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We synthesize and partly review recent developments relating the physics of the half-filled Landau level in two
dimensions to correlated surface states of topological insulators in three dimensions. The latter are in turn related
to the physics of certain three-dimensional quantum spin liquid states. The resulting insights provide an interesting
answer to the old question of how particle-hole symmetry is realized in composite fermion liquids. Specifically
the metallic state at filling ν = 1

2 —described originally in pioneering work by Halperin, Lee, and Read as a liquid
of composite fermions—was proposed recently by Son to be described by a particle-hole symmetric effective
field theory distinct from that in the prior literature. We show how the relation to topological insulator surface
states leads to a physical understanding of the correctness of this proposal. We develop a simple picture of
the particle-hole symmetric composite fermion through a modification of older pictures as electrically neutral
“dipolar” particles. We revisit the phenomenology of composite fermi liquids (with or without particle-hole
symmetry), and show that their heat/electrical transport dramatically violates the conventional Wiedemann-Franz
law but satisfies a modified one. We also discuss the implications of these insights for finding physical realizations
of correlated topological insulator surfaces.

DOI: 10.1103/PhysRevB.93.085110

I. INTRODUCTION

Recently, a number of seemingly disparate research topics
have converged and have been seen to be closely related to each
other. The first is the classic problem of a half-filled Landau
level of spin-polarized electrons in two space dimensions [1,2].
The second is the effects of interactions on three-dimensional
topological insulators and, in particular, the possibility of novel
strongly correlated surface states of such insulators [3]. The
third is the study of three-dimensional quantum spin liquid
phases with an emergent gapless photon, such as may possibly
be realized in quantum spin ice materials [4]. As expected from
such a convergence new insights on each of these problems
have emerged. Amongst other results, an old issue in the
theory of the half-filled Landau level now has a simple and
elegant answer. In a different direction, correlated surface
states of some three-dimensional topological insulators are
now seen to have a surprising physical realization in ordinary
two-dimensional systems.

The purpose of this article is to synthesize and elaborate on
these developments. The core of what we describe is based on
several recent papers [5–8]. However, the point of view and
emphasis that we provide is different from what is contained
in these papers and other existing literature. We present a
simplified, and physically transparent perspective, that distills
the essence of the ideas involved. We begin by describing the
three different research topics separately.

A. The half-filled Landau level

Electrons confined to two dimensions in a strong magnetic
field display the phenomenon of the integer and fractional
quantum Hall effects. We will be concerned with an “un-
quantized” quantum Hall effect (see, e.g., the contribution by
Halperin in Ref. [1]) that occurs when the filling factor ν of
the lowest Landau level is 1

2 . Empirically, this is seen to be
a metal albeit a rather unusual one. The classic theory of this
metal—due to Halperin, Lee, and Read (HLR) [9]—describes

this as a compressible state obtained by forming a fermi surface
of “composite fermions” [10] rather than the original electrons.
In the original HLR theory, the composite fermions are formed
by binding two flux quanta to the physical electrons. At ν = 1

2
this attached flux on average precisely cancels the external
magnetic flux so that the composite fermions move in effective
zero field. This facilitates the formation of a Fermi surface
and leads to an effective field theory of the metal as a Fermi
surface coupled to a fluctuating gauge field which is then used
to describe the physical properties of this metal.

The HLR theory—and some subsequent refinements—
successfully predicted many experimental properties. For
instance when the filling is tuned slightly away from 1

2 ,
the composite fermions see a weak effective magnetic field
and their trajectories are expected to follow cyclotron orbits
with radii much larger than the underlying electrons. These
have been directly demonstrated in experiment [11–14]—for
reviews see, e.g., the contribution by Tsui and Stormer in
Refs. [1,15]. Further, the composite Fermi liquid acts as a
parent for the construction of the Jain sequence of states [2]
away from ν = 1

2 : they are simply obtained by filling an
integer number of Landau levels of the composite fermions.
Finally, the composite Fermi liquid yields the non-Abelian
Moore-Read quantum Hall state through pair “condensation”
of the composite fermions [16].

Despite its success there was one unresolved question
with the theory of the composite Fermi liquid at ν = 1

2 . To
appreciate this, consider the limit that the Landau level spacing
�ωc � Hint (where ωc is the cyclotron frequency and Hint

is the electron-electron interaction). Then it is legitimate to
project to the lowest Landau level. With a two-body interaction
(e.g., Coulomb) the resulting Hamiltonian has a “particle-hole”
symmetry at ν = 1

2 . This symmetry is not manifest in the HLR
description of the composite fermi liquid, and is possibly even
violated by it [17,18]. A lowest Landau level description is
often routinely used in theoretical discussions and numerical
calculations of quantum hall states, including at ν = 1

2 . It is
also not an unrealistic limit to consider in experiments. It is
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thus important to understand how the particle-hole symmetry
should be incorporated into the theory of the composite Fermi
liquid.

B. Interacting topological insulators in three dimensions

In the last decade, condensed matter physics has been
invigorated by the study of topological insulating phases
of matter [19–21]. While much of the initial theoretical
discussion focused on models of noninteracting electrons, in
recent years attention has turned to studies of the phenomenon
of topological insulation in strongly interacting electronic
systems. The effects of interactions raises many questions.
Is the topological distinction between phases obtained in
free fermion models robust to the inclusion of interac-
tions? Are there new phases enabled by interactions that
have no free fermion description? Even if a free fermion
topological phase survives in an interacting system, are there
new correlated surface states that can appear as an alternate to
the ones obtained in the free fermion model?

Tremendous progress on these questions has been achieved
theoretically. Our focus here is on three-dimensional topologi-
cal insulators (TI). In that case for spin-orbit coupled insulators
the free fermion topological insulator is known to be stable to
interactions [22]. Within band theory, the surface of such an
insulator famously consists of the odd number of electronic
Dirac cones. This metallic surface cannot be gapped or ren-
dered insulating with any amount of impurities so long as the
defining symmetries (charge conservation and time reversal)
are preserved. On the other hand, with interactions, several
groups [23–26] described how a symmetry preserving gapped
surface can emerge for the bulk topological insulator. Inspired
by similar constructions [27–31] for bosonic analogs of the
topological insulators these papers showed that such a symme-
try preserving gapped surface requires the kind of topological
order familiar from discussions of the fractional quantum Hall
effect and some quantum spin liquids. However, the symmetry
is implemented in this topologically ordered state in a manner
that is forbidden (“anomalous”) in a strictly two-dimensional
system. Symmetry-preserving surface topologically ordered
phases, besides being conceptually interesting, proved to be
a useful theoretical tool in describing the physics of a class
of interacting generalizations of topological insulators known
as symmetry protected topological (SPT) phases [32]. These
are phases with no nontrivial bulk excitations but which
nevertheless have nontrivial surface states protected by a global
symmetry.

Spin-orbit coupled electronic SPT insulators in 3d (three
dimentions) have a classification [33] by the group Z3

2 as
compared to the Z2 classification without interactions. In
interacting systems, there are thus six spin-orbit coupled SPT
insulators in 3D that are “beyond band theory.” Electronic
SPT phases with many physically interesting symmetry groups
in 3d have been classified [33–35] and their properties are
understood. In several symmetry classes there exist SPT
phases, which are ‘beyond band theory’ (i.e., have no free
fermion description) [33,35]. In addition for some symmetries,
some free fermion topological phases become indistinct from
topologically trivial phases in an interacting system [33–36].
Thus the classification of 3d free fermion SPT phases is

modified in the presence of interactions (see Ref. [3] for a
review).

An important open question in this area is the physical
realization of these various phenomena. For instance, what
kinds of physical systems naturally realize the correlated
surface states of the three-dimensional topological insulator?

C. Quantum spin liquids in three dimensions

Quantum spin liquids are ground states of interacting
quantum spin systems characterized by long-range entangle-
ment between local degrees of freedom. While the theoretical
possibility of such ground states has been appreciated for a
long time it is only in the last decade that credible experimental
candidates have emerged [37]. There are many kinds of
quantum spin liquid phases, which are sharply distinct from
each other. Of particular interest to us are three-dimensional
quantum spin liquid phases that possess an emergent gapless
photon in the excitation spectrum [38–45]. The low-energy
theory of such phases is a (deconfined) U(1) gauge theory.
These phases are hence called U(1) quantum spin liquids.
Their excitation spectrum consists of a gapless emergent
“photon,” and emergent particle-like excitations that couple to
the photon as electric or magnetic charges. Such spin liquids
may possibly be realized in quantum spin ice materials on
pyrochlore lattices [46]. The spin hamiltonian describing these
pyrochlore magnets is rather complicated and is characterized
by very little symmetry [46]. The only internal symmetry is
time reversal. This motivates a classification and description
of time-reversal invariant U(1) quantum spin liquids in three
dimensions [6].

Of particular interest to us is the so-called “topological
Mott insulator” discussed in Ref. [47] as a possible state in py-
rochlore iridates such as Y2Ir2O7. This is a three-dimensional
time-reversal symmetric U(1) quantum spin liquid state where
the gapped emergent “electric” charge (denoted a spinon) is
a gapped fermion that is a Kramers doublet under the time-
reversal symmetry. Furthermore, this spinon has topological
band structure leading to protected surface states.

Naively, many other similar constructions of U(1) quantum
spin liquids are possible where the emergent electric or
magnetic charges themselves form an SPT phase. How are
these different constructions related to each other?

D. Summary and plan

We will see below that these three topics are closely
connected to each other, and that these connections lead to
a wealth of fresh insights. In a recent paper, Son [5] proposed
a particle-hole symmetric formulation of the composite Fermi
liquid in the half-filled Landau level. This proposal was
motivated by thinking about the half-filled Landau level in a
microscopic system of Dirac fermions in a magnetic field such
as may arise at the surface of a three-dimensional topological
insulator. The composite fermi liquid was suggested to be
also described by a single Dirac cone at finite density (with
particle-hole symmetry playing the role of time reversal), and
with a coupling to a U(1) gauge field. In another recent
paper [6], the present authors classified and described the
physics of time-reversal symmetric U(1) quantum spin liquids

085110-2



HALF-FILLED LANDAU LEVEL, TOPOLOGICAL . . . PHYSICAL REVIEW B 93, 085110 (2016)

in 3d. The results were then applied in Ref. [7] to deriving
a new gapless metallic surface state of the 3d topological
insulator. This same result and some of the results of Ref. [6]
were also independently obtained in Ref. [8]. The improved
understanding of the topological insulator surface paves the
way for an understanding of Son’s proposal.

In the rest of this paper, we will synthesize these results in
a manner that exposes the physics most simply. We begin
by describing the action of particle-hole symmetry in the
half-filled Landau level (Sec. II) and then describe Son’s
proposed theory (Sec. III). Next, in Sec. IV, we provide a
physical description of the particle-hole symmetric composite
fermion. This modifies and extends a previous physical picture
of the composite fermion as a neutral dipolar particle. We argue
that this modification is natural when particle-hole symmetry
is present. We show that the most essential features of the
particle-hole symmetric composite fermion follow simply and
naturally from this modified picture. We support our arguments
by solving in Appendix A a simple model of two-particle
quantum mechanics which illustrates several of the key
features. We then provide, in Secs. V and VI, an alternate
understanding of the half-filled Landau level by relating it
to correlated surface states of three-dimensional fermionic
topological insulators. As described above, such surface states
have “anomalous” symmetry implementation not possible
in a strictly 2d (two-dimensional) system. Remarkably, the
well studied half-filled Landau level—despite being strictly
2d—provides a physical realization of such a state, and
makes it relevant to experiments. This is possible because
the particle-hole symmetry is not really a microscopic local
symmetry in the physical Hilbert space of the two-dimensional
system but is an emergent low-energy symmetry of a single
Landau level.

