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Abstract

The random coefficients multinomial choice logit model, also known as the mixed logit, has
been widely used in empirical choice analysis for the last thirty years. We prove that the
distribution of random coefficients in the multinomial logit model is nonparametrically identified.
Our approach requires variation in product characteristics only locally and does not rely on
the special regressors with large supports used in related papers. One of our two identification
arguments is constructive. Both approaches may be applied to other choice models with random
coefficients.
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1 Introduction

One of the most commonly used models in applied choice analysis is the random coefficients logit
model, also known as the mixed logit, which models choice between one of a finite number of com-
peting alternatives. Domencich and McFadden (1975), Heckman and Willis (1977) and Hausman
and Wise (1978) introduced flexible specifications for discrete choice models, while the random co-
efficients logit model was proposed by Boyd and Mellman (1980) and Cardell and Dunbar (1980).
Currently, the random coefficients logit model is widely used to model consumer choice in environ-
mental economics, industrial organization, marketing, public economics, transportation economics
and other fields.

In the random coefficients logit, each consumer can choose between j = 1, ..., J mutually exclu-
sive inside goods and one outside good (good 0). The exogenous variables for choice j are in the
K × 1 vector xj = (xj,1, . . . , xj,K)′. In the example of demand estimation, xj might include the
product characteristics, the price of good j and the interactions of product characteristics with the
demographics of agent i. Potentially xj can depend on i but we suppress it for transparency. In
this paper, for some results we assume the support of xj includes the 0 vector, which can occur by
centering each element of xj around constants common across the inside goods. For example, for
each k we may redefine x̃j,k = xj,k − E[xj,k], where the mean is taken over the inside goods.1 Let
x = (x′1, ..., x

′
J) denote the stacked vector of all the xj . Each consumer i has a preference parameter

βi, which is a vector of K marginal utilities that gives i’s preferences over the K product charac-
teristics. There is also a homogeneous term for each choice j, denoted as αj . Each αj could be
an intercept common to product j or a term that captures product characteristics without random
coefficients (homogeneous coefficients), as in αj = α+w′jγw. Here α is a common intercept for the
inside goods contributing to the utility of purchasing an inside good instead of the outside good,
γw is a vector of parameters on the characteristics in the vector wj , and w = (w′1, . . . , w

′
J) denotes

the stacked vector of other product characteristics.2 Let αJ be the vector of the J αj ’s. Agent i’s
utility for choice j is equal to

ui,j = αj + x′jβi + εi,j . (1)

The outside good has a utility of ui,0 = εi,0.3 The logit model is defined when the errors εi,j
are i.i.d. across choices and each error has the type I extreme value distribution, which has a
cumulative distribution function of exp (− exp (−εi,j)). The random coefficients logit arises when βi
varies across the population, with unknown distribution F (βi). The unknown objects of estimation
are the distribution F (βi) and the homogeneous coefficients (α, γ′w) or αJ . Under the standard
assumption that βi is independent of xj (we discuss endogeneity below), utility maximization leads

1This location normalization for the covariates is not without loss of generality in a model, like the logit, where
the additive error is treated parametrically. However, one normalization is just as arbitrary as any other.

2We do not require intercepts; αj = 0∀ j is one possibility. Later we argue our approach does not apply to the
case where the intercept for the inside goods, α, is also a random coefficient.

3The type I extreme value distribution gives the scale normalization for utility values. The outside good’s utility
gives the location normalization.
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to a choice probability for the good j,

Pr
(
j | x; F, αJ

)
≡
∫ exp

(
αj + x′jβi

)
1 +

∑J
j′=1 exp

(
αj′ + x′j′βi

)dF (βi) . (2)

This specification is popular with empirical researchers because the resulting choice probabilities
are relatively flexible. In terms of modeling own- and cross-price elasticities, the random coefficients
logit model allows products with similar x’s to be closer substitutes, which the logit model without
random coefficients does not allow.4

In this paper, we prove that the distribution F (β) is nonparametrically identified, in the sense
that the true

(
F 0, αJ,0

)
is the only the pair

(
F, αJ

)
that solves Pr (j | x,w) ≡ Pr

(
j | x; F, αJ

)
in (2)

for all j and (x,w), where Pr (j | x,w) denotes the population choice probabilities. We first recover
the homogeneous terms, αJ(or the fixed parameters α and γw) in (2). We then provide two iden-
tification arguments, one of which is constructive and the other of which is non-constructive. The
non-constructive identification theorem leverages results from Hornik (1991) on function approxi-
mation and Stinchcombe and White (1998) on hypothesis testing. The theorem requires variation
in x in only an open set.

Our other identification argument is constructive. We demonstrate how to iteratively find all
moments of β, which is sufficient to identify the distribution F 0 within the class of distributions that
are uniquely determined by all of their moments. This class is the set of probability distribution
functions that satisfy Carleman’s condition, which we review below.

Both the constructive and non-constructive proof strategies are not unique to the logit: they
could be applied to identify the distribution of heterogeneity in many differentiable economic models
where covariates enter as linear indices. We outline the main theorems using generic notation and
verify their conditions for the multinomial logit model.

While one of our identification approaches is constructive, we do not recommend that empirical
researchers adopt an analog estimator to our identification argument. Instead, we suggest empirical
users adopt one of several nonparametric mixtures estimators available in the literature. Before this
paper, no one had formally proved that these mixtures estimators consistently estimated the true
F 0 in the random coefficients logit. This lack of a complete consistency proof arises because showing
that the density F 0 is nonparametrically identified is a necessary component for any consistency
proof for a nonparametric estimator of F 0. We introduce a computationally simple, nonparametric
sieve estimator for F 0 in Bajari, Fox, Kim and Ryan (2010) for general mixtures models. We prove
that our estimator is consistent in the Lévy-Prokhorov metric on distributions under the maintained
assumption that the model is identified.5 This identification theorem therefore completes our proof

4McFadden and Train (2000, Theorem 1) present an approximation theorem using the random coefficients logit
as the approximating class, although the theorem requires great flexibility in the choice of the product characteristics
xj in the random coefficients estimation as a function of some smaller set of underlying true product characteristics.
McFadden and Train do not study identification.

