A Numerical Model of the Cardiovascular System for
Clinical Assessment of the Hemodynamic State

by
Edwin Tomoya Ozawa

Master of Science in Mechanical Engineering
(Massachusetts Institute of Technology, 1992)

Submitted to the Department of Health Sciences and Technology,
Medical Engineering - Medical Physics
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Medical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 1996

© Massachusetts Institute of Techmology 1996. All rights reserved.

AUROT (st
BZpartment of Health Sciences and Technology

August 16, 1996

CertifIed DY ..o ettt
Roger D. Kamm

Professor of Mechanical Engineering

Thesis Supervisor

Accepted by.........coeoeriiiiire voaensamstanandenibenes et st
. Martha L. Gray

MAZCACHUSL TS INSTHUTE Associate Professor of Electrical Engineering

OF TECHNOLOGY . : -
Chairman, Departmental Committee on Graduate Studies

Jus 1u 980 ERCHIVES

LIRRARIES






A Numerical Model of the Cardiovascular System for
Clinical Assessment of the Hemodynamic State

by
Edwin Tomoya Ozawa

Submitted to the Department of Health Sciences and Technology, September 1996
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Medical Engineering
Abstract

A robust and comprehensive numerical model of the cardiovascular system has
been developed to assess the effects of cardiovascular disease, and of various mechanical
and pharmaceutical interventions, on the hemody namic parameters of patients. Such a
model would provide the clinician with a more refined method of non-invasively
determining the hemodynamics than is currently available in practice. The model was
based upon a numerical solution of the one-dimensional equations oi inotion in a
geometrically accurate branching network of the arterial system including energy losses
at bifurcations, a ventricular model incorporating specified time-dependent wall
compliances and unidirectional valves, and lumped parameter venous and pulmonary
circulatory systems. Also incorporated are damping mechanisms related to the phase
dependence of the wall shear during periodic flows, and the viscoelastic behavior of the
arterial walls, both of which have been shown to be physiologically important. The
model is capable of reproducing the complex waveforms observed in-vivo, and agrees
well with literature and measured waveforms obtained by the author.

System identification techniques were then applied to the model in order to obtain
a method to quantitatively assess the hemodynamic state of a patient, as a function of
hemodynamic parameters which are of interest to the clinician. A set of six governing
model parameters were identified through a sensitivity analysis of all model parameters,
followed by model simplification and non-dimensionalization. A library of data was then
constructed using 337 runs of the model, varying each of the parameters independently
over discrete grid points in the six-dimensional space. The proposed parameter
estimation scheme makes use of the parameter space-containing library to construct
surrogates (approximations of the actual functions) to describe the behavior of "features"
extracted from the computed waveforms at each grid point. Thus, if a feature set is
created from the patient waveforms to be tested, this set of feature functions can be
solved for iteratively to determine the six unknowns (governing parameters) unique to the
specified feature set.

The parameter identification technique was tested first against a number of
generated runs corresponding to random positions in the parameter space. The parameter
estimation scheme was able to estimate values of peripheral resistance within 5% error,
given that the ill-defined nature of the features as a function of parameters can be
somewhat overcome by specifying ore or more of the parameters (such as central venous



-4-

pressure or heart rate). The heart failure patient data sets obtained by the author for
model validation were applied to the present estimation scheme, which pointed the way
for future directions of improvement. Thus, this thesis demonstrates the strong potential
of the proposed scheme to clinically measure numerous hemodynamic parameters.
Further work will have to be performed to obtain a robust system capable of estimating
six or more hemodynamic parameters with little error.
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Chapter 1

Introduction

1.1 The Arterial Pressure Pulse

Throughout history, physicians have always looked towards the "pulse" as a source of
information, a window onto the state of health of their patients. When one speaks of the
pulse, or "taking one's pulse,” the image that readily comes to mind is that of the two
forefingers of one hand, firmly positioned over the radial artery at the wrist. This
procedure is known in the medical lingo as "palpation." An image of what appears to be
the hand of God palpating the wrist of Man is incorporated into the seal of the Royal
College of Physicians of London (Figure 1.1), and harks back to an earlier day in
medicine when physicians had to rely solely on the five senses to gain information and
clues regarding the health of their patients. In modemn times, palpation of the pulse is not
expected to yield much more information than the heart rate, possibly the strength of the
heart's contraction. Doctors nowadays will write, for example, "pulse 72, RRR" in their
patient's charts, referring to 3 pieces of information that are garnered from feeling the
pulse: one, that the heart rate is 72 beats per minute (normal); two, that the rate is regular
(i.e. the heart rate does not appear to deviate significantly over the course of palpation);
and three that the quality of the pulse, or the rhythm, is also normal. Hence the
abbreviation RRR: Regular Rate and Rhythm. One should note that although we speak of
the pulse as a manifestation of pressure, the pulse as a description of velocity or flow rate
as a function of time through a vessel is equally as valid.

The quality of the pulse was once a more important piece of information before the
advent of technologies that now allow for accurate imaging and quantification of the
cardiovascular system. The ancient Chinese, for instance, believed that a competent
physician could diagnose disease, detect pregnancy, and even determine the sex of the
unborn child from palpating the pulse. The examination of the pulse took on a mystical
quality in many cultures, including the Hindu as well as the Chinese, where
pronouncements made on the feel of the pulse was based more on a tried and true art than
on real science. The examination of the patient was introduced by the Greek
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Figure 1.1. Crest of the Royal College of Physicians of London. From
O'Rourke, 1992.
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philosopher and physician Hippocrates, who categorized the pulse based on its
correlation to known disease states. Among his contemporaries was the great physician
Galen, who noted the relationship between the heart, vessels, and blood: a revolutionary
idea for his time, when it was commonly believed that arteries transported air, rather than
fluid, around the body.

The understanding of the circulation increased as time progressed, and science
became more formalized during the "Age of Enlightenment." The evolution of
cardiovascular physiology is highlighted by the first complete description of the
cardiovascular system as a closed loop network of tubes transporting blood, by William
Harvey in 1628, published in the monograph "An Anatomical Essay on the Movement of
the Heart and Blood in Animals." Harvey also described in his classical work the
interaction between the contraction of the heart, and the consequent filling of the arterial
system resulting in expansion of the vessel walls and the sensation of the "pulse"
(O'Rourke, 1992). It is fitting that the seal of the Royal College of Physicians bears
tribute to Harvey's work, which was published while Harvey was a faculty member o: the
College.

One of the most important and earlier descriptions of arterial system dynamics was
made by the Reverend Stephen Hales in 1769, when he recorded the arterial pressure of a
horse using a fluid-filled manometer. Hales compared the ejection of blood into an
elastic arterial system to that of the air-filled chamber of a fire engine, which converted
pulsatile flow from the pump into a steady stream. His description of arterial compliance
was given the German name "windkessel", or "air chamber", to capture the essence of the
"cushioning" effect on the force of the pressure pulse that he had observed. The
windkessel model translates well into an simple electrical circuit analog consisting of a
single resistor and capacitor, as shown in Figure 1.2. Hale's description was soon
followed by classical mathematical descriptions of fluid flow, most notably for flow in
tubes by J.M. Poiseuille in the early 19th century. Poiseuille also performed experiments
in cardiovascular physiology, and demonstrated using a fluid-filled manometer that
differences in mean pressures between distal and proximal arteries were negligible
(O'Rourke, 1992).

Eventually, measurement techniques of the arterial pulse improved over that of the
manometer, which was inherently noisy and gave poor impressions of the shape of the
pulse. E. Marey was the first to develop a reliable device that translated the pressure
fluctuations in arteries to tracings on a rotating drum (Figure 1.3). Hence, for the first
time physicians could make use of the "sphygmograph" to visually study changes in the
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Figure 1.2. RC electrical analog of Hale's windkessel. P, is the
systemic arterial pressure, P is the capillary bed pressure, C, is the

systemic arterial compliance, and R, is the systemic vascular
resistance.
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Figure 1.3. Plate of Marey's mechanical sphygmograph attached to
the arm, and the tracing of the arterial pulse on the traveler labeled M.
From Fishman, 1964.
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pressure pulse with cardiovascular disease. This led physicians such as F.A. Mahomed in
1872 to proclaim "by his pulse you will know him." Mahomed gave a description of how
the pulse changes in patients with chronic hypertension, and how through measurements
and palpation one could identify patients with the ailment. The technology of blood
pressure measurement advanced with the development of the sphygmomanometer in the
late 19th and early 20th centuries, which completely supplanted the use of the
sphygmograph. Korotkoff in 1905 described the characteristic tapping noise of blood
jetting through a collapsed artery heard during auscultation with the sphygmomanometer
(Fishman, 1964). This is the basis for measurement of the systolic and diastolic
components of the brachial pressure pulse, and is a technique that persists to this day.

The study of the arterial pressure pulse continued with the development of devices
and techniques that allow for more quantitative measurement with high signal to noise
ratios. The standard clinical instrument of today is the fluid-filled catheter, a slender and
hollow piastic tube with an opening at one end and a port for connection to a pressure
transducer at the other. These catheters are placed intravenously or intra-arterially to
monitor pressures in various locations throughout the body, particularly the radial artery,
the thoracic and abdominal aorta, the left or right heart, and the pulmonary arteries.
Fluid-filled catheter/transducer assemblies give highly accurate measurements of the
pulse with little distortion of the true signal. Indwelling catheters allow continuous
monitoring of hemodynamics at the bedside. Alterations in the hemodynamic states can
therefore be quickly assessed and acted upon by the patient's caregivers.

In general, the studies of the arterial pulse to date are qualitative descriptions of how
alterations in the material or mechanical properties of the arterial system affect
measurable quantities. This is, of course, assuming that the arterial system can be easily
modeled as a purely mechanical system, a construct of elastic tubes driven by pumps. It
is simple enough to look at the plotted images of arterial pressure and flow pulses and
conclude that differences do indeed exist between various states, normal or pathological
(Figure 1.4). However, it may be possible to determine more quantitative information
from the shape of the pulse that could be of tremendous use to the clinician. A system
coupled with a model of the cardiovascular system might be constructed which analyzes
the waveforms in a systematic pattern, and extracts specific values for hemodynamic
parameters that are difficult or impossible to obtain directly from patients. These
waveforms may be obtained by a simple, non-invasive technique such as an electronic
version of the 18th century sphygmograph described above.
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Our interest in the arterial pulse, then, lies in our ability to model its behavior, and
how the pulse might be expected to change with mechanical alterations in the
cardiovascular system. Furthermore, since in a model we have complete control over the
theoretical equations and the coefficients that they contain, manipulation of the model
hemodynamic parameters allows us the luxury of observing the close interrelationships
between the pulse and these parameters. Many types of models have been developed
over the years, and it is therefore worthwhile to briefly review the current literature. This
will aid in determining what model may be suitable for use in this dissertation.