We describe (in Sec. VII) how these correlated surface
states are fruitfully constrained by studying the properties of
the three-dimensional bulk when the fermions are coupled to a
dynamical U(1) gauge field. The resulting state is to be viewed
as a 3d U (1) quantum spin liquid, in particular, a “topological
Mott insulator.” We review arguments of Refs. [6,8] showing
that the topological Mott insulator admits two equivalent but
dual descriptions as either charge or monopole topological
insulators in Sec. VIII. The consequences [7,8] of this bulk
duality for correlated surface states of the original topological
insulator are then described in Secs. IX and X. We then revisit
the composite fermi liquid (in Sec. XI) with this understanding
of the correlated surface states and show that it matches exactly
with Son’s proposed theory. We then consider (Sec. XII)
a particle-hole symmetric version of a paired non-Abelian
quantum Hall state [5] obtained by pairing the composite
fermions. This state is identical to a symmetry preserv-
ing surface topologically ordered state discussed previously
[34–36] for the corresponding 3d topological insulator. We
show that this particle-hole symmetric Pfaffian state gives
further support to the modified dipolar picture of the composite
fermion.

With this understanding we revisit the phenomenology of
composite Fermi liquids in Sec. XIII with or without particle-
hole symmetry. We show that many of the essential features
of the HLR theory (which have successfully confronted
experiment) are preserved, for instance, in the electromagnetic

response. We turn next to the heat transport of the composite
fermi liquid metal (which does not seem to have been discussed
before). We show, both within the conventional HLR theory
and the particle-hole symmetric version, that there is a dramatic
violation of the conventional Wiedemann-Franz relationship
between the heat and electrical conductivities. However, the
composite fermi liquid should satisfy a modified Wiedemann-
Franz law. This can possibly be tested in future experiments.
We also make some brief comments on the cyclotron radius
away from half-filling, and on the effects of disorder. A key
feature of the particle-hole symmetric theory is the presence of
a π Berry phase when the composite fermion circles around the
Fermi surface. In Appendix D, we show that this Berry phase
is implied by the standard Shubnikov-deHaas oscillations near
ν = 1

2 after a simple but revealing reinterpretation.

II. PARTICLE-HOLE SYMMETRY AND THE
HALF-FILLED LANDAU LEVEL

We begin with the half-filled Landau level in two di-
mensions and describe the action of particle-hole symmetry.
Consider the full set of single-particle eigenstates φI,m(x,y)
where I labels the Landau level and m the orbital within
each Landau level, for instance, in the symmetric gauge.
The microscopic electron destruction operator ψe(x,y) may
be expanded as

ψe(x,y) =
∑
I,m

φI,m(x,y)cI,m. (1)

The cI,m are electron destruction operators for the single
particle state indexed by (I,m) and satisfy the usual fermion
anti commutation relations. To project to the lowest Landau
level, we truncate the expansion by keeping only the I = 0
terms:

ψe(x,y) ≈
∑
m

φ0mcm (2)

(here and henceforth drop the Landau level index 0 and denote
c0,m simply by cm). The particle-hole transformation in the
lowest Landau level is defined to be an antiunitary operator C

such that

CcmC−1 = h†
m, (3)

Cc†mC−1 = hm. (4)

The hm satisfy fermion anti commutation relations. A two-
body Hamiltonian acting within the lowest Landau level can
be written:

Hint = 1

2

∑
m1,m2,m

′
1,m

′
2

c
†
m′

1
c
†
m′

2
cm2cm1〈m′

1m
′
2|V m1m2〉. (5)

The antiunitary C operation leaves this interaction invariant
but generates a one-body term. At half-filling, this is exactly
compensated by a chemical potential so that the Hamiltonian
is particle-hole symmetric. Note that the total electron number
Ne = ∑

m c
†
mcm transforms as

C

(∑
m

c†mcm

)
C−1 = Nφ −

∑
m

h†
mhm (6)
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(Nφ is the number of flux quanta and hence the degeneracy of
the Landau level). Thus as expected the electron filling factor
ν = Ne

Nφ
transforms to 1 − νh with νh the hole filling factor.

Note that under the C transformation the empty state |0〉
is transformed to the filled Landau level. If a state |�〉 at
ν = 1

2 is particle-hole invariant, i.e., C�〉 = |�〉, then we can
view it either as a state of electrons at half-filling or as the
combination of a filled Landau level and the same state of
holes at half-filling. This leads to the conclusion [17] that the
electrical Hall conductivity in such a state is exactly σxy = e2

2h
.

The full symmetry of the half-filled Landau level thus
is U(1) × C [the U(1) is the familiar charge-conservation
symmetry]. As C is antiunitary, the direct product structure
means that the generator of U(1) rotations (the deviation of the
physical charge density from half-filling) is odd under C.

III. PARTICLE-HOLE SYMMETRY AND THE
COMPOSITE FERMI LIQUID

It has been appreciated for some time [17,18] that the
effective field theory proposed by HLR for the half-filled
Landau level is not manifestly particle-hole symmetric, and
is perhaps even inconsistent with it. On the other hand,
numerical calculations performed in the lowest Landau level
show that with the projected two-body Coulomb interaction
the Fermi-liquid-like state at half-filling preserves particle-
hole symmetry (see, for instance, Ref. [48]). It is therefore
important to construct a description of the composite fermi
liquid theory which explicitly preserves the particle-hole
symmetry. A very interesting proposal for such a theory
was made recently by Son [5]. The composite fermion was
proposed to be a two-component Dirac fermion field ψv at
a finite nonzero density, and with the effective (Minkowski)
Lagrangian:

L = iψ̄v(/∂ + i/a)ψv − μvψ̄vγ0ψv + 1

4π
εμνλAμ∂νaλ. (7)

Here, aμ is a fluctuating internal U(1) gauge field and Aμ is
an external probe gauge field. The 2 × 2 γ matrices are γ0 =
σy,γ1 = iσz,γ2 = −iσx . μv is a composite fermion chemical
potential that ensures that its density is nonzero. The physical
electric current is

jμ = 1

4π
εμνλ∂νaλ. (8)

Here, the 0-component is actually the deviation of the full
charge density ρ from that appropriate for half-filling the
Landau level, i.e.,

j0 = ρ − B

4π
. (9)

Here and henceforth (unless otherwise specified), we will
work in units where the electron charge e = 1 and � = 1.
In the presence of long-range Coulomb interactions, the
above Lagrangian must be supplemented with an additional
interaction term

∫
x,x′ j0(x)V (x − x′)j0(x′), where V is the

Coulomb potential.
The Lagrangian above describes the dynamics of the

composite fermions, and their coupling to external probe

electromagnetic fields. To obtain the full response of the lowest
Landau level to the electromagnetic field, this Lagrangian
must be supplemented by a “background” Chern-Simons term,
which accounts for the σxy = e2

2h
demanded by particle-hole

symmetry. This background term takes the form

Lbg = 1

8π
εμνλAμ∂νAλ. (10)

Note the similarity of Eq. (8) with the usual HLR theory.
There are, however, some important differences between Son’s
proposal and the HLR theory. Under the original particle-
hole symmetry operation C, the composite fermion field ψv is
hypothesized to transform as

CψvC
−1 = iσyψv. (11)

Thus ψv goes to itself rather than to its antiparticle under C.
Further, this transformation implies that the two components
of ψv form a Kramers doublet under C (recall that C is
anti unitary). With this transformation, the Lagrangian is
manifestly invariant under C so long as we choose a0 →
a0,ai → −ai and let the time t → −t . The deviation j0 of
the physical charge density from half-filling [see Eq. (8)] is
then odd under C as required.

These composite fermions are at a nonzero density B
4π

and fill states upto a Fermi momentum Kf . This should be
compared with the HLR theory where the prescription for
the composite fermion density is just the electron density ρ.
At half-filling, we have ρ = B/4π and the two prescriptions
agree. However, these two prescriptions are different on going
away from half-filling. We will see later (in Appendix D) that
this slight difference actually plays a crucial role.

Returning to the particle-hole symmetric theory, the “Dirac-
ness” of the composite fermion is manifested as follows: when
a composite fermion at the Fermi surface completes a full
circle in momentum space its wave function acquires a Berry
phase of π . This is a “low-energy” manifestation of the Dirac
structure that does not rely on the specifics of the dispersion
far away from the Fermi surface.

Finally, notice that unlike in the original HLR theory (but
actually similar to subsequent work [49,50] on the related
problem of bosons at ν = 1) there is no Chern-Simons term
for the internal gauge field aμ.

If we ignore the gauge field, Eq. (7) actually describes
a single Dirac cone that arises at the surface of 3d spin-
orbit coupled topological insulators. Interestingly, in this
effective theory, C plays the role of time reversal as is clear
from Eq. (11). Thus the proposed particle-hole symmetric
composite fermi liquid theory is this single Dirac cone coupled
to an emergent U(1) gauge field.

In the sections that follow, we will build an understanding of
the correctness of Son’s proposal through physical arguments
and by relating the half-filled Landau level to topological
insulator surface states. An alternate recent discussion [18] of
particle-hole symmetry in the half-filled Landau level proposes
an “anti-HLR” state as a particle-hole conjugate of the HLR
state. We will, however, not describe it here.
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IV. PHYSICAL PICTURE OF THE PARTICLE-HOLE
SYMMETRIC COMPOSITE FERMION

We now provide a very simple physical picture of these
particle-hole symmetric composite fermions by relating them
to previous constructions of the composite Fermi liquids.
Subsequent to the original HLR theory through a process of
intense reexamination [49,51–56] a picture of the composite
fermion as a neutral dipolar particle emerged. This is illustrated
by considering the composite fermion at a filling ν = p

2p+1

slightly different from 1
2 . Then a fractional quantum hall

state is possible and is described by filling p Landau levels
of microscopic composite fermions obtained by the usual
attachment of 4π flux to the electron. At the mean-field
level, the excitations about this state are single microscopic
composite fermions but their charge/statistics will be modified
by the background quantum hall effect. The true low-energy
quasiparticle has fractional charge e∗ = e

2p+1 . Thus when ν

goes to 1
2 (corresponding to p going to ∞), the low-energy

quasiparticle might be expected to have e∗ = 0. Its statistics
also reverts back to fermionic when p → ∞.

Physically, due to the electrical Hall conductivity 1/2, the
4π flux attached to the electron acquires an electric charge of
−e which compensates for the electron’s charge. In a lowest
Landau level description of the theory, it is appropriate to
replace the concept of flux attachment with the related concept
of binding vortices to the particles. In such a description Read
proposed [51], based on a wave function for the HLR state,
that the vortex is displaced from the electron by an amount
perpendicular to the momentum of the composite fermion.
The key idea is that when projected to the lowest Landau
label a phase factor like eik·r generates a translation of the
correlation hole (the vortex) bound to the electron by an
amount proportional to and perpendicular to the momentum.
Let us briefly describe this logic. The standard flux attachment
procedure leads naturally to a wave function for the composite
Fermi liquid:

ψ(z1, . . . ,zN ) = PLLLdet(eiki ·rj )
∏
i<j

(zi − zj )2. (12)

Here, zi are the complex coordinates of the ith electron and ri

is the same coordinate in vector form. We have suppressed the
usual Gaussian factors. This is known as the Rezayi-Read wave
function [57]. The factor (zi − zj )2 has the effect of attaching
a 4π vortex to each electron to convert it into a composite
fermion. The Slater determinant then builds a Fermi sea of
the composite fermions. As the plane-wave factors do not stay
within the lowest Landau level it is necessary to project back
to it through the operator PLLL. Now write

eik·r = e
i
2 (k̄z+kz̄). (13)

Here, k = kx + iky and k̄ = kx − iky . In the lowest Landau
level, we should replace z̄ → 2l2

B
∂
∂z

. This leads to the expec-
tation that in the wave function the terms involving z̄ will shift
the vortex away from the particle in the direction perpendicular
to k and by an amount proportional to it. This line of thought
leads to a dipolar picture of the composite fermion as shown
in Fig. 1.

e -e

4

FIG. 1. The standard picture of the composite fermion at ν = 1
2

regards it as an electron (of charge e) bound to a 4π vortex. The
vortex carries charge −e and is displaced from the electron in the
direction perpendicular to its momentum. The composite fermion is
thus viewed as a neutral dipolar particle.

