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On the Computation of Power in Volume Integral
Equation Formulations

Athanasios G. Polimeridis, Member, IEEE, M. T. Homer Reid, Steven G. Johnson, Jacob K. White, Fellow, IEEE,
and Alejandro W. Rodriguez

Abstract—We present simple and stable formulas for comput-
ing power (including absorbed/radiated, scattered and extinction
power) in current-based volume integral equation formulations.
The proposed formulas are given in terms of vector-matrix-
vector products of quantities found solely in the associated linear
system. In addition to their efficiency, the derived expressions can
guarantee the positivity of the computed power. We also discuss
the application of Poynting’s theorem for the case of sources
immersed in dissipative materials. The formulas are validated
against results obtained both with analytical and numerical
methods for scattering and radiation benchmark cases.

Index Terms—Electromagnetic scattering, method of moments
(MoM), numerical analysis, Poynting’s theorem, volume integral
equations.

I. INTRODUCTION

Volume integral equation (VIE) formulations have been
extensively used over the last decades for the numerical
solution of electromagnetic (EM) scattering and radiation
problems (here is a non-exhaustive list of references [1]–[16]).
Admittedly, VIE methods do not hold the workhorse status
of their early days, since partial differential equation (PDE)-
based methods, such as the finite-difference and finite-element
methods, reached a certain level of maturity. Nevertheless,
some recent insights have spawned renewed interest in the
development of more competitive VIE methods [17]–[23].

The objective of this paper is to introduce concise and
computationally efficient formulas for the power absorbed,
scattered, and radiated by bodies modeled with VIE methods.
Of course, in the VIE or any other scattering formalism these
quantities could be computed simply by direct numerical cuba-
ture of the Poynting vector over appropriate bounding surfaces,
an approach we term the “Poynting method” (PM); however,
in many cases the PM may not be the best way to perform
numerical power computations. One reason is that, in methods
such as the current-based VIE (JM-VIE) which solve directly
for (volumetric) sources rather than fields, computation of
the Poynting vector requires an extra post-processing step to
compute the fields at each cubature point. A more urgent
problem is that, in many cases, the Poynting-vector cubature
over the bounding surface may be badly behaved due to large
cancellations from different surface regions, requiring large
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numbers of cubature points to obtain decent accuracy. This
difficulty may be mitigated by using a distant bounding surface
far removed from the surface of the scatterers, but this strategy
is unavailable in many cases of interest, such as geometries
involving interleaved bodies or problems in which we need
the power absorbed by just one of two nearby objects.

These issues were recently discussed in the context of
surface integral equation (SIE) solvers [24], [25]. More specif-
ically, Ref. 24 noted that the power absorbed by a homoge-
neous body may be computed solely from knowledge of the
tangential currents flowing on its surface. Ref. 25 extended this
observation by noting that in fact the surface currents suffice to
determine not only the absorbed power but also the scattered
power, total power (extinction), force (radiation pressure),
and torque on a homogeneous body. Indeed, as discussed
in [25], all of these quantities may be expressed compactly
as vector-matrix-vector product (VMVP) expressions of the
form Q = c∗Mc, where c is the vector of surface-current
basis-function coefficients obtained in the SIE solution to a
scattering problem and M is a matrix which assumes different
forms for the various different quantities Q we are calculating.
In this work we extend the developments of [25] to the VIE
domain, deriving VMVP formulas for the absorbed, scattered,
radiated, and total power. Our formulas are analogous to those
of [25] in that they compute the power directly from the
volume-current coefficient vector (the solution to the linear
VIE system), thus bypassing the post-processing step of com-
puting scattered fields and Poynting’s vectors. An advantage
of our formulas over their SIE counterparts is that, as we prove
rigorously in Section IIIE, the numerical predictions that they
yield obey the key physical requirement of positivity of the
power absorbed, scattered1, and radiated by passive material
bodies, even in their discretized form. In contrast, while the
SIE power formulas derived in [25] (see also [26]) are positive
in the exact Maxwell equations, this positivity relied on a
delicate cancellation that can sometimes break down when
they are approximated by a discretized basis (such as boundary
elements).

