on nodes at the start of the list,

attempting to acquire the node they land on.

H

...

Spray

Clean

Figure 2: A simple example of a spray, with no padding. Green nodes
are touched by the Spray, and the thread stops at the red node. Orange

nodes could have been chosen for jumps, but were not.

The search procedure also helps clean up marked nodes from the
list: if the thread encounters a sequence of marked nodes, these
are removed by updating the unmarked successor to point to the
unmarked predecessor in the list at this level. If the node accessed
by the thread becomes marked during the list traversal, the entire
search is re-started from the SkipList root. The operation returns
the node with the required key, if found at some level of the list, as
well as the list of successors of the node.
Delete. Deletion of a node with key k begins by first searching
for the node. If the node is found, then it is logically deleted by
updating its value field to NULL. The next stage is to mark each
link pointer in the node. This will prevent an new nodes from
being inserted after the deleted node. Finally, all references to the
deleted node are removed. Interestingly, this can be done by simply
performing a search for the key: recall that the search procedure
swings list pointers over marked nodes.
Cleaners / Lotan-Shavit DeleteMin. In this context, the Lotan-
Shavit [21] DeleteMin operation traverses the bottom list attempt-
ing to acquire a node via compare-and-swap. (Their original im-
plementation is lock-based.) Once acquired, the node is logically
deleted and then removed via a search operation. We note that this
is exactly the same procedure as the periodic cleaner operations we
implement.
Insert. A new node is created with a randomly chosen height. The
node’s pointers are unmarked, and the set of successors is set to
the successors returned by the search method on the node’s key.
Next, the node is inserted into the lists by linking it between the
successors and the predecessors obtained by searching. The updates
are performed using compare-and-swap. If a compare-and-swap
fails, the list must have changed, and the call is restarted. The insert
then progressively links the node up to higher levels. Once all levels
are linked, the method returns.

2.2 Spraying and Deletion
The goal of the Spray operation is to emulate a uniform choice
among the O(p log3 p) highest-priority items.4 To perform a
Spray, a process starts at the front of the SkipList, and at some
initial height h. (See Figure 2 for an illustration.)

At each horizontal level ` of the list, the process first jumps
forward for some small, randomly chosen number of steps j` ≥ 0.
After traversing those nodes, the process descends some number
of levels d`, then resumes the horizontal jumps. We iterate this
procedure until the process reaches a node at the bottom of the
SkipList.

Once on the bottom list, the process attempts to acquire the
current node. If the node is successfully acquired, the thread starts
the standard SkipList removal procedure, marking the node as

4 The natural idea of picking such an element at random runs into the issue
of how to access a random element efficiently under contention.

logically deleted. (As in the SkipList algorithm, logically deleted
nodes are ignored by future traversals.) Otherwise, if the process
fails to acquire the node, it either re-tries a Spray, or, with low
probability, becomes a cleaner thread, searching linearly through
the bottom list for an available node.
Spray Parameters. An efficient Spray needs the right combina-
tion of parameters. In particular, notice that we can vary the start-
ing height, the distribution for jump lengths at each level, and how
many levels to descend between jumps. The constraints are poly-
logarithmic time for a Spray, and a roughly uniform distribution
over the head of the list. At the same time, we need to balance the
average length of a Spray with the expected number of thread col-
lisions on elements in the bottom list.

We now give an overview of the parameter choices for our
implementation. For simplicity, consider a SkipList on which no
removes have yet occurred due to Spray operations. We assume
that the data structure contains n elements, where n� p.
Starting Height. Each Spray starts at list level H = log p + K,
for some constantK.5 (Intuitively, starting the Spray from a height
less than log p leads to a high number of collisions, while starting
from a height of C log p for C > 1 leads to Sprays which traverse
beyond the first O(p log3 p) elements.)
Jump Length Distribution. We choose the maximum number
of forward steps L that a Spray may take at a level to be L =
M log3 p, whereM ≥ 1 is a constant. Thus, the number of forward
steps at level `, is uniformly distributed in the interval [0, L].

The intuitive reason for this choice is that a randomly built
SkipList is likely to have chains of log p consecutive elements of
height one, which can only be accessed through the bottom list. We
wish to be able to choose uniformly among such elements, and we
therefore need L to be at least log p. (While the same argument
does not apply at higher levels, our analysis shows that choosing
this jump length j` yields good uniformity properties.)
Levels to Descend. The final parameter is the choice of how
many levels to descend after a jump. A natural choice, used in
our implementation, is to descend one level at a time, i.e., perform
horizontal jumps at each SkipList level.

In the analysis, we consider a slightly more involved random
walk, which descendsD = max(1, blog log pc) consecutive levels
after a jump at level `. We must always traverse the bottom level of
the SkipList (or we will never hit SkipList nodes of height 1) so we
round H down to the nearest multiple of D. We note that we found
empirically that setting D = 1 yields similar performance.

In the following, we parametrize the implementation by H ,
L and D such that D evenly divides H . The pseudocode for
Spray(H,L,D) is given below.

5 Thoughout this paper, unless otherwise stated, we consider all logarithms
to be integer, and omit the floor b·c notation.

x← head /* x = pointer to current location */

/* Assume D divides H */

`← H /* ` is the current level */

while ` ≥ 0 do
Choose j` ← Uniform[0, L] /* random jump */
Walk x forward j` steps on list at height `

/* traverse the list at this level */

`← `−D /* descend D levels */

Return x

Algorithm 1: Pseudocode for Spray(H, L, D). Recall that the
bottom level of the SkipList has height 0.

Node Removal. Once it has successfully acquired a node, the
thread proceeds to remove it as in a standard lock-free SkipList [13,
16]. More precisely, the node is logically deleted, and its references
are marked as invalid.

In a standard implementation, the final step would be to swing
the pointers from its predecessor nodes to its successors. However,
a spraying thread skips this step and returns the node. Instead, the
pointers will be corrected by cleaner threads: these are randomly
chosen DeleteMin operations which linearly traverse the bottom
of the list in order to find a free node, whose operation is described
in Section 2.3.

2.3 Optimizations

Padding. A first practical observation is that the Spray procedure
above is biased against elements at the front of the list. For example,
it would be extremely unlikely that the second element in the list
is hit. To circumvent this bias, we simply “pad” the SkipList:
we add K(p) dummy entries in the front of the SkipList. If a
Spray would return one of the firstK(p) dummy entries, it instead
restarts. We choose K(p) such that the restart probability is low,
while, at the same time, the probability that a node in the interval
[K(p) + 1, p log3 p] is hit is close to 1/p log3 p (uniform).
Cleaners. Before each new Spray, each thread flips a low-
probability coin to decide whether it will become a cleaner thread.
A cleaner thread simply traverses the bottom-level list of the
SkipList linearly (skipping the padding nodes), searching for a
key to acquire. In other words, a cleaner simply executes a lock-
free version of the Lotan-Shavit [21] DeleteMin operation. At the
same time, notice that cleaner threads adjust pointers for nodes pre-
viously acquired by other Spray operations, reducing contention
and wasted work. Interestingly, we notice that a cleaner thread
can swing pointers across a whole group of nodes that have been
marked as logically deleted, effectively batching this part of the
remove process.