Though this wave function-based thinking has been criti-
cized (see, e.g., Ref. [56]), the final dipolar description gained
wide acceptance in the late 90s through more sophisticated
kinds of calculations [49,52–55].

The resulting picture was that the low-energy composite
fermions (as opposed to the microscopic composite fermions)
were electrically neutral dipoles with a dipole moment
perpendicular to their momentum (see Fig. 1), and it is
these low-energy composite fermions that live near the Fermi
surface. These neutral dipolar composite fermions continue
to couple to a U(1) gauge field but without a Chern-Simons
term. The flux of this gauge field, however, is the physical
electrical 3-current and hence couples directly to the external
probe gauge field.

Particle-hole symmetry was not addressed in these prior
works (except by Dung-Hai Lee’s work [54] whose exact
relation with the present circle of ideas is not clear). Here, we
show how a modification of this picture captures the essential
features of the particle-hole symmetric composite fermion.

Let us begin with a discussion of wave functions for the
half-filled Landau level, which was the initial motivation for
the dipolar picture. We now show how this line of thinking
leads actually to a different picture, which naturally enables a
particle-hole symmetric description, and provides a physical
basis to Son’s proposal.

It is well-known that fermion wave functions in the lowest
Landau level must have the structure

ψ(z1,z2, . . . ,zN ) =
∏
i<j

(zi − zj )f (z1, . . . .,zN ), (14)

where f is a symmetric polynomial. The zi − zj structure is a
zero of the wave function that is demanded by Pauli exclusion.
Thus whatever state we build in the lowest Landau level, Pauli
exclusion guarantees that there is one 2π vortex that is sitting
exactly on top of the electron.

At ν = 1
2 , the symmetric function f can be taken to be

the wave function of bosons at ν = 1, which can also form
a composite Fermi liquid state. For bosons at ν = 1, the
composite Fermi liquid theory is, in fact, better established
theoretically [49,50,53] than for fermions at ν = 1

2 . This
bosonic composite liquid is obtained by binding a 2π vortex
to the particle. The wave function, or other arguments, then
show that this vortex is indeed displaced from the particle in
the manner described above.

We thus expect the following picture for the structure of the
composite fermion at ν = 1

2 . One 2π vortex sits exactly on the
electron, while the other is displaced from it (in the direction
perpendicular to the composite fermion momentum). A single
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e/2 -e/2

22

FIG. 2. The proposed picture of the particle-hole symmetric
composite fermion at ν = 1

2 . One end of the dipole has a 2π vortex
bound to charge e

2 . The other end has a charge − e

2 also bound to a
2π vortex. The displacement between the two is in the direction
perpendicular to their center-of-mass momentum. The positively
charged end can be viewed as a 2π vortex located exactly on the
electron. Thus compared to the picture in Fig. 1 only one 2π vortex
is displaced from the electron.

vortex at ν = 1
2 will have charge −1/2. Thus the electron

bound with the single vortex will have charge +1/2. We thus
obtain a dipole with two 2π vortices at either end, one with
electric charge +1/2 and the other with electric charge −1/2
(see Fig. 2).

This dipole picture is very close to the ones developed
before. It, however, makes clear how particle-hole symmetry
operates and captures the essential features of Son’s proposed
description. To see this cleanly, consider the limit in which
the two ends of the dipole are separated by a distance much
larger than the “size” of each vortex. Then the self and mutual
statistics of the two ends of the dipole are well defined. One end
carries a 2π vortex and an associated electric charge 1/2, and
hence is a semion. The other end of the dipole is an antisemion
as it carries a 2π vortex but now with opposite electric charge
−1/2. They clearly are also mutual semions (see Fig. 3), i.e.,
when one of these goes around the other there is a phase of
π . In the absence of this mutual statistics, the dipole—as a
bound state of a semion and an antisemion—will be a boson.
However, the mutual statistics converts this bound state into a
fermion, exactly consistent with direct expectations since we
are binding two vortices to the electron.

Let us now turn to the action of C. Note first that as
the electric charge is odd under C, while the vorticity is
even, the effect of C is to reverse the direction of the relative
coordinate (i.e.,, the dipole moment). This should be contrasted
with the standard picture where the dipole moment is reversed
under C but the 4π vortex is unaffected so that the particle-hole
transformed object is not simply related to the original one.

We can now understand the Kramers doublet structure
(under C) directly from this picture of the particle-hole

e/2

-e/2
Phase of 

FIG. 3. When one end of the dipole of Fig. 2 is rotated in a closed
loop around the other end, there is a phase of π .

symmetric composite fermion. Let us fix one end of the dipole
to be at the origin, and understand the dynamics of the relative
coordinate. Due to the phase π when the relative coordinate
rotates by 2π , the orbital angular momentum is quantized to
be a half-integer. If we restrict to the low-energy doublet with
orbital angular momentum ± 1

2 , the orientation of the relative
coordinate become the x and y components of a spin operator
S that acts on this doublet. The z component is then the angular
momentum ± 1

2 of the two states in the doublet. As both this
angular momentum and the relative coordinate are odd under
C, we have CSC−1 = −S. It follows immediately that this
dipole is a Kramers doublet.

Finally, it is easy to argue that these are Dirac fermions.
Though at zero momentum the two states in the doublet are
degenerate, at any nonzero momentum, there will be a dipole
moment as explained above. In the proposed theory, the dipole
moment is precisely the x and y components of the “spin” of
the Kramers doublet—so the locking of the dipole moment to
the direction perpendicular to the momentum is precisely the
spin-momentum locking of a Dirac fermion. In particular, if
the momentum is rotated by 2π the dipole moment rotates by
2π and the wave function has a phase of π .

These arguments are spelt out in detail in Appendix A.
There we solve a simple problem of two quantum particles of
opposite charge moving in a uniform magnetic field. The two
particles are taken to be mutual semions, i.e, when one goes
around the other there is a phase of π . Further, we impose an
antiunitary C symmetry that interchanges the coordinates of
the two particles. The solution shows the emergence of both
the Kramers structure as well as the spin-momentum locking
of the dipolar bound state of these two particles.

If we form a Fermi surface of these composite fermions,
the low-energy state at any momentum point K will have a
unique direction of “spin” polarization perpendicular to K.
Its Kramers partner is the state at −K, which has exactly
the opposite “spin” polarization. When the composite fermion
goes around it’s Fermi surface the rotation of the momentum by
2π thus forces a Berry phase of π . We can see that this “new”
dipole is the natural fate of the “old” dipolar picture when
ν = 1/2 and particle hole symmetry is taken into account.

Thus we now have a very simple physical picture of the
structure of the particle-hole symmetric composite fermion.
This physical picture also establishes a continuity between the
theory of the particle-hole symmetric composite fermi liquid
with the earlier descriptions. We turn next to a different un-
derstanding of the particle-hole symmetric half-filled Landau
level which yields powerful insights.

V. THE HALF-FILLED LANDAU LEVEL AS A
TOPOLOGICAL INSULATOR SURFACE STATE

It is important to emphasize that the C symmetry at ν = 1
2

is not an exact ultraviolet (UV) symmetry of the theory.
Further, it does not act locally in the microscopic Hilbert
space. It is an emergent nonlocal symmetry of just the lowest
Landau level at half-filling with the restriction to a two-body
interaction (or more generally to 2n-body terms). As a matter
of principle an exact projection from higher Landau levels
will also have three-body terms, etc. which will break the
C symmetry. A useful approximation, in the limit of weak
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Landau level mixing, is to ask about the ground state in
the lowest Landau level with exact C symmetry, and then
understand the C-breaking effects as a perturbation.

Can we find a UV completion of the half-filled Landau
level that retains C as an exact microscopic local symmetry?
We turn next to this question.

Consider fermions in 3d with a symmetry group U(1) ×
C. For now, we define C acting on these fermions to be an
antiunitary operator, which is such that the generator of the
U(1) symmetry is odd under C. As an example consider a
lattice tight-binding Hamiltonian

H3d =
∑
ij

∑
s

tij c
†
iscjs + H.c. + �ij (c†i↑c

†
j↓ + c

†
i↓c

†
j↑) + H.c.

Here, i and j are sites of a 3d lattice, s = ↑,↓ is the electron
spin. The triplet Cooper pairing term breaks charge conserva-
tion, and SU(2) spin rotations but leaves a U(1) subgroup of
rotations generated by Sz invariant. So long as the hopping and
pairing parameters are real, the Hamiltonian is also invariant
under an anti unitary time-reversal operation, which we denote
C that acts locally and takes cis → i(σy)

ss ′cis ′ .
Consider gapped free fermion Hamiltonians with this sym-

metry.1 The progress on topological insulators/superconductor
shows that in 3d such systems are classified [58,59] by the
group Z corresponding to an integer topological invariant
which we label n. Correspondingly at the two-dimensional
interface with the vacuum there is a gapless surface state with
n Dirac cones with the Lagrangian:

L =
n∑

α=1

ψ̄α(−i /∂)ψα (15)

with the following symmetry action:

U(λ)ψαU−1(λ) = eiλψα, (16)

CψαC−1 = iσyψ
†
α. (17)

The fermions ψα are each 2-component and the corresponding
γ matrices are γ0 = σy,γ1 = σz,γ2 = σx . The fermion density
ψ†

αψα is odd under C. Thus the symmetry action on the surface
is U(1) × C as required. Further, the oddness under C implies
that we cannot add a chemical potential term so that the Dirac
fermions are necessarily at neutrality.

Recent work [35,36] shows that with interactions this Z

classification is reduced to Z8 (so that only n = 0,1, . . . ,7 are
distinct phases)2. We will henceforth focus on the n = 1 state
which is stable to interactions.

We will take the liberty of calling the generator of the global
U(1) symmetry as “charge” irrespective of its microscopic
origins in an electron model. This charge is odd under the
anti unitary C operation. We will further take the liberty
of occasionally referring to C as “time reversal.” When the

1This symmetry class is denoted A III in the topological insulator
literature.

2There is an additional symmetry protected topological phase which
cannot be described within free fermion theory so that the full
classification [35] is Z8 × Z2.

results are applied to the half-filled Landau level discussed
in the previous section the C operation will be interpreted
physically precisely as the antiunitary particle-hole symmetry
transformation (hence the same symbol as in the previous
section). In that context C should of course not be confused
with physical time reversal which is not a symmetry of the
half-filled Landau level.

Consider coupling the surface theory, at n = 1, to external
static “electromagnetic” fields that couple to the U(1) charge
and current densities. As the charge is odd under C the current
is even. Then electric fields are C-odd while magnetic fields are
C-even. We can thus perturb the surface theory by introducing
an external magnetic field while preserving the U(1) × C
symmetry. We will work in a limit in which we assume that
the continuum approximation [Eq. (15)] is legitimate. The
resulting Lagrangian takes the form

L = ψ̄(−i /∂ + /A)ψ + · · · (18)

with ∇ × A = Bẑ (taking the surface to lie in the xy plane).
The “. . . ” represent four fermion and other interaction terms
consistent with symmetry. In the absence of these interactions,
the spectrum has the famous Dirac Landau levels with energy
Em = ±√

2mB. For nonzero m, each level comes with a
partner of opposite energy. Most importantly, there is a zero
energy Landau level that has no partner. Now the C symmetry
implies that this zeroth Landau level must be half-filled.