As noted above, the VMVP formulas derived previously
in the SIE context for classical scattering [25] have also
proven useful for numerical modeling of quantum/statistical-
mechanical phenomena [26]–[28]. In direct analogy, the for-
mulas presented here for classical problems are key build-
ing blocks for an efficient VIE-based numerical approach to

1As explained in Section IIIC, an additional matrix vector product may be
needed.
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computational fluctuation physics; in particular, our VMVP
formulas for the absorbed power (36) and the radiated power
(54) may be extended to matrix-trace formulas for rates of
radiative heat transfer and fluorescence. This correspondence
will be addressed in future work.

The remainder of this paper is organized as follows. In Sec-
tion II we set up the JM-VIE formulation and the associated
linear system. In addition, we describe the incorporation of
dipole sources in JM-VIE solvers. In Section III, we present
the main results of this work: the boxed VMVP expressions for
the computation of power in VIE methods, and we prove their
positivity. Finally, in Section IV we validate our formulas, and
we demonstrate some of their useful properties. Table I lists
some notation used in this work.

TABLE I
NOTATION

Notation Description

a vector in C3, a = |a| â = (ax, ay , az)

a one-dimensional array (vector in CN )
A matrix in Cn1×n2

a complex conjugate
a∗ conjugate transpose
L (L) operator acting on vectors in C3 (C6)

II. VOLUME INTEGRAL EQUATIONS

A. Formulation

We consider the scattering of time-harmonic EM waves by
a penetrable object, occupying the bounded domain Ω in 3-D
Euclidean space, R3. The working angular frequency is ω ∈
R+ and the electric properties are defined as

ε = ε0, µ = µ0 in R3\Ω;

ε = εr(r) ε0, µ = µr(r)µ0 in Ω
(1)

Here, the vacuum (or free-space) permittivity ε0 and perme-
ability µ0 are real positive values, while the relative permit-
tivities εr(r) and µr(r) read

εr(r) = ε′r(r)− iε′′r (r)

µr(r) = µ′r(r)− iµ′′r (r)
(2)

with i =
√
−1 and ε′′r , µ

′′
r ∈ [0,∞), assuming a time factor

exp (iωt).
The total time harmonic fields (e,h) in the presence of

an isotropic inhomogeneous object can be expressed in terms
of equivalent polarization and magnetization currents (j,m),
as follows (dropping some function arguments where no
confusion exists):(

e
h

)
=

(
einc

hinc

)
+

(
esca

hsca

)
(3)

where the incident fields (einc,hinc) are the fields generated
by sources in the absence of the scatterer and the scattered

fields (esca,hsca) are given by2(
esca

hsca

)
=

( 1
ce
L −K
K 1

cm
L

)(
j
m

)

=

( 1
ce

(N − I) −K
K 1

cm
(N − I)

)
︸ ︷︷ ︸

Asca

(
j
m

) (4)

where ce, cm , iωε0, iωµ0. Asca is simply the convolution
operator with the 6 × 6 Green function connecting currents
to fields in vacuum. More explicitly, the associated integro-
differential operators are

Lf , (k2
0 +∇∇·)V (f) (5a)

Kf , ∇× V (f) (5b)

Nf , ∇×∇× V (f) (5c)

where

V (f) ,
ˆ

Ω

g(r − r′)f(r′)d3r′ (6)

is the volume vector potential and g is the fundamental
Helmholtz solution,

g(r) =
e−ik0|r|

4π|r|
(7)

with k0 = ω
√
ε0µ0 being the wavenumber in free-space. Also,

the equivalent current densities are defined in terms of the
fields as follows:

j(r) , ceχe(r) e(r) (8a)

m(r) , cmχm(r)h(r). (8b)

where
χe , εr − 1, χm , µr − 1 (9)

is the electric and magnetic susceptibility, respectively. Finally,
the JM-VIE formulation can be derived by combining (3), (4)
and (8) [19], [22],

A
(
j
m

)
= CMχ

(
einc

hinc

)
(10)

where

A =

(
AN
e AK

e

−AK
m AN

m

)

=

(
Mεr −Mχe

N ceMχe
K

−cmMχm
K Mµr

−Mχm
N

) (11)

and

Mχ =

(
Mχe

0
0 Mχm

)
, C =

(
ceI 0
0 cmI

)
. (12)

Mφ are multiplication operators that multiply by the local
parameter functions φ, while I is the identity dyadic tensor.