The existence of cleaners is not needed in the analysis, but is
a useful optimization. In the implementation, the probability of an
operation becoming a cleaner is 1/p, i.e., roughly one in p Sprays
becomes a cleaner.
Adapting to Contention. We also note that the SprayList al-
lows threads to adjust the spray parameters based on the level of
contention. In particular, a thread can estimate p, increasing its es-
timate if it detects higher than expected contention (in the form of
collisions) and decreasing its estimate if it detects low contention.
Each thread parametrizes its Spray parameters the same way as in
the static case, but using its estimate of p rather than a known value.
Note that with this optimization enabled, if only a single thread ac-
cess the SprayList, it will always dequeue the the element with
the smallest key.

3. Spray Analysis
In this section, we analyze the behavior of Spray operations. We
describe our analytical model in Section 3.1. We then give a first

motivating result in Section 3.2, bounding the probability that two
Spray operations collide for an ideal SkipList.

We state our main technical result, Theorem 3, and provide a
proof overview in Section 3.3. The full proof of Theorem 3 is rather
technical, and can be found in the non-anonymous supplemental
material submitted with this paper. In essence, given our model,
our results show that SprayLists do not return low priority elements
except with extremely small probability (Theorem 2) and that there
is very low contention on individual elements, which in turn implies
the bound on the running time of Spray (Corollary 1).

3.1 Analytical Model
As with other complex concurrent data structures, a complete anal-
ysis of spraying in a fully asynchronous setting is extremely chal-
lenging. Instead, we restrict our attention to showing that, un-
der reasonable assumptions, spraying approximates uniform choice
amongst roughly the first O(p log3 p) elements. We will then use
this fact to bound the contention between Spray operations. We
therefore assume that there are n � p log3 p elements in the
SkipList.

We consider a set of at most p concurrent, asynchronous pro-
cesses trying to perform DeleteMin operations, traversing a clean
SkipList, i.e. a SkipList whose height distribution is the same as
one that has just been built. In particular, a node has height ≥ i
with probability 1/2i, independent of all other nodes. They do so
by each performing Spray operations. When two or more Spray
operations end at the same node, all but one of them must retry. if
a Spray lands in the padded region of the SkipList, it must also
retry. We repeat this until all Sprays land at unique nodes (because
at most one thread can obtain a node). Our goal is to show that for
all p processors, this process will terminate inO(log3 p) time in ex-
pectation and with high probability. Note that since each Spray op-
eration takes O(log3 p) time, this is equivalent to saying that each
process must restart their Spray operations at most a constant num-
ber of times, in expectation and with high probability. We guarantee
this by showing that Spray operations have low contention.

On the one hand, this setup is clearly only an approximation of
a real execution, since concurrent inserts and removes may occur in
the prefix and change the SkipList structure. Also, the structure of
the list may have been biased by previous Spray operations. (For
example, previous sprays might have been biased to land on nodes
of large height, and therefore such elements may be less probable
in a dynamic execution.)

On the other hand, we believe this to be a reasonable approxi-
mation for our purposes. We are interested mainly in spray distribu-
tion; concurrent deletions should not have a high impact, since, by
the structure of the algorithm, logically deleted nodes are skipped
by the spray. Also, in many scenarios, a majority of the concur-
rent inserts are performed towards the back of the list (correspond-
ing to elements of lower priority than those at the front). Finally,
the effect of the spray distribution on the height should be limited,
since removing an element uniformly at random from the list does
not change its expected structure, and we closely approximate uni-
form removal. Also, notice that cleaner threads (linearly traversing
the bottom list) periodically “refresh” the SkipList back to a clean
state.

3.2 Motivating Result: Analysis on a Perfect SkipList
In this section, we illustrate some of the main ideas behind our
runtime argument by first proving a simpler claim, Theorem 1,
which holds for an idealized SkipList. Basically, Theorem 1 says
that, on SkipList where nodes of the same height are evenly spaced,
the Spray procedure ensures low contention on individual list
nodes.

More precisely, we say a SkipList is perfect if the distance
between any two consecutive elements of height ≥ j is 2j , and the
first element has height 0. On a perfect SkipList, we do not have

to worry about probability concentration bounds when considering
SkipList structure, which simplifies the argument. (We shall take
these technicalities into account in the complete argument in the
next section.)

We consider the Spray(H,L,D) procedure with parameters
H = log p − 1, L = log p, and D = 1, the same as our
implementation version. Practically, the walk starts at level log p−1
of the SkipList, and, at each level, uniformly chooses a number of
forward steps between [1, log p] before descending. We prove the
following upper bound on the collision probability, assuming that
log p is even:

Theorem 1. For any position x in a perfect SkipList, let Fp(x)
denote the probability that a Spray(log p− 1, log p, 1) lands at x.
Then Fp(x) ≤ 1/(2p).

Proof. Fix in the following parameters H = log p − 1, L =
log p,D = 1 for the Spray, and consider an arbitrary such op-
eration. Let ai be the number of forward steps taken by the Spray
at level i, for all 0 ≤ i ≤ log p− 1.

We start from the observation that, on a perfect SkipList, the
operation lands at the element of index

∑log p−1
i=0 ai2

i in the bottom
list. Thus, for any element index x, to count the probability that
a Spray which lands at x, it suffices to compute the probability
that a (log p+1)-tuple (a0, . . . , alog p) whose elements are chosen
independently and uniformly from the interval {1, . . . , log p} has
the property that the jumps sum up to x, that is,

log p−1∑
i=0

ai2
i = x. (1)

For each i, let ai(j) denote the jth least significant bit of ai
in the binary expansion of ai, and let x(j) denote the jth least
significant bit of x in its binary expansion.

Choosing an arbitrary Spray is equivalent to choosing a random
(log p)-tuple (a1, . . . , alog p) as specified above. We wish to com-
pute the probability that the random tuple satisfies Equation 1. No-
tice that, for

∑log p−1
i=0 ai2

i = x, we must have that a0(1) = x(1),
since the other ai are all multiplied by some nontrivial power of 2
in the sum and thus their contribution to the ones digit (in binary)
of the sum is always 0. Similarly, since all the ai except a0 and a1

are bit-shifted left at least twice, this implies that if Equation 1 is
satisfied, then we must have a1(1) + a0(2) = x(2). In general, for
all 1 ≤ k ≤ log p − 1, we see that to satisfy Equation 1, we must
have that ak(1) + ak−1(2) + . . .+ a0(k) + c = x(k), where c is
a carry bit determined completely by the choice of a0, . . . , ak−1.

