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Abstract

The dynamic response of a premixed flame stabilized on a heat-conducting per-

forated plate depends critically on their coupled thermal interaction. The ob-

jective of this paper is to develop an analytical model to capture this coupling.

The model predicts the mean flame base standoff distance; the flame base area,

curvature and speed; and the burner plate temperature given the operating con-

ditions; the mean velocity, temperature and equivalence ratio of the reactants;

thermal conductivity and the perforation ratio of the burner. This coupled

model is combined with our flame transfer function (FTF) model to predict the

dynamic response of the flame to velocity perturbations. We show that modeling

the thermal coupling between the flame and the burner, while accounting for the

two-dimensionality of the former, is critical to predicting the dynamic response

characteristics such as the overshoot in the gain curve (resonant condition) and

the phase delay. Good agreement with the numerical and experimental results

is demonstrated over a range of conditions.
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1. Introduction

Perforated-plate stabilized premixed flames are used extensively in indus-

trial and compact household burners. In these systems, the coupling between

the acoustics and the unsteady heat release rate often leads to self-excited os-

cillations, which in extreme cases may result in fatal structural damage. The

dynamic response of the flame to velocity perturbations determines the nature

of the combustion instability. This response is typically characterized by the

flame transfer function (FTF). A linear FTF is defined as TF(f) =
Q′

f/Qf

U ′/U ,

where f is the frequency of the velocity perturbations (U ′) and Qf is the net

heat release rate.

Durox et al. [1] experimentally investigated the dynamic flame response

under different configurations and determined that at certain low frequencies,

the normalized heat release amplitude is greater than the non-dimensional ve-

locity oscillations. For V-shaped and M-shaped flames, resonance (overshoot

in the FTF gain) was attributed to flame-area oscillations. Such experimental

investigations of FTF were first performed by Sugimoto and Matsui in [2] to

analyze the so-called ’pyro-acoustic amplification’. In recent investigations, it

was shown that for perforated-plate burners, this behavior arises because of a

significant thermal interaction between the gases and the plate [3, 4, 5]. We also

recently elucidated the mechanism of the stabilization of flames on perforated-

plate burners highlighting the coupled role of curvature and local heat loss to the

burner top using numerical simulations with detailed chemistry [6]. The flame

anchors at a finite standoff distance away from the plate, thereby fixing the plate

temperature depending on the thermal boundary conditions [6, 7]. The standoff

distance undergoes finite oscillations during an unsteady cycle [5], resulting in

flame base speed perturbations. These must be accurately estimated for any

experimental, numerical or analytical investigation of FTF.

FTFs were experimentally investigated for perforated-plate burners in [3]

(rectangular-slits) and in [8] (circular-holes). A systematic parametric investi-

gation was carried out on externally cooled plates. However, the temperature
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of the plate surface was not accurately measured and was reported to be 100-

150 C. Boudy et al. experimentally obtained nonlinear flame response (flame

describing functions FDF) for flames stabilized on perforated plates in [9] and

performed thermoacoustic analyses.

An analytical model for the prediction of perforated-plate stabilized FTFs

was proposed by Altay et al. [4]. The model incorporated the effects of the

two-dimensionality of the flame, its area fluctuations and the heat exchange

with the plate. However, it relied on specifying the steady-state flame standoff

distance which was obtained from the perforated-plate’s surface temperature

using Rook’s model [10, 11]. This plate temperature was a free parameter in the

model in [4]. The model further assumed that the mean burning velocity of the

flame base is the adiabatic laminar flame speed. These assumptions encompass

the flame-wall thermal interaction information, which we demonstrated to be

critical in determining the FTFs using detailed chemistry numerical simulations

in [5]. In these 2D dynamic simulations, we showed that the heat exchange rate

oscillations plays an important role in driving the growth of the perturbations

over a wide range of conditions, including resonance. Similar 2D simulations

were performed in [12]. They fixed the burner wall temperature at 373 K and 430

K for rectangular-slit and round-holed perforated plate respectively, because the

fluid and the solid domains were not coupled in their numerical model. However,

the plate surface and the duct wall temperatures are not free parameters in a

practical burner.

In this paper, we improve the analytical model described in [4]. We describe a

model that predicts the perforated-plate surface temperature and flame stand-

off distance, among other relevant quantities, given the operating conditions.