5Alternative nonparametric estimators include the Bayesian MCMC estimators in Rossi, Allenby, and McCulloch
(2005) as well as Burda, Harding and Hausman (2008) and the EM algorithm used in Train (2008). These works
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of consistency for the estimator of the random coefficients logit in Bajari et al.6

The proof of identification is comforting to empirical researchers. Prior to our theorem, it was
not known whether variation in x was sufficient to identify the pair

(
F 0, αJ,0

)
. One possibility was

that the normality assumptions typically imposed on F 0 were crucial to identification. We show that
indeed the random coefficients logit model is identified, which provides a more solid econometric
foundation for its application in applied microeconomics.

The paper is organized as follows: Section 2 discusses the related literature, Section 3 states the
general non-constructive identification result, Section 4 states the general constructive identification
result, Section 5 shows how the results apply to the random coefficients logit, Section 6 explores
extensions, and Section 7 concludes.

2 Related Literature

There is a growing literature on the identification of binary and multinomial choice models with
unobserved heterogeneity. These papers differ in the set of assumptions made in order to obtain
identification results and also differ in the objects of interest in identification.

Ichimura and Thompson (1997) study the case of binary choice: one inside good (J = 1) and
one outside good. This restriction makes their method inapplicable for most empirical applications
of demand analysis, which study markets with two or more inside goods. Ichimura and Thompson
identify the cumulative distribution function (CDF) of, in our notation, (β, εi,1 − εi,0). They use
a theorem due to Cramer and Wold (1934) and do not exploit the structure of the extreme value
assumptions on the εi,1 and εi,0. Consequently, they need stronger assumptions: 1) a monotonicity
assumption (sign restriction) on one of the K components of β (βi,k > 0 ∀ i) and 2) a full support
assumption for all K elements of xi,1. Similar assumptions will appear in many of the papers
below. We will refer to a regressor whose (random) coefficient has a sign restriction and that
has full support as a “special regressor.” Gautier and Kitamura (2009) provide a computationally
simple estimator and some alternative identification arguments for the same binary choice model
as Ichimura and Thompson. To our knowledge, no one has generalized Ichimura and Thompson to
the case of multinomial choice.

Lewbel (2000) provides an identification argument that relies on a large-support special regressor,
but which allows for discrete elements of xj , relaxes the independence between x and ε, and does not
rely on distributional assumptions of the error term.7 Lewbel’s approach identifies the means of the

do not discuss consistency or identification. However, the identification theorem here would be a building block to
proving the consistency of the estimates of

`
F, αJ

´
in these other procedures.

6Strictly speaking, the consistency Theorem 3.2 in Bajari et al (2010) applies to models without homogeneous
parameters, such as the intercepts αJ . However, in Section 5 of that paper we discuss an extension to nonlinear
least squares where location and scale parameters (homogeneous parameters) are also estimated. A previous draft
of Bajari et al included the parametric verification of the regularity conditions for nonlinear least squares for models
with both homogeneous parameters α and a distribution of heterogeneous parameters β.

7As a referee points out, the sign restriction or the monotonicity assumption for a special regressor may not be
too restrictive because it is testable and the sign can be determined from a pre-model analysis as described in Lewbel
(2000) and his other related work. Magnac and Maurin (2007) and Kahn and Tamer (2010), however, argue that
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random coefficients and the conditional distribution of the composite error x′j (βi − E [βi | x]) + εi,j .
However, identifying the distribution of the composite error does not identify the joint distribution
of the random coefficients, which is the key object of interest in our paper.

Briesch, Chintagunta and Matzkin (2009) study the identification of a discrete choice model
where the payoff to choice j is V (j, zj , si, ωi) − rj + εi,j , where V is an unknown, nonparametric
function common to all consumers, zj are observed product characteristics, si are observed consumer
characteristics, rj is a large support special regressor with a sign restriction as in Ichimura and
Thompson, εi,j is an additive error and ωi is a scalar unobservable that enters the utility functions
for all J choices. There are a variety of other restrictions. Their model does not nest the random
coefficients logit. Matzkin (2007, page 101) extends these results to the utility function for choice
j of rj +

∑K
k=1mk (zj,k, ωi,j,k) + εi,j , where each function mk (·, ·) is treated nonparametrically,

each choice j has its own random coefficients ωi,j = (ωi,j,1, . . . , ωi,j,K), the random coefficients are
independent across choices, and rj is a special regressor. The special regressor and the independence
of random coefficients across choices mean that the standard random coefficients logit model is not
nested in the formulation of Matzkin.

Subsequent to the circulation of our constructive identification theorem, Berry and Haile (2010)
and Fox and Gandhi (2009) introduced identification arguments for multinomial choice models
without the type I extreme value distribution or additive errors. Both Berry and Haile and Fox and
Gandhi need a monotonicity assumption on one of the K components of β (βi,k > 0 ∀ i) and (for
point instead of set identification) a full support assumption on the corresponding k-th component
xj,k, for all choices j ∈ J . Berry and Haile identify the conditional-on-xi distribution of utility
values G (ui,0, ui,1, . . . , ui,J | x) and not F (β). Knowledge of the full structural model, in the logit
case F (β), is necessary for welfare analysis, for example to construct the distribution of welfare
gains between choice situations x1 and x2, or some aggregation of welfare gains over individuals
H
(
∆iu | x1, x2

)
, where

∆iu = max
j∈J∪{0}

ui,j
(
x1
)
− max
j∈J∪{0}

ui,j
(
x2
)
,

where ui,j
(
xl
)
is just the realized utility value (1) for xl =

(
xl′1 , . . . , x

l′
J

)
. Fox and Gandhi do identify

the full structural model, in that they identify a distribution D over J utility functions (not utility
values) of x, as in D (ui,1 (x) , . . . , ui,J (x)), where ui,1 (x) is a complete function that describes
utility values for choice j at all x. Again, like all results other than ours, Fox and Gandhi rely on
monotonicity and large support assumptions for a special regressor.