1.2 Previous Models of the Cardiovascular System

Numerous models of either the whole or portions of the circulation have been
extensively developed in order to duplicate both quaiitatively and quantitatively the
observed clinical measurements and behavior. The earliest models were mechanical
constructions of rubber and glass, and provided insight into the importance of both the
geometry and the material properties of the cardiovascular system from a fluid mechanics
point of view (Helal, 1993; McMahon, 1971; Westerhof, 1971). More recently, with the
advent of computers which allow for accurate and efficient numerical modeling of
dynamic systems, additional models have been developed that simulate the circulation in
equal or greater detail. These modeis mimic the propagation of pressure and flow waves
through the circulatory system, either through an electrical analog or a transmission line
model. A brief glance at the literature for circulatory mechanics reveals numerous
applications of numerical modeling of the circulatory system in the realms of physiology
research, clinical medicine, and engineering design. Numerical modeling is useful in the
investigation of changes in arterial impedance and wave propagation behavior that occur
with different disease states or drug interventions. Arterial wave reflection in heart
failure, for instance, is of great interest since optimal drug treatments using vasodilation
should be aimed at lowering the pulse waves that return to the left ventricle from the
periphery during systole, thus decreasing ventricular afterload. Additionally, flow past
various circulatory abnormalities is of great interest and has been studied in extensive
detail. Two particular examples include the study of the abdominal aortic aneurysm and
bypass grafts, and how the local flow and pressure surrounding the abnormal regions in
the main arterial tree are affected (Helal, 1994; Taylor, 1994).

Additional motivations for a circulation model stem from space physiology research,
where the effects of zero gravity, tilt, and lower body negative pressure (LBNP) on the
dynamics of the cardiovascular system have been extensively studied and modeled
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(White, 1983). Many studies of cardiovascular control has been performed, and a large
majority of these involve system identification techniques to develop expert models of
the regulatory mechanisms involved. System identification allows a model to adaptively
modify its parameters such that for a given series of inputs, the model output matches that
of the real system with as little error as possible. Such techniques are commonly used in
engineering control and design; their application to cardiovascular control mechanisms
and lumped parameter models of the circulation are in common use for studying LBNP,
heart rate variability resulting from regulation by the autonomic nervous system, and
control of hypovolemia, to name a few applications (Symposium, 1994; White, 1983).

Studies have been conducted to investigate the interaction between the circulation
and various cardiac assist devices (CAD's), which are designed to augment blood flow
when the failing or diseased heart is unable to satisfy the physiological needs of the body.
These devices include: the intra-aortic balloon pump (IABP), a catheter-like device tipped
with an inflatable balloon which is placed into the abdominal aorta, and inflates during
diastole to increase perfusion pressure and deflates just prior to systole to decrease
afterload (Niederer and Schilt, 1988); the left ventricular assist device (LVAD), a
mechanical pump which reduces the workload on the heart; and the external
counterpulsation (ECP) device, which uses pressurized mast pants to compress the lower
extremities, thereby augmenting diastolic pressures and resulting in improved coronary
perfusion (Soroff et al., 1986). Research into other forms of mechanical cardiac assist is
currently underway in the Fluid Mechanics Laboratory, specifically an LVAD which is
being tested both computationally and on the bench. Cardiac assist devices have
profound effects on the pressure and flow behavior of the arterial system, and in the case
of ECP, the venous system as well.

It is fairly clear that a model, specifically a numerical one, may provide the means
for understanding the connection between the measured arterial pulse and the
hemodynamic parameters. As a fantasy goal, one might envision a physician using an
electronic device that obtains, non-invasively, the pressure pulse from a major artery, and
with the input of a few other easily measured patient parameters (age, height, weight,
etc.) can generate predicted values for clinically useful hemodynamic parameters. These
include the cardiac output, left ventricular peak elastances, peripheral resistance, mean
arterial wall stiffness, and so forth. Such a device may also be easily integrated into
standard hospital monitoring techniques, thus making unnecessary the need ror traditional
hemodynamic monitoring through an indweiling catheter. Much work stands in the way
of the development of such a device, and the first basic steps require the construction of a
system that demonstrates the potential ability to accomplish these goals.
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1.3 Thesis Scope and Goals

In light of the potential of a complete cardiovascular model, the scope of this thesis
will be structured in context with a common clinical problem involving the interactions
between cardiovascular mechanics, monitoring, and medical interventions. In the clinical
setting, patients are evaluated by physicians using the available hemodynamic data in
order to determine the most appropriate choice of therapy. It is therefore desirable to
develop a predictive clinical tool incorporating a model of the cardiovascular system such
that estimations of useful hemodynamic parameters can be obtained. Thus, for this thesis
a one-dimensional numerical model of the cardiovascular system was developed, founded
on sound fluid mechanics principles and generic data from the literature. This model was
combined with parameter estimation techniques so that hemodynamic properties could be
estimated from the arterial pulse pressure obtained from patients. Such @ set of clinical
measurments was easily obtained using the available monitoring equipment, such as
Doppler ultrasound and indwelling pressure transducer catheters. This accomplished the
dual purpose of both providing the data needed to perform the parameter estimation, as
well as the model validation by assessing its ability to predict the changes in behavior
following a pharmaceutical perturbation.

1.3.1 Construction of a Comprehensive Model

The initial goal was the development of a computer model to emulate the pulse
propagation of pressure waves and flow behavior in the human arterial tree, to include the
aorta and the major branches and bifurcations to several generations. Modeling was
accomplished by one-dimensional finite difference calculation of the equations of
momentum and continuity, as well as a constitutive relationship for compliant vessel wall
behavior. Work on compliant vessel networks has been extensively developed by our
group and others (Kamm, 1982; Kimmel et al., 1988; Raines, 1972; Shapiro, 1977;
Stettler et al., 1981). It is further important to note that finite difference calculations
provide a greater wealth of information, as a function of anatomical position, than do
corresponding lumped parameter models, which make up the majority of numerical
circulation models in existence todayv.

Several other factors were investigated while developing this model of the arterial
system. One concerned the need for appropriate representation of losses at a bifurcation.
For this, the results of Collins (Collins et al., 1993) and Wolf (Wolf, 1990) obtained from
experiments in branching networks were useful. Also of interest was the effect of
viscoelastic artery walls and frequency-dependent wall friction in transient pipe flow.

The circulation loop was closed by representing the venous and pulmonary system as a
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lumped parameter model consisting of resisiors and capacitors. The model also
incorporated a transient compliance-based model of the left and right ventricles in order
to obtain realistic waveforms both for normal and heart failure patients, the latter of
which was represented by a compliance function which can be altered as a result of
decreased myocardial contractility, in addition to compensatory changes in the periphery.
Additionally, the effects of the autonomic nervous system by way of the baroreceptor
reflex were included using a simple linear control model, as the reflex has important
effects in the distribution of blood volume and the maintenance of systemic blood

pressure.

1.3.2 The Model as a Diagnostic Tool

The model described above contains the physics needed to simulate the
cardiovascular system, although it lacks the parameters needed to represent an individual
physiological system. To a great extent, these parameters can be estimated using data
from a specific patient. In this thesis system identification techniques were applied to the
model in order to match selected measured waveforms taken from the literature or
measured in a specific individual. Thus, given a series of measurements of velocity and
pressure at selected points in the body, the parameter estimation routines described iiere
can be applied to "eke out" model parameters such that the difference (or "error")
between the computed and measured pulse waveforms is at a minimum. This can be
described in loose terms as the "inverse problem," where a set of hemodynamic
parameters can easily give rise to an output of pressures and flowrates using a
cardiovascular model, but a solution for the parameters from a set of pressure and flow
measurements becomes a much less trivial problem. The actual parameters to adjust were
carefully selected so that they contained enough information to allow the model to
reproduce individual features from a patient, and were few enough in number so that
parameter estimation could actually be carried out with reasonable effort. For example, it
1s possible to characterize geometry and material properties for the entire arterial tree by
specifying a small, selected number of parameters. Likewise, only a few parameters may
be selected to specify arteriolar resistances and the distribution of cardiac output. System
identification techniques currently in use at the Fluid Mechanics Laboratory were
extremely useful in providing a method for estimation of the hemodynamics.

The model was applied clinically during a portion of the dissertation work by
perturbing the conditions of several patients pharmacologically, and attempting to
quantify the resulting changes using the model. Mechanical alterations in physiology
through the use of vasodilators were applied to the patient “process” as the perturbation.
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Vasodilators are commonly used clinically as "afterload reducing" agents, and include the
drugs sodium nitroprusside, hydralazine, and the class known as angiotensin converting
enzyme (ACE) inhibitors. Hence, model validation required clinical measurements of a
patient both before and after the intervention. With respect to vasodilation, the effects
were defined as a generalized decrease in peripheral resistance due to increased arteriolar
dilatation, as well as an increase in peripheral capacitance. As will be shown later in this
thesis, parameter estimation may be used to detect the alteration in peripheral resistance
as a decrease in the value of the corr.sponding parameter.

1.3.3 Goal of the Study

Many additional applications other than system identification exist for a flexible yet
comprehensive cardiovascular system model. Until now, no single model existed with
the flexibility to address all of the various types of problems and applications listed
above. Many of the various numerical models mentioned above decompose the
circulation into lumped parameter approximations which have significant shortcomings in
that specific geometric and anatomical detail is omitted. Such detail is necessary when
considering the optimal placement of a CAD, for instance. Other models used previously
also are deficient in that they consider only the circulation local to the device, and neglect
the complex interaction between the device and the circulatory system as a whole.
Hence, the various possible applications provided an excellent opportunity for the
development of a more complete model. To summarize, a robust, comprehensive
numerical model of the cardiovascular system was constructed to apply parameter
estimation techniques on an individual patent's arterial pulse data. This constitutes
merely the first step in the development of an intelligent diagnostic and treatment
planning tool; completion of this thesis will open up further opportunities to strengthen
the cardiovascular model, and to apply it to other problems in clinical and experimental
medicine. These additional applications and the future directions for the model will be
discussed in further detail in Chapter 6.

