
January 1982 LIDS-P-1175

DISTRIBUTED MINIMUM HOP ALGORITHMS*

by

Robert G. Gallager**

* This research was conducted at the M.I.T. Laboratory for Information and
Decision Systems with partial support provided by Defense Advanced Research
Projects Agency under Contract No. ONR/N00014-75-C-1183 and National Science
Foundation under Contract No. NSF/ECS 79-20834.

**Room No. 35-206, Massachusetts Institute of Technology, Laboratory for
Information and Decision Systems, Cambridge, Massachusetts 02139.



Distributed Minimum Hop Algorithm

I. Introduction

The control of data communication networks (and any other large

distributedsystems) must be at least partly distributed because of the

need to make observations and exert control at the various nodes of the

network. When one also considers the desireability of letting networks

grow (or shrink due to failures), it is reasonable to consider control

algorithms with minimal or no centralized operations.

In developing distributed algorithms for such control functions as

routing and flow control, for example, it becomes evident that there are

a number of simple network problems which arise repeatedly; distributed

algorithms for solving these simple problems are then useful as building

blocks in more complex algorithms. Some of these frequently occuring

simple problems are as follows: a) the shortest path problem--given a

length for each edge in the network, find the shortest path between each

pair of nodes (or the shortest path between one given node and each other

node); b) the minimum hop problem, which is a special case of the shortest

path problem in which each edge has unit length; c) the minimum spanning

tree problem--given a length for each edge (undirected), find the span-

ning tree with the smallest sum of edge lengths; alternatively, for

directed edges, find the routed minimum length directed spanning tree

for each root; d) the leader problem--find the node in the network with

the smallest ID number; e) the max flow problem--given a capacity for

each edge, find the maximum traffic flow from a given source node to a

given destination.

We now must be more precise about our assumptions concerning



-2-

distributed algorithms. Mathematically we model the network as a con-

nected undirected graph with, say, n nodes and e edges. Each node

contains the facilities for doing computations, storing data, and send-

ing and receiving messages over the adjoining edges. Messages are

assumed to be transmitted without error but with an unknown variable

finite delay. Successive messages in a given direction on a given edge

are queued for transmission at the sending node, are transmitted, arrive

in the order transmitted and are queued waiting for processing by the

receiving node.

Initially each node stores only the unique identity of the node

itself and the relevant parameters such as length or capacity of its

adjacent edges. The computational facility at each node executes a

local algorithm that specifies initial operations to start the algorithm

and the response to each received message. These initial operations and

responses include both computation and sending messages over adjacent

edges. A distributed algorithm is the collection of these local algo-

rithms used for solving some global problem such as the building block

problems mentioned above.

For readers familiar with layered network architectures, the

assumptions above effectively assume the existence of lower level line

protocols. Error detection and retransmission provides the error free

but variable delay transmission, and message formatting provides the

ability to receive and process messages as entities. Our algorithms will

contain no interrupts, no time outs, and will be independent of particular

hardware or software constructs. Our assumptions also effectively pre-

clude the possibility of node and edge failures. This is not because the



-3-

problem of failures is unimportant, but rather because we feel tht a

more thorough understanding of failure free distributed algorithms is

necessary before further progress can be made on the problem of failures.

Since communication is often more costly than computation in a net-

work, reasonable measures of complexity for distributed algorithms are

the amount of communication required and the amount of time required.

We measure communication complexity C in terms of the sum, over the

network edges, of the number of elementary quantities passed in messages

over those links. The elementary quantities are node identities, edge

lengths, capacities, number of nodes or edges in certain subsets, and

so forth. These quantities could be easily translated-into binary digits,

but this is usually unnecessary. The time complexity, T of an algorithm

is the number of units of time required if each communication of an

elementary quantity over an edge requires one time unit and computation

requires negligible time. This is under the proviso that the algorithm

must continue to work correctly when communication requires uncertain

time.

There is one significant difficulty with using communication and

time as the measures of goodness of distributed algorithms. It is very

easy simply to send all the topological information about the network to

each of the nodes and then solve the problem at each node in a centralized

fashion. We shall see shortly that the communication complexity of this

approach is O(ne) where n is the number of nodes in the network and e is

the number of edges. By O(ne), we mean there is a constant c such that

for all networks, the required number of communications is at most cnE.



-4-

Similarly the time required in this approach is O(e). One could argue

that in some sense this approach is not really distributed, but it turns

out to be non trivial to find "really distributed" algorithms that do

any better than C = 0(ne) and T = O(e).

One known example [1] of a distributed algorithm better in com-

munication and time than the above centralized approach is a shortest

spanning tree algorithm with O(e+n log n) communication and 0(n log n)

time. In this paper, our major concern is algorithms for finding the

minimum hop paths from all nodes of a network to a given destination.