Compared to this other literature, our main distinguishing feature is that we exploit the logit
distributional assumptions on the εi,j . This corresponds to empirical practice: the random coeffi-
cients logit is a popular specification in applied work. Our results contribute to the literature by
demonstrating that large support and monotonicity restrictions are not required for identification
if the logit error structure is used, as is common in empirical work. In our opinion, the main con-

identification using the large support condition and a conditional mean restriction critically relies on the tail behavior
of the distribution of the special regressor, as is also the case in “identification at infinity” in selection models (Andrews
and Schafgans 1998).
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cern with the special regressor assumption is the requirement for large support. Large supports
are sometimes but not often found in typical datasets used in demand estimation. Price may be
a special regressor; certainly the assumption of monotonicity on price is rarely controversial. In
an output market, prices are some markup over cost, and cost rarely moves more than a factor of,
say, five (think oil price fluctuations). As we show, the parametric assumption on the distribution
of the choice-specific errors does away with the need for large support assumptions. The entire
distribution of random coefficients can be identified using only local variation in characteristics.8

Our two identification approaches may be applied to choice models with random coefficients
other than the logit, as we describe below. Our paper, like many of the papers in the literature,
focuses on continuous covariates in x.9 All arguments can be made conditional on the values of
discrete covariates, but we do not explore identifying a distribution of random coefficients on discrete
covariates. No other paper has identified such a distribution, either. Therefore, our results do not
allow the random coefficients logit to be a flexible error components model for parameterizing the
correlation between products grouped into various nests. Unlike the subset of the literature that
is nonparametric on the contribution of x to the utility of each choice, we follow Ichimura and
Thompson (1997) and the widespread empirical literature using the random coefficients logit and
focus on the linear index x′jβi.

3 Non-Constructive Identification

To deliver the key idea behind our identification strategy, we shall first consider an abstract model
that includes the random coefficients logit with fixed intercepts α as a special case. We present a
non-constructive identification theorem and, in a later section, turn to constructive identification.

The econometrician observes K < ∞ covariates x = (x1, . . . , xK)′ and the probability of some
discrete outcome, P (x). Here P (x) denotes the conditional choice probability of a particular
outcome. For a model with a more complex outcome (including a continuous outcome y), we can
always consider whether some event, say y < 1

2 , happened or did not happen. For a multinomial
choice, the event could be picking choice j or picking any other choice. P (x) is the probability of
the event happening. The independent variable x is independent of β.

Let g (α, x′β) be the probability of an agent with characteristics β taking the action. In our
framework, the researcher specifies g (α, x′β). A special case is g (α, x′β) = g (α+ x′β). Our goal is

8In subsequent and at present in-progress work, Chiappori and Komunjer (2009) present preliminary results for
achieving the same weakening of conditions on special regressors without parametric assumptions in the multinomial
choice model.

9For the case of binary choice, Lewbel (2000) allows for discrete covariates other than in the special regressor
and shows the identification of, in our notation, the distribution of x′j (β − E [β|x]) + εi,j conditional on x. He does
not explore identification of an unconditional joint distribution F (β). No paper has identified the distribution of β
if some elements of x are discrete. Knowledge of the unconditional distribution F (β) is necessary for some uses of
structural models, including prediction of demand and x’s not in the support of the original data (the new goods
problem).
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to identify the distribution function F (β) in the equation

P (x) = P (x, F, α) ≡
∫
g
(
α, x′β

)
dF (β) . (3)

Identification means that a unique (F, α) solves this equation for all x. This is the definition of
identification used in the statistics literature (Teicher 1963).

We prove the main theoretical results for the case where the true values α0 of the homogeneous
parameters α are identified in a first stage using an auxiliary argument, so we can write g (x′β) =
g
(
α0, x′β

)
with an abuse of notation. Typically, this auxiliary argument will involve the point x = 0,

as then (3) becomes P (0) = P (0, F, α) = g (α, 0) and in some models we can set α0 = g−1 (P (0)).
The point x = 0 will otherwise not be needed to be in the support of x for the general result. We
rewrite the model as

P (x, F ) ≡
∫
g
(
x′β
)
dF (β) . (4)

Let B ⊆ RK be the support of the random coefficients and let F (B) be the set of all distributions
on that support. Let X ⊆ RK be the support of the covariates. Let F 0 be the true distribution.
Then we have P (x) = P

(
x, F 0

)
in the support of x, X .

Definition 1. The distribution F 0 ∈ F(B) is uniformly identified over choices of (B,X0) if for
any F 1 ∈ F(B), F 1 6= F 0, there exists X 1

0 ⊂ X0 such that P
(
x, F 0

)
− P

(
x, F 1

)
6= 0 for all x ∈ X 1

0

for any choices of the support of random coefficients B and the subset of the support of covariates
X0 ⊂ X , where B is compact and X0 is a nonempty open set.10

We do not assume the researcher knows B, other than that it is compact. The “nonempty
interior” assumption below does rule out covariates with discrete support, as we discussed earlier.11

For explicitness, we emphasize the assumption on the covariates implied in the previous definition.

Assumption 2.

1. The support of the independent variables, X ⊆ RK includes a nonempty open set.

2. Let all elements of x be continuous.

Assumption 2.1 will be violated if x includes higher order terms of xk’s or interactions of xk’s
(e.g., x2 = x2

1 or x3 = x2 · x1) in its elements. Therefore our identification results do not allow for
those terms in the model.

Definition 3. The function g (z) is real analytic at c whenever it can be represented as a con-
vergent power series, g (z) =

∑∞
d=0 ad (z − c)d, for a domain of convergence around c. The function

g (z) is real analytic on an open set Z if it is real analytic at all arguments z ∈ Z.
10In this definition the set X 1

0 can vary depending on alternative distribution F 1. When the measure of the set X 1
0

is strictly positive, identification holds with a positive probability.
11All arguments in this paper can be made conditional on the values of discrete characteristics. Otherwise and as

a referee suggests, one may take a set identification approach when x takes values on a fine grid. However, this is
beyond the scope of this paper.
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Our non-constructive identification theorem follows.

Theorem 4. Assume that the vector α0 is identified using some auxiliary argument and let Assump-
tion 2 hold. Let B be compact and X0 be a nonempty open subset of X . The distribution F 0 ∈ F(B)
is uniformly identified over choices of (B,X0) if the function g (·) is real analytic, nonconstant
and satisfies g (0) 6= 0.