1.4 Thesis Organization

The structure of this thesis divides the work into two main parts. First, a description
of the numerical model theory is given, including all cf the relevant mathematical
relationships and structural organization of the numerical code. This is followed by the
definition of the standard case (composed of data representing the "normal” individual,
taken from literature) and validation of the standard case by comparison of model results
also with literature. This portion alone may be thought of as a separate work, since the
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model is made adaptable enough to be applied to problems other than measurement of
hemodynamic parameters which was briefly mentioned above. The second part of the
thesis investigates the dependence of the model output on its specified parameters, and
also gives a description of the parameter estimation scheme that is the major original
application of the developed model. This is followed by a test of the parameter
estimation techninue against the data obtained at Brigham and Women's Hospital on both
heart failure patients and normal individuals, and analysis of results.
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Chapter 2

The Numerical Model of the
Cardiovascular System

2.1 Cardiovascular Modeling

In order to accomplish the goals outlined in the introduction, it is necessary to construct a
model of the cardiovascular system to allow quantitative control over the input
parameters that define a particular patient. An animal model would not be appropriate,
since one cannot have complete control of the physiology, thus making it difficult to
observe changes in system behavior as a function of changes in the parameters.
Additionally, there is the difficulty in obtaining accurate measurements of those
parameters, which is a partial goal that this thesis attempts to address. Mechanical
models give many more degrees of freedom in allowing physical properties to be changed
at will, but a computer model is perhaps the most flexible of all possible model systems,
since the physical characteristics can be altered by simply changing the number contained
an input file.

It is therefore worthwhile to overview the current status of numerical cardiovascular
modeling, and to point out which models in particular influenced the development of the
model outlined in this chapter. Although the theory presented in this thesis is taken from
many separate sources, this in no way implies that the model is merely a copy of other
numerical cardiovascular simulators. Although many of the features are identical to those
found in others, a great many innovations and improvements were made on existing
models to capture as much of the true physiological behavior of the cardiovascular
system as possible. There are advantages to constructing a model as detailed as the one
presented in this chapter, as will become clear later.

One of the most useful, simple models of the cardiovascular system available is an
educational tool known as CVSIM (CardioVascular SIMulator), developed by Sah and
Davis and implemented on the Athena computer network at M.L.T. (Davis, 1991; Sah,
1985). The model consists of a lumped parameter approximation of the major
components of the circulation, namely the systemic arteries, systemic veins, pulmonary
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Schematic of the lumped parameter model of the
cardiovascular system, CVSIM. From Davis, 1991.
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arteries, pulmonary veins, and the left and right ventricles (Figure 2.1). Each component
is specified by a representative resistor-capacitor windkessel approximation. The
electrical analog equations used to describe the lumped parameter network are solved
numerically using 4-step Runge-Kutta. The model is advantageous in that the overall
behavior of the circulation can be described for a small computational cost. Its
implementation of windows system user interfaces, which allow real time manipulation
of hemodynamic parameters, gives the user the sense of how each parameter contributes
to modulation of pressures and flows throughout the circulation. Additionally, a simple
baroreflex control loop is included so that transient effects can also be examined. The
simplicity of the equations that describe the system allow for real-time computation,
allowing the user to adjust system parameters at will to observe the effect of the
baroreceptor reflex loop.

In terms of describing the effect of wave transmission and propagation in the arterial
system, however, CVSIM has serious shortcomings. The arterial pressure pulse produced
by the simulation is qualitatively much different than the actual pulse, and the effects of
wave propagation, reflection, and augmentation due to changes in arterial properties as a
function of distance from the heart are unaccounted for. Nonetheless, CVSIM provides
the groundwork for the lumped parameter approximation of the venous and pulmonary
circulations, as well as the baroreceptor reflex, that is included in this thesis. However, in
order to capture the behavior of these phenomena, a more complex and accurate model is
required. This requires a better understanding of the fluid mechanics of a network of
elastic tubes than a simple lumped parameter modei can provide.

The groundwork for modeling flow in a straight elastic segment was laid out in
extensive detail by faculty and students in the Fluid Mechanics Laboratory at M.L.T.
during the 1970's. One of the earliest models developed in the Fluid Mechanics
Laboratory was created in 1972 by Raines in his doctoral thesis, which attempted to
characterize arteriosclerosis in the lower limbs by analysis of the arterial pressure pulse
(Raines, 1972). This was later followed by the work of Kamm, who developed a model
of the behavior of a single collapsible tube using one-dimensional momentum and
continuity (Kamm, 1977). This was subsequently applied to study the effects of external
pressures on the tube as a model for the disturbed venous flow conditions associated with
deep vein thrombosis. A paper was later published by Kimmel, Kamm, and Shapiro, in
which a numerical simulation of flow in pulmonary airways was performed (Kimmel et
al., 1988). In this model, the equations of momentum and continuity, coupled with a
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tube law, were solved using finite difference. The model was used to investigate the
effects of nonuniformities in the stiffness distribution of the tube on flow behavior.

One of the earliest lumped parameter models of the circulation was constructed by
Westerhof (Westerhof et al., 1969). Their mode! consisted of an electrical analog model
composed of numerous elements containing LRC circuits. The model reproduced the
expected pressure and velocity tracings at specific anatomical locations throughout the
body, as well as the effect of wave reflections, which the simpler RC model CVSIM is
unable to produce. Additionally, Westerhof's model was used to investigate the effect of
changing peripheral resistance on input impedance. Avolio later described a numerical
version of Westerhof's model (Avolio, 1980), in which the equations describing its 128
lumped parameter elements were solved computationally (Figure 2.2). Avolio obtained
similar results to those of Westerhof, and further validated the computational model by
comparing the calculated input impedances at various locations in the circulatory system
to literature.

Many of the equations used to describe the model constructed in this thesis were
influenced heavily by the work of Stettler and Niederer, who developed a distributed
model of the arterial system (Stettler et al., 1981). Unlike the earlier models by Avolio
and Westerhof, however, Stettler solved the fluid mechanics equations for one-
dimensional momentum and continuity using the method of characteristics. Stettler also
included in his model the effects of wall viscoelasticity and periodic wallshear. Sample
calculated arterial waves from Stettler's model are shown in Figure 2.3. This model was
particularly useful in developing the simulation outlined in this thesis, although
differences exist. For instance, Stettler solves for the equations of motion using the
method of characteristics and ignores the losses at bifurcations. In our model, the
equations of motion are solved using finite difference, and the bifurcations losses are
included. Additionally, our model makes use of a sophisticated venticular model which
contributes to a more acccurate representation of the physiological behavior of the
cardiovascular system.

Additional models have been constructed to investigate the interrelationship between
hemodynamics and cardiovascular controi. This has been useful in studying the response
of the human body to the extremes of military flight and space travel. A model
constructed by White consisted of a rather sophisticated lumped parameter model of the
circulation, where many individual major organ systems were modeled as separate
windkessels (White et al., 1983). The model was connected to a control system of
cardiovascular control in order to asses the effects of changes in gravity due to flight or
space travel. estimation of the influential parameters of cardiovascular contro! using
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system identification techniques is an active field of study at present, where the control
system can be represented as a closed loop system composed of black box transfer
functions containing the governing parameters.

The problem of developing a numerical model of the circulation has been
approached by many different paths, and thus the theory surrounding blood flow in
elastic arteries is well established. However, none of the models are suited to address the
issues of parameter estimation, in that each of the models previously developed address
specific aspects of the circulation but fail to adequately model the global behavior. Since
the behavior of an individual's circulatory system is strongly dependent on the interaction
between these many diverse aspects, it is necessary to be able to model this interaction to
a reasonable degree. The model presented here addresses this need, and as such is
capable of handling many other existing problems and issues in cardiovascular

physiology.

2.2 Model Theory

The cardiovascular model is a multi-component system, and therefore the remainder
of this chapter is devoted to describing each of these components individually. The
model as it stands presently can be viewed as a “tinker-toy” set consisting of the basic
mechanical elements of the circulation, which can be organized into any conceivable
arterial network, human or otherwise, without modification to the actual code. The input
files are made flexible and global enough to include all of the information necessary to
specify a particular system, and subsequently allow for easy alteration of its contents. We
begin first by describing the theory of flow in elastic tubes, and how these tubes may be
linked to form an arterial network. Considerable time is also spent describing the
boundary conditions for the network, as well as lumped parameter modeling of extra-
arterial vascular compartments and baroreflex control. Selection of model parameters,
and general model validation, is covered in Chapter 3.

2.2.1 Model Assumptions

Before describing the equations used to construct the numerical model, it is useful to
identify the primary modeling assumptions. The following list of assumptions are similar
to those made by Stettler (Stettler et al., 1981) in the construction of their distributed
model:

* Blood is an incompressible, Newtonian fluid.

* Blood flow in the aortic tree is one-dimensional (justified by the unidirectional,
primarily axial nature of blood flow in arteries (Pedley, 1980).
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* The walls are linearly elastic.

* Viscous friction can be approximated by considering the periodic behavior of wall
shear, when appropriate.

» Curvature is ignored. The segments are assumed to be linearly tapered with
respect to the cross-sectional area between bifurcation regions, and the angle of departure
of a daughter branch from the main branch and the additional losses associated with the
branched flow are taken into account.

» Leakage occurs along artery length. This leakage is a function of transmural
pressure, and represents flow through small side branches that are either too small or too
numerous to be included as individual artery segments.

The application of the above assumptions, in conjunction with the sound formulation
of the equations of motion and other relationships that describe the constitutive behavior
of the circulation, make it possible to construct a finite-difference numerical model of the
circulatory system. This model will encompass the major arteries down to the second or
third generation, and will provide an effective means of monitoring the circulatory system
as a function of both time and anatomical position, while the system is perturbed by
numerical systems representing any of a number of medical devices, or physiologic or
pathologic stresses. Using the same modeling procedures, one could likewise model the
major veins and vessels of the pulmonary circulation. However, because we are
primarily interested in alterations in the behavior of the arterial system, we are able to

neglect much of this finer detail.