At low energies, it is appropriate to project to the zeroth
Landau level. We thus end up with a half-filled Landau level.
As usual in the noninteracting limit this is highly degenerate
and we must include interactions to resolve this degeneracy.
Thus the surface of this 3 + 1-d topological insulator maps
exactly to the classic problem of the half-filled Landau level.
Note however that the U(1) × C symmetry of the full TI maps
precisely to the expected U(1) × C symmetry of the half-filled
Landau level.

Thus we have obtained a UV completion that retains
U(1) × C as an exact microscopic local symmetry. The price
we pay is that it is the boundary of a TI that lives in one
higher dimension. Further, our ability to obtain it this way
implies that there is no strictly 2d UV completion of the
half-filled Landau level that has U(1) × C as an exact local
symmetry. It follows that to understand the half-filled Landau
level we must study strongly correlated surface states of the
n = 1 3 + 1-dimensional topological insulator with U(1) × C
symmetry.

VI. CORRELATED SURFACE STATES OF 3d
TOPOLOGICAL INSULATORS

Let us consider quite generally the surface of a three-
dimensional topological insulator. To keep continuity with the
previous section, we will phrase the discussion in terms of the
n = 1 3 + 1-D topological insulator with U(1) × C symmetry.
We also initially specialize to B = 0. Later we will turn on
a nonzero B. The simplest surface state—and the only one
realized within band theory—is the free Dirac cone described
by the Lagrangian in Eq. (15) with n = 1. With interactions
though other states are possible [23–27,60,61].

The surface may spontaneously break the defining sym-
metries. For instance, if C is broken, then a Dirac mass is
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allowed. This leads to a quantized Hall conductance which is
shifted from integer by a 1/2. Thus if we consider a domain
wall between the two possible orientations of the C-breaking
order parameter, it will support a chiral current carrying edge
mode. Crucial to the discussion that follows will be a different
surface state that preserves C but spontaneously breaks the
global U(1) symmetry—a surface “superconductor.” Finally, a
gapped surface that preserves the full U(1) × C symmetry is
also possible. This price to pay is that such a surface state has
what is known as “intrinsic topological order” with gapped
“anyon” excitations carrying fractional charge. For the n = 1,
topological insulator of interest such a state was described in
Refs. [34–36], and shown to be non-Abelian. We will return to
this state later but first we discuss the surface superconductor
in greater detail.

We will restrict attention to gapped superconducting ground
states. As is usual in any superconductor the excitations
are gapped fermionic Bogoliubov quasiparticles and vortices,
which quantize external magnetic flux in units of mh

2e
≡ mπ .

In addition in the absence of long-range Coulomb interactions,
there is a gapless zero sound (Goldstone) mode, which leads to
a logarithmic interaction between the vortices. We will initially
ignore this zero sound mode; later, we will be able to reinstate
it in a straightforward manner.

This superconducting state preserves the C symmetry, and
we can ask about the C transformation properties of the various
excitations. As the U(1) charge is odd under C, the phase of the
Cooper pair is even under C. It follows that the vorticity is even
under C. The structure of the vortices has many similarities to
those in the familiar Fu-Kane superconductor [62] obtained
at the surface of the usual topological insulator. In particular,
mπ vortices vm with m odd trap Majorana zero modes. As we
are imagining turning off the coupling to the zero sound mode
[for instance, by weakly coupling the U(1) currents to a gauge
field], the vortices will have finite energy and we can discuss
their statistics. Due to the Majorana zero modes vm with m

odd will be non-Abelian.
What about vm with m even? Below we will argue that

there are two vortices at m = 2 denoted v2± one of which is
a semion and the other is an antisemion. These two differ by
binding a neutralized Bogoliuobov quasiparticle. They also go
into each other under the C operation. Most crucially from
these we can build a m = 4 vortex that goes to itself under the
C operation by binding together v2+ and v2−. Remarkably, this
bound state, which we dub v4, is a fermion that is a “Kramers
doublet” under the antiunitary C operation:

C2v4C−2 = −v4. (19)

We can also construct other m = 4 vortices by binding the
neutralized Bogoliuibov quasiparticle to v4 (they can be
thought of as v2

2+ ∼ v2
2−). Finally, the strength-8 vortex is a

boson that transforms trivially under C.
We will justify these results in the following section.

However, for now, we pause to describe our strategy for
understanding correlated surface states (including when a
nonzero B field is turned on). We start from the surface
superconductor and ask how the broken U(1) symmetry may
be restored. One option is that the superconducting order is
destroyed by losing the pairing gap. At B = 0, this leads to
the free Dirac cone, and at B > 0 to the half-filled Landau level

g

B

SC

Dirac metal

Composite 
Fermi Liquid

Dual
Dirac 
metal

FIG. 4. Schematic phase diagram for the surface of the correlated
n = 1 topological insulator with U(1) × C symmetry. g is a parameter
that controls the relative strength of Cooper pairing versus the phase
stiffness in the superconductor. At B = 0, with increasing g pairing is
lost leading to the Dirac metal obtained within band theory. At small
g, superconductivity is destroyed through phase fluctuations leading
to the “dual” Dirac metal. Many other phases are also of course
possible. Particularly interesting is a symmetry preserving surface
topological order. At nonzero B, the composite fermi liquid emerges
as one of the possible phases.

whose fate will be decided by interactions. Alternately, we may
destroy the superconducting order through phase fluctuations,
i.e., by proliferating vortices. To obtain a symmetry preserving
state, we must proliferate vortices that are either fermions or
trivial bosons. The former leads to gapless surface states. In
particular, when B > 0, it leads to a quantum vortex liquid
of v4 vortices. The resulting state is remarkably similar to the
composite Fermi liquid expected in the half-filled Landau level
with the additional virtue that it is manifestly C symmetric. We
depict in Fig. 4 a schematic phase diagram of the surface of
this TI illustrating some of the various possibilities.

VII. TOPOLOGICAL INSULATORS AND
TIME-REVERSAL SYMMETRIC U(1)

QUANTUM SPIN LIQUIDS

How should we understand the claims made about the
structure of the even strength vortices in the surface super-
conductor? One approach is to work directly with the surface
theory and examine the structure of the vortices in greater
detail. Within the Bogoliubov-deGennes mean field theory,
strength-mπ vortices will have m Majorana zero modes.
Knowing the action of C symmetry, we can then study the fate
of these zero modes in the presence of interactions to deduce
the properties of the vortices. Here, however, we will describe
a different and more insightful approach, which enables us to
deduce the properties of the even strength vortices.

First, let us ask how we might create such vortices in the
first place. As usual, a strength mh

e
≡ mπ vortex with even m

may be created in a superconductor by threading in external
magnetic flux of mh

e
through a point. At the surface of the

three-dimensional bulk, this process of flux insertion has a very
nice and useful interpretation. We can think of it as throwing a
magnetic monopole from the outside vacuum into the sample
of the topological insulator as depicted in Fig. 5. Recall that
by Dirac quantization the magnetic monopole has strength
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Vacuum Insulator

Interface
superconductor

mh/e monopole

mh/e  
vortex

FIG. 5. When a strength mh

e
monopole from the outside vacuum

tunnels into the bulk insulator through a surface superconductor, it
leaves behind a strength mhe vortex at the surface. Understanding
the properties of the monopole in the bulk constrains the properties
of the corresponding surface vortex.

mh
e

with m even. When such a monopole passes through the
superconducting surface to enter the bulk it leaves behind
precisely a mπ vortex with m even.

Thus the properties of the surface vortices can be inferred
from the properties of the bulk magnetic monopoles [23,29,35]
or vice versa [28,35,36]. In the outside vacuum, the monopole
is a trivial boson. If inside the topological insulator sample the
monopole has some nontrivial properties then the vortex left
behind at the surface through a monopole tunneling event will
also inherit the same nontrivial properties. We emphasize that
at this stage the bulk monopole is a “probe” of the system and
should not be viewed as a dynamical excitation.

To discuss these monopoles somewhat precisely, let us
imagine that we couple the microscopic fermions that form
the bulk insulator to a dynamical compact U(1) gauge field in
its deconfined phase. The microscopic fermions become the
elementary electric charges. We are interested in the fate of
the magnetic monopoles.

Consider a bit more carefully the interpretation of the theory
obtained by gauging an insulator formed out of the fermions.
Note that the fermions themselves are not local degrees of
freedom in such a theory. To create a fermion we also need to
create the electric field lines that emanate from it and go out to
infinity. More formal a single electric charge creation operator
is by itself not gauge invariant. Gauge invariant local operators
are bosonic combinations made out of bilinear (or other even
numbers of the fermions). Thus it follows that after gauging
the theory should be regarded as living in the Hilbert space of
a spin or boson system.

In the last three decades, it has been appreciated [38] that
systems of interacting quantum spins/bosons can settle into
quantum spin liquid phases characterized by emergent gauge
fields and associated matter fields with fractional quantum
numbers. In three-dimensional systems, it has long been rec-
ognized [38–44] that quantum spin liquid phases exist where
there is an emergent “photon” excitation which is gapless
with a linear dispersion. In addition, there will be particlelike
excitations that couple to the photon as electric/magnetic
charges. These states of matter are called U(1) quantum spin

liquids to emphasize that their low-energy physics is described
by an emergent deconfined U(1) gauge theory.

The phase obtained by gauging an insulator of fermions
should thus be viewed as a particular kind of U(1) quantum
spin liquid. Since the fermions are gapped, the electric charges
in this spin liquid are gapped. Further, in the gauged theory,
the global C symmetry is still present. Thus we have an
example of a U(1) quantum spin liquid “enriched” by the
presence of a global antiunitary C symmetry. As noted above
we could equally well simply call C as “time reversal.” Thus
the discussion that follows can be usefully understood as being
about time-reversal symmetric U(1) quantum spin liquids in
three space dimensions.

Consider obtaining an effective low-energy Lagrangian for
the photon by integrating out the matter fields in such a spin
liquid. Quite generally the C symmetry implies that this takes
the form

Leff = LMax + Lθ . (20)

The first term is the usual Maxwell term and the second is the
“theta” term:

Lθ = θ

4π2
E · B, (21)

where E and B are the electric and magnetic fields, respec-
tively.

As is well-known (see in the TI context the reviews in
Refs. [20,21]), the C symmetry restricts the allowed values to
θ to an integer multiple of π . When the electrically charged
fermions form the n = 1 topological band discussed above it
is easy to argue that θ = π . This follows for instance from
the shift by 1/2 of the surface “integer” quantum Hall effect
obtained when time reversal is broken [20,21]. Let us now
understand the implications of this for the monopole structure
which is our primary interest in this section.

In the presence of a θ term, monopoles with magnetic
charge qm = 1 (we define the magnetic flux to be hqm

e
≡ 2πm)

carry electric charge ± 1
2 through the famous Witten effect [63].

It will also be necessary to consider higher strength monopoles.
To that end, consider generally the lattice of allowed electric
and magnetic charges in this U(1) gauge theory. We will call
this the charge-monopole lattice. It takes the form shown in
Fig. 6.

qm

qe(1,0)

(1/2,1)

(1/2,-1)

(0,2)

FIG. 6. Charge-monopole lattice at θ = π .

085110-9



CHONG WANG AND T. SENTHIL PHYSICAL REVIEW B 93, 085110 (2016)

Let us denote by (qe,qm) the electric and magnetic charges
of the various particles, and by d(qe,qm) the corresponding
destruction operator. We have chosen units in which the
elementary “pure” electric charge is (1,0). This particle is
a fermion. The elementary strength-1 monopoles are then
(± 1

2 ,1) particles with bose statistics. The (1,2) dyons are
clearly also bosons as they are obtained by binding two
( 1

2 ,1) dyons. However, the electrically neutral (0,2) particle
is a fermion. It can be obtained by removing an elementary
fermionic electric charge ((1,0) particle) from the (1,2) dyon.