First we describe four rather trivial algorithms. The first three find

the minimum hop paths between all pairs of nodes. The best of these,

in terms of worst case communication and time, uses 0(en) communication

and 0(n) time; the fourth algorithm finds minimum hop paths to a single

destination with 0(n 2 ) communication and 0(n2 ) time. Both algorithms

have a product of time and communication, in terms of n alone, of 0(n4).

We then develop a class of less trivial algorithms providing an intermediate

tradeoff between time and communication; one version of this yields

O(n 1 5 ) time and 0(n 2 2 5 ) communication, for a time communication product

of 0(n3 75)

It is surprising at first that the minimum hop problem appears to

be so much more difficult (in terms of time and communication) than the

minimum spanning tree problem. The reason for this appears to be that

the minimum spanning tree has local properties not possessed by the

shortest hop problem; for example the minimum weight edge emanating from any

given node is always in a minimum spanning tree.

All of our subsequent results will be in terms of the orders of

worst case communication complexity and time complexity of various



algorithms. One should be somewhat cautious about the practical

interpretation of these results. In the first place, the results are

worst case and typical performance is often much better. In the second

place, for most present day packet networks there is a large overhead

in sending very short control messages, so that algorithms that can

package large amounts of control information in a single packet have a

practical advantage over those that cannot accomplish this packaging.



-6-

II. Some Simple Minimum Hop Algorithms

In this section we shall develop three simple global minimum hop

algorithms for finding a minimum hop path between each pair of nodes in

the network and then a single destination algorithm for finding minimum

hop paths from each node to a given destination node. It should be

clear that a single destination algorithm could be repeated n times,

once for each destination, to solve the global problem, and that the

global problem automatically solves the single destination problem.

We could also look at the problem of finding just the minimum hop path

between a given pair of nodes, but we conjecture that this problem, in

the worst case, is no easier than the single destination problem.

At the initiation of any of these algorithms, each node knows its

own identity and its number of adjacent edges. At the completion of the

algorithm, for the single destination case, each node other than the

destination knows its hop length to the destination and has identified

a single adjacent edge, called its inedge, as being on a minimum hop

path to the destination. It is not necessary for a given node to know

the entire minimum hop path to the destination, since a node can send

a message to the destination over a minimum hop path by transmitting

it on its inedge. The neighboring node can then forward the message

over its inedge and so forth to the destination. For the global

minimum hop problem, each node, at the completion of the algorithm con-

tains a table with one entry for each node in the network. Such an

entry contains the node identity, the hop level, which is the number of

hops on a minimum hop path to that node, and the inedge, which is the



-7-

adjacent edge on such a minimum hop path. Initially a node's table

contains only a single entry containing the node itself, at a hop level

of 0 and a null inedge.

Algorithm G1

To begin, we give an informal description of a global minimum hop

algorithm* that, for each node, first finds all nodes at hop level 1,

then hop level 2, and so forth. Initially each node is in a "sleeping"

state. To start the algorithm, one or more nodes "wakeup" and send a

message containing their own identity over each of their adjacent edges.

When a sleeping node receives such a message, it "wakes up" and sends

its own identity over each adjacent edge. Each node, sleeping or not,

which receives such a message, places the received node identity in a

table, identifying the inedge to that destination as the edge on which

the message was received, and identifying the hop length as one.

When a node receives the above identity message over each of its

adjacent edges (which must happen eventually), it then knows the

identity of each of its neighboring nodes. It then sends a message

called a "level 1" message over each adjacent edge, listing the identities

of each of these neighboring nodes. When a node receives a level one

message over an adjacent edge, each of the received node identities that

is not already in its table at hop level 2 or less is added to the

table, identifying the inedge as the edge on which the message was

*This algorithm was developed by the author six years ago as part of a
failure recovery algorithm. It has undoubtedly been developed independent-
ly by others.



-8-

received and identifying the hop level as two. When a node has

received "level 1" messages over each adjacent edge, its table contains

all nodes up to two hops away, and it sends a "level 2" message over

each adjacent edge containing a list of all node identities two hops

away. In general, for Z > 1, when a node receives a "level 9" message

over an adjacent edge, each received node identity not already in its

table at hop level k + 1 or less is added to the table, identifying

the inedge for that destination as the edge on which the message was

received and identifying the hop level as k + 1. After receiving

"level 9" messages over each adjacent edge, the node transmits a

"level k + 1" message containing a list of all nodes k + 1 hops away.

Finally, if this list of nodes Z + 1 hops away is empty, the node knows

that its table is complete and its part in the algorithm is finished.

Neighboring nodes need take no special account of such an empty list

since they must also finish before looking for level Q+ 2 messages.