2.2.2 Straight Segments

We consider in this model only one-dimensional flow, since we are interested in the
mean values of pressure and flow at specific locations in the arteries, and also since
higher dimensional flow problems are at present too computationally expensive to be of
practical use. Hence, we begin by considering the control volume shown in Figure 2.4.
The one dimensional flow in an elastic artery can be described using the basic equations

for momentum and continuity:

ou d(u® P _

JA d

—+—(uA)+¥=0

ot ax( ) (2.2.2)

where u and P are the average velocity and pressure, and A is the cross-sectional area at
any axial location within an element. The leakage terin ¥ in the continuity expression
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Figure 2.4. Finite segment of an elastic element.
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represents the flow of blood through side branches that are too small to be represented as
discrete branches. This term can be approximated as a linear resistive term, where the
driving force for flow is the pressure drop between the local arterial internal pressure and
the uniform venous pressure P,

¥(P,2)=®(z)(P-P,) (2.2.3)
The friction term F in the momentum equation may be appropriately modeled given that
the flow is steady or quasi-steady. Flow in the arterial system is periodic with significant
flow reversals, and thus the Poiseuille approximation is inaccurate. Other, more
appropriate replationships will be described in more detail in the later section covering
damping mechanisms (Section 2.2.4).

The equations of motion (2.2.1) and (2.2.2) can be reduced to matrix form:

P P _
oA+ 5 [Bl+[C]=0 (2.2.4)

where

e e ]

(2.2.5), (2.2.6), (2.2.7)

At this point the pressure-area relation or "tube law" may be incorporated to provide

a third independent equation to equations (2.2.1) and (2.2.2). From a simple definition of

wave speed, one may obtain a constitutive relationship for arterial wall behavior. This
begins with the relationship:

JA
(P.2) = A(P,z)/(p—]
d(P-P,) (2.2.8)

where P, is the pressure acting external to the artery. It is important to define such a
pressure when considering intrathoracic arteries or vessels subjected to external
compression.

An estimate of the wave speed c in an artery segment can be obtained using the
following expression derived by Stettler

c(P,2)=(x,+B(P-P,)) g(2) (2.2.9)
where the constants B and y,, and the function g(z) are obtained from experimental

measurements, to the extent that data are available (Stettler et al., 1981). Integration of
equation (2.2.8) yields the tube law:



-4] -

-P)-P
A(P,z)= A,,(z).exp[c( ;P Z)I"’;))' C(}: Z)] (2.2.10)

where A(P,z) represents the cross sectional area of the vessel at a position z and reference
transmural pressure P - P,. This expression is used, but in a form modified to account for
wall viscoelasticity as described in Section 2.2.4.

Thus, three equations have been defined that give rise to three unknowns, which we
refer to as the state variables: pressure P, velocity u, and cross-sectional area A. Due to
the non-linearity of the governing equations, an analytical solution cannot be obtained.
Thus, a numerical scheme to solve the series of partial differential equations must be
implemented. The numerical two-step scheme for solving the equations of motion on a
one-dimensional grid is described next.

2.2.3 Numerical Solution: MacCormack Scheme

The equations of motion are hyperbolic wave equations that are best solved using an
explicit method, such as forward Euler in time and space. A more sophisticated finite
difference scheme is the MacCormack two-step predictor corrector method, which is
similar to the Lax Wendroff method. This particular method was used successfully by
Kimmel et. al in their model of pulmonary flow (Kimmel et al., 1988), in which equations
of motion almost identical to the ones we have outlined above were solved for. Thus, we
employ the MacCormack scheme to calculate the internal points in any given artery
segment (or element) for our model as well.

The set of hyperbolic, partial differential equations (2.2.4) for the elements are
solved using an adaptation of the MacCormack two step predictor-corrector method. The
method is commonly used for solving problems involving gas dynamics, although it also
lends itself to the differential equations in the form given. Computations of the one-
dimensional flow of air in collapsible tubes, representing the respiratory system, were
performed in our lab using similar numerical techniques (Shin, 1992; Wolf, 1990). A
single elastic tube segment may be discretized into n nodes, separated by a distance Ax,
where the total segment length is equal to (n-1)Ax. A finite difference scheme requires
the specification at each timestep of the state variables at the two boundary nodes
(referred to here as the distal, or downstream, boundary end node and the proximal, or
upstream, boundary end node). The boundary may be updated by a number of methods,
depending on the type of boundary. The internal points, however, are solved for using
the MacCormack scheme.

The form of the numerical method is given below in two parts; the predictor step:
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(AT = (AT, - {8, - (81} - AdcT, @2.11)

and the corrector step:

[ ]n+| {[A] n+l ([B]"H _ [B]n+|) At[C];T'} (2.2.12)

where Ax and At are the chosen spatial and temporal stepsizes, respectively, and j is the
number of the node being solved for at the new timestep n+1. The over bars represent the
intermediate timestep from the corrector step. For numerical stability, the Courant
stability criterion:

%Z|u|+c (2.2.13)

must be applied. As the algorithm marches forward in time, the timestep At is updated by
determining its smallest value for the entire system during the previous position in time,
using equation (2.2.13) set to equality. The above numerical calculation scheme is stable
for all values of Ar smaller than that calculated from the Courant stability criterion. The
simulation may be run such that the ratic of the timestep to the criterion (also called the
cfl number) can be less than unity. This has important implications towards the stability
of the calculation, which will be discussed later.

2.2.4 Damping Mechanisms in the Arterial Tree

Sufficient evidence has been presented in previous studies to support the need for
damping mechanisms that have not been included in the model theory to this point. The
equations of motion presented above assume a purely elastic constitutive relationship for
the artery walls, and cne may derive the expressions for wall shear stress based on the
Poiseuille model for steady flow in tubes. However, it has been clearly shown that for
values of the Womersley number a > 2, the Poiseuille approximation significanily
underestimates the shear stress. While the Poiseuille approximation for the frictional
losses in the elastic tube is appropriate for tubes of relatively small diameter, the actual
frictional losses may be reduced in the larger arteries during oscillatory flow due to the
inability of the viscous boundary layer to fully propagate from the wall to the center. In
pulsatile flow through a large artery, the transient inertial effects dominate over the
viscous forces. Thus, it is necessary to take into consideration the ratio between the
transient inertial and viscous terms, which may be expressed by the following
relationship:
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where D is the tube diameter, and  is the characteristic frequency (the frequency of the
heart beat). In the human aorta, & generally has a value of about 20.

For low a, the resistance to an oscillating flow in a tube approaches the Poiseuille
resistance. However, for high a, the ratio of the Womersley profile resistance to the

Poiseuille resistance approaches a\/E/IS. Thus, the apparent resistance to periodic flow
in the large arteries is less than that for steady flow in tubes of the same size and mean
velocities. Such a result is consistent with the observation that viscous forces dominate
only in a small annular boundary layer adjacent to the artery wall.

Thus, the need arises to include time-dependent wall shear in order to obtain accurate
waveforms in the arterial system. Additionally, wall viscoelasticity associated with
periodic fluid flow in tubes has also been shown to be of major importance in the
reduction of shocks in the arterial tree (Holenstein et al., 1980; Holenstein et al., 1983;
Niederer, 1985) The theoretical details associated with each are outlined in the next two

subsections.

2.2.4.a Influence of Blood Viscosity

As previously mentioned, for large values of the Womersley number o the
assumption of fully-developed viscous flow is inappropriate. As the frequency of
unsteadiness increases, the magnitude of the wall shear stress increases and there
develops a significant phase lag between the axial velocity and the friction force as the
time for the fluid deceleration to diffuse from the center to the wall approaches the
characteristic time of the unsteadiness. A more realistic approximation of the frictional
losses in periodic flow was developed by Zeilke (Zeilke, 1968), and is outlined as
follows. Zeilke first begins with the one-dimensional momentum equation in cylindrical
coordinates:

2
Ju, lou lou_1 0P (2.2.15)

o ror uo _-l;g
An assumption for this equation must be made that the convective acceleration term does
not have a significant effect on the axial velocity profile. By taking the Laplace
transform of the momentum equation, we can solve for the velocity u in the Laplace
domain, with transformed variables denoted by the tilda superscript:
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Figure 2.5. The weighting function W as a function of 7. From
Zeilke, 1968.
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U(r,s) = Al AVH ) -1 (2.2.16)

i
A H |

where the boundary conditions v=0at r= R (tube radius), and dU/dt = 0 at r = O have
been applied. In equation (2.2.16) J, denotes the Bessel functions of the first kind and

zero order. From the velocity distribution, one may solve for the mean velocity:

[

a(s)= \/: -1 (2.2.17)
e

V(N )

where J, are the Bessel functions of the first kind and first order. Using the definition of

-

shear stress at the wall

-~ U
T(s)wall =-H—
dar rer

with the symbol T representing shear in the Laplace domain, an expression for the wall

(2.2.18)

shear using equation (2.2.16) may be written as

- ke = W(s)

J,,(i ’ER]

SPp_ \VH )

H J,(i fERJ
u

The inverse Lap!ace transform of the shear stress yields the relationship in the form of a

;tl"]'

(2.2.19)

i -2

convolution integral

T(t) J’ (e W (e~ t')dr’ (2.2.20)

where 1'is the time used to integrate the history of the acceleration backwards from the
present time ¢. This shear term can be incorporated with the Poiseuille approximation for
steady flow to yield the following expression for the viscous loss term:

2 (4u 2u au(r
F-pR( u(r) + j o w(e-1 )) (2.2.21)
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where W(f) has been solved for by Zeilke from the inverse Laplace transform of equation
(2.2.19), and is represented by two separate functions:

-26.3744:7’: -'lo.t1493p“T'z —|35.0|9sp% -213.9215‘,%
Wi)=e +e +e +e Mt >0.02
-322.5544 £ pR?
+e PR
(2.2.22)
e K ut *
W()=0. 282095(p ) -1.250000 + 1.057855[—R2—)
P £ <0.02
Ut ur % ur PR
+0.937500— + 0.396696 -0.351563
pR? pR? pR?
(2.2.23)

Graphically the weighting function W(r) is shown in Figure 2.5, where the x-axis is
expressed in terms of the dimensionless time

r=2L (2.2.24)

The expression (2.2.21) may be incorporated into the momentum equation (2.2.1) by
replacing the friction term F term, thus yielding the final form of the momentum
equation:

ou d u2 27[[1
—_— | — - Au(t)+ - 2.
a3 ( ) ( u(!) 2j t t )dl =0 (2.2.25)

which includes both a Poiseuille friction term and a history dependent convolution term.
Note that as the acceleration term in the convolution integral approaches zero, the friction
term approaches the limit of steady Poiseuille friction. This frequency dependence on
friction has been incorporated into the cardiovascular models developed by Niederer and
his colleagues.

