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MARKOV PROCESSES ON THE PATH SPACE OF THE

GELFAND-TSETLIN GRAPH AND ON ITS BOUNDARY

ALEXEI BORODIN AND GRIGORI OLSHANSKI

Abstract. We construct a four-parameter family of Markov processes on infinite
Gelfand-Tsetlin schemes that preserve the class of central (Gibbs) measures. Any
process in the family induces a Feller Markov process on the infinite-dimensional
boundary of the Gelfand-Tsetlin graph or, equivalently, the space of extreme char-
acters of the infinite-dimensional unitary group U(∞). The process has a unique
invariant distribution which arises as the decomposing measure in a natural prob-
lem of harmonic analysis on U(∞) posed in [Ols03]. As was shown in [BO05a], this
measure can also be described as a determinantal point process with a correlation
kernel expressed through the Gauss hypergeometric function.
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1. Introduction

This work is a result of interaction of two circles of ideas. The first one deals with
a certain class of random growth models in two space dimensions [War07], [Nor10],
[BF08+], [BG09], [BGR09+], [BK10] [Bor10+], while the second one addresses con-
structing and analyzing stochastic dynamics on spaces of point configurations with
distinguished invariant measures that are often given by, or closely related to, de-
terminantal point processes [BO06a], [BO06b], [BO09], [Ols10], [Ols10+].

Our main result is a construction of a Feller Markov process that preserves the
so-called zw-measure on the (infinite-dimensional) space Ω of extreme characters
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of the infinite-dimensional unitary group U(∞). The four-parameter family of zw-
measures arises naturally in a problem of harmonic analysis on U(∞) as the de-
composing measures for a distinguished family of characters [Ols03]. A zw-measure
gives rise to a determinantal point process on the real line with two punctures, and
the corresponding correlation kernel is given in terms of the Gauss hypergeometric
function [BO05a]. Such point processes degenerate, via suitable limits and/or spe-
cializations, to essentially all known one-dimensional determinantal processes with
correlation kernels expressible through classical special functions.

The problem of constructing a Markov process that preserves a given determinan-
tal point process with infinite point configurations has been addressed in [Spo87],
[KT10], [Osa09+] for the sine process, in [KT09] for the Airy process, and in [Ols10+]
for the Whittaker process describing the z-measures from the harmonic analysis on
the infinite symmetric group.

Our approach to constructing the infinite-dimensional stochastic dynamics differs
from the ones used in previous papers. We employ the fact (of representation the-
oretic origin) that the probability measures on Ω are in one-to-one correspondence
with central or Gibbs measures on infinite Gelfand-Tsetlin schemes that can also be
viewed as stepped surfaces or lozenge tilings of a half-plane. The projections of a
zw-measure to suitably defined slices of the infinite schemes yield orthogonal polyno-
mial ensembles with weight functions corresponding to hypergeometric Askey-Lesky
orthogonal polynomials .

These orthogonal polynomials are eigenfunctions for a birth and death process
on Z with quadratic jump rates; a standard argument then shows that the N -
dimensional Askey-Lesky orthogonal polynomial ensemble is preserved by a Doob’s
h-transform of N independent birth and death processes.

We further show that the Markov processes on the slices are consistent with re-
spect to stochastic projections of the Nth slice to the (N−1)st one (these projections
are uniquely determined by the Gibbs property). This consistency is in no way ob-
vious, and we do not have a conceptual explanation for it. However, it turns out to
be essentially sufficient for defining the corresponding Markov process on Ω.

We do a bit more — using a continuous time analog of the general formalism of
[BF08+] (which was based on an idea from [DF90]), we construct a Markov process
on Gelfand-Tsetlin schemes that preserves the class of central (=Gibbs) measures
and that induces the same Markov process on Ω.

We now proceed to a more detailed description of our work.

1.1. Gelfand-Tsetlin graph and its boundary. Following [Wey39], for N ≥ 1
define a signature of length N as an N -tuple of nonincreasing integers λ = (λ1 ≥
· · · ≥ λN), and denote by GTN the set of all such signatures. Elements of GTN

parameterize irreducible representations of U(N) or GL(N,C), and they are often
called highest weights .
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For λ ∈ GTN and ν ∈ GTN+1, we say that λ ≺ ν if νj+1 ≤ λj ≤ νj for all
meaningful values of indices. These inequalities are well-known to be equivalent
to the condition that the restriction of the ν-representation of U(N + 1) to U(N)
contains a λ-component.

Set GT =
⊔

N≥1GTN , and equip GT with edges by joining λ and ν iff λ ≺ ν or
ν ≺ λ. This turns GT into a graph that we call the Gelfand-Tsetlin graph. A path
of length M ∈ {1, 2, . . . } ∪ {∞} in GT is a length M sequence

λ(1) ≺ λ(2) ≺ . . . , λ(j) ∈ GTj.

Equivalently, such a path can be viewed as an array of numbers
{
λ
(j)
i

}
satisfying

the inequalities λ
(j+1)
i+1 ≤ λ

(j)
i ≤ λ

(j+1)
i ; it is also called a Gelfand-Tsetlin scheme. An

interpretation of paths in GT in terms of lozenge tilings or stepped surfaces can be
found in the introduction to [BF08+].

The Gelfand-Tsetlin schemes of lengthN parameterize basis vectors in theGelfand-
Tsetlin basis of the irreducible representation of U(N) corresponding to λ(N), cf.
[Zhe70]. Denote by DimN λ the number of such schemes with λ(N) = λ; this is also
the dimension of the irreducible representation of U(N) corresponding to λ. It is
essentially equal to the Vandermonde determinant in shifted coordinates of λ:

DimN(λ) = constN
∏

1≤i<j≤N

(λi − i− λj + j).

A probability measure on infinite paths in GT is called central (or Gibbs) if any
two finite paths with the same top end are equiprobable, cf. [Ker03]. Let PN be
the projection of such a measure to λ(N) ∈ GTN . Centrality is easily seen to be
equivalent to the relation µN = µN+1Λ

N+1
N , N ≥ 1, where µN and µN+1 are viewed

as row-vectors with coordinates {µN(λ)}λ∈GTN
and {µN+1(ν)}ν∈GTN+1

, and

ΛN+1
N (ν, λ) =

DimN(λ)

DimN(ν)
1λ≺ν , λ ∈ GTN , ν ∈ GTN+1, (1.1)

is the stochastic matrix of cotransition probabilities . There is a one-to-one cor-
respondence between central measures on GT and characters of U(∞) (equiva-
lently, equivalence classes of unitary spherical representations of the Gelfand pair
(U(∞)× U(∞), diagU(∞))), see [Ols03].

As shown in [Ols03], see also [Voi76], [VK82], [OO98], the space of all central
probability measures is isomorphic to the space of all probability measures on the
set Ω ⊂ R

4∞+2
+ consisting of the sextuples ω = (α+, β+, α−, β−, δ+, δ−) ∈ R

4∞+2
+

satisfying the conditions

α± = (α±
1 ≥ α±

2 ≥ · · · ≥ 0), β± = (β±
1 ≥ β±

2 ≥ · · · ≥ 0), δ± ≥ 0,
∞∑

i=1

(α±
i + β±

i ) ≤ δ±, β+
1 + β−

1 ≤ 1.
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The set Ω is called the boundary of GT; its points parameterize the extreme
characters of U(∞). The map from central measures on GT to measures on Ω
amounts to certain asymptotic relations described in Subsection 9.1 below.

1.2. zw-measures. Let z, z′, w, w′ be four complex parameters such that

(z + k)(z′ + k) > 0 and (w + k)(w′ + k) > 0 for any k ∈ Z (1.2)

and

z + z′ + w + w′ > −1 (1.3)

(note that (1.2) implies that z + z′ and w + w′ are real). For N ≥ 1, define a
probability measure on GTN by (below li = λi +N − i)

Mz,z,w,w′|N(λ) = constN
∏

1≤i<j≤N

(li − lj)
2

N∏

i=1

Wz,z′,w,w′(li), (1.4)

where

Wz,z′,w,w′(x) =
1

Γ(z +N − x)Γ(z′ +N − x)Γ(w + 1 + x)Γ(w′ + 1 + x)
.