The communication complexity of this algorithm is easily evaluated

by observing that each node identity is sent once over each edge in

each direction, leading to the communication of 2ne identities in all,

or C = O(ne). Including the level numbers of the messages does not

change this order of communication. The time complexity can be upper

bounded by observing that messages must be sent at a maximum of n levels

and at most n time units are required for each level; also at most n

time units are required for the initial transmission of identities.

Thus we have T = O(n 2). By considering the dumb-bell network of

Figure 1, it can be seen that O(n2) time units are actually required in



-9-

the worst case.

Algorithm G2

Strangely enough, a slight modification of algorithm G1 reduces T

to 0(n) while not changing the order of C. In algorithm G1, for each

level 9, each node sends a single level k message over each adjacent

edge containing the list of all nodes at hop level Q. In the modification,

algorithm G2, this single level k message is broken into a set of shorter

messages, one for each node at hop level 9 and a message to indicate the

end of the list. After the node receives the end of list k-2 message

on each edge, it can send its.-own end of list Z-l message, and immediately

after transmitting that message, it can start to transmit any level 9

messages already in its table. One can qualitatively see the time saving

in Figure 1, where the cliques of nodes at either end.,of the dumb-bell

structure will have their identities transmitted in a pipelined fashion

over the area in the center of the dumb-bell, rather than-being transmitted

in totality on a single edge at a time. A proof that T = 0(n) is given

in the Appendix.

Algorithm G3

Another simple modification of this algorithm corresponds to the

distributed form of Bellman's algorithm; it is essentially the shortest

path routing algorithm used in the original version of the Arpanet algo-

rithm [2], specialized to minimum hops. The table of node identities,

inedges, and hop numbers operates as before, but whenever a node is

added to the table or the hop number is reduced, that information is



-10-

immediately queued for transmission on each adjacent edge. Because of

this overeagerness to transmit, the same node identity can be transmitted

up to n-2 times over the same edge, each time at a smaller hop number.

This increases the worst case communication complexity to C = O(n 2e).

If the transmission queues at the nodes are prioritized to send smaller

hop numbers before larger hop numbers, the time complexity can be shown

to be T = O(n). Although this distributed form of Bellman's algorithm

is quite inferior in terms of worst case communication complexity, its

typical behavior is quite good and its lack of waiting for slow trans-

missions is attractive from a system viewpoint. This type of algorithm

can also be applied to a much more general class of problems than

minimum hop, and general results concerning the convergence of such

algorithms have recently been established [3].

Another advantage of the distributed Bellman algorithm is that it

can easily be modified for the single destination minimum hop problem.

In this case, only the destination node need be communicated through

the network and it is easy to see that the communication complexity is

now reduced to C = O(ne), while T - remains at O(n). This is of course

a worst case result corresponding to a highly pathological pattern of

communication delays. In typical cases, this algorithm would require

little more than one communication over each edge in each direction,

but it is still of theoretical interest to see whether algorithms exist

with worst case communication complexity less than O(ne). What is

required is somewhat more coordination in the algorithm to prevent a

node from broadcasting a large hop length to the destination when that



node would shortly find out that it is much closer to the destination.

The next algorithm, called the coordinated shortest hop algorithm is

designed to provide this coordination through the destination node.

Algorithm D1

The coordinated shortest hop algorithm works in successive

iterations, with the beginning of each iteration synchronized by the

destination node. On the ith iteration, the nodes at hop level i from

the destination discover they are at level i, choose an inedge, and

collectively pass a message to the destination that the iteration is

complete. To be more precise, at the end of the i-l iteration, there

is a tree from the destination node to all nodes at level i-1. At the

beginning of iteration i, the destination node broadcasts a message

on this tree to find the level i nodes. Each node at level j < i-l

receives this message on its inedge and sends it out on each of its

adjacent edges that are in the tree (other than the inedge). Each node

at level i-1 receives the message on its inedge and sends out a test

message on each edge not already known to go to a lower level node.

When a node not at level j < i first receives the test message, it

designates itself as level i, designates the edge on which the test

message was received as the inedge, and acknowledges receipt to the

sender with an indication that the link is its inedge. On subsequent

receptions of a test message, the node acknowledges receipt with an

indication that the edge is not its inedge.

When a node at level i-l receives acknowledgements over each edge

on which it sent a test message, the node sends an acknowledgement over

its own inedge, indicating also how many level i nodes can be reached



-12-

through the given node. When a node at level j, 0 < j < i-i, receives

acknowledgements over all outgoing edges in the tree, it sends an

acknowledgement over its inedge, also indicating how many level i nodes

can be reached through itself (i.e. adding up the numbers from each of

its outgoing edges). Finally, when node d receives an acknowledgement

over each edge, the level i iteration is complete. If any level i

nodes exist (which is now known from the numbers on the acknowledgement),

node d starts iteration i+l, and otherwise the algorithm terminates.