2More on the use of N operator can be found in [15], [19], [22].
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B. Linear System

Usually, JM-VIE formulations are numerically solved by
means of a Galerkin method, where the equivalent volumetric
currents are approximated as expansions in some discrete set
of vector-valued square-integrable basis functions, e.g. p ∈
[L2(R3)]3 as in [18], [19], [22]:

j ≈
∑
α

xe,αpα, m ≈
∑
α

xm,αpα (13)

The linear system arising from the Galerkin “testing”, i.e.
Ax = b with x,b ∈ CN and A ∈ CN×N , reads(

AN
e AK

e

−AK
m AN

m

)(
xe
xm

)
=

(
be
bm

)
(14)

where

A =

(
AN
e AK

e

−AK
m AN

m

)

=

(
MεrG−Mχe

N ceMχe
K

−cmMχmK MµrG−MχmN

) (15)

with

Nαβ = 〈pα,Npβ〉V (16a)
Kαβ = 〈pα,Kpβ〉V (16b)

and G is the Gram matrix, given by

Gαβ = 〈pα,pβ〉V. (17)

Also, M and C are the discrete versions of the associated
operators. More specifically, matrices M are diagonal for
isotropic material with the non-zero values being equal to
the material properties at the corresponding element, while
matrix C is the identity matrix with multiplication pre-factors
ce and cm for the two diagonal sub-blocks, respectively. Note
that the equivalent currents have no continuity constraints
(at the interface of the elements) and the support of the
basis/testing functions is restricted to single elements. Hence,
the associated Gram matrix is diagonal, when non-overlapping
basis functions are used [19], [22].

In the above we have used the inner product:

〈f , g〉V =

ˆ

Ω

f · g. (18)

Finally, the right-hand side in (14) is given by

b =

(
be
bm

)
= CMχ

(
einc

hinc

)
(19)

where

einc,α = 〈pα, einc〉V (20a)
hinc,α = 〈pα,hinc〉V. (20b)

C. Dipole Excitation

In most radiation problems, we need to deal with elementary
excitations, such as electric (or magnetic) Hertzian oscillating
dipoles, d(r) = δ3(r)d̂. Numerically, the finite discretization
means that the 3D dirac delta will have support only within a
voxel of size ∆V , and will be given by

δ4V (r) =
p

4V
=

{
1
4V , if r ∈ supp(p)

0, otherwise
(21)

with p being the magnitude of the basis functions for the
approximation of the polarization/magnetization densities.

The use of dipole sources in our analysis could prove quite
problematic, since current sources are inherently modeled in
VIE as uniform distributions throughout the volume elements.
Motivated by the limit δ3(r) = lim

4V→0+
δ4V (r), we introduce

the notion of the distributed-dipole (DD) source. Specifically,
the current of a DD source immersed in element α, along the
direction of the pα basis reads

σα(x) =
pα
Vα
. (22)

Hence, the impressed current vector is given by(
de
dm

)
= Ĝ−1

(
pe
pm

)
(23)

where
Ĝ =

(
G 0
0 G

)
. (24)

The non-zero elements of the vector in (23) depend solely
on the location and direction of the dipole sources under
consideration.

Finally, the incident fields of (19) read(
einc

hinc

)
= Asca

(
de
dm

)
(25)

where Asca is the discrete form of the operator in (4):

Asca =

(
1
ce

(N−G) −K
K 1

cm
(N−G)

)
. (26)

In the case of dipole sources located outside the scatterer,
the computation of the incident fields is quite straightforward,
since there are no singularities in the fields (inside the scat-
terer). More specifically, the impressed sources are propagated
by means of the free-space Green function, and the incident
fields are “tested” as in (20).