Consider the following random process: in the 0th round, gen-
erate a0 uniformly at random from the interval {1, . . . , log p}, and
test if a0(1) = x(1). If it satisfies this condition, continue and we
say it passes the first round, otherwise, we say we fail this round. It-
eratively, in the kth round, for all 1 ≤ k ≤ log p−1, randomly gen-
erate an ak uniformly from the interval {1, . . . , log p}, and check
that ak(1)+ak−1(2)+. . .+a0(k)+c = x(k) mod 2, where c is
the carry bit determined completely by the choice of a0, . . . , ak−1

as described above. If it passes this test, we continue and say that it
passes the kth round; otherwise, we fail this round. If we have yet to
fail after the (log p − 1)st round, then we output PASS, otherwise,
we output FAIL. By the argument above, the probability that we
output PASS with this process is an upper bound on the probability
that a Spray lands at x.
The probability we output PASS is then

Pr[pass 0th round]

log p−2∏
i=0

Pr[pass (i+ 1)th round|Ai]

where Ai is the event that we pass all rounds k ≤ i. Since a0 is
generated uniformly from the interval {1, 2, . . . , log p}, and since
log p is even by assumption, the probability that the least significant

bit of a0 is x(1) is exactly 1/2, so

Pr[pass 0th round] = 1/2. (2)

Moreover, for any 1 ≤ i ≤ log p − 2, notice that conditioned on
the choice of a1, . . . , ai, the probability that we pass the (i+ 1)th
round is exactly the probability that the least significant bit of ai+1

is equal to x(i+1)− (ai(2)+ . . .+a0(i+1)+c) mod 2, where
c is some carry bit as we described above which only depends
on a1, . . . , ai. But this is just some value v ∈ {0, 1} wholly
determined by the choice of a0, . . . , ai, and thus, conditioned on
any choice of a0, . . . , ai, the probability that we pass the (i+ 1)th
round is exactly 1/2 just as above. Since the condition that we pass
the kth round for all k ≤ i only depends on the choice ofa0, . . . , ai,
we conclude that

Pr[pass (i+ 1)th round|Ai] = 1/2. (3)

Therefore, we have Pr[output PASS] = (1/2)log p = 1/p, which
completes the proof.

3.3 Complete Runtime Analysis for DeleteMin
In this section, we show that, given a randomly chosen SkipList,
each DeleteMin operation completes in O(log3 p) steps, in ex-
pectation and with high probability. As mentioned previously, this
is equivalent to saying that the Spray operations for each process
restart at most a constant number of times, in expectation and with
high probability. The crux of this result (stated in Corollary 1) is
a characterization of the probability distribution induced by Spray
operations on an arbitrary SkipList, which we obtain in Theorem 3.
Our results require some mathematical preliminaries. For simplic-
ity of exposition, throughout this section and in the full analysis we
assume p which is a power of 2. (If p is not a power of two we can
instead run Spray with the p set to the smallest power of two larger
than the true p, and incur a constant factor loss in the strength of
our results.)

We consider Sprays with the parameters H = log p − 1,
L = M log3 p, and D = max (1, log log p). We will assume
that all jump parameters are integers, and that D divides H . The
claim is true even when these assumptions do not hold, but we only
present the analysis in this special case because the presentation
otherwise becomes too messy. Let `p be the number of levels at
which traversals are performed, except the bottom level; in partic-
ular `p = H/D.

Since we only care about the relative ordering of the elements
in the SkipList with each other and not their real priorities, we will
call the element with the ith lowest priority in the SkipList the ith
element in the SkipList. We will also need the following definition.

Definition 1. Fix two positive functions f(p), g(p).

• We say that f and g are asymptotically equal, f ' g, if
limp→∞ f(p)/g(p) = 1.
• We say that f . g, or that g asymptotically bounds f , if there

exists a function h ' 1 so that f(p) ≤ h(p)g(p) for all p.

Note that saying that f ' g is stronger than saying that f =
Θ(g), as it insists that the constant that the big-Theta would hide is
in fact 1, i.e. that asymptotically, the two functions behave exactly
alike even up to constant factors.

There are two sources of randomness in the Spray algorithm
and thus in the statement of our theorem. First, there is the ran-
domness over the choice of the SkipList. Given the elements in
the SkipList, the randomness in the SkipList is over the heights of
the nodes in the SkipList. To model this rigorously, for any such
SkipList S, we identify it with the n-length vectors (h1, . . . , hn)
of natural numbers (recall there are n elements in the SkipList),
where hi denotes the height of the ith node in the SkipList. Given
this representation, the probability that S occurs is

∏n
i=1 2−(hi).

Second, there is the randomness of the Spray algorithm itself.
Formally, we identify each Spray with the (`p + 1)-length vector
(a0, . . . , a`p) where 1 ≤ ai ≤ M log3 p denotes how far we walk
at height iD, and a0 denotes how far we walk at the bottom height.
Our Spray algorithm uniformly chooses a combination from the
space of all possible Sprays. For a fixed SkipList S, and given a
choice for the steps at each level in the Spray, we say that the
Spray returns element i if, after doing the walk prescribed by the
lengths chosen and the procedure described in Algorithm 1, we end
at element i. For a fixed SkipList S ∈ S and some element i in
the SkipList, we let Fp(i, S) denote the probability that a Spray
returns element i. We will write this often as Fp(i) when it is clear
which S we are working with.

Definition 2. We say an event happens with high probability or
w.h.p. for short if it occurs with probability at least 1 − p−Ω(M),
where M is the constant defined in Algorithm 1.

3.3.1 Top Level Theorems
With these definitions we are now equipped to state our main
theorems about SprayLists.

Theorem 2. In the model described above, no Spray will return an
element beyond the first M(1 + 1

log p
)σ(p)p log3 p ' Mp log3 p,

with probability at least 1− p−Ω(M).

This theorem states simply that sprays do not go too far past the
first O(p log3 p) elements in the SkipList, which demonstrates that
our SprayList does return elements with relatively small priority.
The proof of Theorem 2 is fairly straightforward and uses standard
concentration bounds and is available in the non-anonymous sup-
plemental material submitted with this paper. However, the tools
we use there will be crucial to later proofs. The other main techni-
cal contribution of this paper is the following theorem.

Theorem 3. For p ≥ 2 and under the stated assumptions, there
exists an interval of elements I(p) = [a(p), b(p)] of length b(p)−
a(p) ' Mp log3 p and endpoint b(p) . Mp log3 p, such that for
all elements in the SkipList in the interval I(p), we have that

Fp(i, S) ' 1

Mp log3 p
,

w.h.p. over the choice of S.

In plain words, this theorem states that there exists a range of
elements I(p), whose length is asymptotically equal to Mp log3 p,
such that if you take a random SkipList, then with high probability
over the choice of that SkipList, the random process of performing
Spray approximates uniformly random selection of elements in the
range I(p), up to a factor of two. The condition b(p) .Mp log3 p
simply means that the right endpoint of the interval is not very
far to the right. In particular, if we pad the start of the SkipList
with K(p) = a(p) dummy elements, the Spray procedure will
approximate uniform selection from roughly the first Mp log3 p
elements, w.h.p. over the random choice of the SkipList. The proof
of Theorem 3 is takes up .
Runtime Bound. Given this theorem, we then use it to bound the
probability of collision for two Sprays, which in turn bounds the
running time for a DeleteMin operation, which yields the follow-
ing Corollary. Given Theorem 3, its proof is fairly straightforward.
We give its proof in Section 3.3.6.