A detailed description of the algorithm is given in pidgin algol

in the appendix. It would be helpful to understand this algorithm as

a prelude to the more refined algorithm of the next section. The

communication complexity of the algorithm can be determined by first

observing that at most one test message is sent over each edge in each

direction. Also at most n coordinating messages are sent over each

edge in the minimum hop tree. Since there is one acknowledgement for

each coordinating or test message, the total number of messages is

bounded by 2(n2 + e), or C = 0(n2). Since the coordinating messages-

travel in and out over the tree in serial fashion, we also have

T = 0(n2).



-13-

III. A Modified Coordinated Minimum Hop Algorithm-Algorithm D2

We saw in the last section that the coordinated shortest hop algorithm

was quite efficient in communication at the expense of a large amount of

required time. Alternatively, the distributed Bellman algorithm is

efficient in time but poor in communication. Our objective in this

section is to develop an algorithm providing an intermediate type of

tradeoff between time and communication.

One would imagine at first that the coordinated algorithm would work

very efficiently for dense networks in which the longest of the shortest

hop paths are typically small, thus requiring few iterations, whereas

the Bellman algorithm would be efficient for very sparse networks.

Figure 1, however, shows an example where both algorithms work poorly

for the worst case of communication delays; in this example the co-

ordinated algorithm requires 0(n 2 ) times and 0(n ) communication and

the Bellman requires 0(n) time and 0(n ) communication.

In the approach to be taken here, we effect a trade-off between

time and communication by coordinating the algorithm in groups. In

the first group, we find all nodes that are between one hop and k1 hops

from the destination, where kl is an integer to be given later. In the

second group, all nodes between k +1 and k 2 hops away are found, and

in general, in the gth group, all nodes between kgl+l and kg hops from

the destination are found.

At the beginning of the calculation of the gth group, a shortest

hop tree exists from the destination to each node at level kgl A

global synchronizing message is broadcast from the destination node out



-14-

on this tree to coordinate the start of the calculation for this group,

and at the end of the group calculation, an acknowledgement message is

collected back in this tree to the destination. This broadcast and

collection is essentially the same as that done for each level in the

coordinated algorithm of the last section. The saving of time in this

modified algorithm over the coordinated algorithm is essentially due to

the fact that these global coordinating messages are required only once

per group rather than once per level.

Within the gth group of the algorithm, the search for nodes at

levels kgl +l to k is coordinated by a set of nodes called synch nodes;

these nodes are at level kg.2. Each synch node for group g is responsible

for coordinating the search for the nodes at levels kg 1 to kg whose

shortest hop path to the destination passes thru that synch node. Each

synch node essentially uses the coordinated shortest hop algorithm of

the last section (regarding itself as the destination) to find succes-

sively nodes at level kg 1 then k +2 , and up to k . After completing
g-l' g-1 g

the process out to level kg, the acknowledgements are then collected all

the way back to the destination node, which then initiates the next

group.

There is a complication to the above rather simple structure due

to the fact that there is no coordination between the different synch

nodes for a given group. Thus one synch node might find a node that

appears to be at level Z according to the tree being generated from

that synch node, and later that same node might be found at some level

9' <k in the tree generated more slowly by another synch node. What



happens in this case is that the node so effected changes its level

from k to V' and changes its ingoing edge from the first tree to the

second tree. The situation is further complicated by the fact that the

given node might be helping in the first synch node's search for nodes at

yet higher levels, and the change in the node's inedge cuts off an

entire portion of the tree generated by the first synch node. The

precise behavior of the algorithm under these circumstances is described

by the pidgin algol program in the appendix which is executed by each

node. The following more global description, however, will help in

understanding the precise operation.

Each node has a local variable called level giving its current

estimate of the number of hops to the destination. A node's level is

set by a test message coming via synch messages from some synch node.

If part of a tree is cut off, as in the example above, the node whose

inedge is changed immediately changes its level, but the more distant

nodes remain in an inconsistent state for a while, changing their

levels later in response to new test messages.

As in the coordinated algorithm, each node maintains a state for

each adjacent edge, the possible states being unused, in, active, and

inactive. Active and inactive are outgoing edges in the current

estimate of the evolving minimum hop tree, inactive indicating that

no new nodes were found using that edge in the last iteration of the

algorithm.



-16-

An important property of the algorithm is that each test or synch

message sent over an edge is later acknowledged by precisely one ack

message bearing the same level as the message being acknowledged. Normal-

ly the acknowledgements are sent in the same way as in the coordinated

algorithm. When a node changes level, however, it immediately sends the

acknowledgement to any yet unacknowledged synch message. Similarly if a

synch message arrives on the old in edge after a level change, that

is acknowledged immediately. In both cases, the acknowledgement carries

the level of the corresponding synch and indicates that no new nodes

have been found at that level, thus changing the opposite node's edge

state to inactive (assuming the opposite node has not also changed levels

in the meantime). The inactive edge state at the opposite node is in-

appropriate, but the given node must later send a test message over that

edge, removing the temporary inconsistency.