The integral term in expression (2.2.21) may be evaluated using the following
summation as an approximation:

k-1 k-1
Z(ui,jﬂ —u; IW((k-j)Ar)= z(ui.k—jﬂ U, )W(jar)
j=1a.... J=13.... (2.2.26)

This summation requires the storage of local velocity for every nodal position within a
window of 0.5 seconds backwards in time, a number obtained from the observation that
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increasing the window beyond this point had no appreciable effect on the quality of the
generated waveforms. However, given that the timestep At calculated from the Courant
condition is on the order of 0.001 seconds, this requires the storage and subsequent
integration over 500 timesteps for each individual node. Such a repeated operation is
extremely computationally expensive. To reduce the computational time, a strategy is
employed in which the velocities at either every other or every third time step is used.
This reduces both the memory required, and the number of operations required to
evaluate the summation described by equation (2.2.26).

2.2.4.b Influence of Wall Viscoelasticity

Although the arterial walls have been modeled as purely elastic up to this point, we
have already stated that the viscoelastic damping properties of arteries are important and
cannot be neglected in order to obtain accurate physiological results. Furthermore, in our
experience the use of the constitutive wall expression (2.2.10) has led to difficulties
numerically, in that high frequency noise is generated by the present model in the absence
of more robust damping mechanisms such as wall viscoelasticity. Thus, it is justified to
include viscoelastic damping into the wall behavior, again using the analysis presented by
Holenstein et al.

From linear viscoelastic theory, a relationship between stress and strain may be
written as a convolution integral and rewritten in order to take into account the quasistatic
nonlinearities, resulting in the expression for area A as a function of pressure p and time f:

A(r) = A (P() + [ J()A (PG = 1)’ (2.2.27)

where again 7' is the time used to integrate the history backwards from the present time ¢,
J(1) represents the creep function for the material of interest (in this case the artery wall)
and A° is the instantaneous elastic response, or the cross-sectional area of an artery
immediately after a step function in pressure is applied, as a function of that pressure. As
with the transient wall shear, the wall viscoelasticity is dependent on the wall area
history. Holenstein et al. uses the creep function derived by Fung (Fung, 1972) given in

J(n)=1+ alog—::l + a(E,(tL) - E,(—;—D
! : 2 (2.2.28)

E(2)= feT-’dt

the form

where

(2.2.29)
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The three parameters in equation (2.2.28) are selected as

a=0.3
7, = 0.00081
7, =0.41

and are obtained from experimental data (Niederer, 1985). This results in the time
derivative of the creep function used in the convolution, given by

=t _ -ty
J(t)=as—=2

(2.2.30)
In order to solve for the convolution integral, an expression has to be found for the

instantaneous elastic response. Holenstein derives the following expression:

|[E(@")|-(p-p,)

¢(@°) .. .
2 Pen(Pr @) Cu(p.0) (2.2.31)

where @' is a representative frequency, ¢ is the phase velocity, p, is a reference pressure,

A*(p)= A(p,) X exp
E(0)-cos

and the modulus of elasticity FE is defined as

E() = |E(0)e* (2.2.32)
which is dependent on frequency. The modulus of elasticity, however, is weakly
dependent on frequencies greater than 50 Hz. Anliker has demonstrated that waves are
nondispersive and between 20 and 200 Hz (Anliker et al., 1968). Thus, the frequency
dependence may be neglected and the phase velocity approximated by the measured wave
speeds. The expression for instantaneous elastic response thus reduces to the following

relation:

€ ¢ —
N ’ 2.2.33
o (Pys2) cxP(p-c(po,Z)‘C(P'Z)J ( )

which is nearly identical to the original tube law, with the exception that the reference
response A°, represents the instantaneous elastic response to a reference pressure. To
calculate the reference response, the steady state reference cross-sectional area may be
used. If one considers the convolution expression (2.2.28) in steady state at the reference
pressure where measurements can be obtained, then tle instantaneous elastic response
within the integral becomes a constant. Thus, the expression reduces to:

An(z) = A;(pn,Z) (l+‘[:-,(f)df) = A;(Po’z) -1.8681 (2 y) 34)
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and the reference instantaneous elastic response may be solved for. The expression
(2.2.27) in conjunction with expression (2.2.33) is the form of the tubelaw that is used in
the numerical calculation to convert pressures at a given node to the corresponding area.
The equation may also be solved for pressure as a function of area, giving the "inverse"
tubelaw, which is required for certain calculations.

2.3 Boundary Conditions

Once the internal points within the arterial segments have been solved for, it is
necessary to update the proximal and distal endrnodes using a series of routines. As
mentioned previously, the elemental segments are joined at bifurcations to form an
arterial tree network. The network is bounded most proximally by a model of the left
ventricle, while at the most distal nodes of the terminal elements, the boundary condition
is provided by a windkessel approximation of the small artery vasculature, ending in
arteriolar beds. We begin this section with a discussion of the most extensively used
boundary condition, the bifurcation control volume.

2.3.1 Bifurcations

We have thus far described the behavior of individual arterial segments, but that is
far from adequate for defining the whole circulation system, where flow is divided by
bifurcations. Additionally, bifurcations act as a source of wave reflections in the actual
physiological system, and as we shall demonstrate, are also present in the model. It is
thus necessary to consider the coupling of several elements at a bifurcation region, which
we define as a single tube branching into N-1 separate daughter tubes. Previous
investigators have chosen to model the influence of bifurcations as division points for
characteristic lines using the method of characteristics. However, such an analysis fails
to take into account losses due to flow separation or to the generation of secondary flows.
Thus, the equations used to describe the behavior of flow in this region were taken from
the work of Wolf (Wolf, 1990), which described the behavior of air passing through a
pulmonary bifurcation during inspiration, including dissipative effects. Since Wolf
assumed the fluid medium to be incompressible, the same equations may be applied to
describe the flow of blood as it passes from the parent branch to several daughter

branches.

23.1.a Equations of Motion
The bifurcation is treated as a control volume, across which unsteady Bernoulli with an
added term for dissipation can be applied from station 1 (the parent branch) to station
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Figure 2.6. Bifurcation control volume for the case of N=4 N-1=3
daughter branches.

Figure 2.7. Branching patterns at the bifurcation with 2, 3, and 4
daughter branches.
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2 (a daughter branch), and from station 1 to station n (another daughter branch), where
there are N-1 total daughter branches:

aU] 3U2 1 2 1 2
Ty +p T xy + Py +=pU3 + Fy = P +=pU

p o x+p e Xy + 2+2P 2+ I 1+2P 1 23.1)
3U, aUN 1 2 | 2

—x + + Py +=pUpn + Fiy = P +=pU

p o X +p Y Xy+Fy 2P NTION =1 2P 1 (232)

The bifurcation control volume is shown schematicaily in Figure 2.6, for the case of 4
total branches, or N-1=3 daughter branches, indexed n=2...N. Note that the energy
equations are written as following streamlines from the parent branch at station 1, to the
station n corresponding to each daughter branch. Additionally, the F terms represent the
frictional losses occurring within the control volume along each streamline, and contain
information about the angle of branching. The losses will be described in more detail
shortly. A second necessary relation is the unsteady continuity equation for the control
volume:

-‘%x, + %x2+...+£3tﬂx,v —UjAj +UyAy+. . +Up Ay = 233)
The equations of motion can be coupled with momentum and continuity between the
interface of an element with the bifurcation control volume, and the element’s interior
points. Thus, at each interface there are three unknown values: pressure, velocity, and
cross-sectional area. An additional equation that is not shown is the pressure-area
relationship including wall viscoelasticity, which is identical to the relationship (2.2.34).
The equations are flexible enough to allow for any number of daughter branches,
although beyond four is not required for the construction of the network model (Figure
2.7).

2.3.1.b Frictional Losses

Much of the groundwork for describing the frictional losses in bifurcation regions comes
from the work of Pedley, who describes the ratio of the dissipation in a daughter tube
downstream of a bifurcation to the dissipation due to Poiseuille flow in the same tube as

Z= L(Rei)’

420 'L (2.3.4)
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where C = 1.85 (Pedley et al., 1970). Wolf incorporated the above expression for
dissipation with a kinetic energy factor k to obtain the semi-empirical relationships for the
rate of energy dissipation between the parent branch at station 1 and station n of the nth
daughter branch (n=2...N):

P, = (%pU,‘}A,‘)AnUf + %pUjAnk,, (2.3.5)

where A is defined as the losses due to dissipation based on Pedley's expression shown in
equation (2.3.4), and k, is a kinetic energy factor. Expression (2.3.5) consists of a Pedley-
type dissipation (the first term), summed with turbulent-like or separation losses (the
second term). If we define the rate of energy loss in a pipe from Poiseuille flow as @, =
8mulPL then using equation (2.3.5) we may write the following non-dimensional

expression for the nth daughter branch:

%
16C| 1 D L
A=rl—"= 2.36

" ﬁ[Re, D, Dj (23.6)

where Re, is the Reynolds number of the parent branch. It is also necessary to define a
second kinetic energy factor
f=tiyas
AU (2.3.7)
which represents the ratio of the kinetic energy flux for a parabolic velocity profile to that
for a blunt velocity profile at the same volume flowrate. Equations (2.3.5) and (2.3.7)
may be incorporated into the two equations for energy (2.3.1) and (2.3.2). The resulting
energy equations have the following final form:

QU U 1 1
th'xl +p—é?2—x2 +P, +—2—p(U§j2 +U2|U2|k2)— P, -E,oul2
1 %
+=pUnlU\U,|" A, =0
2P 2| 1 2‘ 2 (2.3.8)
U U 1 1
p % +p Ty + Py + 5 p(UR S+ UnlUnben) =P -2 pUf
1 %
+—pUpNUUN AN =0
2P N| ] N| N (2.39)

The absolute values of velocity are incorporated to preserve the directionality of the
losses as the flow changes direction.
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23.1.c Selection of Loss Parameters

The values of the kinetic energy and dissipation factors are dependent on the nature
of flow at the bifurcation. For highly symmetric bifurcation regions with two daughter
branches departing at small angles from each other, one would expect litile flow
separation and hence little energy dissipation. In this limit of unseparated flow, we allow
the factors k to approach zero and f to approach 1, which is borne out by the definitions of
the factors as defined by Wolf:

2 2
] 1 .

c c

The constaat K, is defined as the contraction coefficient, which represents the ratio
between the area of a daughter branch normal to the flow leaving the parent branch, and
the cross-sectional area of the branch itself. Hence, for smaller angles between adjacent
daughter branches, K, should approach 1. If we now consider a case in which a highly
asymmetric daughter branch departs from the main conduit at a large angle, then the limit
of highly separated flow is reached and K, approaches zero, resulting in large kinetic
energy coefficients. Furthermore, it is appropriate to neglect A in the limit of high flow
separation. For computational purposes, both K, and A are assumed constant through
time for each specific bifurcation branch.