We call it the N th level zw-measure. It is the N -point orthogonal polynomial
ensemble with weight W ( · ), see e.g. [Kon05] and references therein for general
information on such ensembles.

One can show that the finite level zw-measures are consistent: For any N ≥ 1,
Mz,z′,w,w′|N = Mz,z′,w,w′|N+1 Λ

N+1
N . Therefore, the collection

{
Mz,z′,w,w′|N

}
N≥1

defines

a central measure on the paths in GT and a character of U(∞). For z′ = z̄, w′ = w̄,
this character corresponds to a remarkable substitute for the nonexisting regular
representation of U(∞), see [Ols03] for details.

The corresponding measure Mz,z′,w,w′ on Ω is called the spectral zw-measure. If
ω = (α±, β±, δ±) ∈ Ω is distributed according to Mz,z′,w,w′ then the random point
process generated by the coordinates

{
1
2
+ α+

i ,
1
2
− β+

i ,−
1
2
+ β−

i ,−
1
2
− α−

i

}∞
i=1

is determinantal, see [BO05a], [BO05b] for details.

1.3. Doob’s transforms of N-fold products of birth and death processes.

It is not hard to show that the first level zw-measure Mz,z′,w,w′|1 on GT1 = Z is the
symmetrizing measure for the bilateral birth and death process that from a point
x ∈ Z jumps to the right with intensity (x − u)(x− u′) and jumps to the left with
intensity (x+ v)(x+ v′), where (u, u′, v, v′) = (z, z′, w, w′). Denote by D = Du,u′,v,v′

the corresponding matrix of transition rates.
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More generally, we show that the Nth level zw-measure (1.4) is the symmetrizing
measure for a continuous time Markov chain on GTN with transition rates

D(N)(λ, ν) =
DimN(ν)

DimN(λ)

(
D(l1, n1)1{li=ni,i 6=1} +D(l2, n2)1{li=ni,i 6=2} + . . .

+D(lN , nN )1{li=ni,i 6=N}

)
− dN · 1λ=ν (1.5)

where lj = λj +N − j, nj = νj +N − j, 1 ≤ j ≤ N , dN is a suitable constant, and
we take (u, u′, v, v′) = (z +N − 1, z′ +N − 1, w, w′) in the definition of D.

Observe that D(N) can be viewed as a version of Doob’s h-transform of N copies
of the Markov chain defined by D with h( · ) = DimN ( · ). Note that in our case,
DimN( · ) is an eigenfunction of the corresponding matrix of transition rates with a
nonzero eigenvalue.

For any N ≥ 1, let (PN(t))t≥0 be the Markov semigroup corresponding to the
matrix D(N) of transition rates on GTN (we show that (PN(t))t≥0 is uniquely defined
and it possesses the Feller property). The key fact that we prove is the consistency
(or commutativity) relation

PN+1(t)Λ
N+1
N = ΛN+1

N PN (t), t ≥ 0, N ≥ 1.

Although this relation looks natural, we have no a priori reason to expect it to
hold, and we verify it by a brute force computational argument.

1.4. Main result. We prove that for any (z, z′, w, w′) ∈ C4 subject to (1.2)-(1.3),
there exists a unique Markov semigroup (P (t))t≥0 on Ω that preserves the spectral
zw-measure Mz,z′,w,w′, and whose trace on GTN coincides with Doob’s transforms
(PN(t))t≥0 introduced above. Moreover, the semigroup (P (t))t≥0 is Feller (it pre-
serves C0(Ω), the Banach space of continuous functions vanishing at infinity; note
that the space Ω is locally compact).

By general theory, see e.g. [EK86, IV.2.7], this means that for any probability
measure µ on Ω, there exists a Markov process on Ω corresponding to (P (t))t≥0 with
initial distribution µ and càdlàg sample paths. We also show that Mz,z′,w,w′ is the
unique invariant measure for this Markov process.

1.5. Markov process on Gelfand-Tsetlin schemes. Via the correspondence be-
tween the probability measures on Ω and central measures on paths in GT, the
semigroup (P (t))t≥0 defines a Markov evolution of central measures. It is natural to
ask if there exists a Markov process on all probability measures on paths in GT that
agrees with the one we have when restricted to the central measures. We construct
one such process; let us describe its transition rates.

Let
{
λ
(j)
i

}
be a starting Gelfand-Tsetlin scheme. Then

• Each coordinate λ
(k)
i tries to jump to the right by 1 with rate

(λ
(k)
i − i− z + 1)(λ

(k)
i − i− z′ + 1)
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and to the left by 1 with rate

(λ
(k)
i + k − i+ w)(λ

(k)
i + k − i+ w′),

independently of other coordinates.

• If the λ
(k)
i -clock of the right jump rings but λ

(k)
i = λ

(k−1)
i−1 , the jump is blocked. If

its left clock rings but λ
(k)
i = λ

(k−1)
i , the jump is also blocked. (If any of the two jumps

were allowed then the resulting set of coordinates would not have corresponded to
a path in GT.)

• If the right λ
(k)
i -clock rings and there is no blocking, we find the greatest number

l ≥ k such that λ
(j)
i = λ

(k)
i for j = k, k + 1, . . . , l, and move all the coordinates

{λ
(j)
i }

l
j=k to the right by one. Given the change λ

(k)
i 7→ λ

(k)
i + 1, this is the minimal

modification of the initial Gelfand-Tsetlin scheme that preserves interlacing.

• If the left λ
(k)
i -clock rings and there is no blocking, we find the greatest number

l ≥ k such that λ
(j)
i+j−k = λ

(k)
i for j = k, k + 1, . . . , l, and move all the coordinates

{λ
(j)
i+j−k}

l
j=k to the left by one. Again, given the change λ

(k)
i 7→ λ

(k)
i − 1, this is the

minimal modification of the set of coordinates that preserves interlacing.

Since the update rule for each coordinate λ
(k)
i typically depends only on a few

surrounding coordinates, one can argue that we have a model of local random growth.
It should be compared to the models treated in [BF08+], [BK10], where a similar
block-push mechanism was considered with constant jumps rates, and in [Bor10+],
where the jump rates were also dependent on the location and numbering of the
coordinates.

The key new feature of the Markov process above is the absence of the limit
shape phenomenon. Often taken for granted in local growth models, it is simply
nonexistent here.

This fact becomes more apparent if we restrict ourselves to coordinates {λ
(j)
1 }j≥1

only. The evolution of this set of coordinates is also Markov, and it represents
a kind of an exclusion process. Our results imply that this process has a unique
equilibrium measure. Moreover, with respect to this measure, the asymptotic density

limj→∞ λ
(j)
1 /j is well-defined and random. It changes over time, and its distribution

is given by a solution to the classical Painlevé VI (second order nonlinear) differential
equation, cf. [BD02].

1.6. Analytic continuation viewpoint. We have so far required the parameters
(z, z′, w, w′) to satisfy (1.2) and (1.3). However, all the results would hold if (1.2) is
replaced by more general conditions, see [Ols03] for a precise description, with the
only difference being that the state spaces for our Markov processes would become
smaller. In particular, if we choose

z = k ∈ Z≥0, z′ = k + a− 1, w = l ∈ Z≥0, w′ = l + b− 1, a, b > 0,
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then we have to restrict ourselves to Gelfand-Tsetlin schemes with −l ≤ λ
(j)
i ≤ k for

all i, j ≥ 1. As the result, there are only k + l nontrivial parameters remaining on
the boundary, and (P (t))t≥0 turns into a finite-dimensional diffusion with an explicit
second order differential operator as its generator. The equilibrium distribution (i.e.
the spectral zw-measure) becomes the (k + l)-point Jacobi orthogonal polynomial
ensemble. See Subsection 10.1 for details.

One can thus think of our construction as of an analytic continuation in param-
eters (k, l, a, b) of a very well understood finite-dimensional diffusion. This point of
view can be very fruitful: In [Ols10+] it was heavily exploited in the construction
and analysis of the Markov process preserving the spectral z-measure arising from
representation theory of the infinite symmetric group. In that case, the starting
point for analytic continuation was the Laguerre orthogonal polynomial ensemble
and the corresponding diffusion, rather than the Jacobi one that we have here.