III. POWER FORMULAS

The power flowing into or radiated from a material body
Ω can be expressed as an integral of the normal (inward
or outward-directed, respectively) component of the (total)
Poynting vector over its surface ∂Ω [29]. Similar expressions
may also be derived for the scattered and extinguished power
by integrating the associated components of the Poynting
vector. In this section, we present simple formulas for comput-
ing the powers directly from the equivalent polarization and
magnetization currents, which are the immediate output of the
numerical solution of JM-VIE formulations. The derivation is
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based on the conservation of energy, or Poynting’s theorem,
which relates the energy flowing out through the boundary
surfaces of the body to the work done by the fields on the
currents [29].

In particular, we find it useful to decompose the time
average Poynting vector [29]

〈stot〉 ,
1

2
Re
(
etot × htot

)
(27)

in terms of incident, scattered, and extinguished components:

〈stot〉 = 〈sinc〉+ 〈ssca〉+ 〈sext〉 (28)

where

〈sinc〉 ,
1

2
Re
(
einc × hinc

)
(29a)

〈ssca〉 ,
1

2
Re
(
esca × hsca

)
(29b)

〈sext〉 ,
1

2
Re
(
esca × hinc + einc × hsca

)
(29c)

are given by the corresponding fields. Poynting’s theorem can
therefore be written in the following form3 [29]:

∇ · 〈sφ〉 = −〈Wφ〉 (30)

where

〈Wφ〉 = 〈W f
φ 〉+ 〈W b

φ〉 (31)

with φ ∈ {inc, sca, tot}, is the time average of the work done
on total currents by the corresponding fields. More specifically,
it is the sum of work done on free currents (W f

φ ) and bound
(polarization and magnetization) currents (W b

φ):

〈W f,b
φ 〉 ,

1

2
Re
(
jf,b · eφ +mf,b · hφ

)
. (32)

In the next few subsections we derive the formulas for the
computation of absorbed, extinction, scattered, and radiated
power, along with a simple proof for their positivity.

A. Absorbed Power

The absorbed power is the power flowing into the body
and is given by the integral of the inward-directed normal
component of the Poynting vector. With the help of (30) and
the divergence theorem, we derive the absorbed power in terms
of volumetric quantities:

Pabs = −
‹

∂Ω

〈stot〉 · n̂ =

ˆ

Ω

〈Wtot〉

=
1

2
Re (〈j, etot〉V + 〈m,htot〉V)

(33)

where n̂ is the outward-directed surface normal. Now, insert-
ing the current expansions (13) in the inner products of (33),

3Note that ∇ · 〈sinc〉 = 0 for a lossless ambient medium.

we get

〈j, j

ceχe
〉V + 〈m,

m

cmχm
〉V

=
1

ce

∑
αβ

x∗e,α
〈pα,pβ〉V
χe,αβ

xe,β

+
1

cm

∑
αβ

x∗m,α
〈pα,pβ〉V
χm,αβ

xm,β

=
1

ce
x∗e
(
M−1

χe
G
)
xe +

1

cm
x∗m
(
M−1

χm
G
)
xm

= x∗M̂Ĝx

(34)

where
M̂ = (CMχ)−1. (35)

In (34), we have used the definition of the equivalent po-
larization currents (8) in order to replace the total fields.
The substitution is admissible for nonzero susceptibilities,
otherwise the currents are identically zero and there is no
contribution to the total work. Finally, the absorbed power
takes the form

Pabs =
1

2
Rex∗M̂Ĝx. (36)

B. Extinction Power

The extinction power is the total power removed from the
incident field (the sum of the absorbed and the scattered
powers) due to the presence of the scattering object Ω, and
is given by similar considerations as in the absorbed power
computation, as follows:

Pext = −
‹

∂Ω

〈sext〉 · n̂

=

ˆ

Ω

〈Winc〉 =
1

2
Re (〈j, einc〉V + 〈m,hinc〉V).

(37)

The computation of the work done by the incident fields on
the polarization and magnetization currents can be simply
expressed in terms of quantities from the linear system of
JM-VIE solution. More specifically, the incident fields are
related to the right hand side vector as shown in (19), and the
associated inner products admit the following representation:

〈j, be
ceχe

〉V + 〈m,
bm
cmχm

〉V

=
1

ce

∑
α

x∗e,α
〈pα, be〉V
χe,αβ

+
1

cm

∑
α

x∗m,α
〈pα, bm〉V
χm,αβ

=
1

ce
x∗eM

−1
χe

be +
1

cm
x∗mM−1

χm
bm

= x∗M̂b.