Data regarding the contraction coefficients as a function of branch angle are difficult
to obtain for the arterial system. Intuitively, for instance, one would éxpect K. at the
renal bifurcation, where the renal arteries depart from the aorta at close to 90°, to lie at
some intermediate value between 0 and 1. Likewise, K, at the bifurcation of the brachial
artery into the ulnar and radial arteries would be expected to be close to unity, where the
angle of departure of the daughter branches is small. The actual specified values for the
contraction coefficient will be discussed in further detail in Chapter 3, although it will be
later shown in Chapter 4 that exact values are not required due to the small effect that
bifurcation losses exert on the system as a whole.

2.3.1d Solution Scheme for Bifurcation Regions

The equations of energy (2.3.1) and (2.3.2), and the unsteady form of continuity
(2.3.3) are difficult to solve implicitly, due to the highly nonlinear nature of the equations
and the large number of variables. One could expand all of the related equations,
including momentum and continuity connecting the end nodes that comprise the
bifurcation boundaries with the internal points, using Taylor series approximations. Such

an expansion, however, would involve the inversion of a matrix iteratively to solve for
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the boundary conditions at the new timestep, a costly process in terms of computational
time. Instead, an alternative method of estimating the boundary values may be obtained
by combining the energy and continuity relations with the previously described
MacCormack predictor-corrector scheme to couple the state variables of the endnodes
with the internal points.

Again refer to Figure 2.6. The two energy relationships are discretized using the
explicit forward Euler's method into a predictor form which allows calculation of the
predicted velocities at stations 2 through N. The predicted areas at the same stations are
calculated using the predictor step for continuity from the MacCormack two-step scheme,
applied between the endnode and its adjacent internal point. Predicted values of velocity
and area at station 1 are also obtained by using the predictor step for momentum and
downwind continuity, respectively, from the MacCormack scheme. The corresponding
predictor step pressures are caiculated using the inverse tube law P=P(A,z) at all three
stations. Corrected values for the velocity and area at stations 2 through N are then
calculated using the respective MacCormack corrector form of momentum and upwind
continuity. As in the predictor step, the inverse tube law is used to obtain the pressures at
the new timestep for all stations. The velocity at station 1, however, is solved using a
MacCormack corrector form of the energy equations (2.3.1) and (2.3.2), which may be
written as follows for the path from station 1 to station n, n=2...N:

U.’"'-Vz(UﬁU.)x +UJ*'-V2(Un+l7n)
%At ' Y, At

x, +P, +%pl7f(fn +k,)+F, =
(2.3.12)
P+ o0
where the F term represents the dissipation as described by Pedley. The updated value
for velocity at the new timestep at station 1 is evaluated from both energy equations and
then averaged. The corrected area at station 1 is obtained from the following discretized
form of continuity:

AT AAHA) (AT AR AN SRR YA
WAt WAt W Ar

U,A+..+U,A, -UA =0 (2.3.13)
which is also derived using the MacCormack scheme. This outlined scheme is
implemented following calculation of the internal points, since the predictor-corrector
requires explicit values of the adjacent, internal nodes. The driving force for the model is
described next as a boundary condition for the most proximal eadnode in the arterial
model.
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2.3.2 Ventricular Mechanics

In order to obtain a model that reacts correctly to changes in conditions which may
alter the reflection of pressure waves from the periphery (and thus the load imposed at the
left ventricle) the common approach of using a synthesized pressure or velocity wave at
the root of the aorta to drive the model was not followed here. The changes in ventricular
function as a result of alterations in the afterload profile can only be captured if a
compliance-based model of the left ventricle is used, in which wall compliance as a
function of time is specified. A similar model may be implemented for the right ventricle
as well. Additionally, unidirectional valves to prevent backflow into the ventricles must

be included in the model.

2.3.2.a The Left Ventricle

In the cardiovascular model the left ventricle acts as a boundary between the lumped
parameter approximation of the pulmonary circulation and the more detailed, one-
dimensional network model of the arterial tree. The ventricle may be approximated by a
chamber with an entrance (mitral) and exit (aortic) valve, whose compliance changes as a
function of time, thus driving flow. The ventricular wall elastance E varies as a function
of time, and the ventricular volume V,,,, is assumed to be a linear function of the

ventricular pressure P,

Pvrm = E(’) ) (Vvem - Vvtm.n)

(2.3.14)
where V..., is the zero-pressure filling volume. Suga and Sugawa have shown in canines
that the left ventricular elastance curve is well-preserved when non-dimensionalized with
respect to peak elastance and time to peak elastance (Figure 2.8). Hence, previous
researchers have used equation (2.3.14) in conjunction with the estimated E versus time
curve as a complete model for left ventricular mechanics. Although in subsection 2.3.2.b
this model will be shown to be incorrect, and significant modifications will be made
there, it is still illustrative to use this form of the model in developing the formalism of
the approach. Additionally, here the discussion will be restricted to the mechanics of the
left ventricle, while the right ventricle will be described in detail in Section 2.4 with the
remainder of the lumped parameter model.

A single cycle of the left ventricle can be subdivided into four parts: 1) early systole,
during which time the pressure in the left ventricle begins to rise as a result of increasing
ventricular wall stiffness, which causes the mitral valve to shut and the ventricle to
isovolumetrically increase its internal pressure to arterial levels; 2) the ejection phase of
systole, when the ventricular pressure exceeds aortic pressure, causing the aortic valve to
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Figure 2.8. Normalized ventricular elastance (pressure-volume)
curve, mean +SD (two broken lines). From Suga and Sugawa, 1974.
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open and the ventricle to drain; 3) flow reversal, where pressure in the left ventricle drops
below aortic pressure, causing blood to accelerate backwards to closc the aortic valves
and fill the sinuses of valsalva; 4) diastole, during which the left ventricle fills through
the mitral valve, with stasis of the aortic valves. Each of these identified phases
represents a separate process of calculation. These phases will be described in terms of
theory in chronological order, but is also summarized in Figure 2.9.

Phase 1 and 2: isovolumetric contraction and ejection:

At end diastole from the previous cycle, the ventricle is filled passively via the left
atrium, which is neglected in this model. As the function E(f) begins to increase with
systole, the left ventricular pressure rises during the isovolumetric period when both the
mitral and aortic valves are closed (phase 1). In equation (2.3.14) this is accomplished by
holding the left ventricle volume terms constant, and solving for the new pressure values
for each specified E(r). Eventually, left ventricular pressure exceeds aortic root pressure,
and the ventricle begins to empty. The equations needed to couple the left ventricular
pressure to the first element boundary node during ventricular emptying (phase 2) are the
one-dimensional equations of motion and the elastic tubelaw. These equations are solved
in predictor-corrector fashion for the boundary node state variables U,, P, and A, using
upstream momentum and continuity and unsteady Bernoulli:

RN e S| (> B S [ S
U '=5(U, '+ U +;)—a_(P'" ‘- P '—Epu, LU, ')) (2.3.15)

where a is a characteristic length equal to 3 times the radius of the aortic root. The
predictor equation form (2.2.11) for momentum and continuity is applied to solve for
predicted values of velocity and area; the inverse tubelaw is used to determine the
predicted pressure. A corrector form of unsteady Bernoulli of the following form is then
applied to determine the corrected velocity:

_ - =
Uln+| - L[Ulni-l + Ulrl +dt[Pn*| _ P|n+| _ pUI U| ]:|

2 s vent 2
P (2.3.16)
The updated value for outflow U,A, is then used to update ventricular volume:
dv
UA =—-—= 2.3.17
17 di ( )

and V,_,, is in turn used to calculate P,,,, for the new timestep using equation (2.3.14).
Calculation using these equations is continued until the left ventricular pressure falls
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Figure 2.9. The phases of the left ventricle; A: early systole; B: late
systole, with onset of flow reversal; C: filling of the sinus of Valsalva,

and arrest of flow at aortic root; D: diastolic filling from the
pulmonary venous system.
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below aortic pressure due to ventricular emptying. The algorithm then proceeds to the
next phase.

Phase 3: aortic valve closure and filling of sinuses of valsalva

As flow begins to move retrograde towards the aortic valve, the valve leaflets are
swept backwards and closed without sustaining a significant pressure gradient.
Numerically this is modeled by allowing to fluid to move backwards as though the left
ventricle were refilling with negative flow from the aorta, using the identical equations
from the description of the first and second flow phases. However, we eliminate equation
(2.3.17) since this retrograde filling volume does not increase left ventricular volume, due
to the fact that the valve leaflets are closed, but rather fills the sinuses of valsalva. This
approximation is correct if one realizes that the pressure of the sinuses is close to left
ventricular pressure, which is again true in light of the fact that the valve leaflets are
unable to sustain a pressure gradient during this phase of the cycle.

Filling of the sinuses continues until the valve leaflets arrive at their maximaliy
distended position, at which time the valve leaflets are able to sustain a large pressure
gradient. This may be modeled as ar abrupt decrease in the aortic root compliance to a
new value, C,;,,.. Thus, an equation can be written relating the aortic root pressure (at the
upstream boundary node of the aortic root segment), the velocity in the same position,
and the area (from the tubelaw) as follows:

dap, _ _UA
dt C

sinus

(2.3.18)

This equation is coupled with an upwind predictor-corrector scheme using momentum
and continuity between the first two upstream nodes of the aortic root segment. This
boundary condition is held during the entire diastolic phase, during which time the left
ventricle refills.

Phase 4: diastolic left ventricle filling

During diastole when the left ventricle wall is in its inactive phase, the pressure in
the left ventricle drops below left atrial pressure, which in the numerical simulation is set
equal to the pressure at the pulmonary venous windkessel of the lumped parameter
model, P, (see section 2.7). Once this valve opening condition is reached, the flowrate
g, across the left heart inflow resistive element R, driven by the pressure gradient AP =

(P, - Pen), is solved for. This corresponds to an increase in left ventricular volume:
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a (2.3.19)
which in turn leads to an increase in left ventricular pressure, governed by equation
(2.3.14). Thus, filling continues untii AP becomes negative, at which time g, is set to
zero (corresponding to a closed mitral valve), and the calculation proceeds to the next
phase. It is possible, however, for filling to continue into the next phase of early systole,
where rising ventricular pressures due to the early contraction in systole forces AP to
become negative, thus closing the mitral valve. The cycle then continues again,

beginning with early systole and phase 1.