It is actually extremely useful to construct the (0,2) dyon
differently as the bound state of the ( 1

2 ,1) and (− 1
2 ,1) dyons.

These two dyons see each other as mutual monopoles. Suppose
one of these dyons, say the (− 1

2 ,1) is sitting at some point we
define to be the origin. When the other dyon, the (− 1

2 ,1), traces
out a a loop it picks up a phase equal to half the solid angle
subtended by the loop at the origin. Binding two such bosonic
particles produces a fermion [64].

Consider now the action of the C symmetry. As the electric
charge is C odd the magnetic charge must be C even. It follows
that C interchanges the (± 1

2 ,1) dyons. Thus, in their bound
state, the relative coordinate is odd under C. Now, the angular
momentum stored in the electromagnetic field of this bound
state is readily calculated to be 1

2 , i.e., the bound state behaves
as a “spin-1/2” particle as expected from the Fermi statistics.
Further, in this spin-1/2 Hilbert space, the unit vector along
the relative coordinate becomes precisely the spin operator. As
this is C odd, the two degenerate states of this spin-1/2 form a
Kramers doublet. More details are in Appendix B. Specifically,

C2d(0,2)C
−2 = −d(0,2). (22)

The structure of other dyons can be easily obtained from these
few basic ones. We will not need them here.

In passing, we note the strong similarity between this
discussion and that in Sec. IV (and Appendix A) where we
argued for the Kramers structure of the dipole in Fig. 2.
This similarity is not coincidental: as we will see there is a
deep connection between the bulk (0,2) dyon and the surface
composite fermion.

Armed with this understanding let us discuss the vortices
in the surface superconductor. Consider first the 2π vortices.
These may be understood as points of penetration at the surface
of 2π magnetic flux lines that extend into the bulk. Now,
the θ = π term in the bulk implies that when two closed
bulk 2π flux lines link there is a phase of (−1). This linking
phase ensures that when a single 2π flux line is cut open to
produce a strength-1 monopole it costs infinite energy unless it
binds to ± 1

2 electric charge. The binding to the electric charge
removes the linking phase ambiguity of an open flux tube and
enables the resulting (± 1

2 ,1) dyon to have finite energy, exactly
consistent with the Witten effect.

We can now infer the statistics of the 2π vortices at the
surface. When one such vortex is taken around one another,
the change in the flux line configuration can be deformed to
an extra pair of linked flux lines in the bulk. Thus, when a 2π

vortex is taken around another, there is a phase of π . Note that
corresponding to the two bulk dyons (± 1

2 ,1) we will have two
surface 2π vortices v2±. The π phase is picked up when any of
these 2π vortices goes around the other. This implies that these

v2+ and v2− are mutual semions and that their self-statistics is
either semion or antisemion. Further, since in the bulk the two
dyons are interchanged by C, the same will be true for v2± at
the surface. It follows that one of them (v2+) must be a semion
and the other v2− an antisemion.

Now let us discuss 4π vortices. When a strength qm = 2
monopole tunnels through the surface from the vacuum into
the bulk it leaves behind a 4π vortex. We have already seen
that in the bulk the (0,2) monopole is a fermion that is Kramers
doublet under C. It follows that at the surface there is a 4π

vortex—which we dub v4—which is a Kramers doublet (under
C) fermion.

Thus thinking about the bulk gives us a simple under-
standing of the claims made in the previous section about the
surface vortices. The v4 vortex will play a crucial role in the
discussion that follows. Further understanding of the surface
superconductor is provided by the considerations of the next
section.

VIII. BULK DUALITY OF THE GAUGED
TOPOLOGICAL INSULATOR

We now argue that the U(1) quantum spin liquid obtaining
by gauging the n = 1 U (1) × C topological insulator has a
remarkable dual description [6,8]. First of all, we know that the
charge-monopole lattice has the structure shown in Fig. 6. The
most fundamental particles in this lattice are the ( 1

2 ,±1) dyons.
All other particles can be obtained as composites of these. Let
us first discuss their statistics. As they are interchanged under
C, they are required to have the same statistics, i.e., they are
both bosons or both fermions. Further, we already observed
that the ( 1

2 ,1) and the ( 1
2 ,−1) dyon are relative monopoles,

i.e., each one sees the other the way an electric charge sees a
monopole. If these dyons were both fermions, we would have a
realization of an “all-fermion” U(1) gauge theory in a strictly
3 + 1-dimensional system. However, it has been argued in
Ref. [33] (see also Ref. [65]) that such a state cannot exist.
Therefore we conclude that both these dyons must be bosons.

We have already also argued that the bound state—he (0,2)
particle—of these two dyons is a Kramers doublet fermion.
Now consider the pure electric charge—the (1,0) particle—
obtained by binding ( 1

2 ,1) and ( 1
2 ,−1). These are also relative

monopoles and hence their bound state is a fermion. Now, C
does not interchange these two dyons and hence the argument
above for the Kramers structure of the (0,2) particle does not
apply.

Earlier, we obtained this phase by starting with fermionic
electric charges forming the n = 1 topological band and
gauging it. The present discussion shows that fermi statistics of
the electric charge is necessary to realize this charge-monopole
lattice.

We thus see that the structure of both the elementary electric
charge and the elementary magnetic charge are uniquely
determined for this charge-monopole lattice. In addition the
statistics and symmetry properties of the elementary dyons
is also fixed. Thus there is a unique possibility for this
charge-monopole lattice.

Consider now this charge-monopole lattice from the point
of view of the (0,2) Kramers doublet fermion. This is the
elementary pure magnetic charge in this spin liquid. Dirac
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quantization demands that the dual electric charge be quantized
in units of half-integers. In this charge-monopole lattice, the
elementary electric charge with qe = 1

2 also necessarily has
magnetic charge qm = 1, which is exactly half that of the
elementary pure magnetic charge. Thus as seen by the (0,2)
Kramers fermion there is also a dual Witten effect. This implies
that this (0,2) fermion itself is in a topological insulator phase.
As the magnetic charge is C even, this topological insulator is
the same as the conventional topological insulator in spin-orbit
coupled electronic insulators in three dimensions.3

Thus the same phase admits two equivalent but dual points
of view. We can obtain it either by taking the n = 1 topological
insulator of fermions with Ue(1) × C symmetry and gauging
the global Ue(1) or by taking the standard topological insulator
of Kramers fermions with Um(1) � C symmetry4 and gauging
this Um(1). For clarity, in this section, we use the subscripts
e or m for U(1) to distinguish between the “electric” and
“magnetic” U(1) rotations.

IX. DUALITY OF SURFACE STATES

It is interesting to translate this bulk duality into a dual
perspective of the surface states. The simplest case is the
superconducting surface. We recall that the surface avatar of
the (0,2) monopole is the v4 vortex. We thus seek a dual
description of the superconducting state in terms of the physics
of the v4 vortex.

Let us first quickly review pertinent aspects of the standard
charge-vortex duality of two-dimensional systems [66,67].
The simplest example is for bosonic superfluids. Then the
superfluid phase may be fruitfully viewed as a Mott insulator of
vortices in the phase of the boson. The zero sound mode of the
superfluid can conveniently be represented as a gapless photon
in 2 + 1 dimensions, and the vortices couple to this photon
as “electric charges.” This leads to a dual Landau-Ginzburg
theory of the superfluid in terms of vortex fields coupled
minimally to a fluctuating noncompact U(1) gauge field. The
magnetic flux of this gauge field corresponds physically to the
physical boson number density.

It has also been known for some time now [68] how to
extend this dual vortex formulation to an ordinary gapped
s-wave superconductor of fermions in two dimensions. To
describe the Bogoliubov quasiparticle, it is convenient to for-
mally strip them of their electric charge and define neutralized
fermionic particles (“spinons”), which see the elementary
h
2e

vortices as π flux. The vortices are in addition coupled
minimally, exactly as in a bosonic superfluid, to a fluctuating
noncompact U(1) gauge field. This dual description of an

3These arguments show the uniqueness of the bulk excitation
structure. There can still potentially be different phases distinguished
by their possible surface states [6]. These are obtained by combining
the spin liquid with a SPT phase of spins protected by time reversal
alone. For the particular spin liquid discussed here, this subtlety is
resolved in Metlitski (unpublished) and there is no extra such SPT
phase added in the duality.

4This simply means that the generator of the Um(1) is even under
C. As C is antiunitary this implies that Um(1) rotation and C do not
commute.

ordinary superconductor is conceptually powerful, and enables
passage from the superconductor to various fractionalized
Mott insulators in two dimensions.

Returning now to the superconductor obtained at the surface
of the n = 1 TI with U(1) × C symmetry, from the point
of view of the v4 vortex the surface is gapped. Further, the
vortex number conservation is the surface manifestation of the
magnetic Um(1) gauge structure present in the bulk spin liquid.
The preservation of the vortex number conservation means
that the surface preserves the dual Um(1) � C symmetry. Thus
from the point of view of v4 what we have been calling the
surface superconductor is really a symmetry preserving surface
topological order of the bulk topological insulator formed by
the (0,2) fermions.

It is possible to check this explicitly. Following the logic
described in the previous section we can fully determine
the braiding/fusion rules, and the symmetry assignment for
the quasiparticles of the surface superconductor. These turn
out to be identical to that of a specific surface topological
order (known as T-Pfaffian [25]) obtained earlier through
bulk Walker-Wang constructions for the spin-orbit coupled
topological insulator with the v4 identified with the dual
‘electron’ (and thus a vorticity 4π identified with dual
“electron” charge 1).

We are now ready to describe the full dual Landau-
Ginzbuirg theory of the surface superconductor by reinstating
the zero sound mode. As usual, this zero sound mode is
described as a gapless photon in 2 + 1 dimensions. The
vortices will then couple minimally to this photon. Thus a dual
Landau-Ginzburg description of the surface superconductor
is simply obtained: take the T-Pfaffian topological order and
couple all the charged particles to a fluctuating noncompact
U(1) gauge field aμ. (Recall that the charges of the T-Pfaffian
are precisely the vortices of the surface superconductor.)

This dual formulation of the surface superconductor will
be extremely useful as a framework in which to address non-
superconducting states obtained through phase fluctuations.
We turn to these next.

X. VORTEX METAL SURFACE STATES

The surface superconducting order may be destroyed to
restore U(1) × C symmetry by proliferating vortices. If we
condense bosonic vortices, for instance, the 8π vortex v2

4, we
will get a symmetry preserving gapped surface topological
order. Alternately, we can kill the superconductivity by
proliferating the fermionic v4 vortex, i.e., by making it gapless.
As the dual LGW theory of the surface superconductor is
the gauged version of the T-Pfaffian topological order, we
will get a gapless vortex liquid if we confine the nontrivial
quasiparticles of the T-Pfaffian state through a phase transition
to a gapless symmetry preserving state of the v4 fermion.
However, this is precisely the famous single Dirac cone (tuned
to neutrality) formed by v4. We thus have a dual Dirac liquid
surface state [7,8] for the n = 1 U (1) × C topological insulator
described by the Lagrangian

L = ψ̄v(−i /∂ − /a)ψv + 1

4π
εμνλAμ∂νaλ. (23)

085110-11



CHONG WANG AND T. SENTHIL PHYSICAL REVIEW B 93, 085110 (2016)

Here, ψv is a fermion field representing the v4 vortex. We have
chosen units so that this couples to the noncompact gauge
field aμ with gauge charge-1. With this choice the conserved
3-current of the original global U(1) symmetry is

jμ = 1

4π
εμνλ∂νaλ. (24)

This is reflected in the last term of the Lagrangian, which
describes the coupling of this current to the external probe
gauge field Aμ. Finally, the original electron ψ is obtained as
4π instanton in the gauge field aμ. Importantly, ψv is Kramers
doublet under the C operation transforming as

CψvC
−1 = iσyψv. (25)

This dual Dirac liquid describes a possible surface state if
the surface superconductivity is destroyed by phase fluctua-
tions at zero magnetic field B. What if the superconductivity
is destroyed by turning on a nonzero B? Now we will have a
finite density of vortices. If we wish to preserve C symmetry,
the simplest option is to induce a finite density of v4 vortices
and make them form a “metallic” state. This will lead to a
nonzero chemical potential in the Lagrangian in Eq. (23) for
the dual Dirac liquid so that the dual Dirac cone is no longer
tuned to be at the neutrality point. The density of these vortices
is precisely

nv = B

4π
(26)

as these are 4π vortices. Further, as these are fermions they
will form a Fermi surface. The Fermi momentum KF will be
related to nv in the usual way:

KF =
√

4πnv. (27)

The fermions at this Fermi surface will of course continue to
be coupled to the U(1) gauge field aμ.