The next important property of the algorithm has to do with the

ability of a node to determine which test or synch message a given

acknowledgement corresponds to. The problem is that a node might change

levels and subsequently send out test messages corresponding to its new

tree before receiving acknowledgements from messages corresponding to

its old tree. A node may, in fact, change levels several times before

receiving these old acknowledgements. The property is that each

acknowledgement to an old message on a given edge must be received before

receiving the acknowledgement to the test message corresponding to the

node's new level. Suppose now that Z was an old level of the node when

some test or local synch message was transmitted and V' is the new node



-17-

level. We must have Q' < Z, since a node only changes level when it

finds a shorter hop path through another synch node. The new test

message that the node subsequently transmits after changing to level i'

is at level 9'+1, so we have 9'+1 < Q. Since any old test message or

synch message is at a level greater than Q, and these acknowledgements

are received before the acknowledgement of the new test message, the

node can distinguish the old ack messages from the new by the level

numbers.

The final property of the algorithm, which follows from the previous

description, is that the time required for a test or synch message to

be acknowledged is at most the time required for the message to be

broadcast out to the appropriate level and be collected back again. In

other words, the fact that some of the nodes further out in the tree may

have changed levels and joined another tree does not increase the

acknowledgement time. With these properties, the reader should be able

to convince himself of the correct operation of the algorithm.

We now turn our attention to the destination node and the calculation

of the number of levels in each group. At the completion of the (g-l)th

group, the shortest hop tree has been formed out to level kgl and the

acknowledgement of this fact has arrived back at the destination. For

reasons that will be apparent later, the choice of level kg depends on

the number, mg-2 of nodes at level kg_2 that will synchronize the

next group. To find this number, the destination synchronizes a single

global iteration of the algorithm at level kg +1 (i.e., the first level

of the new group). The acknowledgements to this special iteration are



-18-

arranged to count the number of nodes at level kg 2 that still have

active edges at this iteration. More specifically, the destination

broadcasts the message (synch kg_2). This is broadcast on the active

edges of the current minimum hop tree out to level kg_2. The nodes at

this level go into a state called "Presynch" and broadcast the message

(synch kgl+l) on their active edges. This message in turn propagates

outward, extends the tree to level kg +l, and the acknowledgements

return to the presynch nodes. Any presynch node with active edges at

this point goes into a state called "Synch" and acts as a synch node

for the next group. The number of acknowledgements from these newly

formed Synch nodes are then collected back to the destination, yielding

the number mg-2 of synch nodes.

The rule for calculating k is now as follows:

k g I kg - n2x if m2 < nx

k + rnx1 if m > n (1)
!kg-l + F nXl ifg-2 x

where n is the number of nodes in the network, x is a parameter, and FYi

is the smallest integer greater than or equal to y. The reason for this

rather peculiar rule will be evident when we calculate the communication

and time complexity of the algorithm. We observe however, that the root

must know the number of nodes in the network in order to use this rule.

A simple distributed algorithm for the root to calculate n is given in

the Appendix. In this algorithm, the destination node broadcasts a

test message throughout the network, and a directed spanning tree,



-19-

directed toward the destination, if formed by each node choosing its

in edge to be the edge on which the test message is first heard. The

number of nodes is then accumulated through this spanning tree. The

algorithm sends two messages over each edge and requires O(n) time, so

it does not effect the order of communication or time required by our

overall algorithm.

Before finding the number of messages and time required by the

modified coordinated shortest hop algorithm, we first find an upper

bound on the number of groups. From (1), the groups are divided into

big groups, with fn2X1 levels and little groups with FnX1 levels. Each

big group (except perhaps the final one) contains at least one node at

2x 1-22x
each level, or at least n nodes. Thus there are at most n +1 big

groups. For each little group, say group g, the preceding group contains

2x x
at least n nodes. To see this, we observe from (1) that mg-2 > n

which means that at the conclusion of generating the minimum hop tree

x
out to level k +1, there are at least n nodes at level k that

g-1 1 g-2

have paths out to kg 1 in that minimum hop tree. Each node path includes

at least nx nodes, yielding the result. Thus there are at most n1-2x

little groups, so the total number of groups G satisifes

G < 2n 1 - 2 x + 1 (2)

A more refined analysis, which is unnecessary for our purposes, reduces

1-2x
this bound to n

Observe now that a node can receive at most two globally coordinated

synch message for each group, so the total number of these messages is



-20-

at most 2nG. Next note that a node in the gth level can only change

levels during the computation of the gth group and, that the levels can

only decrease, so that kg - kg -1 upper bounds the number of level

changes. Note also that each level adopted by a node corresponds to the

shortest hop path through a given synch node, so that mg_2 also upper

x
bounds the number of level changes. From (1), either mg_2 < n or

x
kg - kg - 1 < n . In summary, a node can send out test messages at

most nx times, so that each edge can carry at most nX test messages in each

x 2+x .
direction, and 2e n < n is an upper bound on the total number of

test messages.