(38)

The final formula for the extinction power reads

Pext =
1

2
Rex∗M̂b. (39)
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It is also useful to write Pext as the real part of an ana-
lytic/causal function (see Appendix), both from a theoretical
perspective (to get an analogue of the optical theorem as in
[30]) and from a practical perspective (e.g. for transforming
frequency averaging into a complex frequency, as in [31],
[32]).

C. Scattered Power

The power scattered from an object Ω is given by the real
part of the integral of the outward-directed normal component
of ssca over ∂Ω4:

Psca = +

‹

∂Ω

〈ssca〉 · n̂. (40)

Obviously, the scattered power can be expressed in terms of
quantities arising in JM-VIE linear system, as the difference
between the extinction power and the absorbed power:

Psca = Pext − Pabs

=
1

2
Rex∗M̂

(
b− Ĝx

)
.

(41)

In cases where the scattering mechanism is weak compared to
absorption, formula (41) may be prone to numerical instabil-
ities, i.e., computing a small number as the difference of two
almost equal and possibly large approximate values. Therefore,
it would be useful to derive some additional formulas for this
case, that are immune to numerical instabilities. In doing so,
we resort again to the conservation laws (30):‹

∂Ω

〈ssca〉 · n̂ = −
ˆ

Ω

〈Wsca〉 (42)

where
Wsca = 〈j, esca〉V + 〈m,hsca〉V. (43)

The first term of the right hand side is given by

〈j, esca〉V = 〈j, 1

ce
(N j − j)〉V − 〈j,Km〉V

=
1

ce

∑
αβ

x∗e,α (〈pα,Npβ〉V − 〈pα,pβ〉V)xe,β

−
∑
αβ

x∗e,α〈pα,Kpβ〉Vxm,β

=
1

ce
x∗e (N−G)xe − x∗eKxm

(44)

and with similar considerations, the second term reads

〈m,hsca〉V =
1

cm
x∗m (N−G)xm + x∗mKxe. (45)

Hence, combining (43), (44) and (45) with (26), we get

Wsca = x∗Ascax. (46)

Finally, we obtain an alternative formula for the computation
of the scattered power:

Psca = −1

2
Rex∗Ascax. (47)

4Note here the plus sign!

As mentioned above, there is a trade-off in numerical com-
plexity for getting more stable formula: the matrix in (47)
is dense, so the cost of the numerical evaluation scales like
O(N2) instead of the O(N) scaling of (41). Note, though,
that JM-VIE formulations typically result in very large linear
systems and fast solvers are employed for their numerical
solution. In this case, the complexity of evaluating (47) scales
like O(N logN) ( [8], [22], [33], [34] among others), and the
associated operators in (26) have been pre-computed in the
actual numerical solution of the JM-VIE linear system.

D. Radiated Power

Here we consider radiation from sources immersed in Ω, in
particular from elementary sources, i.e., electric and magnetic
point Hertzian dipoles. The power radiated from Ω is given
by

Prad =

‹

∂Ω

〈stot〉 · n̂. (48)

Obviously, the total fields generated in this case are singular
at the location of the sources, hence we resort to the natural
generalization of the divergence theorem, where the derivatives
are taken in the weak/distribution sense,

Prad =

‹

∂Ω

〈stot〉 · n̂ = −
ˆ

Ω

〈W f
tot〉 −

ˆ

Ω

〈W b
tot〉

= Psup − Pabs

(49)

where

Psup = −
ˆ

Ω

〈W f
tot〉

= −1

2
Re (〈jf , etot〉V + 〈mf ,htot〉V)

(50)

is the power supplied by the source and Pabs the absorbed
power in Ω, already defined. Note, that in the case of dissi-
pative media, both supplied and absorbed powers are infinite
[35] (a problem related also to the ill-defined local density of
states [36], [37]). Nevertheless, the radiated power (i.e., power
flowing from the surface of Ω) is still a finite quantity and
represents the outward power flow from a dipole source with
constant amplitude. Otherwise, the notion of the “insulated”
dipole could be used (as in [35]), especially when the actual
supplied power or the efficiency of the radiator is under
scrutiny.