XI. BACK TO COMPOSITE FERMI LIQUIDS

Let us now return to the fate of the half-filled Landau level in
the presence of particle-hole symmetry. Earlier, we argued that
we can UV complete this theory with the U(1) × C symmetry
retained as an exact locally realized microscopic symmetry
by obtaining it as the surface of the n = 1 TI with U(1) × C
symmetry. We now see that when B �= 0 at this surface, as
required to produce the half-filled Landau level, a possible
gapless state that preserves the U(1) × C symmetry is the dual
Dirac liquid at nonzero chemical potential.

This theory bears some remarkable similarities to the usual
composite Fermi liquid description. We will therefore identify
the field ψv (or equivalently the v4 vortex) with the composite
fermion. First, the density of ψv as given by Eq. (26) is
precisely half the degeneracy of the lowest Landau level, i.e.,
it matches exactly the density of electrons in the half-filled
Landau level. Just as in the usual composite fermi liquid, ψv

forms a Fermi surface which is then coupled to a noncompact
U(1) gauge field. ψv itself is formally electrically neutral (it
is a vortex) but the gauge flux couples to the external vector
potential.

The main difference is that particle-hole symmetry is
explicitly present in this version of the composite Fermi liquid.

d(1/2, 1) d (-1/2,1)

d(0, 2)

Vacuum Insulat or

Interface
composite fermi 
liquid

2h/e 
monopole

composite
fermion

FIG. 7. Bulk-boundary correspondence for the composite fermi
liquid. The composite fermion is the surface avatar of the electrically
neutral strength-2 bulk monopole, which itself is a bound state of
the two (± 1

2 ,1) dyons. This strength-2 monopole is a fermion, and is
Kramers-doublet under C. At the surface, the two dyons that make
up this monopole correspond to the two ends of the dipole of Fig. 2.

Further, ψv is a Kramers doublet under C, and its Fermi surface
encloses a Dirac cone. This is manifested in a π phase when a
ψv particle at the Fermi surface circles around it.

This is precisely the description of the particle-hole sym-
metric composite fermion liquid proposed by Son in Ref. [5],
which we described in Sec. III. We have thus provided an
understanding of Son’s proposal through the linkage with the
surface of a three-dimensional electronic topological insulator.

It is worth emphasizing a few points. The vortex
metal/composite fermi liquid surface state has been shown to
emerge as a legitimate surface state of the n = 1 topological
insulator with U(1) × C symmetry in a nonzero B field.
This same surface also provides a realization of a half-filled
Landau level with U(1) × C symmetry. Thus the vortex
metal/composite Fermi liquid state is a legitimate state for a
half-filled Landau level with particle-hole symmetry. Whether
this state is really the fate of the half-filled Landau level or not
depends on microscopic details which we have not attempted
to address.

A different fascinating question altogether is whether the
dual Dirac liquid at zero field describes the same phase as
the standard single Dirac cone. We have also not attempted to
answer this question here.

Finally, we discuss the physical picture of the composite
fermion from the point of view of the three-dimensional
topological insulator when the half-filled Landau level is
obtained as its boundary. Note that the composite fermion is the
surface avatar of the strength-2 electrically neutral monopole
in the bulk (see Fig. 7). We earlier obtained the properties of
this strength-2 monopole by obtaining it as the bound state of
the (± 1

2 ,1) dyons. These two dyons correspond precisely, at
the surface, to the two oppositely charged 2π vortices at the
two ends of the composite fermion.

XII. PARTICLE-HOLE SYMMETRIC PFAFFIAN STATE

The composite fermi liquid state is well-known to act as a
“parent” normal state out of which the non-Abelian Moore-
Read (Pfafian) state arises through pairing [16]. It is also
well-known [69,70] that the Pfaffian state breaks particle-hole
symmetry. A particle-hole conjugate state—known as the anti-
Pfaffian—has been described as an alternate candidate for the
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observed plateau at ν = 5
2 . From the particle-hole symmetric

composite fermi liquid, it is natural then to consider angular
momentum l = 0 pairing, which preserves the particle-hole
symmetry. This leads to a gapped topologically ordered
state—which we may call the C-Pfaffian—which is yet another
alternate possible non-Abelian quantum Hall state at the same
filling.

It is interesting to view this as a correlated surface state
of the related three-dimensional topological insulator with
U(1) × C symmetry. As it preserves the U(1) × C symmetry,
this is a symmetry preserving surface topological order.
Precisely such surface topologically ordered states were
described in Refs. [34–36]. The C-Pfaffian state obtained by
l = 0 pairing [5] of the composite fermions of the particle-hole
symmetric composite fermi liquid is essentially identical to the
states described in these references.

We briefly describe the particle content of the C-Pfaffian
state. Details are in Appendix C. In the absence of the gauge
field aμ, this is simply the famous Fu-Kane superconductor
obtained at the surface of spin-orbit coupled 3 + 1-d topolog-
ical insulators. In particular, the fundamental π vortex (and all
odd multiples) traps a Majorana zero mode. The presence of
the gauge field means that the vortices are screened and will
have finite energy cost. The π vortex (and its odd multiples)
will clearly have non-Abelian statistics. Through Eq. (8) we
see that the π vortex will have physical electric charge e

4 . This
particle is denoted σ in Appendix C. An argument identical
to the one in Sec. VII shows that there are two 2π vortices,
carrying charge ± e

2 , one of which is a semion and the other an
antisemion. These are denoted I2 and ψ2 in Appendix C. These
are also mutual semions. Their bound state ψ0 is a 4π vortex,
which is an electrically neutral fermion, and is a Kramers
doublet under C. This is exactly the Bogoliubov quasiparticle
obtained after the pair condensation of composite fermions.
As usual, this Bogoliubov quasiparticle has π mutual statistics
with the π vortex but is local with respect to the 2π vortices.

A full description of the braiding and fusion rules and other
topological data is readily obtained for the C-Pfaffian state,
and is described in Appendix C. We, however, here focus on
showing the connection with the physical picture described
in the previous sections of the modified dipolar picture of the
composite fermion (see Fig. 2). We already emphasized that
the neutral fermion ψ0 of the C-Pfaffian state was Kramers
under C, and should be understood as the relic of the composite
fermion. We also see that it can be understood as the bound
state of the charge e

2 semion I2 and the charge − e
2 antisemion

ψ2. However, this is precisely the dipolar picture advocated in
the previous section. In particular, the two ends of the dipole
have been liberated as deconfined quasiparticles by the passage
to the paired C-Pfaffian state. This lends further support for
this dipolar picture.

It is also enlightening to relate the structure of the C-Pfafian
state to the properties of the bulk 3 + 1-d topological insulator
with U(1) × C symmetry. Then the neutral fermion ψ0 of the
C-Pfaffian is precisely the surface avatar of the strength-2
electrically neutral magnetic monopole. The charge ± e

2 anyons
I2,ψ2 (either semion or antisemion) are the surface avatars of
the (± 1

2 ,1) dyons. This ties in beautifully with the pictures
described in previous sections.

XIII. REVISITING THE PHENOMENOLOGY
OF COMPOSITE FERMI LIQUIDS

With the understanding of the half-filled Landau level
described above it is interesting to revisit the phenomenology
of composite fermi liquids (with or without particle-hole
symmetry). By and large these are unchanged from the
original HLR theory. We also describe some new experimental
predictions (that do not actually rely crucially on particle-hole
symmetry).

In practice, even if the projection to the lowest Landau
level and the restriction to two-body interactions is a good
approximation, there will inevitably be disorder potentials that
will break particle-hole symmetry. Further the edge potential
also breaks particle-hole symmetry so that physical quantities
sensitive to edge physics will not be particle-hole symmetric.

Nevertheless, in an ideal sample, if Landau level mixing can
be neglected, we expect the formulation described here will
apply. In that case how can the π -Berry phase associated with
the Fermi surface of the composite fermions be measured? We
show in Appendix D that this π Berry phase is implied already
by a slight reinterpretation of the standard phenomenology
away from ν = 1

2 .

A. Electromagnetic response

The electromagnetic response functions of the C-symmetric
composite Fermi liquid were discussed in Ref. [5]. They
resemble but are not identical to those proposed by the standard
HLR theory. To discuss dc transport at low-T , it is necessary
to include the effects of disorder. A random potential will, as
in the standard HLR theory, lead to a random magnetic field
seen by the composite fermions. For simplicity, we assume
that the probability distribution of the random potential is
particle-hole symmetric. Then the mean effective field seen
by the composite fermions is zero. Consider the electrical
conductivity tensor. When we access the half-filled Landau
level as a TI surface state, we have to include a contribution
to the Hall conductivity of e2

2h
from the filled states below

the chemical potential. To understand this precisely, note that
when the lowest Landau level is obtained in the usual way
in two-dimensional systems, the empty Landau level has Hall
conductivity 0 and the filled one has Hall conductivity e2

h
.

However, when this Landau level is obtained as the surface
state of a 3d TI, the empty and full levels are related by C
symmetry: they hence have opposite Hall conductivities ± e2

2h
,

respectively. Thus the surface Dirac composite fermion theory
must be supplemented by the background term [Eq. (10)]
described in Sec. III when describing the usual Landau level.

Thus the full physical conductivity tensor σij takes the form

σij = e2

2h
εij + σ ∗

ij . (28)

Here, εij is antisymmetric and εxy = 1. σ ∗
ij is the conductivity

tensor calculated within the low-energy effective field theory
given by Eq. (7). A physical description of this conductivity is
easily obtained. First there is no off-diagonal term in σ ∗ as the
ψv move in zero effective magnetic field. Second the ψv are
4π vortices in the electron phase. Thus by the usual rules of
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charge-vortex duality the electrical conductivity of the vortices
is proportional to the inverse of their resistivity obtained within
the standard RPA. More precisely, we have

σ ∗
ij = δij

e4

(4π�)2σv

. (29)

Here, σv is the RPA expression for the conductivity of the ψv

composite fermions (we have reinstated factors of e and �). It
follows that the measured physical longitudinal conductivity
is just

σxx = e4

(4π�)2σv

. (30)

As a function of wave number q, the composite fermion
conductivity σv takes the well-known form:

σv = e2KF l

4π�
, q � 2

l
, (31)

= e2KF

2π�q
, q � 2

l
, (32)

where l is the impurity induced mean free path for the
composite fermions. Combining with Eq. (30), the physical
longitudinal conductivity takes exactly the form obtained by
HLR in their original theory, and used to confront a number of
experiments [1].