1.7. Pregenerator. As our construction of the semigroup (P (t))t≥0 is fairly inex-
plicit, it is tempting to look for its alternative definition, for example, via a generator.

We were able to find a countable set of ‘coordinates’ on Ω such that the action of
the generator of (P (t))t≥0 on polynomials in these coordinates is given by an explicit
formal second order differential operator, see Subsection 10.2 below. However, it re-
mains a challenge for us to derive properties of our Markov process (or its existence)
from the resulting formula.

1.8. Further questions. As explained in [Ols03], the slices GTN can be embedded
into the boundary so that as N →∞, their images form an increasingly fine grid in
Ω. It is known that the Nth level zw-measures weakly converge to the spectral ones
under these embeddings. It would be desirable to prove a similar statement for the
Markov semigroups.

Verifying semigroup convergence would pave the way to proving that the equilib-
rium Markov process on the boundary can also be described as a time-dependent
determinantal point process. The fact that the dynamical correlation functions are
determinantal on each GTN easily follows from known techniques, although deriv-
ing useful formulas for the correlation kernel is a separate task. Another possible
corollary of the semigroup convergence would be that the spectral zw-measure is a
symmetrizing (not just an invariant) measure for (P (t))t≥0.

It seems important to continue the study of the pregenerator started in Subsection
10.2. For example, it would be nice to understand if the space of polynomials in our
coordinates is a core for the generator of the Markov process, and if not then how
that space should be modified.

Another way to benefit from investigating the generator would be to obtain a
proof of the continuity of trajectories for our processes; we are only able to show
that the process has càdlàg trajectories at the moment.
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All these questions and more have been settled in the case of the z-measures
treated in [Ols10+]. Unfortunately, key features of that model are not present
here (like decomposition of the process into a one-dimensional one and a process
on a compact set, or the existence of a convenient set of functions on the state
space isomorphic to the well-studied algebra of symmetric functions), and one would
clearly need new ideas.

1.9. Organization of the paper. In Section 2 we present an abstract scheme of
constructing a Markov semigroup on the boundary out of a consistent family of
semigroups on the slices. In Section 3 we describe how the Gelfand-Tsetlin graph
fits into this abstract scheme. Section 4 is a brief collection of general facts about
continuous time Markov chains on countable spaces. Section 5 provides the con-
struction of the Markov chains on GTN ’s. In Section 6 we verify the consistency of
these Markov chains. Section 7 contains a brief description of the zw-measures. In
Section 8 we develop a general formalism of building continuous time Markov chains
on paths out of a consistent family of those on the slices. In Section 9 we apply this
formalism to our specific example and discuss the exclusion type processes. Section
10 is an appendix without proofs; it contains a description of the finite-dimensional
case of integral parameters z and w, and an explicit formula for the generator of our
Markov process in certain coordinates.

1.10. Acknowledgements. A. B. was partially supported by NSF grants DMS-
0707163 and DMS-1006991. G. O. was supported by the RFBR grant 08-01-00110,
the RFBR-CNRS grant 10-01-93114, and the project SFB 701 of Bielefeld University.

2. Abstract construction

2.1. Markov kernels. For a more detailed exposition, see e.g. [Mey66, Ch. IX].
Let E and E ′ be measurable spaces. A Markov kernel K : E → E ′ is a function

K(x,A), where x ∈ E and A ⊂ E ′ is a measurable subset, such that K(x, · ) is a
probability measure on E ′ and K( · , A) is a measurable function on E.

Let B(E) and B(E ′) denote the Banach spaces of real-valued bounded measurable
functions with the sup-norm on E and E ′, respectively. A Markov kernelK : E → E ′

induces a linear operator B(E ′)→ B(E) of norm 1 via (Kf)(x) =
∫
E′ K(x, dy)f(y).

For two Markov kernels K1 : E → E ′ and K2 : E ′ → E ′′, their composition
K1 ◦K2 : E → E ′′ is also a Markov kernel.

Denote byM( · ) the Banach space of signed measures of bounded variation with
the norm given by the total variation. Let M+( · ) be the cone of finite positive
measures, and letMp( · ) be the simplex of the probability measures.

A Markov kernel K : E → E ′ also induces a linear operatorM(E) →M(E ′) of
norm 1 via (µK)(dy) =

∫
E
µ(dx)K(x, dy). This operator mapsM+(E) toM+(E

′)
and Mp(E) to Mp(E

′). Note that δxK = K(x, · ), where δx is the Dirac delta-
measure at x ∈ E.
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The spaceM(E) (and henceM+(E) andMp(E)) is equipped with a σ-algebra
of measurable sets: Any preimage of a Borel set under the map µ 7→ µ(A) from
M(E) to R for any measurable A is measurable.

2.2. Feller kernels. Let E and E ′ be locally compact topological spaces with count-
able bases. Let us take Borel σ-algebra as the σ-algebra of measurable sets for both
of them.

Let C( · ) ⊂ B( · ) be the Banach space of bounded continuous functions, and let
C0( · ) ⊂ C( · ) be its subspace of functions that tend to 0 at infinity.

Definition 2.1. A Markov kernel K : E → E ′ is called Feller if the induced map
B(E ′)→ B(E) maps C0(E

′) to C0(E).

Note that different authors may use different (nonequivalent) definitions for the
Feller property.

The convenience of the space C0( · ) is based on the fact that this space is separable
(as opposed to C( · ) which is not separable, except in the case when the initial
topological space is compact), andM( · ) is its Banach dual.

2.3. Feller semigroups. A Markov semigroup is a family of Markov kernels P (t) :
E → E, where t ≥ 0, P (0) = 1 (in the obvious sense), and P (s)P (t) = P (s + t).
Such a semigroup induces a semigroup of linear operators in B(E) as well as a
semigroup of linear operators inMp(E), see above.

We say that a Markov semigroup (P (t))t≥0 is Feller if
• E is a locally compact topological space with countable base;
• the corresponding operator semigroup in B(E) preserves C0(E);
• the function t 7→ P (t) is strongly continuous, i.e. t 7→ P (t)f is a continuous map
from [0,+∞) to C0(E) for any f ∈ C0(E) (an equivalent condition is the continuity
at t = 0).

2.4. Feller semigroups and Markov processes. For more details, see e.g. [EK86,
IV.2.7].

Let E be a locally compact separable metric space, and let (P (t))t≥0 be a Feller
semigroup on E. Then for each µ ∈ Mp(E), there exists a Markov process corre-
sponding to (P (t))t≥0 with initial distribution µ and càdlàg sample paths. Moreover,
this process is strongly Markov with respect to the right-continuous version of its
natural filtration.

2.5. Boundary. Let E1, E2, . . . be a sequence of measurable spaces linked by Markov
kernels

ΛN+1
N : EN+1 → EN , N = 1, 2, . . . .

Assume that we have another measurable space E∞ and Markov kernels

Λ∞
N : E∞ → EN , N = 1, 2, . . . ,
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such that the natural commutativity relations hold:

Λ∞
N+1 ◦ Λ

N+1
N = Λ∞

N , N = 1, 2, . . . . (2.1)

The kernels ΛN+1
N induce the chain of maps, cf. 2.1,

· · · →Mp(EN+1)→Mp(EN )→ · · · →Mp(E2)→Mp(E1), (2.2)

and we can define the projective limit lim
←−
Mp(EN) with respect to these maps. By

definition, it consists of sequences of measures (µN)N≥1, µN ∈ Mp(EN), that are
linked by the maps from (2.2). The space lim

←−
Mp(EN ) is measurable; the σ-algebra

of measurable sets is generated by the cylinder sets in which µN must lie inside a
measurable subset ofMp(EN), and all other coordinates (µk)k 6=N , are unrestricted.

Observe that to any µ∞ ∈Mp(E∞) one can assign an element of lim
←−
Mp(EN) by

setting µN equal to the image of µ∞ under the mapMp(E∞)→Mp(EN ) induced by
Λ∞

N . The commutativity relations (2.1) ensure that the resulting sequence (µN)N≥1

is consistent with (2.2).