Finally we must consider the number of locally coordinated synch

messages. If a node in group g is initially found at level kl' then

that node can receive at most k - l < n 2 x local synch messages before
g 1

either the node changes level again or the group computation is completed.

Similarly after ith level change at that node to level ,i' say, at most

k - Zi local synch messages arrive before the next level change or

group completion. Finally after the group completion, the node receives

at most k - k -1 < n2 x local synch messages for the next group.
g+l g -

3x 2x
Adding up these terms, we find that at most n + n local synch

l+3x l+2x
messages arrive at each node, and n + n is an upper bound to

the total number of locally coordinated synch messages.

Adding all of these types of messages together, and recalling that

there is one acknowledgement message for each other message, the total

number of messages, required on the algorithm is upper bounded by



-21-

C < 2[(2n2 - 2x + n) + 4enx + (n1 + 3 x + n2x (3)

< 4n2-2x + 2n + 4n2+X + 2n+3x + 2n2x (4)

where (3) provides a bound in terms of e and n and (4) provides a bound

in terms of n alone. We can express (4) as

C = O(nC) ; c = max(2 + x, 1 + 3x) (5)

A similar analysis of required time can now be carried out; we

first calculate an upper bound on the time for a single group. The

globally coordinated synchs and their acknowledgements clearly take at

2x
most time 4n. Each synch node must then send out at most n local

synch messages. The time required for one of these local synch messages

to propagate out to the intended level (with a final test message at

the outermost level), and then be acknowledged back to the synch node n, is

at most 4 Fn2xl (since each group contains at most Fn2xl levels and

the local synch messages for group g also traverse the nodes in group

g-l). Since the different synch nodes within a group operate in

parallel and the communications initiated by one never have to wait for

those of another, the total time required by a group is at most

4n + 4 n 2xl Fn2l . Thus the overall required time is this quantity

times G, or

T < [nl 2x + 1][4n + 4 n2x ] (6)

T = 0(nt ) ; t = max(2 - 2x, 1 + 2x) (7)



-22-

We see that t in (7) is minimized at t = 3/2 by x = 1/4, which

leads (from (5)) to c = 9/4. We also see that with this algorithm,

there is a tradeoff between communication and time. By reducing x from

1/4 toward 0, t increases linearly from 3/2 to 2, whereas c decreases

linearly from 9/4 to 2.

The above results are in terms of only the number of nodes, using

1 2
the bound e < ~ n on edges. For relatively sparse networks, the

required amount of communication is considerably reduced. Let us define

a by e = n , so that a close to zero corresponds to sparse graphs

and a close to 1 corresponds to dense graphs. With this modification,

the required time is still given by (7) and the number of messages is

now given by

C = 0(nC ) ; c = max(2 - 2x, 1 + a + x, 1 + 3x) (8)

It is not difficult to see that both t and c increase with x for

x > 1/4, so the tradeoff region of interest is 0 < x < 1/4. Figure 2

shows the resulting tradeoff between t and c for different values of

the sparseness parameter a. For each a, as t is increased from 3/2, c

decreases, but cannot go below t. It should be noted that all values of

a less than 0.4 have the same tradeoff between t and c, going from

t = 1.5, c = 1.75 to t = 1.6, c = 1.6.

The careful reader will note that not much use can be made of the

above tradeoffs unless the sparseness parameter a is known. It is an

easy matter, though, to evaluate e as part of the algorithm for

evaluating n given in the Appendix.



-23-

Appendix

Proof that algorithm G2 has T = O(n)

Since each message contains only a single node identity or level

number, we assume for the purposes of the proof that a message whose

actual transmission starts at time t is completely received by time t+l.

Thus, if the first node to wake up starts to transmit its identity by

time 0, then its neighbors will wake up and start to transmit their

identities by time 1, and by time n each node will have heard the

identity of each of its neighbors, and will have transmitted the message

indicating the end of its "list of nodes zero hops away". These two

facts form the basis for the inductive argument to follow.

Let Ni(x) be the order in which node i transmits the identity of

node x in the algorithm. Thus N.i(i) = 1 since i transmits its own

identity first; for the first neighbor, x, in i's list of neighbors,

N. (x) = 2, and so forth. We assume without loss of generality that

each node i transmits the identities of nodes Z hops away in the order

in which it heard about them.