The supplied power can be easily derived with the help of
the DD source,

Psup = Psupinc
+ Psupsca

= −1

2
Re {d∗Ascad + d∗Ascax}

(51)

and the radiated power formula reads

Prad =
1

2
Re
{
−d∗Asca(d + x)− x∗M̂Ĝx

}
. (52)

As with (41), the above formula is prone to catastrophic can-
cellations, especially considering that the values there could
be very large. An alternative (and more intuitive) formula for
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the radiated power can be obtained by expanding the fields
also for the case of the absorbed power,

Pabs = Pext − Psca

=
1

2
Re
{
x∗M̂b + x∗Ascax

}
=

1

2
Re
{
x∗M̂M̂−1Ascad + x∗Ascax

}
=

1

2
Rex∗Asca(d + x).

(53)

where d is defined in (23). Hence, by combining (51) and (53)
the radiated power admits an elegant quadratic form:

Prad = −1

2
Re (x + d)∗Asca(x + d). (54)

Interestingly, the derived quadratic power formula has the
same computation complexity as (52).

E. Positivity

In addition to their efficiency and simplicity, the above
formulas manifest the positivity of power in passive media
in a numerically stable fashion: positivity is preserved by
discretization. As observed in [24], this is not always the case
for SIE formulas. Similar behavior is also expected from the
difference formulas (41) and (52) when the parts have almost
equal values. While those formulas are analytically exact, their
potential reliance on a large cancellation to leave a positive
remainder makes them susceptible to numerical inaccuracy
and a loss of positivity when they are approximated via a
discretized basis. In contrast, we show here that our scattered
(47) and radiated (52) power formulas are expressed in terms
of manifestly positive-definite quadratic forms, and hence this
positivity is preserved by any Galerkin discretization.

We begin with the notion of the Hermitian decomposition:
Every matrix B can be decomposed into the Hermitian (BH)
and the skew-Hermitian (BSH) components, as follows:

B = BH + BSH (55)

where

BH = (BH)∗ =
B + B∗

2

BSH = −(BSH)∗ =
B−B∗

2
.

(56)

Obviously, the quadratic forms of these components are purely
real and imaginary, respectively. Since, in all formulas we are
computing the real part of the associated quadratic forms, the
positivity is guaranteed if the Hermitian component is positive-
or negative-semidefinite, depending on the sign of the final
formula. Hence, the sufficient conditions read

Rex∗Bx = x∗BHx ≥ 0

iff BH � 0.
(57)

In the case of the absorbed power formula (36),

BH = ĜM̂H (58)
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Fig. 1. Efficiencies for the case of a spherical particle of radius R = 1µm
irradiated by a plane wave. The particle is composed of material with εr =
3 − 6i, µr = 2 − 1i. The number of voxels used for VIE is N = 203,
resulting in 6N unknowns.

where

M̂H =
M̂ + M̂∗

2

= C−1
M−1

χ − (M−1
χ )∗

2
� 0

(59)

for any passive material (Imχ ≤ 0).
The positivity of the scattered (47) and radiated (54) power

is guaranteed if
BH = AH

sca � 0. (60)

The negative definiteness of Asca carries over to Asca, as
explained in [26].

Finally, in the case of the extinction power, positivity is
straightforward by definition: the extinction power is the sum
of the absorbed and scattered power, which we showed above
that are positive.