Definition 2.2. We say that E∞ is a boundary of the sequence (EN )N≥1 if the map
Mp(E∞)→ lim

←−
Mp(EN ) described in the previous paragraph is a bijection and also

an isomorphism of measurable spaces.

2.6. Feller boundary. In the setting of the previous subsection, let us further
assume that (EN )N≥1 and E∞ are locally compact topological spaces with countable
bases, and all the links (ΛN+1

N )N≥1, (Λ
∞
N )N≥1 are Feller kernels, cf. Subsection 2.2.

Then if E∞ satisfies Definition 2.2, we shall call it the Feller boundary for (EN )N≥1.
According to Subsection 2.2, the links (Λ∞

N )N≥1 induce linear operators C0(EN)→
C0(E∞).

Lemma 2.3. The union of images of these maps over all N ≥ 1 is dense in the
Banach space C0(E∞).

Proof. Since M(E∞) is the Banach dual to C0(E∞), it suffices to verify that if
µ ∈M(E∞) kills all functions in our union then µ = 0.

Assume µ is a signed measure on E∞ that kills the image of C0(EN), N ≥ 1.
This is equivalent to saying that µK∞

N = 0 for all N ≥ 1. We can represent µ as
difference of finite positive measures

M = αµ′ − βµ′′, µ′, µ′′ ∈Mp(E∞), α, β ≥ 0.

Hence, αµ′K∞
N = βµ′′K∞

N for all N ≥ 1. Since µ′K∞
N and µ′′K∞

N are in Mp(EN),
we must have α = β, and µ′K∞

N = µ′′K∞
N . Definition 2.2 implies µ′ = µ′′, thus

µ = 0. �

2.7. Extension of semigroups to the boundary. In the setting of Subsection
2.5, assume that for any N ≥ 1, we have a Markov semigroup (PN (t))t≥0 on EN ,
and these semigroups are compatible with the links:

PN+1(t) ◦ Λ
N+1
N = ΛN+1

N ◦ PN(t), t ≥ 0, N = 1, 2, . . . . (2.3)
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Proposition 2.4. In the above assumptions, there exists a unique Markov semigroup
P (t) on E∞ such that

P (t) ◦ Λ∞
N = Λ∞

N ◦ PN(t), t ≥ 0, N = 1, 2, . . . . (2.4)

If E∞ is Feller (cf. Subsection 2.6) and (PN(t))t≥0 is a Feller semigroup for any
N ≥ 1, then (P (t))t≥0 is also a Feller semigroup.

Proof. Denote by δx the delta-measure at a point x ∈ E∞. To construct the semi-
group (P (t))t≥0, we need to define, for any t ≥ 0, a probability measure P (t; x, · )
on E∞. This measure has to satisfy

P (t; x, · )Λ∞
N = δx(Λ

∞
N ◦ PN(t)), N ≥ 1.

The right-hand side defines a sequence of probability measures on EN ’s, and (2.1),
(2.3) immediately imply that these measures are compatible with maps (2.2). Hence,
we obtain an element of lim

←−
Mp(EN), which defines, by definition of the boundary,

a probability measure on E∞. The dependence of this measure on x is measurable
since this is true for any of its coordinates.

Thus, we have obtained a Markov kernel P (t) which satisfies

δx(P (t) ◦ Λ∞
N ) = δx(Λ

∞
N ◦ PN(t)), N ≥ 1,

which is equivalent to (2.4).
To verify the semigroup property (Chapman-Kolmogorov equation) for (P (t))t≥0

it suffices to check that

(P (s) ◦ P (t)) ◦ Λ∞
N = P (s+ t) ◦ Λ∞

N , s, t ≥ 0, N ≥ 1,

and this immediately follows from (2.4) and the corresponding relation for (PN(t))t≥0.
The uniqueness is obvious since P (t) is uniquely determined by (P (t) ◦ Λ∞

N )N≥1

that are given (2.4).
Finally, let us prove the Feller property assuming that the boundary is Feller and

all (PN (t))t≥0 are Feller.
We need to show that for f ∈ C0(E∞) we have P (t)f ∈ C0(E∞), and that P (t)f

is continuous in t in the topology of C0(E∞). Both properties can be verified on
a dense subset. Lemma 2.3 then shows that it suffices to consider f of the form
f = Λ∞

N fN with fN ∈ C0(EN). By (2.4)

P (t)f = P (t)(Λ∞
N fN) = Λ∞

N (PN(t)fN ),

which is in C0(E∞) because Λ∞
N and PN(t) are Feller. The continuity in t is obvious

as PN(t)fN is continuous in t, and Λ∞
N : C0(EN)→ C0(E∞) is a contraction. �

It is worth noting that our definition of the semigroup P (t) is nonconstructive:
We are not able to describe P (t; x,A) explicitly, and we have to appeal to the
isomorphism in Definition 2.2 instead. Thus, the difficulty in making P (t) explicit
is hidden in the implicit nature of that isomorphism.
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2.8. Invariant measures. In the setting of Subsection 2.5, assume that for any
N ≥ 1, there exists µN ∈Mp(EN) such that µNPN(t) = µN (i.e., µN is an invariant
measure for (PN(t))t≥0). If we assume that µN ’s are compatible with the links,

µN+1Λ
N+1
N = µN , N ≥ 1,

then, via Definition 2.2, they yield a measure µ ∈ Mp(E∞) such that µΛ∞
N = µN

for any N ≥ 1. Note that µ is uniquely determined by its coordinates.
One easily sees that µ is invariant with respect to (P (t))t≥0. Indeed,

(µP (t))Λ∞
N = (µΛ∞

N )PN(t) = µNPN(t) = µN = µΛ∞
N .

Moreover, if µN is a unique invariant measure for (PN(t))t≥0 for any N ≥ 1 then
the invariant measure for (P (t))t≥0 is unique too as its convolution with Λ∞

N must
coincide with µN .

3. Specialization. Gelfand-Tsetlin graph

3.1. Spaces and links. Let N be a positive integer. A signature λ of length N
is an N -tuple of weakly decreasing integers: λ = (λ1 ≥ · · · ≥ λN) ∈ ZN . Denote
by GTN the set of all signatures of length N (the notation GT is explained below).
This countable set will serve as our space EN from the previous section.

Signatures of length N parameterize irreducible representations of the unitary
group U(N) and are often referred to as highest weights , cf. [Wey39], [Zhe70]. For
λ ∈ GTN denote the corresponding representation by πλ, and denote by DimN λ the
dimension of the corresponding linear space. It is well known that

DimN λ =

∏
1≤i<j≤N(λi − i− λj + j)

∏N−1
i=1 i!

, λ ∈ GTN .

Define a matrix
[
ΛN+1

N (λ, ν)
]
λ∈GTN+1, ν∈GTN

with rows parameterized by GTN+1

and columns parameterized by GTN via

ΛN+1
N (λ, ν) =




N ! ·

∏
1≤i<j≤N(νi − i− νj + j)

∏
1≤i<j≤N+1(λi − i− λj + j)

, if ν ≺ λ,

0, otherwise,

where the notation ν ≺ λ stands for interlacing:

ν ≺ λ ⇐⇒ λ1 ≥ ν1 ≥ λ2 ≥ ν2 ≥ · · · ≥ νN ≥ λN+1.

Note that the nonzero entries of ΛN+1
N can also be written in the form

ΛN+1
N (λ, ν) =

DimN ν

DimN+1 λ
. (3.1)

It is not hard to show that ΛN+1
N is a stochastic matrix:

∑
ν∈GTN

ΛN+1
N (λ, ν) = 1

for any λ ∈ GTN+1. Indeed, DimN+1 λ is equal to the number of the sequences
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(known as Gelfand-Tsetlin schemes , thus the notation GT)

λ(1) ≺ λ(2) ≺ · · · ≺ λ(N+1) = λ, λ(j) ∈ GTj ,

and ΛN+1
N (λ, ν) is the fraction of the sequences with λ(N) = ν. The stochasticity

also follows from the branching rule for the representations of unitary groups: For
any λ ∈ GTN+1,

πλ|U(N) ∼
⊕

ν∈GTN : ν≺λ

πν .