Note that in the usual HLR theory, there is a composition
rule for the resistivity (rather than the conductivity) tensor:

ρHLR
ij = 2h

e2
εij + ρ∗

ij , (33)

where ρ∗ is the resistivity tensor of the composite fermions.
In practice, we are in the limit ρxx � ρxy , and further ρxy is
approximately 2h

e2 even in the standard theory. Thus in HLR
theory, the longitudinal conductivity

σ HLR
xx ≈ e4ρ∗

xx

4h2
, (34)

which is essentially the same as Eq. (30) (after identifying
ρ∗

xx ≈ 1
σv

).

B. Thermal transport and Wiedemann-Franz violation

A striking feature of conventional Fermi liquid metals is the
Wiedemann-Franz relationship between the residual electrical
and thermal conductivities. Within Boltzmann transport the-
ory, in the limit T → 0, the longitudinal thermal conductivity
κxx is related to the electrical conductivity through

κxx = L0T σxx, (35)

where L0 = π2k2
B

3e2 is the free electron Lorenz number.
We now argue that the composite Fermi liquid will not

satisfy the conventional Wiedemann-Franz law but will instead
satisfy a modified one. Though the composite fermions
contribute to electrical transport as vortices, they are directly
responsible for heat transport. Thus the measured residual κxx

will satisfy Wiedemann-Franz with the σv , i.e., the composite
fermion conductivity. However, this is inversely related to the

measured electrical conductivity. Thus we have the relation

κxx = L0T e4

4h2σxx

. (36)

Conceptually similar violations have been discussed previ-
ously [71] in other vortex metals. Equivalently, we observe
that the longitudinal resistivity is, to a good approximation
which ignores corrections of order ( ρxx

ρxy
)2, given by

ρxx = (4h)2σxx

e4
, (37)

so that the modified Wiedemann-Franz law may be be written

κxxρxx = L0T . (38)

If instead we use the standard HLR theory, we will obtain
Eq. (38) as an essentially exact relation (so long as we
can ignore off-diagonal terms in ρ∗) and Eq. (36) will hold
approximately up to ignoring corrections of order ( ρxx

ρxy
)2.

For a conventional metal in zero magnetic field, the
modified Wiedemann-Franz law (38) is equivalent to the usual
one as σxx = 1

ρxx
. However, in a nonzero magnetic field,

Eqs. (35) and (38) are no longer equivalent.
For a conventional metal in nonzero magnetic field, Eq. (35)

is the appropriate result (more generally the thermal conduc-
tivity tensor is equal to L0T times the electrical conductivity
tensor) [72]. However, for the composite Fermi liquid, Eq. (36)
[or Eq. (38)] holds.

It is interesting to quantify the violation of the conventional
Wiedemann-Franz law by defining a Lorenz number LCF for
the composite Fermi liquid through

LCF = κxx

T σxx

. (39)

We have

LCF

L0
=

(
ρxy

ρxx

)2

. (40)

Since the measured ρxx � ρxy we have a giant enhancement—
possibly of order 103—of the Lorenz number compared to free
electrons.

This modified Wiedemann-Franz law can possibly be tested
in experiments. We emphasize that this result does not rely on
particle-hole symmetry and is indeed obtained in the standard
HLR theory as well. Similar violations are expected at ν = 1

4
and other composite fermi liquid metals. We are not aware
of any thermal conductivity measurements in the ν = 1

2 state.
Of course, it will be necessary to subtract off the thermal
conductivity of the substrate. This can perhaps be done by
comparing with the thermal conductivity at a neighboring
quantum Hall plateau.5

5The off-diagonal thermal conductivity κxy will, however, satisfy
the conventional Wiedemann-Franz with the electrical σxy so that
κxy = L0T σxy . This means that κxx � κxy so that the longitudinal
thermal resistivity ≈ 1

κxx
= ρxx

L0T
. This form of the Wiedemann-Franz

law is also equivalent to Eq. (35) at zero field but becomes inequivelent
in nonzero field.
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C. Cyclotron orbits

If the Landau level filling is changed from 1/2, particle-hole
symmetry will be broken. Just like in the original HLR theory,
the composite fermions will see an effective magnetic field
that is much reduced from the externally applied one. They
will then have cyclotron orbits with a radius much bigger than
for electrons in the same external magnetic field.

Consider moving away from half-filling by changing the
magnetic field by δB while keeping the electron density fixed.
The filling is changed to δν = − δB

2B
. The deviation from half-

filling changes 〈j0〉 through Eq. (9) to

〈j0〉 = −δB

4π
. (41)

Through Eq. (8) this is related to the average internal magnetic
magnetic field. Thus the composite fermions see an effective
magnetic field

B∗ = δB = −2Bδν. (42)

To leading order in δν, the cyclotron radius of the composite
fermions is

R∗
c = KF

|B∗| . (43)

Thus we have

R∗
c |B∗| = 1

lB
, (44)

where lB = 1√
B

is the magnetic length, which is the same result
as in the standard HLR theory.

Recently [73] through a geometric resonance experiment,
R∗

c |B∗| was inferred as a function of a δν. The results were
interpreted as indicating that KF lB decreased on deviating
from ν = 1

2 in either direction. This has been addressed
theoretically in Refs. [18,74]. In the particle-hole symmetric
theory, when the external magnetic field is changed at fixed
density, the density of composite fermions changes by δnv =
δB
4π

, and correspondingly the Fermi momentum changes by
δKF = δB

2
√

B
. From Eq. (43), this gives one source of δν

dependence which however leads to a steady decrease of
R∗

c |B∗| with increasing δν. However, we caution that when
B∗ �= 0 the composite fermion momenta are smeared on the
scale of 1

R∗
c

∼ √
B|δν|, which is the same order as δKF . Thus

the theory of the δν dependence in the experiment likely
requires more complicated analysis which we leave for the
future.

D. 2KF density oscillations

It is interesting to ask about the singularities in the 2KF

response of physical quantities in the particle-hole symmetric
theory. Note that the physical charge density is not simply the
composite fermion density (unlike in HLR). Since the physical
density is given by Eq. (8), we see that the density correlator
is determined by the correlator of the transverse gauge field.
For simplicity, let us specialize to zero frequency. Then,

〈|j0(q,ω = 0)|2〉 = q2〈|at (q,ω = 0)|2〉, (45)

where at is the transverse component of the vector potential
a. For q ≈ 2Kf , this means that the universal structure of the

density correlator is the same as in that of the transverse gauge
field. In the effective Lagrangian, the gauge field couples to
the fermions through the term

ψ̄v(k + q)ai
−qγ

iψv(k). (46)

For q ≈ 2Kf x̂, the important coupling is between composite
fermions in a patch of the Fermi surface near +KF x̂ and
those in an antipodal patch near −KF x̂. As the “spin” of the
composite fermion is polarized perpendicular to the Fermi
momentum the wave functions at the two antipodal Fermi
points are orthogonal to each other. This means that ax (which
couples to σy) will not scatter a fermion from the right patch
to the left one. However, ay couples to σx and will be able to
scatter composite fermions between these two patches. Thus
the effective quadratic action for ay near wave vectors q ≈
2KF x̂ will be determined by the correlations of ψ

†
vRσxψvL

(where R,L refer to the right and left patches, respectively).
This will have the same structure of the 2KF singularity as
in a usual Fermi surface coupled to a gauge field [75,76].
In the presence of the long-range Coulomb interaction these
are essentially unmodified from the Fermi liquid form (up to
logarithmic corrections) corresponding to a square root cusp as
a function of |q − 2KF | that modifies a smooth nonuniversal
contribution. It is easy to then see that the density correlations
will have this same universal structure of 2KF singularities (as
in the standard HLR theory).

E. Disorder with statistical particle-hole symmetry: localization

If the disorder is particle-hole symmetric, we can ask
about possible localization effects on the composite fermions.
Ignoring the gauge field maps the problem to that of the surface
Dirac cone of spin-orbit coupled 3d topological insulators in
the presence of a random effective magnetic field Beff with
statistical time-reversal invariance. There will be some regions
in space in which the magnetic field Bef t is positive and some
in which it is negative. Inside either of these regions if the
magnitude of Beff is large there will be a gap and a C-broken
gapped surface will be induced. However, along the domain
walls between these regions there will be gapless 1d edge
modes. In the strong-disorder limit, we will form a random
network of these domain walls. We expect this to be at the
critical point of the integer quantum Hall plateau transition.
(Similar arguments have been made in Ref. [77] to discuss
disorder effects on the surface of weak topological insulators,
topological crystalline insulators, and related systems.) This
conclusion is presumably not affected by the gauge field. Thus
statistically particle-hole symmetric disorder will not localize
the composite fermions but rather drives the composite fermi
liquid to the critical point of the integer quantum Hall plateau
transition.

XIV. DISCUSSION

We have elaborated in this paper the connections between
three seemingly disparate research topics in quantum many
body physics. Here we briefly comment on some extensions
and open questions.

For the half-filled Landau level, we presented various
physical ways of understanding Son’s proposed particle-hole
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symmetric theory. This understanding will hopefully guide
future efforts to derive the particle-hole symmetric composite
fermi liquid theory by working purely within the lowest
Landau level. For composite fermi liquids of bosons, at ν = 1,
such a derivation was provided by Ref. [49] building on the
formulation of Ref. [53]. For fermions at ν = 1

2 lowest Landau
level approaches have been developed (see, e.g., Ref. [56]) but
particle-hole symmetry has not been incorporated.

A different recent development [78], which we did not
describe here, is the application of mirror symmetry of super-
symmetric quantum field theories in 2 + 1-d to the half-filled
Landau level. Reference [78] started with a supersymmetric
massless theory, which is free in the infrared and which is
known to be dual to an interacting supersymmetric gauge
theory. Turning on a magnetic field that couples to the
conserved global U(1) currents on the IR-free side of the
duality breaks supersymmetry, and the low-energy theory is
simply that of a half-filled Landau level but for two species of
fermions which couple with opposite electric charges to the
external magnetic field. On the other side of the duality, the
effective gauge theory reduces essentially to Son’s proposed
theory but with two fermi surfaces corresponding to the two
species of fermions.

In the introduction, we raised the question of physical
realization of correlated surface states of three-dimensional
topological insulators/superconductors. We now see that this
has a surprising and interesting answer: a physical realization
is the half-filled Landau level of a two-dimensional electron
gas. For topological insulators with U(1) × C symmetry with
a Z8 × Z2 classification, eight distinct members of the Z8

subgroup all have free fermion bulk realizations. The n = 1
member corresponds to the single half-filled Landau level.
Higher values of n are realized as multicomponent quantum
Hall systems where each component is at filling ν = 1

2 . Such
multicomponent systems have received a lot of attention
over the years. We expect that the connection to topological
insulator surface states will provide interesting insights just as
it does for n = 1.

The bulk duality of the gauged topological insulator has
crucial implications for the classification and understanding of
time-reversal symmetric U(1) spin liquids in 3 + 1 dimensions.
It shows that there is a unique such spin liquid where the low-
energy effective action for the emergent U(1) gauge field has a
θ angle of π . On the other hand, when θ = 0, Ref. [6] showed
that there were precisely six distinct phases distinguished by
the structure of bulk excitations leading to a total of seven
distinct phases. Additional phases are obtained by combining
these with SPT phases of the underlying spin system protected
by time reversal.

Note added. Since the submission of the initial version of
this paper, two other papers (Refs. [79,80]) have appeared on
the arXiv with further results on particle-hole symmetry in the
half-filled Landau level.
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APPENDIX A: DIRAC SPECTRUM AND KRAMERS
STRUCTURE FOR DIPOLES

Here, we present some simple calculations, which give
much insight into how the primary physical features of the
particle-hole symmetric composite fermion emerge out of
the dipolar picture described in the main text. Consider two
particles—one with charge +q and the other with charge
−q—moving in a uniform magnetic field in two dimensions.
The Hamiltonian is

H = �2
1

2m
+ �2

2

2m
+ V (x1 − x2). (A1)

Here, �1 = p1 − qA(x1), �2 = p2 + qA(x2) are the kine-
matic momenta of the two particles. A is the vector potential
corresponding to the uniform magnetic field B = Bẑ, and x1,2

are the coordinates of the two particles. V is an attractive
interaction between the two particles.