Corollary 1. In the model described above, DeleteMin takes
O(log3 p) time in expectation. Moreover, for any ε > 0, DeleteMin
will run in time O(log3 p log 1

ε
) with probability at least 1− ε.

3.3.2 Proof of Theorem 2
Throughout the rest of the section, we will need a way to talk about
partial Sprays, those which have only completely some number of
levels.

Definition 3. Fix a Spray S, (a0, . . . , a`p) where 1 ≤ ai ≤
M log3 p.

• To any k-tuple (bk, . . . , b`) for k ≥ 0, associate to it the walk
which occurs if, descending from level `pD, we take br steps at
each height rD, as specified in Spray. We define the k-prefix
of S to be the walk associated with (ak, . . . , a`). We say the
k-prefix of S returns the element that the walk described ends
at.
• To any (k + 1)-tuple (b0, . . . , bk) for k ≤ `p and any starting

element i, associate to it the walk which occurs if, descending
from level kD, we take br steps at each height rD, as specified
in Spray. We define the k-suffix of S to be the walk associated
with (a0, . . . , ak), starting at the node the (`− k− 1)-prefix of
S returns. We say the k-prefix of S returns the element that the
walk described ends at.
• The kth part of S is the walk at level kD of length ak starting

at the element that the (`p − k + 1)-prefix of S returns.

Intuitively, the k-prefix of a spray is simply the walk performed at
the k top levels of the spray, and the k-suffix of a spray is simply
the walk at the bottom k levels of the spray.

For k ≥ 0, let Ek denote the expected distance the Spray
travels at the kDth level if it jumps exactly M log3 p steps. In
particular,

Ek = M2kD log3 p.

We in fact prove the following, stronger version of Theorem 2.

Lemma 1. Let σ(p) = log p/(log p − 1). For any fixed α,
the k-suffix of any Spray will go a distance of at most (1 +

α)σ(p)EkD+1, with probability at least 1 − p−Ω(Mα2 log2 p) over
the choice of the SkipList. To prove this we first need the following
proposition.

Notice that setting α = 1/ log p and k = `p then gives us the
Theorem 2. Thus it suffices to prove Lemma 1. First, we require a
technical proposition.

Proposition 1. For k ≤ log p and α > 0, the probability that the
kth part of a Spray travels more than (1 +α)M2k log3 p distance
is at most (1/p)Ω(Mα2 log2 p).

Proof. Fix some node x in the list. Let XT be the number of
elements with height at least k that we encounter in a random
walk of T steps starting at x. We know that E(XT) = T/2k.
Choose T = (1 + α)M2k log3 p. Then by a Chernoff bound,
Pr(XT ≤ (1 + α)M log3 p) ≤ p−Ω(Mα2 log2 p).

Therefore, if we take T steps at the bottom level we will with
high probability hit enough elements of the necessary height, which
implies that a Spray at that height will not go more than that
distance.

Proof of Lemma 1. WLOG suppose we start start at the head of the
list, and j is the element with distance (1+α)σ(p)EkD+1 from the
head. Consider the hypothetical Spray which takes the maximal
number of allowed steps at each level rD for r ≤ k. Clearly this
Spray goes the farthest of any Spray walking at levels kD and
below, so if this Spray cannot reach j starting at the front of the list
and walking only on levels kD and below, then no Spray can. Let
xr denote the element at which the Spray ends up after it finishes
its rDth level for 0 ≤ r ≤ k and xkD+1 = 0, and let dr be the
distance that the Spray travels at level rD. For any r ≥ 0, by

Proposition 1 and the union bound, Pr(∃k : dr > (1 +α)ErD) ≤
p−Ω(Mα2 log2 p).

Therefore, w.h.p., the distance that this worst-case spray will
travel is upper bounded by

k∑
r=0

dr ≤ (1 + α)

k∑
r=0

Er

≤ (1 + α)σ(p)EkD+1.

3.3.3 Outline of Proof of Theorem 3
We prove Theorem 3 by proving the following two results:

Lemma 2. For all elements i, we have

Fi(p, S) .
1

pM log3 p

with high probability over the choice of S.

Lemma 3. There is some constant A > 1 which for p sufficiently
large can be chosen arbitrarily close to 1 so that for all

i ∈ [Ap log2 p,
1

1 + 1/ log p
Mp log3 p],

we have

Fi(p) &
1

Mp log3 p

with high probability over the choice of S.

Given these two lemmas, if we then let I(p) be the interval
defined in Theorem 3, it is straightforward to argue that this interval
satisfies the desired properties for Theorem 3 w.h.p. over the choice
of the SkipList S. Thus the rest of this section is dedicated to the
proofs of these two lemmas.

Fix any interval I = [a, b] for a, b ∈ N and a ≤ b. In
expectation, there are (b− a+ 1)2k−1 elements in I with height at
least k in the SkipList; the following Lemma bounds the deviation
from the expectation.

Proposition 2. For any b, and any height h, letDb,h be the number
of items between the (b− k)th item and the bth item in the SkipList
with height at least h, and let Eb,h = (k+ 1)21−h be the expected
value of Db,h. Then for any α > 0,

Pr [|Db,h − Eb,h| > (1 + α)Eb,h] < e−Ω(Eb,hα
2)

Proof. LetXi be the random variable which is 1 if the (b−k+ i)th
item has a bucket of height at least i, and 0 otherwise, and let
X =

∑k
i=0 Xi. The result then follows immediately by applying

Chernoff bounds to X .

3.3.4 Proof of Lemma 2
With the above proposition in place, we can now prove Lemma 2.

Proof of Lemma 2. Let I0 = [i −M log3 p + 1, i] and for k ≥ 1
let

Ik = [di− (1 + α)σ(p)E(k−1)De+ 1, i],

and let tk denote the number of elements in the SkipList lying in
Ik with height at least kD. Define a Spray to be viable at level k if
its (`− k)-prefix returns some element in Ik, and say that a Spray
is viable if it is viable at every level. Intuitively, a Spray is viable
at level k if, after having finished walking at level kD, it ends up
at a node in Ik. By Lemma 1, if a Spray is not viable at level k
for any 1 ≤ k ≤ `p, it will not return x except with probability
p−Ω(Mα2 log2 p) over the choice of the SkipList, for all k. Thus, by

a union bound, we conclude that if a Spray is not viable, it will not
return x except with probability p−Ω(Mα2 log2 p) over the choice of
the SkipList. It thus suffices to bound the probability that a Spray
is viable.