We show the model’s validity using our numerical simulations from [5, 6] and

compare with the experimental results of Manohar [8].
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2. Governing Equations

Figure 1a schematically illustrates a two-dimensional slice of an axis-symmetric

bell-shaped premixed flame stabilized on a heat conducting plate. Figure 1b

shows a top-view of the perforated-plate burner. A co-ordinate system r − x is

used. The control volume under consideration is shaded in Fig. 1a. It includes

the solid burner region, additionally marked by hashed lines. The part of the

flame above the burner plate and within the shaded region in Fig. 1a is referred

to here as the flame base. In this section, we develop the governing equations

to predict the steady-state physical quantities given the mean inlet velocity, U ,

through inner hole of perforated-plate; equivalence ratio φ; thermal conductiv-

ity of the plate (or flame-holder) λfh and the perforation ratio κ = Ro/Ri. Ro

is the outer radius of the domain and Ri is the inner hole radius. U is assumed

to be constant across 0 < r < Ri. Tu, ρu are the temperature and the density

of the unburnt reactants.

δT is the flame base standoff distance. We assume that the temperature at

the flame base (where the reaction rate is zero) is the burnt gas temperature, Tb.

This assumption over-estimates the flame base temperature. The actual value

at that location is lower due to factors such as incomplete oxidation of CO and

heat losses to the surroundings. There is typically a small recirculation zone

region within δT that plays an important role in the overall stability of the flame

[6]. δR is the reaction zone thickness where the reaction rate is finite and high,

which lies immediately above the recirculation zone. For modeling simplicity, we

assume that δT and δR are the mean characteristic distances of the entire flame

base. This is an approximation because the flame base is often highly curved,

with its curved area, AF , greater than the flame holder area, Afh = π(R2
o−R2

i ).

The thickness of the plate is denoted by L. The specific heat, cp,u, and the

thermal conductivity, λu, of the mixture are assumed constant throughout the

domain at their unburnt values.

The outer (due to periodicity) and the inner streamwise edges of the shaded

domain in Fig. 1a are modeled as adiabatic slip walls. This is chosen to separate
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the flame base region from the flame tip region, such that A∗i /πR
2
i = Afh/πR

2
o.

A∗i is the cross-sectional area of the shaded region of the inner hole (see Fig.

1b). This relation suggests that at each streamwise location of the control

volume, the fraction of the total cross-sectional area occupied by the streamtube

under consideration is the same. The flame base speed is denoted by SF . Mass

conservation in the shaded control volume is

ρuUA
∗
i = ρuSFAF (1)

We assume that the density at the unburnt side of the reaction front (where

the flame speed SF is to be estimated) is ρu for simplicity. The actual value

is slightly lower due to the preheating via heat recuperation from the burner,

as discussed later. Similar to δT and δR, SF is also an average over the curved

flame base. The energy conservation, assuming an overall adiabatic system, is

ρuUA
∗
i cp,u(Tb − Tu) = w̄f∆HR,fδRAF (2)

where w̄f is the average volumetric fuel consumption rate and ∆HR,f is the

heat of reaction of the fuel (methane). The adiabatic assumption is consistent

with our previous numerical work in [6, 7]. However, the burner plate may be

externally cooled as discussed in [3, 8]. Including this non-adiabaticity is a nat-

ural extension of our model; however the focus of this paper is to see the critical

impact of the internal parameters of the system alone on the physical quanti-

ties of interest. w̄f∆HR,f is estimated using our one-dimensional simulations

in [7]. The consumption speed of a flame, Sc, defined on the basis of the rate

of energy consumption, is used because it does not depend significantly on the

flame curvature [6, 13]. For a given φ and Tu; the 1D flame thickness δoR, Tb

and the adiabatic laminar flame speed SoL (equal to its consumption speed for

one-dimensional adiabatic unstretched flames),

w̄f∆HR,f =
ρuS

o
Lcp,u(Tb − Tu)

δoR
(3)

We assume that the temperature increases linearly from Tfh,0 to Tb in the region

above the flame-holder, where Tfh,0 is the plate surface temperature. Hence the
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average heat flux on the top of the flame-holder

q̇′′fh =
λu(Tb − Tfh,0)

δT
(4)