IV. COMPUTATIONAL VALIDATION

In what follows, we validate the new formulas by using
them to compute some representative test cases. The JM-
VIE formulation (referred herein as VIE, for simplicity) is
numerically solved by means of an in-house FFT-based fast
solver [20]. More specifically, the unknown equivalent po-
larization and magnetization currents are approximated by a
series of piecewise constant basis functions for each Cartesian
component, with the support of each member of the discrete
set being a voxel. A uniform grid of N voxels is used for
the discretization of the box that encloses the objects under
study5. The arising 6-D singular Galerkin inner products in
(16) are first reduced to 4-D singular (of lower order) integrals
over the surfaces of the voxels [20], and then computed by
means of DIRECTFN open-source package [39], [40]. The
benchmark results are obtained with analytical formulas (Mie
theory), and with a surface integral equation (SIE) method, and
more specifically with the open-source package scuff-em
[28], [41]. The default choice for the results regarding the
VIE method are the boxed formulas presented above.

5Of course, one could choose different schemes for the numerical solution
of the VIE method, e.g. based on a tetrahedral mesh coupled with a FMM
solver [38].
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Fig. 2. Radiated power, normalized with respect to the power radiated in free-
space, for the case of a spherical non-magnetic (µr = 1) particle of radius
R = 1µm irradiated by a Hertzian electric dipole with z-polarization, located
at the center of the sphere. The electric permittivity is equal to εr = 3− 6i,
εr = 3, and εr = 1, as we go from the bottom to the top lines, respectively.

A. Plane Wave Excitation

We begin by computing efficiencies for scattering and ab-
sorption of a spherical particle of radius R = 1 µm irradiated
by a linearly-polarized z-traveling plane wave with electric
field:

einc = e0e
−ik0zx̂.

Fig. 1 plots efficiencies Qabs,sca as functions of the dimension-
less “size parameter” k0R. Efficiencies are obtained from cross
sections σabs,sca = P abs,sca/P inc, where P inc = |e0|2

2Z0
, by

dividing by the geometrical cross section (πR2) of the sphere,
Q = σ/(πR2). The results are in good agreement with the
efficiencies obtained by integrating the associated Poynting
vectors by means of a SIE method [25]. For the computation
of the scattering efficiency, we present additional results based
on the difference formula (41), where one can identify the
expected instabilities (blue +) discussed in Section IIIC. Note
that the two missing data points assume negative values; there
is no guarantee for the positivity of the difference formula, as
is the case in the PM.

B. Dipole Excitation

We now consider the same sphere but irradiated by a
Hertzian dipole (with moment equal to 1) directed along z-
axis, and located at the center of the sphere. Fig. 2 plots the
radiated power flowing through the surface of the spherical
particle, normalized with respect to the power radiated by
the dipole in free-space (Po). We validate our VIE results by
comparing against a reference analytical solution obtained via
a Mie series [29],

PMie =
Z0c

2a12

2k2
0

√
6π

|eian3|2

|D|2
(61)

where

D =
[
n2(a3 + a− i)− a+ i

]
sin (na)

+ na
[
−in2(−1 + a(a− i)) + a− i

]
cos (na)
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Fig. 3. Radiated power for the lossy case of Fig. 2 (εr = 3 − 6i, µr = 1
) using the difference formula (52) (solid lines, except the black one). The
supplied power Psup is depicted in the inset.

with c being the speed of light, n =
√
εr, and a = k0R.

Note that the power radiated by the dipole in free space P0 =
PMie|n=1.

We consider three different scenarios in Fig. 2, correspond-
ing to different values of εr (with µr = 1). Specifically, we
consider spheres with εr = 1, εr = 3, and εr = 3 − 6i,
corresponding to free-space, lossless, and dissipative media,
respectively. As evidenced by the results, the quadratic formula
(54) is stable both for low and high frequencies, where
convergence to the exact solution is attained as the mesh
discretization gets finer. Note that due to the uniform mesh
used in this work, low resolution meshes suffer from staircase
approximation errors.