3.1 Lemmas That Factor Into the Proof of Theorem 4

The proof of Theorem 4 is a consequence of two lemmas. We state the lemmas here for those
interested in the logic behind the identification theorem.

We say that F 0 ∈ F(B) is uniformly identified over choices of B, holding a set of values of x, T0,
fixed, whenever P

(
x, F 0

)
− P

(
x, F 1

)
6= 0 for all x ∈ T 1

0 ⊂ T0 for any F 1 ∈ F(B), F 1 6= F 0 and for
any compact choice for the support of the random coefficients, B. In this definition T0 does not have
to be included in the support of x. P

(
x, F 0

)
and P

(
x, F 1

)
for x ∈ T0 * X are well defined from

the model in (4) and then we have P (x) = P
(
x, F 0

)
only for x ∈ X if F 0 is the true distribution.

Lemma 5. Assume that the vector α0 is identified using some auxiliary argument. Let g (·) be
real analytic and let a set of x, T , contain a nonempty open set. The distribution F 0 ∈ F(B) is
uniformly identified over choices of (B, T0) with nonempty open sets T0 ⊂ T if and only if F 0 ∈ F(B)
is uniformly identified over choices of B, for at least one fixed T0 ⊆ T .

The lemma and its short proof (in our appendix for completeness) are inspired by Theorem 3.8
in Stinchcombe and White (1998), a paper on hypothesis testing. The content of Lemma 5 is that
identification for any choice of nonempty open set T0 automatically holds if identification is checked
for one, likely convenient choice of T0. The most convenient choice of T0 is the one with the widest
variation, or T0 = T = RK .

Lemma 6. Assume that the vector α0 is identified using some auxiliary argument. Let g (·) be
bounded and nonconstant and satisfy g (0) 6= 0. Then the distribution F 0 ∈ F(B) is uniformly
identified over choices of B for the choice T = RK .

Lemmas 5 and 6 together imply Theorem 4. Lemma 6 shows the model (4) identifies F 0 against
any F 1 6= F 0 with T0 = T = RK and Lemma 5 says then identification should hold with any
nonempty open set T0. Therefore, we conclude that the F 0 that solves P (x) = P (x, F ) in (4)
is identified with any nonempty open set X0 ⊂ X , noting that we have P (x) = P (x, F 0) in the
support of x. Lemma 5 shows the role of g(·) being real analytic for identification: it removes the
full support condition.

Lemma 6 follows from the proof of Theorem 5 in Hornik (1991), a paper on functional approx-
imation using a function that takes a linear index. Other than the requirement that g (0) 6= 0,
Lemma 6 would be exactly the same as the statement of Theorem 5 of Hornik (using different
notation) if our model was g (x′1β + x2), where in a study of identification x2 is a special regressor
with large support and known sign. However, an inspection of Hornik’s proof shows x2 is only used
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to establish that g (x2) 6= 0 for some x2 ∈ R (because g is nonconstant), which we replace with
the requirement that g (0) 6= 0. We do not need data on x = 0 to establish that g (0) 6= 0; indeed
P (0, F ) = g (0) is known from the choice of g (and the identification of α), as it is a trivial function
of F . As the proof of Theorem 5 in Hornik is long, we do not include it here. To our knowledge,
no other paper has linked the result on function approximation in Hornik to the identification of
distributions of heterogeneity.

4 An Alternative, Constructive Approach

The previous identification approach is fairly general but is not constructive. In other words,
the identification argument implies that P

(
x, F 0

)
− P

(
x, F 1

)
6= 0 for a set of x with positive

probability12 but does not give a procedure to construct F 0. Here we give such a constructive
identification argument. The downside is that an open set around the point x = 0 will play a
special role in the identification of the distribution of random coefficients, while the point x = 0
only possibly played the role of identifying homogeneous parameters α in the prior, non-constructive
argument. On the other hand, compactness of the parameter space B will not be imposed, as it was
in the non-constructive argument. Indeed, B can equal RK . The function g (·) will not need to be
real analytic. As before, the homogeneous parameters α can be identified in a first stage.

Assumption 7. The absolute moments of F (β), given by ml =
∫
‖β‖l dF (β), are finite for l ≥ 1

and satisfy the Carleman condition: Σl≥1m
−1/l
l =∞.

A distribution F satisfying the Carleman condition is uniquely determined by its moments
(Shohat and Tamarkin 1943, p. 19). The Carleman condition is weaker than requiring the mo-
ment generating function to exist. The Carleman condition gives uniqueness for distributions with
unrestricted support. If the support of F is known and compact, uniqueness follows without the
Carleman condition. Let g(l)(c) be the l-th derivative of g (c) evaluated at c.

Assumption 8.

1. g (c) is infinitely differentiable on an open set C ⊂ R that includes c = 0.

2. g(l)(0) is nonzero and finite for all l ≥ 1.

For a (non-probability) example, if g (c) = D · exp (c), then Assumption 8 is satisfied because
g(l)(0) = D for all l. If g (·) is a polynomial function of any finite degree, g does not satisfy the
condition because its derivative becomes zero at a certain point. For polynomials, we identify the
distribution of β up to the v-th moment, where v is the order of the polynomial function.

The key limitation of the constructive identification theorem is its reliance on regressor variation
in an open set around the point x = 0.

12To be precise this is because identification holds on a set with nonempty interior and we assume this set has
positive measure.
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Assumption 9. The support X contains an open set surrounding x = 0.

Recall that, in a multinomial choice model, the point x = 0 could arise via re-centering.
The constructive identification argument is quite simple. The P (x) = P

(
x, F 0

)
are the observed

choice probabilities in the data. We illustrate the argument for the special case where K = 2 and
so x′β = x1β1 + x2β2. At x1 = x2 = 0,

∂P
(
x, F 0

)
∂x1

∣∣∣∣∣
x=0

= g(1) (α)
∫
β1dF

0 (β) = g(1) (α)E [β1] ,

where β1 arises from the chain rule and the expression identifies the mean of β1, because P
(
x, F 0

)
is

in the data and g(1) (α) is a known constant that does not depend on β. Likewise, ∂P(x,F 0)
∂x2

∣∣∣∣
x=0

/g(1) (α)

equals E [β2], ∂
2P(x,F 0)
∂x1∂x2

∣∣∣∣
x=0

/g(2) (α) equals E [β1β2], and ∂2P(x,F 0)
∂x2

1

∣∣∣∣
x=0

/g(2) (α) equals E
[
β2

1

]
. Ad-

ditional derivatives will identify the other moments of β = (β1, β2). We make no assumption that
the components β1 and β2 are independently distributed; F 0 is an unrestricted joint distribution.