2.3.2.b Wall Compliance

The E(t) curve is of importance in determining the shape of the forward pressure
wave. Additionally, alterations in the strength of contraction due to impaired
myocardium in heart failure can be modeled as alterations in this curve. As previously
mentioned, extensive studies of the pressure-volume relationship in canine ventricles
have been performed by Suga and Sugawa (Suga and Sugawa, 1974). From a large
sampling they determined that the basic shape of the systolic portion of the pressure-
volume curve remained unchanged, regardless of loading or inotropic changes. Thus, the
systolic wall elastance may be characterized by two parameters only; the maximum wall
elastance E,,, time to peak elastance T, and the dimensionless systolic elastance curve.
The total length of the cycle is extrapolated from data presented by Suga and Sugawa
suggesting that T,,,, spans approximately 30 - 50% of the total cycle. It is assumed that
the falling and steady portions of the curve are less important to the simulation since the
aortic valve is closed during these segments.

The basic mechanics which were elucidated in this classical study apply well to the
mechanics of the ventricle in humans, although the exact form cannot be applied directly
to a model of the human circulation, since certain parameters, most notably the
ventricular elastance curve itself, do not scale from the canine to the human. A Fourier
approximation made from the elastance curve was constructed and used to drive the
ventricular model, coupled to the distributed arterial model (Figure 2.10-a). The
elastance curve was scaled to match the maximum elastance values for the left and right
ventricles. Explicit use of the elastance curve from Suga and Sugawa results in the
incorrect result of an overshoot in left ventricle pressure early in systole, followed by a
plateau or second peak during late systole immediately preceding valve closure (Figure
2.10-b).



-61 -

10000 [ e,
r
8000 |- -
? i
5
2
=
2 4000 .
m J
2000 JJ
0 DY R IR 7.
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8

Time (sec)

Figure 2.10-2. Fourier approximation of the left ventricular elastance
curve, the shape of which was obtained from Suga and Sugawa's
model.
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Figure 2.10-b. Resultant computed aortic root pressure curve using
the left ventricular elastance curve in Figure 2.10-a.
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Figure 2.11-a. Left ventricle P-V loop measured from patients using
angiographic techniques (MacKay, 1984). Each point corresponds to a
measurement, each taken at equal intervals 50 msec apart.
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Figure 2.11-b. Left ventricle pressure as a function of time,
extrapolated from Figure 2.12-a. The open circles indicate the
individual points in time used to construct the curve.
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Close investigation of the pressure-volume curve obtained in humans again demonstrates
that there is a fundamental, morphological difference between the elastance curve in
humans, and that obtained by Suga and Sugawa in the canine. A simple demonstration
taken from measured pressure-volume (P-V) loops using catheterization techniques can
help to elucidate the nature of the problem. If one considers the human P-V loop shown
in Figure 2.11-a, obtained by McKay, and extracts from the plots pressure and volume in
time (the individual data points are equally spaced in time), the plots shown in Figure
2.11-b and 2.11-c can be obtained for pressure and left ventricular volume versus time.
Using equation (2.3.14), one can back calculate the E(f) curve for the measured data,
which is plotted in Figure 2.11-d. Clearly, the elastance curve shown here is qualitatively
different from the curves measured in canines by Suga and Sugawa. The new curve
follows the original curve suggested in Figure 2.10-a until about 0.08 seconds, when the
curve is markedly characterized by a concavity during early systole.

Several investigators have already suggested that the form of the left ventricular
pressure-volume relationship (2.3.14) for describing the coupling between left ventricular
pressure and volume is overly simplistic. Indeed, tissue models of myocardial
contraction often include, in parallel to the contractile element, both a resistive and elastic
element which may be expected to cause a lag between pressure and volume. Suga and
Sugawa have suggested the following form of the pressure-volume relationship in the

canine as an improvement over their previous measurement of elastance:

P(1)=E" (0[V(D -V, ][1 ~0.0014(~dV / dr) - 0.0007(~dV / dr, peak) - 0.0054 | —dv)]

(2.3.20)
where the coefficients are derived from experimental measurements on dogs, and E*(f) is
the isovolumetric elastance curve (Suga and Sugawa, 1980). The time dependent dV/dt
and derivative terms are most likely due to myocyte properties associated with
uncoupling of the contractile elements during myocardial contraction. Additional
investigators have also pointed out the significance of the dV/dr term. For the purposes of
our model, we have found that the following form provides sufficient modeling of the

physics to give realistic results:

P\'em = E(I). ' (Vvtnl - Vvem,n) : (l - U("—dem )) + f)"I
d (2.3.21)

The coefficient ¢ is a scaling factor for the time-dependent effects, and P,, is the

transthoracic pressure (the pressure difference between the thorax and the atmosphere),
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which is expected to alter the left ventricular pressure and hence the peak pressures
achieved in the arterial tree. This relationship is incorporated into the cardiovascular
model in place of equation (2.3.14). The isovolumetric contraction curve E*(r) is assumed
to be a pure half sinusoid, whose duration over the entire cycle can be specified as a
parameter, the systolic to cycle time ratio. The resulting computed left ventricle pressure
curve and volume curves are shown in Figure 2.12, and the calculated curve for E(t)
again using equation (2.3.14) is shown plotted at the bottom of Figure 2.12. One may
compare these plots with the data shown in Figure 2.11 and be convinced that there is
generally good agreement between the measured data and the computed curves. Some
modification, however, may be made to the isovolumic elastance curve, in that the
computed left ventricle pressure and apparent elastance both appear to have downward
side slopes (during late systole) that are less steep than those observed in-vivo. The
difficulty in refining the elastance curve comes from a lack of solid measurements of the
human isovolumic contraction curve, vhich is extremely difficult to obtain.

2.3.3 Terminal Boundary Condition

In the physiological arterial system, the arteries continue to bifurcate until they reach
diameters on the order of 100 micrometers, at which point they are called “arterioles”.
Arteries in general are characterized by their highly elastic properties (due to high
amounts of elastin contained in their walls), as well as a smooth muscle cell layer which
is responsible for regulation of tone. At the level of the arterioles, control of smooth
muscle tone by both hormonal and neural mechanisms allows for control of both stiffress
as well as diameter. Since arterioles are in general one or two generations away from the
capillary bed, much of the control of flow into the capillary circulation in organ beds is
done at the level of the arteriole, where the diameter and hence resistance to flow can be
locally regulated. The process of regulation is a dynamic one, and tone can conceivably
vary independently between arterioles as iocal tissue demands for oxygen and nutrients
change with level of activity.

The numerical model described here allows for incorporation of linear segments that
represent the larger vessels in the arterial tree, but to model the finer branching structure,
as well as the arterioles, is completely impractical to use this method. Thus, to
approximate the behavior of the smaller vessels we chose to model them as a lumped
parameter windkessel, of the form used by previous investigators. Noordergraf's group
introduced a modified form of the windkessel, shown schematically in Figure 2.14
(Berger et al., 1994; Berger et al., 1995). The model is advantageous in that it allows the
behavior of an entire arteriolar and small vessel bed to be captured using few parameters.
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It is further advantageous in that the phenomenon of wave reflections is reasonably
approximated using this model, thus avoiding many of the artifactual and spurious
reflections obtained if one uses a single resistive element instead, as many researchers
have done in the past. The windkessel consists of a resistance R; in parallel with a
compliance C,, where the resistance represents the high pressure drop associated with
constriction of the arteriolar smooth muscle, and C, represents the total compliance of the
small artery network. In series with the traditional windkessel is an additional element
Z,, which represents the impedance of the parent branch to which the boundary condition
is attached. The impedance may be approximated as the inverse of admittance Y, where Y
= A/pc, where A and c are the cross-sectional area and wavespeed of the parent branch,
respectively, and p is the density of the fluid medium.

From the electrical analog, the following equations may be written as a function of

the resistances and capacitances:

P.-P, . dP

< viC—t= 2.3.22
RJ Ry dt Q ( )
Q=éqp-a) (2.3.23)

0
where Q is the entrance flow into the windkessel passing through Z, the entrance

impedance. The impedance may be calculated from the inverse of admittance:

z =
A (2.3.24)
using values of area A and wavespeed ¢ from the adjoining terminal element end node. A
velocity or pressure wave which approaches the windkessel traveling down the parent
branch would be expected to reach the terminal windkessel and be reflected backwards
up the parent branch. The reflection coefficient I', which is the ratio of the amplitude

between the incident and reflected wave is given by the following expression:

|7, ()] = R, . (2.3.25)

k&+2;f+@wq&;fr

As can be seen from ihe equation, an increase in R, produces an increase in the reflection
coefficient, which in turn produces an increase in the amplitude of the reflected wave.
This phenomenon is observed physiologically when the tone of the arterioles increases
with vasoconstriction, thus producing more pronounced reflected pressure waves.
Generally speaking, if the tone of the arterioles and the smaller branching vessels increase
with vasoactivity, then accompanying the increase in resistance is a decrease in vessel
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Figure 2.13. Modified windkessel for terminal boundary condition.
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compliance; one notes from the equation that if the compliance C; of the windkessel were
to be decreased, then the same effect of increasing the reflection coefficient would be
achieved. This relation only describes the wave reflection produced within the
windkessel. An potential source of wave reflection is the impedance mismatch between
the entrance impedance Z, and the parent branch. Thus, in order to avoid the generation
of spurious reflections it is important that the impedances be matched so that the pure
effects of modulating reflection at the terminal boundary condition comes from
alterations in R, and C; alone.