Next, we consider the same dipole radiation but using the
difference formula of (52), and show that it leads to the afore-
mentioned instabilities (Section IIID). Fig. 3 plots the radiated
power Prad = Psup−Pabs as obtained from (52) (solid lines),
for the case of the εr = 3−6i lossy dielectric sphere of Fig. 2.
Also shown are the corresponding results from the Mie (black
line) and VIE (54) (open circles) solutions. As discussed in
Section IIID and [35], both the supplied and the absorbed
power are infinite in this case. Nevertheless, the radiated power
flowing through the surface of the sphere is the finite quantity
presented in Fig. 2. As depicted in the inset of Fig. 3, the
supplied and absorbed (not shown) powers diverge with the
resolution of the mesh as P ∼ 1/∆V . Consequently, the
difference Psup−Pabs suffers from catastrophic cancellations
that render the difference formula (52) practically useless. This
result highlights the importance of the quadratic formula (54),
which is remarkably stable and identically positive.

Finally, we consider the case of an inhomogeneous dielectric
cube irradiated by a z-directed dipole placed at the center. The
continuous profile of the permittivity is given as follows:

εr(z) = εr,l +
z +R

2R
(εr,h − εr,l), z ∈ [−R,R] (62)

where εr,l = 1 − 1i and εr,h = 10 − 10i. The radiated
power presented in Fig. 4 is computed using the quadratic
formula (54) and converges as we refine the discretization.
This is a particularly interesting example, since the continuous
profile of the inhomogeneity rules out methods based on SIE
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Fig. 4. Radiated power for the case of an inhomogeneous dielectric cube of
length L = 2R, irradiated by a z-directed dipole placed at the center. The
relative permittivity varies linearly along the z-axis, i.e. εr ≡ εr(z), as in
(62). In addition, results for homogeneous cubes with the lowest and highest
values of εr are presented.

formulations.

V. CONCLUSION

A collection of simple and stable formulas is presented
for the computation of absorbed, scattered, extinction, and
radiated power in VIE formulations. The proposed formulas
(boxed equations in the manuscript) are accurate in a wide
range of frequencies, and are based solely on volumetric
quantities found in the associated linear system of equations.
In addition, they preserve the positivity of the computed
power, thus accurately capturing the physics of the problem.
Thus, there is no need for significant post-processing, such
as the evaluation of the fields and the integration of the
Poynting vector along enclosing surfaces. By construction, the
presented scheme is immune to the well-known instability
issues that occur in Poynting’s method. The efficient and
compact absorption/radiation formulas presented herein are
expected to be especially useful—besides applications in clas-
sical scattering/radiation problems—in computations of EM
fluctuation phenomena, including radiative heat transfer and
Casimir forces between complex bodies. Our analysis is based
on a current-based VIE formulation, but similar formulas may
be easily derived, with only minor modifications, for the case
of VIE formulations based on fields or fluxes.
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APPENDIX
ON THE ANALYTICITY OF Pext

As mentioned in Section IIIB, it is important to write the
formula for the extinction power (39) in a form where the
analyticity (in the lower half of the complex-ω plane) is shown

explicitly, so as to be able to exploit it both from a theoretical
and a practical perspective. Indeed, (39) can be written with
the help of (19) and (35) as follows:

Pext =
1

2
Re

(
einc

hinc

)∗
x

=
1

2
Re

(
einc

hinc

)∗
W

(
einc

hinc

)
where W = A−1(CMχ) is the matrix arising from the
discretization of the operator W relating the incident fields
to the induced currents, i.e.,(

j
m

)
= W

(
einc

hinc

)
.

Causality implies that W is an analytic function in the lower
half of the complex-ω plane [42]. Alternatively, it is sufficient
to assume passivity rather than causality, since the former
implies the latter in a time-invariant linear system [43].

Finally, we can eliminate the complex conjugation by ex-
ploiting the conjugate symmetry of the Fourier transform of
any real incident field:

Pext =
1

2
Re

(
einc(−ω)
hinc(−ω)

)T
W(ω)

(
einc(ω)
hinc(ω)

)
.

As desired, this is the real part of an analytic function in the
lower-half complex-ω plane, as long as the incident fields are
entire (everywhere-analytic) functions of ω (which is true for
all typical incident fields, such as planewaves, gaussian pulses,
or any pulse that is compactly supported in the time domain
[44]).
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