Let tk be the number of elements in Ik with height at least kD.
The probability that the kDth level of any Spray lands in Ik is at
most tk/(M log3 p), since we choose how far to spray at level kD
uniformly at random. By Proposition 2 we know that except with
probability e−Ω(α2(Ek+1)) = p−Ω(Mα2 log2 p), Ik contains at most

(1 + α)2σ(p)E(k−1)D2−kD

= (1 + α)2Mσ(p) log2 p

elements with height at least kD. Hence,
tk

(M log3 p)
≤ (1 + α)2σ(p)

1

log p

except with probability p−Ω(Mα2 log2 p), for any fixed k. By a
union bound over all log p/ log log p levels, this holds for all levels
except with probability p−Ω(Mα2 log2 p). Thus, the probability that
a Spray lands in I0 after it completes but the traversal at the bottom
of the list is (

(1 + α)2σ(p)
1

log p

)log p/ log log p

except with probability p−Ω(Mα2 log2 p). If we choose (1 + α)2 =
(1 + 1

log p
) so that α = σ(p)1/2 − 1, we obtain that since

(log p)
− log p

log log p = 1
p

. Since σ(p)log p/ log log p ' 1, and

α2 log2 p =

(√
log p

log p− 1
− 1

)2

log2 p ' 1

4
,

it must be that with high probability, the fraction of Sprays that
land in I0 is asymptotically bounded by p−1. Conditioned its `-
prefix returning something in I0, for the Spray to return i, it
must further take the correct number of steps at the bottom level,
which happens with at most a 1

M log3 p
fraction of these Sprays.

Moreover, if the `-prefix of the Spray does not return an element
in I0, then the Spray will not hit i, since it simply too far away.
Thus Fp(i, S) . 1

pM log3 p
, as claimed. as claimed.

3.3.5 Proof of Lemma 3

Proof Strategy. We wish to lower bound the probability of hitting
the ith smallest item, for i in some reasonable interval which will be
precisely defined below. For simplicity of exposition in this section,
we will assume that all the endpoints of the intervals we define here
are integers are necessary. While this is not strictly true, the proof
is almost identical conceptually (just by taking floors and ceilings
whenever appropriate) when the values are not integers and much
more cumbersome.

Fix some index i. As in the proof of Lemma 2, we will again
filter Spray by where they land at each level. By defining slightly
smaller and non-overlapping regions than in the proof of Lemma
2, instead of obtaining upper bounds on the probabilities that a
Spray lands at each level, we are instead able to lower bound the
probability that a Spray successfully lands in the “good” region at
each level, conditioned on the event that they landed in the “good”
region in the previous levels.

Formally, let I0 = [i − log3 p, i − 1]. Let S be a spray,
chosen randomly. Then if i − log3 p ≥ 0, we know that if the
`-prefix of S returns an element in I0, then S has a 1/ log3 p
probability of stepping to i. Inductively, for all k ≤ `p − 1, we
are given an interval Ik−1 = [ak−1, bk−1] so that ak−1 ≥ 0.

Notice that there are, except with probability p−Ω(Mα2 log2 p), at
most M log3 p elements in [bk−1 − 1

1+α
EkD, bk−1] with height

kD, by Proposition 2.
Then, let ak = bk−1 − 1

1+α
E(k−1)D and bk = ak−1 − 1, and

let Ik = [ak, bk]. For all 0 ≤ k ≤ `p − 1, let tk be the number of
elements in Ik with height (k+1)D. Assume for now that ak ≥ 0.
Then, if the (k − 1)-prefix of S returns an element i in Ik, then
every element of Ik−1 of height kD by some walk of length at most
M log3 p at level kD, since there are at mostM log3 p elements of
height k log log p in the interval [ak, bk−1] and bk < ak−1. Thus,
of the Sprays whose (k + 1) prefixes return an element in Ik, a
tk/(M log3 p) fraction will land in Ik−1 after walking at height
kD. The following proposition provides a size bound on the Ik.

Proposition 3. Let sk = bk − ak + 1. For all k ≥ 2, we have(
γ0 − γ1

1

log p

)
EkD ≤ sk ≤

(
γ0 + γ1

1

log2 p

)
Ek

with γ0 = log p
(α+1)(log p+1)

and γ1 = α log p+α+1
(α+1)(log p+1)

.

Proof. Define ξk to be the quantity so that sk = ξkEk. Clearly
ξ0 = 1, and inductively,

sk =
1

1 + α
Ek − sk−1

=

(
1

1 + α
− ξk−1

log p

)
Ek

so

ξk =
1

1 + α
− 1

log p
ξk−1.

Homogenizing gives us a second order homogenous recurrence
relation

ξk =

(
1− 1

log p

)
ξk−1 +

1

log p
ξk−2

with initial conditions ξ0 = 1 and ξ1 = 1
1+α
− 1

log p
. Solving gives

us that

ξk = γ0 + γ1

(
− 1

log p

)k
.

Notice that ξ2k+2 ≤ ξ2k and ξ2k+3 ≥ ξ2k+1 and moreover,
ξ2k+1 ≤ ξ2k′ for any k, k′. Thus for k ≥ 2 the maximum of ξk
occurs at k = 2, and the minimum occurs at k = 1. Substituting
these quantities in gives us the desired results.

Once this result is in place, we use it to obtain a lower bound on the
hit probability.

Lemma 4. There is some constant A > 1 which for p sufficiently
large can be chosen arbitrarily close to 1 so that for all i ∈
[Ap log2 p, 1

1+1/ log p
Mp log3 p], we have Fi(p) & 1

Mp log3 p
with

high probability.

This statement is equivalent to the statement in Theorem 3.

Proof. The arguments made in Section A.3 are precise, as long
as (1) every element of Ik−1 can be reached by a walk from
anywhere in Ik at level k of length at most M log3 p, and (2)
each ak ≥ 0. By Proposition 2, condition (2) holds except with
probability p−O(α2M log2 p). Moreover, each ak ≥ 0 is equivalent
to the condition that i ≥ log3 p+

∑`p−1

k=0 sk, but by Proposition 3,
we have that (except with probability p−O(Mα2 log2 p)) that

`p−1∑
k=0

sk ≤
(
γ0 + γ1

1

log2 p

)`p−1∑
k=0

Ek

 .

For the choice of α = 1
log p

, the first term in this product can be
made arbitrarily close to one for p sufficiently large, and thus we
have that except with probability p−O(α2M log2 p),

`p−1∑
k=1

sk ≤ AMp log2 p,

for some A which can be made arbitrarily close to one for p
sufficiently large.

By Propositions 2 and 3, by a union bound, we have that except
with probability p−O(Mα2 log2 p),

tk ≥ 2−D
(
γ0 − γ1

1

log p

)
M log3 p,

for all k. Thus by the logic above, if we letHk denote the event that
the (k+ 1)-prefix of the spray is in Ik, we have that the probability
that the spray hits i is

≥ Pr(spray hits i|H0)

`p−1∏
k=1

Pr(Hk−1|Ik)

Pr(H`p−1)

≥ 1

log3 p

`p−1∏
k=0

tk

M log3 p

≥ 1

log3 p

(
2−blog log pc

(
γ0 − γ1

1

log p

))`p
.

If we choose α = 1
logn

, then one can show that(
γ0 − γ1

1

log p

)`p
' 1,

so we conclude that Fi(p) & 1
p log3 p

with high probability.