Theorem 10. Assume that the vector α0 is identified using some auxiliary argument. Suppose
Assumptions 2 and 9 hold.

• Suppose Assumptions 7 and 8 also hold. Then the true F 0 is identified.

• Assume the first L derivatives of g (c) with respect to c are nonzero when evaluated at the
scalar argument c = 0. Then all moments of β up to order L (including cross moments) are
identified.

The proof is in the appendix. Note the approach’s simplicity: we need only to check for non-
zero derivatives of g (c) at c = 0. This technique can be applied to show identification of many
differentiable economic models that use linear indices x′β. The approach is constructive: if g(2) (0) 6=
0, we can identify all own second moments and all cross-partial moments between two random
coefficients. If only the first 100 derivatives of g (c) at c = 0 are nonzero, then we identify at least
the first 100 moments of the random coefficients.

5 Identification of the Random Coefficients Logit Model

5.1 Homogeneous Parameters for the Logit

Our leading example of a mixtures model is the random coefficients logit as outlined in the intro-
duction. We first show we can identify the homogeneous terms, α0

j for all j. Consider the point
x = 0. Algebra shows that

log Pr
(
j | x = 0; F 0, αJ,0

)
− log Pr

(
0 | x = 0; F 0, αJ,0

)
= α0

j ∀ j = 1, . . . , J,

10



where Pr
(
j | x = 0; F 0, αJ,0

)
is identified from the data for all j = 0, 1, . . . , J . The vector αJ,0 is

identified at the point x = 0.
Following this, we can show the parameters (α, γ′w) in αj = α + w′jγw are identified. Let

Pr (j | x,w) = Pr
(
j | x,w; F 0, α0, γ0

w

)
be the choice probability for product j when the regressors

are x and w. The population linear regression of log Pr
(
j | x = 0, w; F 0, α0, γ0

w

)
−log Pr

(
0 | x = 0, w; F 0, α0, γ0

w

)
on a constant and the vector wj will identify the constant term α0 and the homogeneous coefficients
γ0
w as long as the density of w = (w′1, . . . , w

′
J) is strictly positive on its support at x = 013 and

E
[
(1, w′j)

′(1, w′j) | x = 0
]
is nonsingular. Thus, the homogeneous terms are identified from differ-

ences in market shares when all products are evaluated at x = 0. The identification of F 0 below
can proceed at any given value of w = w̃ in the support of w as long as x = 0 is allowed at w̃.14 We
collect these conditions for the identification of

(
α0, γ0′

w

)
.

Assumption 11. The density of w = (w′1, . . . , w
′
J) is strictly positive on its support at x = 0 and

E
[
(1, w′j)

′(1, w′j) | x = 0
]
is nonsingular.

5.2 Non-Constructive Identification for the Logit

Using some duplication of notation, we can fit the mixed logit model into the mixtures framework
by defining the logit choice probabilities for some particular choice j as15

gj
(
αJ , x′1β, . . . , x

′
Jβ
)

=
exp

(
αj + x′jβ

)
1 +

∑J
j′=1 exp

(
αj′ + x′j′β

) .
Let xj′ = 0 for all j′ 6= j. With one outside good and J inside goods, the choice probability of
alternative j given β is

gj
(
αJ , 0, . . . , x′jβ, . . . , 0

)
=

exp
(
x′jβ

)
exp (−αj) +

∑
j′ 6=j exp

(
αj′ − αj

)
+ exp

(
x′jβ

) .
Then we obtain the integrated choice probability

Pj
(
0, . . . , xj , . . . 0, F, αJ

)
=
∫
gj
(
αJ , 0, . . . , x′jβ, . . . , 0

)
dF (β), (5)

where Pj
(
0, . . . , xj , . . . 0, F, αJ

)
denotes the conditional choice probability of the good j at x =

(0′, . . . , x′j , . . . , 0
′) and αJ .

13If some elements of wj are discrete, this is a density with respect to the counting measure for the discrete elements.
14Assume that x and w jointly have product support. The identification argument for

`
α0, γ0′

w

´
directly relies on a

set of (w, x) of measure zero only because of the focus on the point x1 = . . . = xJ = 0, not because of any additional
restrictions on w.

15When there is no outside good, the same approach is taken using a normalization with respect to a particular
good, say good 1. Let α̃j = αj − α1 and x̃j = xj − x1. Then the model becomes gj

`
α̃J−1, x̃′2β, . . . , x̃

′
Jβ
´

=
exp(α̃j+x̃′jβ)

1+
PJ

j′=2
exp

“
α̃j′+x̃

′
j′β

” .

11



Define Aj
(
αJ
)

= exp (−αj) +
∑

j′ 6=j exp
(
αj′ − αj

)
and, in another duplication of notation,

gj(αJ , c) = gj(Aj
(
αJ
)
, c) = exp(c)

Aj(αJ )+exp(c)
, which is a function of a single argument c given Aj .

Therefore, the formulation of (5) is a special case of (3), where we take P (xj , F, α) = Pj
(
0, . . . , xj , . . . 0, F, αJ

)
and g

(
αJ , x′jβ

)
= gj

(
αJ , x′jβ

)
. The choice j identification focuses on is arbitrary.

First we state non-constructive identification theorem.

Assumption 12. The support of x, X contains x = 0, but not necessarily an open set surround-
ing it. Further, the support contains a nonempty open set of points (open in RK) of the form(
x′1, . . . , x

′
j−1, x

′
j , x
′
j+1, . . . , x

′
J

)
=
(

0′, . . . , 0′, x′j , 0
′, . . . , 0′

)
.