2.3.4 Method of Characteristics

It is necessary to couple the windkessel to the parent segment using the method of
characteristics, which is a standard numerical technique used to update boundary
conditions on a one-dimensional grid. A derivation of the characteristic equations used is
given below in the same manner as that derived by Kamm (Kamm, 1977). We begin
with the equations of motion, for the straight elastic segments. After multiplying the
continuity equation (2.2.2) by an undetermined factor A and adding it to the momentum
equation (2.2.1), we obtain the following relation:

@_*_uﬂ*_c;l% F+ 1(8‘4 o(ua )+'f’)=0
ot ox

o ox  Aox (2.3.26)

where the pressure gradient has been substituted for using the definition of wavespeed:

CZ - A(P’Z)E - A(P,Z)@é

p oA p JxoA (2.3.27)
Using the following substitutions:
du ﬂa'.)c+ ou d and dA= a—Adx oA —dt (2.3.28)
dx di ox ot

we may obtain the reduced expression:

2 2
du(u+ AA) + dA(S= + Au) + O e — dit(e + AA)) + 2 (Adx — dr(S= + Aus))
A ot or A .
+Fdx+AWdx=0 (2.3.29)
leading to the final form of the characteristic equation:

dutcB 1 s Far=0
A A (2.3.30)

provided that the following definitions are made:
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1=+ and Fouic (2.3.31), (2.3.32)
A dt

Equation (2.3.30) describes the movement of informatior: passing from one node to the
next, either in a rightward (upper sign), or a leftward (lower sign) direction. The equation
can be written in a modified form, in terms of flowrate Q using equation (2.3.27),

yielding the result:

dQ = 2 (upic)dP + (- Fuc¥)dr = 0
e (2.3.33)

The friction term F is replaced by the expression for unsteady friction derived previously
as equation (2.2.21) in Section 2.2.4.a. This is the final form of the characteristic
equation to be used to update the end node of the terminal branches.

Discrete finite difference forms of the characteristic equations can be developed as
follows. Using linear interpolation, one can determine the value of the state parameters at
the terminal nede by following a characteristic line from its origin at the previous
timestep (Figure 2.14). We therefore introduce the following notation. Given that the
state variables of pressure P, velocity U, area A , and wavespeed ¢ are known for the
present timestep £ at the terminal node (denoted by the subscript N) and its adjacent node
(denoted by the subscript N-1) then we can seek a solution for the state variables at the
next timestep t+A¢ denoted by the superscript j+1 (where j denotes the present timestep).
The origin of the rightward (R) and leftward (L) running characieristic lines from the
timestep ¢ into the next timestep may be calculated using the following:

t . .
X=X, - %[(U,’,,*' 2 CM)+ Uy £C)I
L L L (2.3.34)
For the initial iteration, due to the implicit nature of the equation, we make the following

approximations:
C=C, =C"=C} (2.3.35)
Upg=U, =U" =Uj (2.3.36)

Hence using equation (2.3.34) we are able to estimate the values of P at the points X and
X, as follows:

P, =P+

(XR ;XN-l)(PI{’ —PI{I-I)

(2.3.37)
Similar calculations may be made for the other state variables A, U, Q, C, and ¥. Since

we are only applying the method of characteristics in the downstream direction at the out
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flow end of the terminal branches, we need only concern ourselves with the rightward
running characteristics. We may now write equation (2.3.33) in difference form:

{’*.' =0, + A(P,{,+I -P)+T (2.3.38)
where
Jj+1
1 A A
A=— (U—C)] +[—(U—C)J}
2 {[PC2 v LPC " (2.3.39)
and

At ;
F==—!-IFA+CW¥)" -[FA+CY¥
2 { [ -1 ]"} (2.3.40)

To complete the boundary condition, it is necessary to include the constraint provided by
the terminal Windkessel. Using the equation (2.3.24) relating windkessel outflow to the
terminal node pressure in finite difference form,

P =P+ 07, (2.3.42)
and substituting for the flowrate term with equation (2.3.36), an expression for the

updated terminal node pressure can be written as:

i _(Qg— AP+ I)Z + P

Pir =
1-AZ, (2.3.43)
where
P =P! +dz(Q—'C-———Pfj 'P‘{]+(P{*' - Pl)
Cs CsR.r (2.3.41)

may be derived from the governing equations for the terminal windkessel.

Hence, solving first equations (2.3.39) and (2.3.40) followed by equation (2.3.42)
gives the values of pressure and flowrate at the endnode N for the new timestep t+At,
which also allows for calculation of the area, using the inverse tubelaw, and consequently
the velocity. These values are calculated and stored prior to calculation of the internal
points, allowing for the explicit calculations required by the discretization scheme
described above.



written:

ar C. (2.4.1)

ar C.(1) (2.4.2)
deu - qrn _qpa (24'3)
dr G,
Ly =4, (2.4.4)
dr C,
P~pP,
9.=y R. A>P, (24.5)
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circulation.
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PIV - pa P > P
4,={ R, v (2.4.6)
0 P, <P,
P -P
g =-—p_p (2.4.7)
pa Rpa
P -P
Gp = =3 (2.4.8)

The unidirectionality of the right heart valves are imposed on the right heart inflow and
outflow tract flowrates depending on the direction of the pressure gradient across the
inflow and outflow resistances, using equations (2.4.5) and (2.4.6). The shape of the
compliance curve C,((r) for the right ventricle is obtained by using the inverse of the
normalized elastance curve presented in Section 2.3.2, and adjusting the minimum and
maximum elastances to match the compliance values given in Section 3.1.6 (note that
elastance is the reciprocal of compliance). Boundary conditions must be applied to the
model, and include inflow from the capillary beds g, which is obtained by summing the
total outflow from the arterial system; the flowrate to the left atrium g,, which is
calculated from the left ventricular model outlined in Section 2.3.2; and P,, which again
represents the transthoracic pressure. For the present model the effect of respiration is
neglected and thoracic pressure is assumed to be constant. Transthoracic pressure is a
negative quantity, owing to the fact that the inspiration of air into the lungs is a process
that requires generation of negative intrathoracic pressures to provide the necessary
pressure gradients to draw air into the airways. The pressure gradient remains negative
during passive exhalation and at end exhalation, due to the elastic recoil of lung tissue.
Note that the effect of increasingly negative transthoracic pressures is to increase the left
ventricular end-diasiolic volume. The equations that govern the lumped parameter model
may be solved with fourth-order Runge Kutta, with the arterial outflow g, as a boundary
condition. Since the Runge Kutta scheme requires a timestep that is one order of
magnitude larger than the one required for the distributed model solved using the
MacCormack scheme, it is necessary to iterate on the lumped parameter model
approximately every ten distributed model timesteps. Furthermore, for the period when
the distributed model is solved in between the Runge-Kutta timesteps, g, must be
calculated by integrating the volume expelled from the arterial system, then by dividing
this quantity with the elapsed time between the Runge-Kutta iterations.
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The lumped parameter mode! allows the user to capture some of the features of
certain cardiovascular disease states, which may be seen as alterations in the normai
pressures in either the pulmonary or venous compartments. These effects are secondary
to alterations in the resistances or compliances of these compartments, although more
often their alterations are compensatory changes due to, for instance, decreased pumping
ability of the right or left ventricles as seen in heart failure. However, since we are
interested primarily in the function of the arterial system as an indicator of disease, and
since our non-invasive measurements are primarily limited to this portion of the
circulation, it seems reasonable to use the lumped parameter model to provide the correct
interactions with the remainder of the cardiovascular system. The selection of parameter
values for the lumped parameter models will be discussed in further detail in Chapter 3.

2.5 Baroreceptor Reflex

When the model was in its initial stages of construction, we decided that a
baroreceptor reflex system would be required to adequately model the human response to
mechanical or pharmacological interventions. As stated in the introduction, however, the
focus of the research has since moved away from predicting the response to interventions
to that of attempting to estimate the hemodynamic parameters for a given patient at the
time of measurement. Thus, it is no longer necessary to consider the transient response,
since a group of measurements taken at one specific time corresponds to a single set of
hemodynamic parameters that define the patient's condition. This is of course provided
that this condition does not change appreciably during the time it takes to collect all of
the necessary hemodynamic data. Nonetheless, if one is interested in developing the
cardiovascular model for use in other applications where the transient changes in the
cardiovascular system are of interest, then a baroreceptor reflex will be essential.
Multiple applications of a cardiovascular system model with feedback control will be
given in the final chapter.

The baroreceptor reflex is a physiological system by which the autonomic nervous
system autoregulates systemic arterial blood pressure. Under normal conditions, mean
arterial blood pressure is held nearly constant by two main mechanisms: the renin-
angiotensin-aldosterone axis, and the baroreceptor reflex. The former mechanism is
primarily under the control of the kidneys, which responds to changes in perfusion of the
glomerular apparatus that form the core of the renal filtration system. A decrease in
glomerular perfusion, presumably as a result of decreased blood pressure, results in the
release of renin into the circulation by specialized cells in the kidney. The circulating
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renin travels to the lung where it participates in the transformation of a precursor,
angiotensin I, into its active form, angiotensin II. Angiotensin Il is a potent vascular
smooth muscle cell constrictor, and liberation of the hormone causes global
vasoconstriction, which increases systemic vascular resistance and raises arterial mean
pressure. Angiotensin II has additional effects on the secretion of aldosterone, which acts
on the kidneys to reduce salt excretion, and hence water loss, thus maintaining fluid
volumes.

The latter mechanism, the baroreflex, is a nervous system control loop which acts
much more quickly than the renin-angiotensin-aldosterone system. Immediately distal to
each carotid bifurcation in the neck is an outpouching of the artery walil called the carotid
sinuses. Imbedded in the walls of the sinuses are sensory nerve cells that respond to
stretch, and hence the internal pressure of the carotid. Signals from the bundles of stretch
receptors (known as the carotid bodies) are sent to the central nervous system and
compared against a set point. Signals are sent out from the central nervous system via the
autonomic nervous system, which have two branches: the sympathetic and the
parasympathetic autonomic nervous systems. Both branches have far reaching effects in
the control of bodily function, particularly in the control of the cardiovascular system,
and counter each other's effects in a "yin-yang" fashion. Branches of the sympathetic
autcnomic act to increase heart rate, increase ventricular contractility, increase peripheral
resistance, and promote venous return. The sympathetics are sometimes referred to as the
"fight or flight" system, which prepares the body for physical exertion in the face of
danger. The parasympathetic autonomic, on the other hand, acts to decrease heart rate,
decrease ventricular contractility, while changing peripheral resistance very little. Thus,
it is readily apparent that if systemic blood pressure is lowered, the primary response of
the baroreflex system is to increase sympathetic tone; if blood pressure rises above
normal, parasympathetic tone is alternatively increased.

The baroreceptor model used here is relatively simple, and was originally developed by
DeBoer (DeBoer et al., 1987) . A schematic contrel loop diagram is shown in Figure
2.16. Note that the two branches of the nervous system are included, where the
syiupathetic system acts via two separate types of nerve fibers, the & and S fib