3.3.6 Proof of Corollary 1
We have shown so far that on a clean skip list, Spray operations
act like uniformly random selection on a predictable interval I near
the front of the list of size tending to Mp log3 p. We justify here
why this property is sufficient to guarantee that Spray operations
execute in polylogarithmic time. A single Spray operation always
takes polylogarithmic time, however, a thread may have to repeat
the Spray operation many times. We show here that this happens
with very small probability.

Proof of Corollary 1. Recall a process has to retry if either (1) its
Spray lands outside of I , or (2) the Spray collides with another
Spray operation which has already removed that object. We know
by Theorem 3 and more specifically the form of I(p) given in
Lemma 4 that (1) happens with probability bounded byO(1/ log p)
as p → ∞ for each attempted Spray operation since Lemma 4
says that there are O(p log2 p) elements before the start of I(p),
and Theorem 3 says that each is returned with probability at most
O(1/p log3 p), and (2) happens with probability upper bounded
by the probability that we fall into set of size p − 1 in I , which
is bounded by O(1/ log3 p) for p sufficiently large by Lemma 2.
Thus, by a union bound, we know that the probability that Spray
operations must restart is bounded by O(1/ log p) ≤ 1/2 for p
sufficiently large. Each spray operation takes log3 p time, and thus
the expected time it takes for a Spray operation to complete is
bounded by

log3 p

∞∑
i=0

2−1 = O(log3 p)

and thus we know that in expectation, the operation will run in poly-
logarithmic time, as claimed. Moreover, for any fixed ε > 0, the

probability that we will restart more than O(log(1/ε)/ log log p)
times is at most ε, and thus with probability at least 1 − ε, we will
run in time at most O(log3 p log(1/ε)/ log log p)

4. Implementation Results
Methodology. Experiments were performed on a Fujitsu PRIMERGY
RX600 S6 server with four Intel Xeon E7-4870 (Westmere EX)
processors. Each processor has 10 2.40 GHz cores, each of which
multiplexes two hardware threads, so in total our system supports
80 hardware threads. Each core has private write-back L1 and L2
caches; an inclusive L3 cache is shared by all cores.

We examine the performance of our algorithm on a suite of
benchmarks, designed to test its various features. Where applicable,
we compare several competing implementations, described below.
Lotan and Shavit Priority Queue. The SkipList based prior-
ity queue implementation of Lotan and Shavit on top of Keir
Fraser’s SkipList [13] which simply traverses the bottom level
of the SkipList and removes the first node which is not al-
ready logically deleted. The logical deletion is performed using
a Fetch-and-Increment operation on a ’deleted’ bit. Physical
deletion is performed immediately by the deleting thread. Note that
this algorithm is not linearizable, but quiescently consistent. This
implementation uses much of the same code as the SprayList, but
does not provide state of the art optimizations.
Lindén and Jonsson Priority Queue. The priority queue imple-
mentation provided by Lindén et. al. is representative of state of
the art of linearizable priority queues [20]. This algorithm has been
shown to outperform other linearizable priority queue algorithms
under benchmarks similar to our own. This algorithm is optimized
to minimize compare-and-swap (CAS) operations performed by
DeleteMin. Physical deletion is batched and performed by a delet-
ing thread only when the number of logically deleted threads ex-
ceeds a threshold.
Fraser Random Remove. An implementation using Fraser’s
SkipList which, whenever DeleteMin would be called, instead
deletes a random element by finding and deleting the successor of
a random value. Physical deletion is performed immediately by the
deleting thread. Although this algorithm has no ordering semantics
whatsoever, we consider it to be the performance ideal in terms
of throughput scalability as it incurs almost no contention from
deletion operations.
Wimmer et. al. k-Priority Queue. The relaxed k-Priority Queue
given by Wimmer et. al. [28]. This implementation provides a
linearizable priority queue, except that it is relaxed in the sense
that each thread might skip up to k of the highest priority tasks;
however, no task will be skipped by every thread. We test the
hybrid version of their implementation as given in [28]. We note
that this implementation does not offer scalability past 8 threads
(nor does it claim to). Due to compatibility issues, we were unable
to run this algorithm on the same framework as the others (i.e.
Synchrobench). Instead, we show its performance on the original
framework provided by the authors. Naturally, we cannot make
direct comparisons in this manner, but the scalability trends are
evident.
SprayList. The algorithm described in Section 2, which chooses
an element to delete by performing a Spray with height blog pc+1,
jump length uniformly distributed in [1, blog pc + 1] and padding
length p log p/2. Each thread becomes a cleaner (as described
in Section 2.3) instead of Spray with probability 1/p. Note
that in these experiments, p is known to threads. Through test-
ing, we found these parameters to yield good results compared
to other choices. Physical deletion is performed only by cleaner
threads. Our implementation is built on Keir Fraser’s SkipList al-

gorithm [13], described in the Appendix, using the benchmarking
framework of Synchrobench[8].

4.1 Throughput
We measured throughput of each algorithm using a simple bench-
mark in which each thread alternates insertions and deletions,
thereby preserving the size of the underlying data structure. We
initialized each priority queue to contain 1 million elements, after
which we ran the experiment for 1 second.

Figure 3 shows the data collected from this experiment. At low
thread counts (≤ 8), the priority queue of Lindén et. al. outper-
forms the other algorithms by up to 50% due to its optimizations.
However, like Lotan and Shavit’s priority queue, Lindén’s priority
queue fails to scale beyond 8 threads due to increased contention
on the smallest element. In particular, the linearizable algorithms
perform well when all threads are present on the same socket, but
begin performing poorly as soon as a second socket is introduced
above 10 threads. On the other hand, the low contention random
remover performs poorly at low thread counts due to longer list
traversals and poor cache performance, but it scales almost linearly
up to 64 threads. Asymptotically, the SprayList algorithm per-
forms worse than the random remover by a constant factor due to
collisions, but still remains competitive.

To better understand these results, we measured the average
number of failed synchronization primitives per DeleteMin oper-
ation for each algorithm. Each implementation logically deletes a
node by applying a (CAS) operation to the deleted marker of a node
(though the actual implementations use Fetch-and-Increment
for performance reasons). Only the thread whose CAS successfully
sets the deleted marker may finish deleting the node and return it as
the minimum. Any other thread which attempts a CAS on that node
will count as a failed synchronization primitive. Note that threads
check if a node has already been logically deleted (i.e. the deleted
marker is not 0) before attempting a CAS.

The number of CAS failures incurred by each algorithm gives
insight into why the exact queues are not scalable. The lineariz-
able queue of Lindén et. al. induces a large number of failed op-
erations (up to 2.5 per DeleteMin) due to strict safety require-
ments. Similarly, the quiescently consistent priority queue of Lotan
and Shavit sees numerous CAS failures, particularly at higher thread
counts. We observe a dip in the number of CAS failures when ad-
ditional sockets are introduced (i.e. above 10 threads) which we
conjecture is due to the increased latency of communication, giv-
ing threads more time to successfully complete a CAS operation
before a competing thread is able to read the old value. In contrast,
the SprayList induces almost no CAS failures due to its collision
avoiding design. The maximum average number of failed primi-
tives incurred by the SprayList in our experiment was .0090 per
DeleteMin which occurred with 4 threads. Naturally, the random
remover experienced a negligible number of collisions due to its
lack of ordering semantics.