We will not repeat the solution of this problem here, which
has been studied a number of times over the decades (see
Ref. [81] and references therein). Our focus will be on a variant
of this classic problem. First, we impose the condition that
when one particle goes around the other, there is a phase of
π , i.e., the two particles are mutual semions. It is well-known
that the bound state then has Fermi statistics. Here, we are
interested in a single composite particle formed by this binding
(and the Fermi statistics is not directly relevant). Second, we
assume the existence of an antiunitary symmetry operation C
that interchanges the two particles:

C : x1 � x2. (A2)

We will show that apart from having Fermi statistics a
bound state of such a pair of oppositely charged particles
in a magnetic field has all the essential properties of the
particle-hole symmetric composite fermion discussed in the
text, including the Dirac and Kramers structure.

The mutual semion statistics imposes a restriction on the
Hilbert space of wave functions ψ(R,x) written in terms of
center-of-mass R = x1+x2

2 , and relative coordinates x = x1 −
x2. Using polar coordinates (r,φ) for x, we have

ψ(R,r,φ + 2π ) = −ψ(R,r,φ). (A3)

This will quantize the angular momentum conjugate to φ to be
a half-integer.

Following the standard solution of such a two-particle
problem, we define the two momenta

Q = �1 + �2 − qx × B, (A4)

p = �1 − �2

2
. (A5)

It is straightforwardly checked that the pairs (R,Q) and
(x,p) are canonically conjugate. Further we have [Qi,pj ] =
[Qi,xj ] = [Qi,Qj ] = [pi,pj ] = [Ri,pj ] = 0. It follows that
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Q commutes with the Hamiltonian (as is also obvious from the
classical equations of motion). The Hamiltonian in Eq. (A1)
may be rewritten as

H = (Q + qx × B)2

4m
+ p2

m
+ V (r). (A6)

Note that under C, x and Q are odd while R and p are
even, and H is C invariant. We will take V to only depend on
the radial distance r for simplicity. As Q commutes with the
Hamiltonian (and its components commute with each other),
we can fix it’s value and consider just the relative motion.
Expanding the first term out, we get

Q2

4m
+ qQ × x · B

2m
+ q2B2r2

4m
. (A7)

Due to the Q × x · B term the Hamiltonian is not, in general,
rotationally invariant, i.e., [̂l,H ] �= 0 where l̂ = −i ∂

∂φ
is the

angular momentum operator. To illustrate the essential features
of the bound state of the two particles, we will begin by
considering the special point Q = 0 where there is rotational
invariance:

H [Q = 0] = 1

m

(
−1

r

∂

∂r
r

∂

∂r
+ l2

r2
+ q2B2r2

4

)
+ V (r).

(A8)

This Hamiltonian will have a bound state solution for the
ground state. However, since l is quantized to be half-integer,
there will be two degenerate ground states with l = ± 1

2 with
some energy E0. Let us denote these two ground states
|± 1

2 〉. Within this doublet ground state, the operator l may be
identified with σ z

2 and eiφ with σx+iσ y

2 where σ are the standard
Pauli matrices. Thus we introduce a “spin-1/2” operator

S = (cos φ, sin φ,l). (A9)

Consider now the action of C symmetry. As φ → φ + π

under C, and C is antiunitary, we have

CSC−1 = −S. (A10)

It follows that the twofold degenerate ground state is a
Kramers doublet under C. Thus the degeneracy of this doublet
is preserved under all perturbations that preserve C.

Consider now the Hamiltonian at nonzero Q:

H [Q] = Q2

4m
+ qQ × x · B

2m
+ H [Q = 0]. (A11)

A nonzero Q breaks the C symmetry and hence the doublet
will be split. However, the spectrum will still be degenerate
between Q and −Q. To understand the splitting of the
twofold degeneracy, we simply treat the nonzero Q terms
in perturbation theory. Noting that in the doublet subspace,
x = r

2 (σx,σy), we obtain—in first-order perturbation theory
and to linear order in Q—an effective 2 × 2 Hamiltonian

Heff[Q] = q〈r〉Q × S · B
2m

+ E0. (A12)

This Hamiltonian (which depends on the “center-of-mass”
momentum Q and the spin S has the form of a Dirac
Hamiltonian. In particular, at any fixed Q �= 0, in the ground
state, the spin will be polarized to point along Q̂ × ẑ. This

is the famous “spin-momentum” locking expected of a two-
dimensional Dirac fermion.

The states at +Q and −Q together form the two pairs of a
Kramers doublet. At the C-invariant momentum Q = 0 these
pairs give a degenerate spectrum.

Note that the dipole moment (i.e., the x,y components of the
“spin”) of the bound state is d = qx = q〈r〉Q̂ × ẑ. Thus the
dipole moment/spin is indeed perpendicular to the momentum
as expected.

In this simple two-particle model, there will in general be
a nonzero term of order Q2 (as readily established when the
interaction V = 0), which will cause the dispersion to bend
and eventually cross the energy at Q = 0 at some |Q| ∼ 1

lB
(where lB is the magnetic length). This is presumably related
to the nonanomalous implementation of C symmetry in this
model unlike the real half-filled Landau level. It is interesting
to consider the limit B → ∞,m → ∞ such that m√

B
is finite.

Then if we choose the zero of energy to coincide with the
energy at Q = 0 we get a pure Dirac spectrum for all finite Q.

APPENDIX B: STRUCTURE OF THE (0,2)
BULK EXCITATION

Here we briefly sketch the arguments [24,33] determining
the structure of the bound state of the ( 1

2 ,1) and the (− 1
2 ,1)

dyons. This bound state is of course the (0,2) particle. First note
that ( 1

2 ,1) = (− 1
2 ,1) + (1,0). Consider now a configuration

where we have one dyon of either type. The (− 1
2 ,1) piece is

common to both dyons and merely contributes an ordinary
repulsive interaction. More profound is the effect of the
remaining (1,0) piece of the ( 1

2 ,1) dyon on the other (− 1
2 ,1)

dyon. Clearly, the effect of this interaction is exactly the same
as the interaction between (1,0) and (0,1) particles.

It is well-known that when an electric charge 1 moves in
the potential of a strength-1 monopole the angular momentum
of the relative coordinate is quantized to be half-integer. The
ground state has angular momentum L = 1

2 . In this ground
state, doublet the relative coordinate x1 − x2 = 〈r〉S, where
S is a spin-1/2 operator, i.e., the orientation of the relative
coordinate is precisely the spin operator of this ground state
doublet.

Now consider applying these well-known results to the
system at hand. The C symmetry interchanges the two dyons
so that x1 ↔ x2. Thus under C, in the ground-state doublet
S → −S. As C is anti unitary it follows that the twofold
degeneracy of the ground state is protected by Kramers
theorem and is insensitive to perturbations that preserve C
(even if spatial rotation is broken).

Thus we conclude that the (0,2) particle is a Kramers
doublet. Further, as a bound state of two bosonic particles,
which are mutual monopoles, its statistics is fermionic.

APPENDIX C: PARTICLE-HOLE SYMMETRIC PFAFFIAN

We review the quasiparticle content of the particle-hole
symmetric Pfaffian state, obtained by pair-condensing the
Dirac composite fermions in the s-wave channel. We follow the
notation of Ref. [34]. The topological order can be compactly
expressed as Ising × U(1)−8, and the quasiparticles are listed
in Table I. The quasiparticles are labeled by the Ising charge
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TABLE I. The particle-hole symmetric Pfaffian topological order.
The table lists the topological spins of anyons. The column indices
represent the U(1)−8 charge and the row indices represent the Ising
charge. The physical electric charge of anyons q = k/4 with k being
the U(1)−8 charge. ψ4 is the physical electron. The particle-hole
symmetry keeps the Ising sector invariant but maps k → −k, and ψ0

has C2 = −1.

k → 0 1 2 3 4 5 6 7

I 1 −i 1 −i

σ 1 −1 −1 1
ψ −1 i −1 i

{I,σ,ψ} and the U(1)8 charge k, with the restriction that Ising
charge I and ψ must carry even k while σ must carry odd k.

The fusion rules and topological spins of the quasiparticles
can be deduced from the two sectors separately. The topolog-
ical spins are listed in Table I. The fusion rule for the U(1)−8

sector is simply the addition of the charge k (mod8). The fusion
rules for the Ising sector are well-known:

σ × σ ∼ 1 + ψ, σ × ψ ∼ σ, ψ × ψ ∼ 1. (C1)

The physical electric charge for each particle is given by
q = k/4. The particle-hole symmetry keeps the Ising sector
invariant but maps k → −k, which is consistent with the
electric charge being odd under C. One can also show that
ψ0 (the charge-neutral fermion) must have C2 = −1 in order
to be consistent with the fusion rules.

Also notice that ψ4 is a charge-1 fermion that has trivial
mutual statistics with all the other particles. It is therefore
identified with the physical electron c.

APPENDIX D: BERRY PHASE OF π ,
SHUBNIKOV-DEHAAS OSCILLATIONS,

AND THE JAIN SEQUENCE

It is well-known from studies of graphene and other
Dirac materials that the π -Berry phase may be inferred
experimentally by studying Shubnikov-DeHaas (SdH) or other
quantum oscillations. For an ordinary Fermi surface enclosing
a Dirac node, the SdH oscillations will show resistivity minima
periodic at magnetic fields Bn determined by

1

Bn

= n + 1
2

F
, (D1)

where n is an integer, and F the frequency of oscillations is
proportional to the Fermi surface area. The shift by 1

2 in the

numerator is a consequence of the π -Berry phase and does
not occur in a conventional Fermi surface. Thus a plot of the
“Landau index” n versus 1

Bn
will have an intercept − 1

2 . This
is routinely used to detect the π -Berry phase. Note that in a
standard SdH experiment, the oscillations occur as a function
of varying magnetic field at fixed density.

Now let us turn to the composite Fermi liquid. We recall
that in the formulation we are currently using the density of
composite fermions and the effective magnetic field they see
are given by

nv = B

4π
, B∗ = B − 4πρ.

Thus to repeat the set-up of the standard SdH experiment
we should keep the external B fixed and move away from
half-filling by tuning the density so that nv stays fixed but B∗
changes. Further the longitudinal resistivity of the composite
fermions is, through Eq. (30), proportional to the measured
longitudinal conductivity σxx . However, the measured resis-
tivity ρxx is also proportional to σxx (as σxy = e2

2h
� σxx). It

follows that the resistivity minima of the composite fermions
track the minima of the measured resistivity. These (of course)
occur at the filling of the Jain sequence

ν = n

2n + 1
. (D2)

At a fixed B, these correspond to values of the effective
magnetic field

1

B∗
n

= 2n + 1

B
. (D3)

It follows that a plot of n versus 1
B∗

n
will have an intercept

− 1
2 implying a π -Berry phase for the composite fermi surface.
Resistivity minima at precisely the same fillings are of

course a key feature of the standard HLR theory which does not
associate any such Berry phase. How is this consistent? The
point is that in HLR the composite fermion density is exactly
equal to the electron density ρ and not to B

4π
. While these two

are the same at ν = 1
2 , they are different away from ν = 1

2 .
Then to think about the SdH oscillations, we must keep ρ fixed
and tune B to move away from half-filling. The Jain sequence
[Eq. (D2)] then occurs at effective magnetic fields satisfying

1

B∗
n

= n

2πρ
. (D4)

Thus within the standard interpretation the plot of n versus 1
Bn

has zero intercept in agreement with the absence of a Berry
phase.
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