The heat transfer to the burner plate’s top surface re-enters into the reactants

from the inner-hole wall. The balance of this recirculated heat is

q̇′′fhAfh = ρuUA
∗
i cp,u(Ti,0 − Tu) (5)

where Ti,0 is the mean temperature of the reactants exiting the inner hole. The

flame base geometry is assumed to be parabolic with its axis as the periodic

outer edge of the domain and curvature γ = d2xF

dr′2 at the tip of the parabola

(where r′ = Ro−r). The area of the flame base is larger than Afh for positively

curved (concave towards products side) flame base. We assume a circular burner

surface area for simplicity. The flame base above the burner plate can then be

represented as dxF

dr′ = −γr′ and its base area is approximately

AF =

Ro∫
Ri

2π(Ro − r)
√

1 + γ2(Ro − r)2dr (6)

Due to double-periodicity, the perforations and the flames form an artificial

ring-like pattern. The integration in Eq. 6 to estimate the curved flame area,

can also be performed along a circle with an origin at inner axis rather than

at the outer periodic edge. We found that the results do not change with this

modification. High activation energy asymptotics [14] is used to approximate

the relative size of the reaction zone thickness to the flame standoff distance,

which is equivalent to a thermal thickness of the flame base. For chemical

reaction with overall reaction order n, Zeldovich number Z = Ta

T 2
b

(Tb − Tu) (Ta

is the activation temperature of the fuel) and the ignition temperature Tig,

Tb − Tig
Tb − Tu

=
n

Z
(7)

Ignition corresponds to the start of the reaction zone. Hence geometrical con-

straint results in
Tb − Tig
Tb − Tfh,0

=
δR
δT

(8)
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2.1. Estimating Ti,0 and Tfh,0

The governing equations that determine the thermal coupling between the

plate and the fluid depend on the burner geometry and the natural thermal

boundary conditions. There is a temperature gradient within the plate if the

Biot number, based on the plate thickness, hcL/λfh > 0.2 , where hc is a

convective heat transfer coefficient. The resulting temperature profile within

the burner plate and the bulk temperature of the fluid in the inner hole is

denoted by Tfh,x and Ti,x respectively. The subscripts fh and i denotes the

flame-holder (burner plate) and the inner hole respectively; and x denotes their

variation in that direction. The corresponding burner surface temperature and

the exit hole temperature are given by Tfh,0 and Ti,0, discussed in Case A.

Alternatively a thin plate, with a small Biot number (illustrated in Fig. 1c) used

in the experiments in [3, 8], can be modeled as being isothermal as discussed in

Case B. In both the cases, the Biot number based on the characteristic radial

dimension, hc(Ro−Ri)/λu < 0.2, for the typical burner geometries used in this

paper and hence we neglect any radial variation in Ti and Tfh.

Case A: Fin approximation for a thick plate

There is a laminar flow through the inner hole of the perforated plate. An

average Nusselt number for the convective heat transfer ≈ 4 [15], resulting in

hc = 2λu

Ri
. Similar to fin analysis [15], the governing equation within the flame-

holder is

λfh
d2Tfh(x)

dx2
= 2πRihc(Tfh(x) − Ti(x)) (9)

with the boundary conditions as Tfh(x = 0) = Tfh,0 and
dTfh(x)
dx (x = L) = 0.

Similarly, the governing equation for the bulk motion of the fluid within the

hole is

ρuUA
∗
i cp,u

dTi(x)

dx
= −2πRihc(Tfh(x) − Ti(x)) (10)

with the boundary condition at the inlet of the hole as Ti(x = L) = Tu. The

ordinary differential Eqs. 9 and 10 are simultaneously solved numerically to

obtain Tfh(x) and Ti(x). Using the solution, we obtain the exit hole bulk
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temperature of the fluid

Ti,0 = Ti(x = 0) (11)

Case B: Isothermal thin plate

In this case, the natural boundary condition corresponds to the heat be-

ing convected upstream from the thin perforated plate, illustrated in Fig. 1c.

The average convective heat transfer coefficient, hpp can be estimated using

the Nusselt number correlation for convective heat transfer from an isothermal

perforated plate to upstream impinging reactants [16],

hpp = 0.881
λu
L∗

(
2RiU

νu
)0.476Pr

1
3 (12)

where L∗ = Afh/(2Ro). We take Pr = 0.69 and νu = 1.5×10−6m2/s. The heat

transferred upstream from the isothermal perforated-plate increases the sensible

enthalpy of the incoming reactants such that

ρuUA
∗
i cp,u(Ti,0 − Tu) = hppAfh(Tfh,0 − Tu) (13)

In both the cases, it is assumed that the heat lost to the environment is

negligible. This may not be the case for externally cooled plate, as in the

experiments in [3, 8].