The matrices ΛN+1
N viewed as Markov kernels ΛN+1

N : GTN+1 → GTN are our
links, cf. Subsection 2.5. Set GT =

⊔
N≥1GTN . We endow GT with the structure

of a graph: Two vertices λ and ν are joined by an edge if and only if ν ≺ λ or λ ≺ ν.
This graph is called the Gelfand-Tsetlin graph, and the matrix elements of the links
are often called cotransition probabilities for this graph, cf. [Ker03].

3.2. Boundary. let R+ ⊂ R be the set of nonnegative real numbers and R∞
+ be the

product of countably many copies of R+. Consider the space

R
4∞+2
+ := R

∞
+ × R

∞
+ × R

∞
+ × R

∞
+ × R+ × R+

and equip it with the product topology. We choose E∞ to be the closed subset
Ω ⊂ R

4∞+2
+ consisting of the sextuples

ω = (α+, β+, α−, β−, δ+, δ−) ∈ R
4∞+2
+

satisfying the conditions

α± = (α±
1 ≥ α±

2 ≥ . . . ), β± = (β±
1 ≥ β±

2 ≥ . . . ), δ± ≥ 0,
∞∑

i=1

(α±
i + β±

i ) ≤ δ±, β+
1 + β−

1 ≤ 1.

One easily sees that Ω is a locally compact metrizable topological space with a
countable base. We endow Ω with the corresponding Borel structure which makes
Ω a measurable space.

It will be convenient to use the notation

γ± = δ± −

∞∑

i=1

(α±
i + β±

i ) ≥ 0.

Define the projections/links Λ∞
N : Ω→ GTN , N ≥ 1, by

Λ∞
N (ω, λ) = DimN λ · det

[
ϕλi−i+j

]N
i,j=1

, ω ∈ Ω, λ ∈ GTN , (3.2)

where {ϕn}
+∞
n=−∞ are the Laurent coefficients of the function (|u| = 1)

Φω(u) := eγ
+(u−1)+γ−(u−1−1)

∞∏

i=1

1 + β+
i (u− 1)

1− α+
i (u− 1)

1 + β−
i (u

−1 − 1)

1− α−
i (u

−1 − 1)
=

+∞∑

n=−∞

ϕnu
n.

(3.3)
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Theorem 3.1. The space E∞ = Ω is the boundary of the chain of spaces (EN =
GTN)N≥1 with links as above in the sense of Definition 2.2.

Proof. This result is essentially proved in §9 of [Ols03]; we provide below some
necessary additional comments.

Let us abbreviate ∆N = Mp(GTN) and ∆ = lim
←−
Mp(GTN) = lim

←−
∆N . As in

[Ols03] we embed ∆ into the vector space of all real-valued functions on the set of
vertices of the Gelfand–Tsetlin graph. That space is endowed with the topology of
pointwise convergence, and ∆ inherits this topology. The measurable structure of
∆ is the Borel structure corresponding to this topology.

Obviously, ∆ is a convex set; let Ex∆ ⊂ ∆ denote the subset of extreme points.
Theorem 9.2 in [Ols03] (which is based on Choquet’s theorem) says that Ex∆ is a
Borel subset of ∆, and each point of ∆ is uniquely representable by a probability
Borel measure concentrated on Ex∆. On the other hand, it is readily seen that,
conversely, any probability Borel measure on ∆ (in particular, on Ex∆) represents
a point of ∆, the barycenter of that measure. This gives us a bijection between
Mp(Ex∆) and ∆.

The next step consists in identifying the abstract set Ex∆ with the concrete
space Ω. This is achieved with the help of Theorem 1.3 in [Ols03]. Namely, as
is pointed out in the proof of Theorem 9.1 in [Ols03], there is a natural one-to-
one correspondence between the points of Ex∆ and the extreme characters of the
infinite-dimensional unitary group U(∞), which in turn are parameterized by the
points of the space Ω, see Theorem 1.3 in [Ols03].

Then we have to verify that the embedding Ω→ ∆ induced by the identification
Ω = Ex∆ is given by the kernels Λ∞

N . This is shown by the computation in [Voi76].
We have thus constructed a bijective mapMp(Ω) → ∆, and it remains to prove

that it is a Borel isomorphism. As shown in the proof of Theorem 8.1 of [Ols03],
the map ω 7→ Λ∞

N (ω, λ) is continuous for every N = 1, 2, . . . and every λ ∈ GTN .
This implies that the map Mp(Ω) → ∆ is Borel. To show that the inverse map
is also Borel one can apply an abstract result (Theorem 3.2 in [Mack57]), which
asserts that a Borel one-to-one map of a standard Borel space onto a subset of a
countably generated Borel space is a Borel isomorphism. This result is applicable in
our situation, since the Borel structure of Ω is standard, so that the induced Borel
structure onMp(Ω) is standard, too.

�

Remark 3.2. Observe that the maps on (GTN)N≥1 consisting of shifts of all coor-
dinates of signatures by 1,

λ = (λ1, . . . , λN) 7→ λ̃ = (λ̃1 = λ1 + 1, . . . , λ̃N = λN + 1),

leave the links intact: ΛN+1
N (λ, ν) = ΛN+1

N (λ̃, ν̃). There is also a corresponding
homeomorphism of Ω, which amounts to the multiplication of the function Φω(u)
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by u: For ω = (α±, β±, δ±) ∈ Ω define ω̃ = (α̃±, β̃±, δ̃±) ∈ Ω by

α̃± = α±, δ̃± = δ±,

β̃+
1 = 1− β−

1 , (β̃+
2 , β̃

+
3 , . . . ) = (β+

1 , β
+
2 , . . . ), (β̃−

1 , β̃
−
2 , . . . ) = (β−

2 , β
−
3 , . . . )

(note that β̃+
1 ≥ β̃+

2 because β+
1 + β−

1 ≤ 1). Then (3.2) and the relation

u(1 + β−
1 (u

−1 − 1)) = 1 + (1− β−
1 )(u− 1)

show that Λ∞
N (ω, λ) = Λ∞

N (ω̃, λ̃) for any λ ∈ GTN and N ≥ 1.
This automorphism of the Gelfand-Tsetlin graph and its boundary has a repre-

sentation theoretic origin, cf. Remark 1.5 in [Ols03] and Remark 3.7 in [BO05a].

3.3. The boundary is Feller. Following definitions of Subsection 2.6, in order to
show that E∞ = Ω is a Feller boundary of the chain (EN = GTN)N≥1 we need to
verify two statements:
• the spaces (EN)N≥1 and E∞ are locally compact topological spaces with count-
able bases;
• the links (ΛN+1

N )N≥1 and (Λ∞
N )N≥1 are Feller kernels.

The first statement is obvious from the definitions. The goal of this subsection is
to prove the second one.

Proposition 3.3. For any N ≥ 1, the linear operator B(GTN) → B(GTN+1) in-
duced by the Markov kernel ΛN+1

N maps C0(GTN ) to C0(GTN+1).

Proof. As the norm of the linear operator in question is equal to 1 and C0( · ) is a
closed subspace of B( · ), it suffices to check that the images of all delta-functions on
GTN are in C0(GTN+1).

For a ν ∈ GTN , let δν be the delta-function on GTN concentrated at ν. Then for
λ ∈ GTN+1

(ΛN+1
N δν)(λ) =




N ! ·

∏
1≤i<j≤N(νi − i− νj + j)

∏
1≤i<j≤N+1(λi − i− λj + j)

, if ν ≺ λ,

0, otherwise.

If we assume that (ΛN+1
N δν)(λ) 6= 0 then λ → ∞ is equivalent to either λ1 → +∞,

or λN+1 → −∞, or both; all other coordinates must remain bounded because of the
interlacing condition ν ≺ λ. But then it is immediate that at least one of the factors
in the denominator in (ΛN+1

N δν)(λ) tends to infinity. Thus, for any fixed ν ∈ GTN ,
(ΛN+1

N δν)(λ)→ 0 as λ→∞ as needed. �

Proposition 3.4. For any N ≥ 1, the linear operator B(GTN )→ B(Ω) induced by
the Markov kernel Λ∞

N maps C0(GTN) to C0(Ω).