The identification approach needs x = 0 to be in the support of x so that the homogeneous parame-
ters are identified and so that identification can exclusively focus on variation in the characteristics
of choice j. The point x = 0 otherwise plays no role in the identification of the distribution of
random coefficients. In other words, identification of the random coefficients can come from a small
open set of xj values far from xj = 0. The difference between Assumptions 12 and 9 is subtle,
but the role of the point x = 0 in identification of F 0 is quite different in the constructive and
non-constructive identification approaches.

Theorem 13. Let the true model be the multinomial logit and let Assumptions 2, 11 and 12 hold.
The homogeneous parameters αJ,0 are identified. Also, the distribution F 0 ∈ F(B) is uniformly
identified over choices of

(
B,XK0

)
, where XK0 ⊆ RK are nonempty open subsets of the space of

characteristics of one particular product, XK .

Identification holds in any nonempty open set of product characteristics satisfying the conditions
in the theorem. This theorem is a specialization of Theorem 4 to the multinomial logit. The
logit gj

(
αJ , x′jβ

)
is nonzero at all xj ∈ XK for finite αJ , is bounded, and is real analytic. Real

analyticity holds because the function exp (·) is real analytic and the function gj(αJ , c) is formed
by the addition and division of never zero real analytic functions, and so is itself real analytic
(Krantz and Parks 2002). Thus, the distribution of random coefficients in the multinomial logit is
non-constructively identified.

5.3 Constructive Identification

Let g(l)
(
A
(
αJ
)
, 0
)
be the l-th derivative of gj

(
A
(
αJ
)
, c
)
with respect to c evaluated at c = 0.

Define the set
A =

{
αJ ∈ RJ | g(l)

(
A
(
αJ
)
, 0
)
6= 0 for all integer l ≥ 1

}
. (6)

This is the set of values of homogeneous terms, identified in the first stage, where the logit has
nonzero derivatives and hence all moments of β are identified using Theorem 10. If A = RJ , then
we would write the logit model is identified. Unfortunately, A ⊂ RJ , although we will show that
RJ\A is a set of measure 0.

Assumption 14. The support X contains a nonempty open set of points (open in RK) of the form(
x′1, . . . , x

′
j−1, x

′
j , x
′
j+1, . . . , x

′
J

)
=
(

0′, . . . , 0′, x̃′j , 0
′, . . . , 0′

)
surrounding x̃j = 0.

12



Theorem 15. Let Assumptions 2, 7, 8, 11, and 14 hold. The homogeneous parameters αJ,0 are
identified. Then the true F 0 is identified for any αJ ∈ A. Further, A is a set of measure 1 in RJ .

Identification of F 0 follows directly from Theorem 10 and the definition of A once Assumption
8.1 is satisfied. A function that is real analytic is infinitely differentiable. The proof in the appendix
shows that the set A has measure 1. We note that αJ is always identified from the data at x = 0
and whether αJ ∈ AL can be computationally tested using computer algebra software, where

AL =
{
αJ ∈ RJ | g(l)

(
A
(
αJ
)
, 0
)
6= 0 for all integer 1 ≤ l ≤ L

}
and L is the maximum order of the derivative considered by the computer. As variation in w causes
variation in αj = α+w′jγw, variation in w (allowing regressors without random coefficients) ensures
that the true F 0 is identified, not just identified for any αJ ∈ A.

As stated previously, our constructive identification argument uses only variation in product
characteristics xj around zero or around zero after centering, e.g., we can redefine xj,k = xj,k − x̄k
where x̄k is a constant term that is the same across the inside goods. Because we do not advocate
analog estimation (instead preferring our mixtures estimator in Bajari, Fox, Kim, and Ryan (2010)
or another mixtures estimator), we do not see using thin slices of data in identification as a problem
for estimation.

6 Extensions

6.1 Identification for Higher Order Terms and Interactions

Our identification results do not extend to models with higher order polynomial terms and inter-
action terms. Our support conditions rule out these models for both the non-constructive and
constructive identification arguments. When xj,k includes higher order terms or interactions of
characteristics, the support of xj cannot include a nonempty open set because xj,k has components
that are nonlinearly dependent. This is a limitation of our identification results.

6.2 Need for a Special Regressor for a Random Coefficient for the Constant
Term

Consider the utility specification ui,j = αi+x′jβi+ εi,j , where we now allow for a random coefficient
αi on the constant term, which affects the utility of the inside relative to the outside goods. Consider
the case of J = 1, or one inside and one outside good. In this case, the unspecified density fα (α)
subsumes the type I extreme value density on εi,j . This puts us in the model of Ichimura and
Thompson (1997), where all previous identification results require special regressors (regressors
with large support).

13



6.3 Endogeneity

If there is endogeneity in price due a demand shock or omitted product characteristic ξj in the utility
of choice j, one can adopt Kim and Petrin (2009)’s control function approach. Kim and Petrin show
that under a set of conditions (including restrictions on the supply side), one can include a proxy
for ξj that is a (to be identified) nonparametric function of the residuals for all products from first
stage regressions of pricing equations. Alternatively, one can identify ξj in a first stage using both
a special regressor and instruments with the approach of Berry and Haile (2010). Either way, ξj or
proxies for it can be added to the characteristic vector xj and identification using our approach can
be considered.

7 Conclusions

The random coefficients logit model has been used in empirical studies for over thirty years. In
contrast to other work on identification in binary and multinomial choice, we exploit the type I
extreme value distribution on the additive errors to show that the density of random coefficients
is nonparametrically identified under an alternative set of assumptions, which are non-nested with
those used in other approaches. By exploiting this special structure, we eliminate assumptions
about the large support and the signs of coefficients on special regressors. We do use identification
at one particular point (x = 0), but, in the non-constructive identification theorem, only to identify
homogeneous parameters such as the product intercepts α in a first stage and to focus on variation
in the characteristics of only one choice j. An open set around x = 0 is the only source of iden-
tification for our constructive identification result. From an econometric theory perspective, either
approach allows complete proofs for the consistency of nonparametric estimators of the distribution
of random coefficients. The proof of identification is also comforting to empirical researchers. Prior
to our theorem, it was not known whether variation in x was sufficient to identify the distribution
of the random coefficients in these models. One possibility was that the normality assumptions
typically imposed on the distribution were crucial to identification: without restricting attention to
a particular parametric functional form, two different distributions of random coefficients would be
consistent with the data in the model, even with data on a continuum of x. We show that indeed the
random coefficients logit model is nonparametrically identified, which provides a solid econometric
foundation for its widespread use in empirical work. We can condition on discrete covariates, but,
like the rest of the literature, we cannot point identify the distribution of random coefficients on
discrete characteristics. Our identification results do not extend to models with higher order terms
or interaction terms.
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A Proofs

A.1 Proof of Lemma 5

We rephrase the proof of Theorem 3.8 in Stinchcombe andWhite (1998) in terms of our identification
problem, otherwise our proof is essentially the same.