Lemma 1: Assume that node i's table entry for node x has an in edge

going to node j. Then N (x) > N (x).

Proof: Let y be any node for which Nj (y) < N.(x). Then node i received

node j's hop length to y before receiving node j's hop length to x.

Thus, whether or not node i's minimum hop path to x goes through j, node

i will transmit the identity of y before that of x. Now y in the above

argument can be chosen as any of the N.(x)-l nodes for which Nj (y) < Nj (x).

Since i transmits each of these before x, Ni(x ) > Nj (x).



-24-

Let N!(Z) be the number of nodes Q or fewer hops away from i, with

N!(O) = 1. Note that if a node x is Z-l hops away from some node j, it
1

can be at most Z hops away from a neighbor i of node j. Thus we have

the following lemma.

Lemma 2: N!(k-1) < N!(k) for £ > 1.
3 - 1 -

Let Ti(x) be the time at which node x is transmitted by node i

(assuming the algorithm starts at time 0 and that each transmission

takes at most unit time) and let hi(x) be the hop level of x from i.

Let Ti! ) be the transmission time of the message indicating the end of

transmissions at hop level Z. The following lemma now shows that

T = 0(n) (and in fact that T < 3n).

Lemma 3: For each pair of nodes i and x,

. (x) < n-2+hi (x) + Ni(x) (Al)

i(Q) < n-l+Q+N i() (A2)

Proof: We use induction on the right hand side of (Al) and (A2), using

n-l as the basis for (Al) and n as the basis for (A2). The right hand

side of (Al) is n-l only for x = i, and (Al) has been established for

this case. The right hand side of (A2) is n only for Z = O, which is

established, and the right hand side of (Al) is never n. For the

induction step, first consider (Al) for an arbitrary i,x. In order for

node i to transmit x by the given time, three conditions are necessary.

First, any y for which N.i(y) < Ni(x) must have been transmitted at least

one unit earlier, and this is established by the inductive hypothesis.



-25-

Second, i must have transmitted the indication that level h.(x)-l is
1

completed at least one unit earlier. For 9 = hi(x)-l, the right hand

side of (A2) is n-2+hi(x) + N!(%). Since all the nodes at level 9 or

less are transmitted before x, N!(%) < Ni(x)-l, so that by the induction

hypothesis, i transmitted the completion of level 9 in time. Third, i

must have received a message that x is h.(x)-l hops from some neighbor j.
1

Since Nj(x) < Ni(x) by lemma 1 for the first such j, induction establishes

that j transmitted x at least one unit earlier. Next consider (A2) for

an arbitrary i,9 . Two conditions are necessary here for the time bound

to be met. First, i must have earliertransmitted all x at level 9 or

less from i, which follows immediately by induction from (Al). Second,

i must have received the induction that each neighbor has completed

the list of nodes at level %-l (i.e. i must have not only transmitted

all nodes at hop level ., but must know that it has done so). From

lemma 2, N!(Z-1) < N!(Z) for each neighbor j, and thus by induction,

N! (-1l) < n-l + (Q-l) + N! (%-l), completing the proof.

Algorithm D1 in Pidgin Algol

It is assumed in the following algorithms that an underlying

mechanism exists for queueing incoming messages to a node and for queue-

ing outgoing messages until they can be transmitted on the outgoing edges.

The local algorithm given for each node then indicates first the initial

conditions and operations for the node and second the response taken to

each incoming message. Each incoming message is processed in the order

of arrival (or at least in order for a given edge).



-26-

Each node also maintains a set of local variables, which are now

described for algorithm D1. The variable "level" indicates the number

of hops to the destination on the current minimum hop path, "inedge"

indicates the first edge on this path, "count" indicates the number of

edges on which acknowledgements are awaited, and "m" indicates the

number of nodes found in the current iteration for which the given node

is on the minimum hop path. Finally there is a state associated with

each outgoing edge. There are four possible states for an edge--"unused"

means the edge is not currently in the minimum hop tree, "in" means

the edge is the inedge, "active" and "inactive" mean that the edge is

on the outgoing part of the minimum hop tree, with "inactive" meaning

that no new nodes using that edge will be found at the current

iteration.

Finally, for brevity, the destination node is considered to be

split into two parts, one an ordinary node that follows the same local

algorithm as the other nodes, and the other the "root" which co-ordinates

the algorithm. These two parts are joined by a single conceptual edge,

which does not count in the hop lengths of the other nodes to the

destination.