Proof. As in the proof of Proposition 3.3, it suffices to prove that for any ν ∈ GTN ,
(Λ∞

N δν)(ω) = Λ∞
N (ω, λ) belongs to C0(Ω) as a function in ω ∈ Ω. The proof of
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continuity of Λ∞
N (ω, λ) in ω is contained in the proof of Theorem 8.1 of [Ols03]. It

remains to show that Λ∞
N (ω, λ)→ 0 as ω →∞. Note that ω → ∞ is equivalent to

δ+ + δ− → +∞.
Observe that the coefficients ϕn = ϕn(ω) from (3.3) can be written as

ϕn(ω) =
1

2πi

∮

|u|=1

Φω(u)
du

un+1
, n ∈ Z. (3.4)

Note that |Φω(u)| ≤ 1 on the unit circle |u| = 1, because the modulus of each of the

factors (1− α±
i (u

±1 − 1))−1, (1 + β±
i (u

±1 − 1)), and eγ
±(u±1−1) is ≤ 1.

We are going to prove that for any fixed n ∈ Z, ϕn → 0 as ω →∞; by (3.2) this
would imply the needed claim.

Let us assume the converse, i.e. assume that there exist c > 0, n0 ∈ Z, and a
sequence {ω(k)}k≥1 ⊂ Ω with limk→∞ ω(k) = ∞, such that ϕn0(ω(k)) > c. Let
us denote by (α±(k), β±(k), δ±(k)) the coordinates of ω(k). We will now collect
information about {ω(k)} that will eventually lead to a contradiction.

Step 1. We must have supk≥1 α
±
1 (k) <∞. Indeed, if there is a subsequence {km}m≥1

such that α±
1 (km) →∞, then along this subsequence (1 − α±

1 (u
±1 − 1))−1 tends to

zero uniformly on any compact subset of {u : |u| = 1} \ {u = 1}, which implies that
the right-hand side of (3.4) tends to zero.

Let us fix A > 0 such that supk α
±
1 (k) ≤ A.

Step 2. Assume ω ranges over the subset of elements of Ω with α±
1 ≤ A and β±

1 ≤
1
2
.

Then for any ǫ > 0,

lim
δ++δ−→∞

Φω(u) = 0 uniformly on {u ∈ C : |u| = 1, ℜu ≤ 1− ǫ}.

Indeed, for u on the unit circle with ℜu ≤ 1− ǫ we have elementary estimates

|1 + β(u− 1)|2 = (1− β)2 + β2 + 2β(1− β)ℜu

= 1− 2β(1− β)(1−ℜu) ≤ 1− 2β(1− β)ǫ ≤ 1− βǫ ≤ e−βǫ, (3.5)

|1− α(u− 1)|−2 = (1 + 2α(1 + α)(1−ℜu))−1

≤ (1 + 2α(1 + α)ǫ)−1 ≤ (1 + 2αǫ)−1 ≤ e− constαǫ, (3.6)

|eγ
+(u−1)+γ−(u−1−1)|2 = e−2(γ++γ−)(1−ℜu) ≤ e−2(γ++γ−)ǫ,

with a suitable constant const > 0 (that depends on A). Thus, if

δ+ + δ− = γ+ + γ− +

∞∑

i=1

(α+
i + β+

i + α−
i + β−

i )→∞
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then at least one of the right-hand sides in these estimates yields an infinitesimally
small contribution, and Φω(u) must be small. Thus, under the above assumptions
on ω, we see that ω →∞ implies ϕn(ω)→ 0 uniformly on n ∈ Z.

Step 3. Now we get rid of the restriction β±
1 ≤

1
2
. Set

B±(k) = #{i ≥ 1 | β±
i (k) >

1
2
}.

Since for any k ≥ 1 we have β+
1 (k) + β−

1 (k) ≤ 1, at least one of the numbers B±(k)
is equal to 0. The statement of Step 2 shows that for any subsequence {ωkm} of our
sequence {ω(k)}, we must have B+(km)+B−(km)→∞. Hence, possibly passing to
a subsequence and switching + and −, we may assume that B+(k)→∞ as k →∞.

Using the identity (cf. Remark 3.2)

1 + β(u− 1) = u(1 + (1− β)(u−1 − 1))

B+(k) times on Φω(k)(u), we see that ϕn0(ω(k)) = ϕn0−B+(k)(ω̃(k)), where ω̃(k)
is obtained from ω(k) as follows: Each β+-coordinate of ω(k) that is > 1/2 is
transformed into a β− coordinate of ω̃(k) equal to 1 minus the original β+-coordinate;
all other coordinates are the same (equivalently, the function Φω(k)(u) is multiplied

by u−B(k)). Let (α̃±(k), β̃±(k), γ̃±(k), δ̃±(k)) be the coordinates of ω̃(k).

Step 4. Since no β-coordinates of ω̃(k) are greater than 1/2, the argument of Step

2 implies that if δ̃+(k) + δ̃−(k) → ∞ then ϕn0(ω(k)) = ϕn0−B+(k)(ω̃(k)) → 0 as

k →∞, which contradicts our assumption. Hence, δ̃+(k) + δ̃−(k) is bounded.
Let us deform the integration contour in (3.4) to |u| = R with A/(1+A) < R < 1.

Using the estimates (for |u| = R, 0 ≤ α ≤ A, 0 ≤ β ≤ 1/2)

|1 + β(u±1 − 1)| ≤ 1 + β|u±1 − 1| ≤ econst1 β,

|1− α(u±1 − 1)|−1 ≤ |1− α(R±1 − 1)|−1 ≤ econst2 α,

|eγ(u
±1−1)| ≤ econst3 γ

with suitable constj > 0, j = 1, 2, 3, we see that |Φω̃(k)(u)| ≤ econst4(δ̃
+(k)+δ̃−(k)), for

a const4 > 0, which remains bounded. On the other hand, the factor u−n0−1+B+(k)

in the integral representation (3.4) for ϕn0−B+(k)(ω̃(k)) tends to 0 uniformly in u,
|u| = R < 1. Hence, ϕn0(ω(k)) = ϕn0−B+(k)(ω̃(k))→ 0 as k →∞, and the proof of
Proposition 3.4 is complete. �

4. Generalities on Markov chains on countable spaces

4.1. Regularity. Let E be a countable set, and let (P (t))t≥0 be a Markov semigroup
on E. Each P (t) may be viewed as a matrix with rows and columns marked by
elements of E; its entries will be denoted by P (t; a, b), a, b ∈ E. By definition,
P (t; a, b) is the probability that the process will be in the state b at the time moment
t conditioned that it is in the state a at time 0. Thus, all matrix elements of
P (t) are nonnegative, and their sum is equal to 1 along any row - the matrix P (t)
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is stochastic. The transition matrices P (t) also satisfy the Chapman-Kolmogorov
equation P (s)P (t) = P (s+ t).

Assume that there exists an E ×E matrix Q such that

P (t; a, b) = 1a=b +Q(a, b)t+ o(t), t ↓ 0. (4.1)

This relation implies that Q(a, b) ≥ 0 for a 6= b and Q(a, a) ≤ 0. Further, we will
always assume that

∑

b6=a

Q(a, b) = −Q(a, a) for any a ∈ E.

This is the infinitesimal analog of the condition
∑

b∈E P (t; a, b) = 1.
It is well known that the Chapman-Kolmogorov equation implies that P (t) satis-

fies Kolmogorov’s backward equation

d

dt
P (t) = QP (t), t > 0, (4.2)

with the initial condition

P (0) ≡ Id . (4.3)

Under certain additional conditions, P (t) will also satisfy Kolmogorov’s forward
equation

d

dt
P (t) = P (t)Q, t > 0. (4.4)

One says that Q is the matrix of transition rates for (P (t))t≥0.
One often wants to define a Markov semigroup by giving the transition rates.

However, it may happen that this does not specify the semigroup uniquely (then
the backward equation has many solutions). Uniqueness always holds if E is finite
or, more generally, if E is infinite but the diagonal entries Q(a, a) are bounded.
However, these simple conditions do not suit our purposes, and we need to go a
little deeper into the general theory.