The forward direction of Lemma 5 holds because a stronger definition of identification implies
a weaker definition. For the reverse direction of Lemma 5, assume to the contrary: the distribution
of random coefficients is identified uniformly over B with a nonempty open set T0 ⊂ T but there
exists a nonempty open set T̃ ⊂ T and a compact set B̃ where identification fails. The lack of
identification means that there exist F 0, F 1 ∈ F

(
B̃
)
such that F 0 6= F 1 but P (x, F 0) = P (x, F 1)

for all x ∈ T̃ . It follows that ∆ (x) ≡
∫
B̃ g(x′β)d

(
F 0 (β)− F 1 (β)

)
= 0 for all x ∈ T̃ .

Because B̃ is compact and g(·) is real analytic, ∆ (x) is itself a real analytic function. If a real
analytic function equals to 0 on an open set, it equals 0 everywhere. If ∆ (x) = 0 everywhere, then
F 0 ∈ F

(
B̃
)
cannot be identified on the set T0, which gives a contradiction.

A.2 Proof of Theorem 10

First we introduce some notation for gradients of arbitrary order, which we need because F (β) has
a vector of K arguments, β. Let t be a vector of length T . For a function h (t), we denote the
1×Kv block vector of υ-th order derivatives as ∇υh (t). ∇υh (t) is defined recursively so that the
k-th block of ∇υh (t) is the 1 × T vector hυk (t) = ∂hυ−1

k (θ)/∂t′, where hυ−1
k is the k-th element of

∇υ−1h (t). Using a Kronecker product ⊗, we can write ∇υh (t) = ∂υh(t)

∂t′ ⊗ ∂t′ ⊗ . . .⊗ ∂t′︸ ︷︷ ︸
υ Kronecker product of ∂t′

.

Take the derivatives with respect to the covariates x on both sides of P (x, F ) =
∫
g (α, x′β) dF (β)

and evaluate the derivatives at x = 0. By Assumption 8, for any v = 1, 2, . . . and the chain rule
repeatedly applied to the linear index x′β,

∇υP (x, F )|x=0 =
∫
g(v)

(
x′β
)∣∣∣
x=0

{
β′ ⊗ β′ ⊗ · · · ⊗ β′

}
dF (β) (7)

= g(v) (0)
∫ {

β′ ⊗ β′ ⊗ · · · ⊗ β′
}
dF (β) .

For each v there are Kv equations. Recall g is a known function. Therefore, as long as g(v)(0) is
nonzero and finite for all v = 1, 2, . . .., we obtain the v-th moments of β for all v ≥ 1. Now by
Assumption 7, F satisfies the Carleman condition. Therefore, F 0 is identified since a probability
measure satisfying the Carleman condition is uniquely determined by its moments.

A.3 Proof of Theorem 15

Identification arises from identifying all moments, as in Theorem 10. We wish to show that the set
A as defined in (6) has measure 1 in RJ .
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Let Dc be the derivative operator. We suppress Aj(αJ)’s dependence on αJ and write Aj =
Aj(αJ). For this purpose, we first obtain the derivatives of gj

(
αJ , c

)
with respect to c,

Dcgj
(
αJ , c

)
= (Aj + ec)−2Aje

c, D2
cgj
(
αJ , c

)
= (Aj + ec)−3 (A2

je
c −Aje2c

)
D3
cgj
(
αJ , c

)
= (Aj + ec)−4 (A3

je
c − 4A2

je
2c +Aje

3c
)
, . . .

For p ≥ 3, now we write the (p− 1)-th derivative as Dp−1
c gj

(
αJ , c

)
= (Aj +ec)−p

∑p−1
l=1 γ

(p)
p−lA

p−l
j elc.

Then, we can write the p-th derivative as

Dp
cgj
(
αJ , c

)
=

[
1

(Aj + ec)p+1

p∑
l=1

γ
(p+1)
p+1−lA

p+1−l
j elc

]
(8)

= DcD
p−1
c gj

(
αJ , c

)
= Dc

[
1

(Aj + ec)p

p−1∑
l=1

γ
(p)
p−lA

p−l
j elc

]

=
1

(Aj + ec)p

p−1∑
l=1

lγ
(p)
p−lA

p−l
j elc − 1

(Aj + ec)p+1
p

p−1∑
l=1

γ
(p)
p−lA

p−l
j e(l+1)c

=
1

(Aj + ec)p+1

(
(Aj + ec)

p−1∑
l=1

lγ
(p)
p−lA

p−l
j elc −

p−1∑
l=1

pγ
(p)
p−lA

p−l
j e(l+1)c

)

=
1

(Aj + ec)p+1

( ∑p−1
l=1 lγ

(p)
p−lA

p+1−l
j ela +

∑p−1
l=1 lγ

(p)
p−lA

p−l
j e(l+1)c

−
∑p−1

l=1 pγ
(p)
p−lA

p−l
j e(l+1)c

)

=
1

(Aj + ec)p+1

(
γ

(p)
p−1A

p
je
c +

∑p−1
l′=2 l

′γ
(p)
p−l′A

p+1−l′
j el

′c

+
∑p−1

l=1 lγ
(p)
p−lA

p−l
j e(l+1)c −

∑p−1
l=1 pγ

(p)
p−lA

p−l
j e(l+1)c

)
(9)

=
1

(Aj + ec)p+1

(
γ

(p)
p−1A

p
je
c +

∑p−2
l=1 (l + 1) γ(p)

p−l−1A
p−l
j e(l+1)c

+
∑p−1

l=1 lγ
(p)
p−lA

p−l
j e(l+1)c −

∑p−1
l=1 pγ

(p)
p−lA

p−l
j e(l+1)c

)
(10)

=
1

(Aj + ec)p+1

(
γ

(p)
p−1A

p
je
c − γ(p)

1 A1
je
pc

+
∑p−2

l=1

{
(l + 1) γ(p)

p−l−1 + lγ
(p)
p−l − pγ

(p)
p−l

}
Ap−lj e(l+1)c

)
, (11)

where in (9) and (10), we take out the first element in the first sum and change the index l′ to l+ 1.
(11) is obtained by rearranging terms and collecting coefficients on Ap−lj e(l+1)c for j = 1 to p− 2.