2.2. Hypothesis

In the governing equations, SF is an average flame base speed. The local

flame structure above the flame holder, at the curved base, was discussed in

detail in our recent numerical investigation [6]. We showed that the unburnt

side of the reaction front is immediately above the stagnation point of the recir-

culation zone over the burner plate. Hence, we assume here that the edge of the

parabolic flame base has a zero local flame displacement speed. The structure

of the flame wing resembles that of a one-dimensional flame as the influence of

the burner wall is reduced. Thus we assume a linear decrease of the flame speed

from SoL at the inner edge to zero at the outer periodic edge of the shaded region
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in Fig. 1a. The area averaged flame speed is then

SF =
1

AF

Ro∫
Ri

SoL(Ro − r)

Ro −Ri
2πr

√
1 + γ2(Ro − r)2dr (14)

Depending on the boundary conditions, Eqs. 1-11 and 14 or Eqs. 1-8 and 12-14

form a complete set of nonlinear equations. These are solved simultaneously to

obtain the physical quantities of interest δT , δR, Tfh,0, Ti,0, γ, SF , AF and q̇′′fh,

given the operating parameters φ, U , κ, λfh, Tu.

2.3. FTF model

Altay et al. [4] developed an analytical model to predict FTFs by assuming a

series of plane and conical flame fronts above the perforated-plate to account for

two-dimensionality. The kinematics of 2D flame surfaces were modeled, extend-

ing the assumptions of Fleifil et al.[17] to couple the flame surface kinematics

equation with the heat loss to the burner plate. In this paper, we improve on

this model, however only the major changes are highlighted1.

The flame speed above the burner plate (S̄u in [4]), which was assumed to be

SoL, is modified to SF . The burnt gas temperature (T̄b in [4]) was assumed to be a

free parameter to account for non-adiabaticity. This is changed to the adiabatic

value since we have developed an overall adiabatic model. Tfh,0 was accounted

for in the form of the density weighted flame stand off distance, ψ̄fp, which

was estimated using Rook’s logarithmic model in [11]. This is replaced here

by the average temperature weighted flame standoff distance,
ψ̄fp

δ = 1.5 δTδ
Tu

Tb
.

δ = λu

rhoucp,uS0
L

is a reference thermal thickness of the flame. The factor of 1.5

is used because it provided a reasonable agreement with the FTFs from our

numerical simulations, discussed in Sec. 3.

3. Results and Discussions

The discussions in this section are divided into three parts. First, the steady-

state model described in this paper is validated using our numerical simulations

1Nomenclature in [4]: Ts = Tfh,0, Aopen = πR2
i , Au = πR2

o and Ap = Afh
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from [7, 6]. The results of the steady-state model coupled with the FTF model

described in Section 2.3 are then compared to the numerical simulations in [5]

at the same operating conditions. Lastly, we compare our model results to the

experimentally obtained FTFs from [8]. The parameters that are kept constant

throughout the analysis are, Ri = 0.5 mm; the plate thickness, L =13.2 mm

(except in Section 3.3 where the plate is very thin), Tu= 300 K, ρu = 1.15 kg/m3,

cp,u = 1059.4 J/kgK, λu = 0.0275 W/mK, lower heating value of methane

LHV = 50.1 MJ/kg, Ta = 24400 K and order of reaction n = 1.9. SoL, δoR and

Tb depend on φ and Tu and the values are determined using our 1D simulations

in [7]

3.1. Steady-state Model Validation and Verification

Fig. 2 shows good agreements for Ti,x and Tfh,x obtained using the model

and simulations at different operating conditions. The natural boundary con-

ditions discussed in Sec. 2.1 Case A are used in the model. The temperature

field from the simulations was averaged in the radial direction to obtain a vari-

ation with x. The plate temperature increases as φ and κ grow. Moreover,

the standoff distance predicted by the model is of the same order of magnitude

as seen in the simulations. The standoff distance depends on the definition of

the flame front. For example, for the case with U = 1.3 m/s, φ = 0.75 and

κ = Ro/Ri = 2, the model predicts δT =1.49 mm and δR =0.29 mm. This is in

close agreement with the values obtained from the simulations for T = 0.9× Tb

contour [6]; δT =1.3 mm and δR =0.4 mm, computed at the periodic edge of

the domain where there flame is the closest to the burner plate.