Let us write Q in the form Q = −q + Q̃, where −q is the diagonal part of Q and

Q̃ is the off-diagonal part of Q. In other words,

q(a, b) = −Q(a, a)1ab, Q̃(a, b) =

{
Q(a, b), a 6= b,

0, a = b.

Define P [n](t) recursively by

P [0](t) = e−tq, P [n](t) =

∫ t

0

e−τqQ̃P [n−1](t− τ) dτ, n ≥ 1,

and set

P (t) =

∞∑

n=0

P [n](t), t ≥ 0.



20 ALEXEI BORODIN AND GRIGORI OLSHANSKI

Theorem 4.1 ([Fel40]). (i) The matrix P (t) is substochastic (i.e., its elements are
nonnegative and

∑
b P (t; a, b) ≤ 1). Its elements are continuous in t ∈ [0,+∞) and

differentiable in t ∈ (0,+∞), and it provides a solution of Kolmogorov’s backward
and forward equations (4.2), (4.4) with the initial condition (4.3).

(ii) P (t) also satisfies the Chapman-Kolmogorov equation.
(iii) P (t) is the minimal solution of (4.2) (or (4.4)) in the sense that for any

other solution P (t) of (4.2) (or (4.4)) with the initial condition (4.3) in the class of
substochastic matrices, one has P (t; a, b) ≥ P (t; a, b) for any a, b ∈ E.

Corollary 4.2. If the minimal solution P (t) is stochastic (the sums of matrix ele-
ments along the rows are all equal to 1 ) then it is the unique solution of (4.2) (or
(4.4)) with the initial condition (4.3) in the class of substochastic matrices.

If the minimal solution P (t) is stochastic one says that the matrix of transition
rates Q is regular , cf. Proposition 4.3.

Observe that the construction of P (t) is very natural: the summands P [n](t; a, b)
are the probabilities to go from a to b in n jumps. The condition of P (t) being
stochastic exactly means that we cannot make infinitely many jumps in a finite
amount of time.

A much more detailed account of Markov chains on countable sets can be found
e.g. in [And91].

Later on we will need the following sufficient condition for P (t) to be stochastic.
For any finite X , X ⊂ E, a ∈ X , denote by Ta,X the time of the first exit from

X under the condition that the process is in a at time 0. Formally, we can modify

E and Q by contracting all the states b ∈ E \ X into one absorbing state b̃ with

Qb̃,c ≡ 0 for any c ∈ X ∪{b̃}. We obtain a process with a finite number of states for

which the solution P̃ (t) of the backward equation is unique. Then Ta,X is a random
variable with values in (0,+∞] defined by

Prob{Ta,X ≤ t} = P̃ (t; a, b̃).

Proposition 4.3. Assume that for any a ∈ E and any t > 0, ε > 0, there exists
a finite set X(ε) ⊂ E such that Prob{Ta,X(ε) ≤ t} ≤ ε. Then the minimal solution

P (t) provided by Theorem 4.1 is stochastic.

Proof. Consider the modified process on the finite state space X(ε)∪ {b̃} described

above. Since its transition matrix P̃ (t) is stochastic,
∑

b∈X(ε)

P̃ (t; a, b) = 1− P̃ (t; a, b̃) ≥ 1− ε.

The construction of the minimal solution as the sum of P [n]’s, see above, immediately

implies that P (t; a, b) ≥ P̃ (t; a, b). Thus,
∑

b P (t; a, b) ≥ 1− ε for any ε > 0. �
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4.2. Collapsibility. In what follows we will also need a result on collapsibility or
lumpability of Markov chains on discrete spaces. Let us describe it.

Let E =
⊔

i∈I Ei be a partition of the countable set E on disjoint subsets. Assume
we are given a matrix QE of transition rates on E and a matrix QI of transition
rates on I such that

∑

b∈Ej

QE(a, b) = QI(i, j) for any a ∈ Ei, i, j ∈ I. (4.5)

Denote

qE(a) = −QE(a, a), qI(i) = −QI(i, i).

For any i ∈ I, let Qi be a matrix of transition rates on Ei defined by

Qi(a, b) = QE(a, b) if a 6= b, a, b ∈ Ei,

qi(a) = −Qi(a, a) =
∑

b∈Ei,b6=a

Qi(a, b), a ∈ Ei.

Observe that qE(a) = qi(a) + qI(i) for any a ∈ Ei.
Denote by PE(t) and P I(t) the minimal solutions of Kolmogorov’s equations for

QE and QI , respectively.

Proposition 4.4. Assume that for any i ∈ I, Qi is regular. Then for any t ≥ 0
∑

b∈Ej

PE(t; a, b) = P I(t; i, j) (4.6)

for any i, j ∈ I and any a ∈ Ei. In particular, if QI is regular then so is QE and
vice versa.

Proof. Let us use notations q, Q̃, and P [n] for the diagonal and off-diagonal parts of
the matrices of transition rates, and for the nth terms in the series representations
of minimal solutions, respectively.

The hypothesis means that the identity

∑

b∈Ei

∞∑

n=0

P
[n]
i (t; a, b) = 1, a ∈ Ei, i ∈ I,

holds, where

P
[n]
i (t) =

∫

0≤t1≤···≤tn≤t

e−t1qiQ̃ie
−(t2−t1)qiQ̃i · · · e

−(tn−tn−1)qiQ̃ie
−(t−tn)qidt1 · · · dtn

and P
(0)
i (t) = e−tqi . Using the fact that qi( · ) = qE( · ) − qI(i) on Ei, rewrite this

identity as
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∑

b∈Ei

∞∑

n=0

∫

0≤t1≤···≤tn≤t

(
e−t1qE1Ei

Q̃E 1Ei
e−(t2−t1)qE1Ei

· · ·

· · ·1Ei
Q̃E 1Ei

e−(t−tn)qE
)
(a, b)dt1 · · · dtn = e−tqI (i). (4.7)

The probabilistic meaning of this formula is that the time that the minimal so-
lution PE(t) started at a ∈ Ei spends in Ei is exponentially distributed with rate
qI(i), independent of a.

The minimal solution P I(t) has the form

P I(t; i, j) =

∞∑

n=0

∫

0≤s1≤···≤sn≤t

∑

k1,...,kn−1∈I

e−s1qI(i)Q̃I(i, k1)e
−(s2−s1)qI(k1) · · ·

· · · Q̃I(kn−1, j)e
−(t−sn)qI(j)ds1 . . . dsn. (4.8)

By (4.5),

Q̃I(k, l) =
∑

d∈El

Q̃E(c, d) for any k, l ∈ I, k 6= l, c ∈ Ek. (4.9)

Substituting the right-hand side of (4.9) for each Q̃I( · , · ) and the left-hand side of
(4.7) for each e−sqI( · ), in the nth term we obtain the part of the series for PE(t; a, b)
with a ∈ Ei that takes into account trajectories whose projections to I make exactly
n jumps, and in addition to that there is a summation over b ∈ Ej . Clearly, the
summation over n reproduces the complete series for PE(t; a, b) thus proving (4.6).

The equivalence of stochasticity of PE(t) and that of P I(t) immediately follows
from summation of (4.6) over j ∈ I. �

4.3. Infinitesimal generator. The last part of the general theory that we need
involves generators of Markov semigroups.

Assume that we have a regular matrix of transition rates Q. Let (P (t))t≥0 be the
corresponding Markov semigroup and assume in addition that it is Feller.

The generator A of the semigroup (P (t))t≥0 is a linear operator in C0(E) defined
by

Af = lim
t→+0

P (t)f − f

t
. (4.10)

The set of f ∈ C0(E) for which this limit exists (in the norm topology of C0(E)) is
called the domain of the generator A and denoted by D(A). It is well known that
the operator A with D(A) as above is closed and dissipative.

It turns out that the domain D(A) can be characterized by an apparently weaker
condition, which is easier to verify in practice:
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Proposition 4.5. If f ∈ C0(E) is such that the limit in the right-hand side of
(4.10) exists pointwise and the limit function belongs to C0(E), then f ∈ D(A), so
that the limit actually holds in the norm topology.