To fix the undetermined coefficients γ(p)
p−l’s, we compare the coefficients from (8) and (11) and
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obtain

p∑
l=1

γ
(p+1)
p+1−lA

p+1−l
j elc = γ(p+1)

p Apje
c +

p−1∑
l=2

γ
(p+1)
p+1−lA

p+1−l
j elc + γ

(p+1)
1 A1

je
pc

= γ(p+1)
p Apje

c +
p−2∑
l=1

γ
(p+1)
p−l Ap−lj e(l+1)c + γ

(p+1)
1 A1

je
pc

= γ
(p)
p−1A

p
je
c +

p−2∑
l=1

{
(l + 1) γ(p)

p−l−1 + lγ
(p)
p−l − pγ

(p)
p−l

}
Ap−lj e(l+1)c − γ(p)

1 A1
je
pc.

We find

γ(p+1)
p = γ

(p)
p−1 (12)

γ
(p+1)
p−l = (l + 1) γ(p)

p−l−1 − (p− l) γ(p)
p−l for p ≥ 3 (13)

γ
(p+1)
1 = −γ(p)

1 . (14)

This system generates the coefficients for all p ≥ 1. For the initial value, we obtain γ(2)
1 = 1. When

p = 2, we find
γ

(3)
2 = γ

(2)
1 = 1, γ(3)

1 = −γ(2)
1 = −1

and when p = 3, we find

γ
(4)
3 = γ

(3)
2 = 1, γ(4)

2 = 2γ(3)
1 − 2γ(3)

2 = −4, γ(4)
1 = −γ(3)

1 = 1.

Now we examine whether Dp
cgj
(
αJ , c

)∣∣
c=0

can take the value of zero for some Aj (and hence for
some α) at some p. For this purpose, we evaluate the derivatives at c = 0 (xj = 0) and obtain expres-
sions with respect toAj for the p-th order derivative as Dp

cgj
(
αJ , c

)∣∣
c=0

= 1
(Aj+1)p+1

∑p
l=1 γ

(p+1)
p+1−lA

p+1−l
j =

0 for all p ≥ 1. This is equivalent to solving

p∑
l=1

γ
(p+1)
p+1−lA

p−l
j = 0. (15)

We consider two cases. In the first case where αj = 0 for all j, i.e., all goods are symmetric,
the condition of nonzero derivatives is obtained using the rational zero test. In this case we have
Aj = J and note that the coefficient on Ap−1

j (the highest order term in the equation) in (15) is

equal to γ(p+1)
p = 1 for all p. Also note that the constant term (the coefficient on A0

j in (15)), γ(p+1)
1 ,

is equal to 1 when p is odd and is equal to −1 when p is even. By the rational zero test, this implies
that the only possible positive rational number solution in (15) is J = 1. A positive integer greater
than 1 cannot be the solution of (15) for any p. This proves the condition of nonzero derivatives for
the symmetric case.

Second we consider the asymmetric case where αj may not be 0. In this case we allow for
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non-integer solutions of the equation (15).16 Nonetheless we will show that the set

AC =
{
αJ | Dp

cgj
(
αJ , c

)∣∣
c=0

= 0 for at least one p ≥ 1, αJ ∈ RJ
}

has measure zero in RJ .

Note that the set of values A ⊂ R+ that collect values of Aj that solve the equation (15) for
at least one p is countable because for any order p the equation (15) has at most p number of
solutions, i.e., we can find an injective function that maps A to N. Now consider any element
Ã ∈ A. We claim that the set of values Ã(Ã) = {αJ | Aj(αJ) = Ã, αJ ∈ RJ} has measure
zero in RJ because Ã is at most a subset of the vector space of RJ−1. By construction, we have
AC = ∪Ã∈AÃ(Ã) = ∪Ã∈A{α

J | Aj(αJ) = Ã, αJ ∈ RJ}. Finally we conclude that the set AC has
measure zero in RJ because a countable union of measure zero sets has measure zero, as Ã(Ã) has
measure zero for all Ã ∈ A and the set A is countable. This completes the proof.

16Because the equation (15) holds for any j, in practice we may pick j such that j∗ = argmin{α1, . . . , αJ}. Then
Aj∗ = exp (−αj∗)+

P
j′ 6=j∗ exp (αj′ − αj∗) > J−1. This again rules out all rational roots of (15) with J ≥ 2 because

the only rational root of (15) is Aj∗ = 1 according to the rational zero test.
If Aj∗ is not a solution of (15) for any order of derivative, we satisfy the nonzero derivatives condition in Assumption

8 by focusing on product j?. Therefore, suppose Aj∗ is a solution to the equation (15) corresponding to the p-th
order derivative. Then we cannot identify the p-th moments of F 0(β) using our strategy because Dp

cgj∗(c = 0) = 0.
But we can also utilize the share equation of other goods (including the outside good) to identify the p-th moments
of f(β). We can choose a j′-th good such that (i) Aj′ = exp (−αj′) +

P
j 6=j′ exp (αj − αj′) 6= Aj∗ and (ii) Aj′ does

not solve the equation (15) corresponding to the p-th order derivative. Then we can identify the p-th order moments
of F 0(β) from the share equation of the j′-th good. Therefore, combining these two share equations, we can identify
all the moments of F 0(β).
Moreover, we conjecture (we have experimented with this) that if Aj∗ solves (15) for the p-th order derivative, Aj∗

cannot be a solution to (15) for any other order derivative than the p-th order. Therefore all the moments of F 0(β)
other than the p-th order moments are identified using derivatives of the share equation for the j∗-th good.
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