We numerically demonstrated the increase in the flame standoff distance,

and decrease in the burner temperature as U grows in [6]. In [7] we showed

that δT decreases and Tfh,0 increases as φ or κ were increased at a constant U .

Figure 3 shows that all these trends are well captured in the model with the

changing operating (φ, κ, U). It also shows a good agreement in Tfh,0 between

the model and the simulation results for φ = 0.75 and κ = 2 for a wide range

of U .
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3.2. FTF comparison with numerical simulations

In this section, we discuss the impact of the operating conditions on the

FTFs obtained using the model and compare them with the simulations in

[5]. Figures 4 and 5 show the gain and the phase of the response at different

operating conditions.

The overall shape of the FTF of such heat conducting perforated-plate

burner are discussed in detail in [3, 4, 5]. The model predicts rather well the

FTFs in all the conditions of interest. At low frequencies, as the flame moves

away / towards the burner, its burning velocity increases / decreases, amplifying

the flame motion at certain frequencies, the gain overshoots unity and exhibits

a resonance behavior. The flame responds weakly to high frequency oscillations

(diminishing gain in FTF), due to quick dissipation of small scale-structures in

the flame. There is a time delay associated with the convection time needed for

the reactants to reach the flame base, τ ∼ δT /SF [5]. Depending on the fre-

quency of the imposed velocity oscillations, f , the convective time delay results

in a phase difference of 2πτf , growing linearly with frequency as we observe

in Fig. 4 and 5. The resonant frequency is likely to depend on this time lag,

fres ∼ 1/τ ∼ SF /δT . For U = 1.3 m/s, φ = 0.75 and κ = 2, our model pre-

dicts SF /δT ≈ 80 Hz, which is very close to the fres seen in Fig. 4. SF /δT

predicts fres reasonably well for all the other cases also. Similar dependency

is noted in [4, 8]. We demonstrated in [5] that the flame-wall interaction is a

critical mechanism which results in the observed resonance, which is completely

missed if a perfectly adiabatic burner plate is assumed. The slope of the phase

curve changes near the resonant frequency, showing that the large amplitude

oscillations near the resonant condition alters the time lag, also observed by

Durox et al. [1]. The physical mechanism of the system’s affinity to certain low

frequencies for an under-damped response is still unclear.

Figures 4 and 5 show that the low frequency response of the FTF (both

in gain and phase) is captured reasonably well by the model. The resonance

frequency shifts to the right and the phase delay decreases as the plate tem-

perature increases or the standoff distance decreases, as seen when U changes
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from 1.3 m/s to 0.8 m/s in Fig. 4, and when φ increases from 0.75 to 0.85 in

Fig. 5. This is also consistent with the hypothesis that fres ∼ 1/τ ∼ SF /δT .

Similar trends are observed when κ increases from 2 to 3. Thus, the plate tem-

perature and the standoff distance must be accurately predicted to capture the

correct dynamics. In the experimental results in [8], the resonant frequency

increases with U contrary to the results shown here, because of the additional

influence of the external cooling on δT when U (or equivalently SF ) changes.

Since fres ∼ SF /δT , the shift in resonant frequency will depend on this modified

thermal boundary condition.

It was shown in [4] that at low frequencies with respect to fres, the contri-

bution of flame area oscillations to the net heat release rate is weak compared

to that of the burner heat loss oscillations, resulting in the rapid increase in the

phase lag. For f > fres, only flame area oscillations contribute to the net heat

release rate fluctuations, which arise as a result of the inlet velocity fluctuations,

saturating the phase behavior. The model predictions are poor compared to the

simulations near the frequency where the phase saturates; this is the cut-off fre-

quency of our model f∗. In all the FTF phase curves obtained using our model,

we see that f∗ ≈ 1.5 × fres ∼ 1.5 × SF /δT . f∗ ≈ 140 Hz for the cases shown in

Fig. 4. We note that f∗ is a result of the assumptions of our analytical model

and is not a physical quantity.