Due to technical constraints, we were unable to produce a
framework compatible with both the key-value-based implemen-
tations presented in Figure 3 and the task-based implementation of
Wimmer et. al. However, we emulated our throughput benchmark
within the framework of [28].

We implement tasks whose only functionality is to spawn a
new task. Thus, each thread removes a task from the queue and
processes that task by adding a new task to the queue. In this
way, we measure the same pattern of alternating inserts and deletes
in a task-based framework. As in the previous experiment, we
initially populate the queue with 1 million tasks before measuring
performance.

Figure 3: Priority Queue implementation performance on a 50% insert, 50% delete workload: throughput (operations completed), average CAS failures per
DeleteMin, and average L1 cache misses per operation.

Figure 4: The frequency distribution of Spray operations when each thread performs a single Spray on a clean SprayList over 1000 trials. Note that the
x-axis for the 64 thread distribution is twice as wide as for 32 threads.

Figure 3 shows the total number of tasks processed by the k-
priority queue of Wimmer et. al.6 with k = 1024 over a 1 second
duration. Similarly to the priority queue of Lindén et. al., the k-
priority queue scales at low thread counts (again ≤ 8), but quickly
drops off due to contention caused by synchronization needed to
maintain the k-linearizability guarantees. Other reasonable values
of k were also tested and showed identical results.

In sum, these results demonstrate that the relaxed semantics of
Spray achieve throughput scalability, in particular when compared
to techniques ensuring exact guarantees.

6 We used the hybrid k-priority queue which was shown to have the best
performance of the various implementations described [28].

4.2 Spray Distribution
We ran a simple benchmark to demonstrate the distribution gener-
ated by the Spray algorithm. Each thread performs one DeleteMin
and reports the position of the element it found. (For simplicity,
we initialized the queue with keys 1, 2, . . . so that the position of
an element is equal to its key. Elements are not deleted from the
SprayList so multiple threads may find the same element within a
trial.) Figure 4 shows the distribution of elements found after 1000
trials of this experiment with 32 and 64 threads.

We make two key observations: 1) most Spray operations fall
within the first roughly 400 elements when p = 32 and 1000 ele-
ments when p = 64 and 2) the modal frequency occurred roughly
at index 200 for 32 threads and 500 for 64 threads. These statis-
tics demonstrate our analytic claims, i.e., that Spray operations hit
elements only near the front of the list. The width of the distri-

Figure 5: Runtimes for SSSP using each PriorityQueue implementation on each network (lower is better).

bution is only slightly superlinear, with reasonable constants. Fur-
thermore, with a modal frequency of under 100 over 1000 trials
(64000 separate Spray operations), we find that the probability of
hitting a specific element when p = 64 is empirically at most about
.0015, leading to few collisions, as evidenced by the low CAS fail-
ure count. These distributions suggest that Spray operations bal-
ance the trade-off between width (fewer collisions) and narrowness
(better ordering semantics).

4.3 Single-Source Shortest Paths.
One important application of concurrent priority queues is for
use in Single Source Shortest Path (SSSP) algorithms. The SSSP
problem is specified by a (possibly weighted) graph with a given
“source” node. We are tasked with computing the shortest path
from the source node to every other node, and outputting those dis-
tances. One well known algorithm for sequential SSSP is Dijkstra’s
algorithm, which uses a priority queue to repeatedly find the node
which is closest to the source node out of all unprocessed nodes. A
natural parallelization of Dijkstra’s algorithm simply uses a parallel
priority queue and updates nodes concurrently, though some extra
care must be taken to ensure correctness.

Note that skiplist-based priority queues do not support the
decrease-key operation which is needed to implement Dijkstra’s al-
gorithm, so instead duplicate nodes are added to the priority queue

and stale nodes (identified by stale distance estimates) are ignored
when dequeued.

We ran the single-source shortest path algorithm on three types
of networks: an undirected grid (1000 × 1000), the California
road network, and a social media network (from LiveJournal) [1].
Since the data did not contain edge weights, we ran experiments
with unit weights (resembling breadth-first search) and uniform
random weights. Figure 5 shows the running time of the shortest
paths algorithms with different thread counts and priority queue
implementations.

We see that for many of the test cases, the SprayList sig-
nificantly outperforms competing implementations at high thread
counts. There are of course networks for which the penalty for re-
laxation is too high to be offset by the increased concurrency (e.g.
weighted social media) but this is to be expected. The LiveJournal
Weighted graph shows a surprisingly high spike for 60 cores us-
ing the SprayList which is an artifact of the parameter discretiza-
tion. In particular, because we use c log pb for the Spray height, the
Spray height for 60 cores rounds down to 5. The performance of
the SprayList improves significantly at 64 cores when the Spray
height increases to 6, noting that nothing about the machine archi-
tecture suggests a significant change from 60 to 64 cores.

4.4 Discrete Event Simulation
Another use case for concurrent priority queues is in the context of
Discrete Event Simulation (DES). In such applications, there are a
set of events to be processed which are represented as tasks in a
queue. Furthermore, there are dependencies between events, such
that some events cannot be processed before their dependencies.
Thus, the events are given priorities which impose a total order
on the events which subsumes the partial order imposed by the
dependency graph. As an example, consider n-body simulation, in
which events represent motions of each object at each time step,
each event depends on all events from the preceding time step.
Here, a total order is given by the time step of each event, along
with an arbitrary ordering on the objects.

We emulate such a DES system with the following methodol-
ogy: we initially insert 1 million events (labelled by an ID) into the
queue, and generate a list of dependencies. The number of depen-
dencies for each event i, is geometrically distributed with mean δ.
Each event dependent on i is chosen uniformly from a range with
mean i + K and radius

√
K. This benchmark is a more complex

version of the DES-based benchmark of [20], which in turn is based
on the URDME stochastic simulation framework [11].

Once this initialization is complete, we perform the following
experiment for 500 milliseconds: Each thread deletes an item from
the queue and checks its dependants. For each dependant, if it is
not present in the queue, then some other thread must have already
deleted it. This phenomenon models an inversion in the event queue
in which an event is processed with incomplete information, and
must be reprocessed. Thus, we add it back into the queue. We call
this early deletion and reinsertion wasted work. This can be caused
by the relaxed semantics, although we note that even linearizable
queues may waste work if a process stalls between claiming an
event and actually processing it.

This benchmark allows us to examine the trade-off between the
relaxed semantics and the increased concurrency of SprayLists.
Figure 6 reports the actual work performed by each of the com-
peting algorithms, where actual work is calculated by simply mea-
suring the reduction in the size of the list over the course of the
experiment, as this value represents the number of nodes which
were deleted without being reinserted later and can thus be con-
sidered fully processed. For each trial, we set δ = 2 and tested
K = 100, 1000, 10000.

As expected, the linearizable priority queue implementation
does not scale for any value of K. As in the pure throughput exper-
iment, this experiment also presents high levels of contention, so
implementations without scaling throughput cannot hope to scale
here despite wasting very little work.