Root Node Algorithm D1

Initialization

begin 9 : = 0;

send (test 0) on edge end

Response to (ack m) on edge

begin if m = 0 then halt (comment: algorithm is complete);

Z: = 9 + 1 send (synch 9) on edge end



-27-

Ordinary nodes Algorithm D1

Initial Conditions

level = a; for each adjacent edge e, S(e) = unused

Response to (test k) on edge e

if k > level

then send (ack 0) on edge e

else begin level := 9; inedge := e;

S(e) := in; send (ack 1) on edge e end

Response to (synch 9) on edge e

begin m := 0; count := 0;

if k = level + 1

then for each adjacent edge e $ e

begin count := count + 1;

send (test k) on edge e end

else for each adjacent edge e such that S(e) = active

begin count := count + 1;

send (synch Z) on edge e end;

if count = 0 then send (ack 0) on inedge end

Response to (ack m) on edge e

begin count := count - 1; m := m + m;

if m > 0 then S(e) := active;

else if S(e) = active

then S(e) := inactive;

if count = 0 then send (ack m) on inedge end.



-28-

Algorithm D2 in Pidgin Algol

Algorithm D2 is basically the same as D1 with some extra variables

and features. First, each node must keep track of when it is a synch

node or presynch node, and it does this by a node state, which has the

possible values Normal, Synch, and Presynch. Nodes also have a variable

2 representing the current iteration level, and a variable k used by

synch nodes for the last iteration of the group.

Root node - Algorithm D2

Initialization

begin j := 0; 2 := 0; send (test 0) end

Response to (ack Q, m)

if m = 0 then halt (comment: algorithm is complete)

2x
else if 2 < n

then begin g := 2 + 1; send (synch 2) end

(comment: this sychronizes first group)

else if 2 = 2 then send (synch j)

(comment: this initiates count of synch nodes)

else begin j := 2;

if m < nx then 2 := 2 + rn2x

else 2 := 2 + FnX];

send (synch 2) end



-29-

Ordinary nodes - Algorithm D2

Initial Conditions

level = A; State = Normal; count = 0

Response to (test 9) on edge e

if 9 > level

then begin S(e) := unused;

send (ack ,0O) on edge e end

else begin

if count > 0 then send-(ack R,O) on inedge

(comment: this acks outstanding old synch message);

level := Z; 9 := 9; inedge := e;

S(e) := in; count := 0;

send (ack ,1l) on inedge end

Response to (synch 9) on edge e

if e $ inedge then send (ack R,O)

(comment: this acks synch message on outdated tree branch)

else if g = g + 1 and 9 = level then execute procedure

xmit test

else if 9 < 9 and 9 = level then execute procedure

count synchs

else if State = Synch then

begin k :=- 9; execute procedure synchronize

end

else begin 9 := 9; execute procedure xmit_synch

end



-30-

Response to ack(k,m)on edge e

if 2 = 2 then (comment: this ignores outdated acks)

begin if m > 0 then S(e) := active

else if S(e) = active then S(e) := inactive;

m := m + m; count := count -1;

if count = 0 then

begin if State = Normal then send (ack k,m) on inedge

else if State = Synch then execute procedure synchronize

else if m > 1 then

begin m := 1; State := Synch; send (ack level, 1)

end

else begin State := Normal; send (ack level, 0)

end;

end;

end

Procedure xmit test

begin m := O; count := 0; k := 2 + 1;

for each edge e $ inedge do

begin count := count + 1; S(e) := Unused;

send (test 2) on edge e end

if count = 0 then send (ack k,O) on inedge end



-31-

Procedure xmit_synch

begin m := 0; count := 0;

for each edge e such that S(e) = active do

begin count := count + 1; send (synch 9) on edge e end;

if count = 0 then send (ack k,O) on inedge

(comment: count must be non-zero for synch and presynch nodes)

end

Procedure count synch

if m = 0 then send (ack level,O) on inedge

else begin State := Presynch; 9 := 9 + 1;

execute procedure xmit synch end

Procedure synchronize

if m = 0 or I = k

then begin State := Normal; send (ack k,m) on inedge end

else begin 9 := 9 + 1; execute procedure xmit synch end



-32-

Algorithm for Destination to find number of nodes

We again assume that the destination is represented as a root con-

nected to an ordinary node.

Root node

Initialization

send message

Response to (ack n)

halt (comment: n is the number of nodes)

Ordinary nodes

Initial conditions

n = O; count = 0

Response to message on edge e

if'n = 0 then

begin n := 1; inedge := e;

for each e $ inedge do

begin count := count + 1; send message on e end;

if count = 0 then send (ack 1) on e end

else send (ack O) on e

Response to ack n on edge e

begin n := n + n;

count := count -1;

if count = 0 then send (ack n) on inedge end



-33-

\NODES FULLY

DUMBELL NETWORK

Figure 1

2.25

t1

2.0

1.75 S

1.6I

1.5
1.5 1.6 2.0

C

COMPUTATION, TIME TRADEOFF

Figure 2