Several factors account for the quantitative differences between the predic-

tions in Figs. 4 and 5 using the model and in simulations. The dynamic response

model used from [4] does not account for increased flame base area due to cur-

vature. We also assumed complete adiabaticity, whereas there may be some

heat loss to the inner streamtube which was thermally detached in our assump-

tions. Lastly, the application of Rook’s model to the plane front of the flame

over the burner in [4] to predict its burning velocity oscillations is incorrect in

strictest sense because it was mainly developed for one-dimensional flat flames

over non-adiabatic porous burners.
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Impact of thermal conductivity

Figure 6 shows the impact of the plate thermal conductivity on its surface

temperature; the gain and phase of the FTFs. The impact quickly saturates

as we move away from a ceramic and other low conductivity material. The

’resonance’ behavior of such burners can thus be controlled if the burner plate

is made of low thermal conductivity material. The dependency of the system

dynamics on λfh, including the saturation for high λfh, was also shown by

McIntosh and Clarke in [18] for flat flames stabilized over cooled porous-plug

type of flame-holders, where they reviewed models determining the flame stand-

off distance and its temperature. The thermal conductivity plays a role in

determining Tfh,0 through Eqs. 9 and 11 developed for thick plates. This is not

the case for isothermal thin plates as can be seen through Eqs. 12-13.

3.3. FTF comparison with experiments

In this section we show that our model qualitatively predicts the FTFs in

[8]. We use an isothermal plate, which is the natural boundary condition for

thin plates (discussed in Sec. 2.1, Case B), since the Biot numbers, hcL/λfh <

0.2 and hc(Ro − Ri)/λfh < 0.2 for thin plates (see schematic illustration in

Fig. 1c). Figure 7 shows a comparison between the predicted FTF assuming

overall adiabaticity and the experimental FTFs in [8] determined in the presence

of external cooling of the plate. We qualitatively capture the trends of the

experiment showing that the non-adiabaticity must be introduced in the model.

Moreover, the amount of external cooling in [8] is likely to depend on φ, because

at high φ the flame is closer to the plate, increasing the plate temperature, which

will likely increase its non-adiabaticity.

The FTFs depends on the accurate estimation of Tfh,0 and δT . These quan-

tities are coupled and their relationship will be strongly influenced when there

is an additional external control over the thermal boundary conditions of the

system, such as external cooling of the burner plate. This is a major reason

that some trends of the FTFs in [8] were reported to be different from those

predicted in [5]. The secondary peak, seen at high frequencies (around 500 Hz)
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in the experimental results in [8], are not reproduced in our FTF model. This

secondary peak is also missing in our numerical simulations [5], although a finite

gain at high frequencies is predicted due to the detailed length scale resolution

of the flame structure. This is currently under investigation.

4. Conclusions

A coupled analytical model for perforated-plate stabilized flames has been

developed to predict the burner surface temperature, flame standoff distance,

flame base speed, area and curvature given the operating conditions. We vali-

dated the model using our detailed numerical simulations data from [6, 7]. The

mean flame standoff distance and the flame base speed are used as inputs to the

linear flame transfer function model described in [4]. The two models are cou-

pled and used to predict the linearized dynamic response of the flame to velocity

perturbations. Under-damped oscillations resulting in gain overshooting unity

(resonance) and the phase lag behavior are recovered. The resonant frequency,

fres ∼ SF /δT , depends on the thermal coupling between the flame and the heat

loss to the burner surface. This coupling manifests itself in the burner surface

temperature and the flame stand-off distance. Thus models used to predict

such flame dynamics must capture their dependency. Our FTF model resolves

only the large length-scales of the system; as a result high frequency response,

beyond the model cut-off frequency f∗, is not accurately predicted. For f < f∗,

the FTFs are in good agreement with the numerical simulations in [5], with all

the trends predicted correctly. By changing the thermal boundary conditions

to match the experiments in [8], good qualitative predictions are also achieved

showing that non-adiabaticity, to account for heat losses to the environment,

needs to be incorporated in the model. The flames are modeled as a series

of conical flame front over the holes and plane flame fronts above the burner

in the FTF model in [4]. The dynamic response of the plane flame-front was

predicted using the Rook’s model developed for 1D flat flames above a porous

burner in [10]. This mismatch is a limitation in our FTF model, which needs
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to be addressed. These modifications to the model are currently underway. A

mechanistic understanding of the resonance behavior is still unclear and is also

under investigation using our fluid-solid coupled numerical simulations.
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