On the other hand, the SprayList also fails to scale for small
values of K. For K = 100, there is almost no scaling due to
large amounts of wasted work generated by the loose semantics.
However, as K increases, we do start to see increased scalability,
with K = 1000 scaling up to 16 threads and K = 10000 scaling
up to 80 threads.

To demonstrate the dependence of scalability on the distribution
of dependencies, we measured the minimum value of K needed to
obtain maximum performance from a SprayList at each thread
count. In particular, for each fixed value of n, we increased K until
performance plateaued and recorded the value of K at which the
plateau began.

Figure 7 reports the results of this experiment. We notice that
the minimum K required increases near linearly with the number
of threads. Note that the “bumps” at 40 and 80 threads due to the
dependence of Spray width only on blog2 nc (so the minimum
K required will generally only increase at powers of 2). This
plot suggests the required dependency sparsity in order for the
SprayList to be a good choice of data structure for a particular
application.

Figure 6: Work performed for varying dependencies (higher is better). The
mean number of dependants is 2 and the mean distance between an item

and its dependants varies between 100, 1000, 10000.

Figure 7: Minimum value of K which maximizes the performance of the
SprayList for each fixed number of threads.

5. Discussion and Future Work
We presented a new design for a relaxed priority queue, which al-
lows throughput scaling for large number of threads. The imple-
mentation weakens the strict ordering guarantees of the sequential
specification, and instead provides probabilistic guarantees on run-
ning time and number of inversions. Our evaluation suggests that
the main advantage of our scheme is the drastic reduction in con-
tention, and that, in some workloads, the gain in scalability can
fully compensate for the additional work due to inversions. We de-
velop our technique on a lock-free SkipList, however a similar con-
struct works for a lock-based implementation. Also, the relaxation
parameters of our algorithm (spray height, step length) can be tuned
depending on the workload.

An immediate direction for future work would be to tune the
data structure for specific workloads, such as efficient traversals of
large-scale graphs. A second direction would be to adapt the spray-
ing technique to obtain relaxed versions of other data structures,
such as double-ended queues [16].

References
[1] Stanford large network dataset collection. http://snap.stanford.

edu/data/index.html. Accessed: Sept. 2014.

[2] Y. Afek, M. Hakimi, and A. Morrison. Fast and scalable rendezvous-
ing. Distributed Computing, 26(4):243–269, 2013.

[3] D. Alistarh, J. Aspnes, S. Gilbert, and R. Guerraoui. The complexity
of renaming. In 52nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 718–727, Oct. 2011.

[4] D. Basin, R. Fan, I. Keidar, O. Kiselov, and D. Perelman. Cafe: Scal-
able task pools with adjustable fairness and contention. In Proceed-

ings of the 25th International Conference on Distributed Computing,
DISC’11, pages 475–488, Berlin, Heidelberg, 2011. Springer-Verlag.

[5] A. Braginsky and E. Petrank. A lock-free b+tree. In 24th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’12,
Pittsburgh, PA, USA, pages 58–67, 2012.

[6] G. S. Brodal, J. L. Träff, and C. D. Zaroliagis. A parallel priority queue
with constant time operations. J. Parallel Distrib. Comput., 49(1):4–
21, 1998.

[7] I. Calciu, H. Mendes, and M. Herlihy. The Adaptive Priority Queue
with Elimination and Combining. ArXiv e-prints, Aug. 2014.

[8] T. Crain, V. Gramoli, and M. Raynal. A speculation-friendly binary
search tree. ACM SIGPLAN Notices, 47(8):161–170, 2012.

[9] N. Deo and S. Prasad. Parallel heap: An optimal parallel priority
queue. The Journal of Supercomputing, 6(1):87–98, Mar. 1992.

[10] D. Dice, Y. Lev, and M. Moir. Scalable statistics counters. In 25th
ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’13, Montreal, QC, Canada, pages 43–52, 2013.

[11] B. Drawert, S. Engblom, and A. Hellander. Urdme: a modular frame-
work for stochastic simulation of reaction-transport processes in com-
plex geometries. BMC Systems Biology, 6(76), 2012.

[12] F. Ellen, D. Hendler, and N. Shavit. On the inherent sequentiality of
concurrent objects. SIAM J. Comput., 41(3):519–536, 2012.

[13] K. Fraser. Practical lock-freedom. PhD thesis, PhD thesis, Cambridge
University Computer Laboratory, 2003. Also available as Technical
Report UCAM-CL-TR-579, 2004.

[14] T. L. Harris. A pragmatic implementation of non-blocking linked-
lists. In Proceedings of the 15th International Conference on Dis-
tributed Computing, DISC ’01, pages 300–314, London, UK, UK,
2001. Springer-Verlag.

[15] T. A. Henzinger, C. M. Kirsch, H. Payer, A. Sezgin, and A. Sokolova.
Quantitative relaxation of concurrent data structures. In Proceedings
of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’13, pages 317–328, New York,
NY, USA, 2013. ACM.

[16] M. Herlihy and N. Shavit. The art of multiprocessor programming.
Morgan Kaufmann, 2008.

[17] M. Herlihy, N. Shavit, and M. Tzafrir. Hopscotch hashing. In Proceed-
ings of the 22nd International Symposium on Distributed Computing,
DISC 2008, Arcachon, France, pages 350–364, 2008.

[18] R. M. Karp and Y. Zhang. Parallel algorithms for backtrack search and
branch-and-bound. J. ACM, 40(3):765–789, 1993.

[19] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen. Introduction
to algorithms. The MIT press, 2001.

[20] J. Lindén and B. Jonsson. A skiplist-based concurrent priority queue
with minimal memory contention. In Principles of Distributed Sys-
tems, pages 206–220. Springer, 2013.

[21] I. Lotan and N. Shavit. Skiplist-based concurrent priority queues. In
Parallel and Distributed Processing Symposium, 2000. IPDPS 2000.
Proceedings. 14th International, pages 263–268. IEEE, 2000.

[22] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure
for graph analytics. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles, SOSP ’13, pages 456–471,
New York, NY, USA, 2013. ACM.

[23] W. Pugh. Skip lists: a probabilistic alternative to balanced trees.
Communications of the ACM, 33(6):668–676, 1990.

[24] W. Pugh. Concurrent maintenance of skip lists. 1998.
[25] P. Sanders. Randomized priority queues for fast parallel access. Jour-

nal Parallel and Distributed Computing, Special Issue on Parallel and
Distributed Data Structures, 49:86–97, 1998.

[26] N. Shavit. Data structures in the multicore age. Commun. ACM,
54(3):76–84, 2011.

[27] H. Sundell and P. Tsigas. Fast and lock-free concurrent priority
queues for multi-thread systems. Journal of Parallel and Distributed
Computing, 65(5):609–627, 2005.

[28] M. Wimmer, D. Cederman, F. Versaci, J. L. Träff, and P. Tsigas.
Data structures for task-based priority scheduling. In Proceedings of

the 19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP 2014), 2014. To appear.