Proof. The idea is that the set of couples of vectors (f, g) ∈ C0(E) × C0(E), such
that g is the pointwise limit of the right-hand side of (4.10), serves as the graph of

a dissipative operator Ã extending A, whence Ã = A. A detailed argument can be
found in [Ito06, §4.8]. In fact, [Ito06] considers the case of a compact state space
E. However, the proof goes through word-for-word; the only property one needs is
that for any f ∈ C0(E), f attains its minimum if it has negative values. �

The following statement is probably well known but we were not able to locate it
in the literature.

Proposition 4.6. Assume that for any a ∈ E the set of b such that Q(a, b) 6= 0 is
finite. Then

D(A) = {f ∈ C0(E) | Qf ∈ C0(E)}, (4.11)

and for f ∈ D(A), Af = Qf .

Proof. First of all, due to the assumption on the matrix Q, Qf is well defined for
any function f on E. We will show that for any f ∈ C0(E) and a ∈ E

lim
t→+0

t−1
∑

b∈E

(P (t; a, b)− 1a=b)f(b) =
∑

b∈E

Q(a, b)f(b). (4.12)

Then the claim of the proposition will follow from Proposition 4.5.
Set

X = {a} ∪ {b′ ∈ E | Q(a, b′) > 0}.

By our hypothesis, this set is finite. We will show that
∑

b∈E\X

P (t; a, b) = O(t2), t→ 0. (4.13)

This would imply that we can keep only finitely many terms in (4.12), and then
(4.12) would follow from (4.1).

Observe that the left-hand side of (4.13) is the probability of the event that the
trajectory started at a is outside of X after time t. In order to exit X the trajectory
started at a needs to make at least two jumps. Assume that the first two jumps
are a → a′ → a′′ with a′ ∈ X . Since X is finite, the rates of leaving a′ (equal to
−Q(a′, a′)) are bounded from above, and the probability of leaving X after time t
can be estimated by

−Q(a, a)max
a′∈X

(−Q(a′, a′)) · t2 + o(t3) = O(t2), t→ +0,

as required. �
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Corollary 4.7. Under the hypothesis of Proposition 4.6 assume additionally that
for any b ∈ E the set of a ∈ E with Q(a, b) 6= 0 is finite. Then any finitely supported
function f on E belongs to D(A).

Proof. Indeed, this follows immediately from Proposition 4.6, since Qf is finitely
supported and hence belongs to C0(E). �

5. Semigroups on GTN

The goal of this section is to define Markov semigroups (PN(t))t≥0 on EN = GTN

and prove that they are Feller.

5.1. Case N = 1. Birth and death process on Z. Let (u, u′) and (v, v′) be two
pairs of complex numbers such that (u + k)(u′ + k) > 0 and (v + k)(v′ + k) > 0
for any k ∈ Z. The condition on (u, u′) means that either u′ = ū ∈ C \ R or there
exists k ∈ Z such that k < u, u′ < k + 1; the condition on (v, v′) is similar. Note
that u+ u′ ∈ R and v + v′ ∈ R. Assume additionally that u+ u′ + v + v′ > −1.

Define a matrix of transition rates
[
D(x, y)

]
x,y∈Z

with rows and columns param-

eterized by elements of E1 = GT1 = Z by

D(x, y) =






(x− u)(x− u′), if y = x+ 1,

(x+ v)(x+ v′), if y = x− 1,

−(x− u)(x− u′)− (x+ v)(x+ v′), if y = x,

0, otherwise.

(5.1)

In the corresponding Markov chain the particle would only be allowed to jump by
one unit at a time; such processes on Z≥0 are usually referred to as birth and death
processes , while our Markov chain is an example of so-called bilateral birth and death
processes which were also considered in the literature, see e.g. [Fel57, Section 17],
[Pru63], [Yan90].

Note that D(x, x± 1) > 0 for all x ∈ Z, because of the conditions imposed on the
parameters.

Theorem 5.1. The matrix of transition rates D is regular. Moreover, the corre-
sponding Markov semigroup is Feller.

In what follows we denote this semigroup by (P1(t))t≥0.
The proof of Theorem 5.1 is based on certain results from [Fel59]; let us recall

them first.
Consider a birth and death process on Z≥0 with transition rates given by

Q(x, y) =





βx, if y = x+ 1,

δx, if y = x− 1,

−βx − δx, if y = x,

0, otherwise.
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Here {βx}x≥0, {δx}x≥1 are positive numbers, and we also set δ0 = 0.
The natural scale of the process is given by

x0 = 0, xk =
k−1∑

l=0

δ1 · · · δl
β0 . . . βl

, k = 1, 2, . . . , x∞ = lim
k→∞

xk. (5.2)

Note that x∞ may be infinite. Denote by A the operator on the space of functions
on A = {x0, x1, . . . } defined by

(Af)(xi) = −(δi + βi)f(xi) + δif(xi−1) + βif(xi+1), i = 0, 1, . . . .

Fix n > 0. Let Fi(t) be the probability that the process started at i reaches n
before time t. Let Gn(t) be the probability that the process started at n reaches 0
before time t and before the process escapes to infinity.

Theorem 5.2 ([Fel59]). (i) For any a > 0 there exists exactly one function u on
A such that Au = au, u(x0) = 1. The function u is strictly increasing: u(x0) <
u(x1) < u(x2) < . . . and satisfies

u(xn) = 1 + a

n−1∑

k=0

u(xk)(xn − xk)µk (5.3)

with

µk =
β0 · · ·βk−1

δ1 · · · δk
, k = 1, 2, . . . , µ0 = 1. (5.4)

Furthermore,

u(xi)

u(xn)
=

∫ ∞

0

e−atdFi(t), 0 ≤ i < n. (5.5)

(ii) With u( · ) as above, set

v(xn) = u(xn)

∞∑

j=n

xj+1 − xj

u(xj)u(xj+1)
, n = 0, 1, . . . .

This is a strictly decreasing function, and

v(xn)

v(x0)
=

∫ ∞

0

e−atdGn(t), n = 1, 2, . . . . (5.6)

Furthermore, limn→∞ v(xn) = 0 if x∞ =∞ and
∑

n xnµn diverges.

The following statement is contained in Feller’s paper as well, but not explicitly;
for that reason we formulate it separately.

Corollary 5.3. If x∞ =∞ then limn→∞ u(xn) =∞.
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Proof. Let us estimate the sum in the right-hand side of (5.3):

n−1∑

k=0

u(xk)(xn − xk)µk ≥
n−1∑

k=0

(xn − xk)µk =
n−1∑

k=0

n∑

l=k+1

(xl − xl−1)µk

=

n∑

l=1

l−1∑

k=0

(xl − xl−1)µk =

n−1∑

l=0

(xl+1 − xl)

l∑

k=0

µk ≥

n−1∑

l=0

(xl+1 − xl) = xn. (5.7)

Hence, u(xn) ≥ 1 + axn, and the statement follows. �

Let us now apply Feller’s results to our situation.

Proof of Theorem 5.1. By Proposition 4.3, in order to show that the minimal solu-
tion is stochastic it suffices to prove that the probability that the first passage time
from 0 to n is below a fixed number, converges to zero as n → +∞. Indeed, as
shifts x → x + const and sign change x 7→ −x keep our class of processes intact,
similar convergence would automatically hold for passage times to the left, and also
for passage times from any initial position. Denote the first passage time from 0 to
n by Tn.

A simple coupling argument shows that Tn stochastically dominates the first pas-
sage time from 0 to n for the birth and death process on Z≥0 with the same transition
rates (see (5.1)), except that the jump from 0 to −1 is forbidden. Let us denote this

new first passage time by T̃n. Thus,

Prob{Tn ≤ t} ≤ Prob{T̃n ≤ t} for any n ≥ 0 and t > 0.

For the application of Theorem 5.1 we then set

βx = (x− u)(x− u′), x ≥ 0, δx = (x+ v)(x+ v′), x ≥ 1, δ0 = 0.

As
δ1 · · · δl
β0 · · ·βl

= const
Γ(v + l + 1)Γ(v′ + l + 1)

Γ(−u+ l + 1)Γ(−u′ + l + 1)
∼ const · lu+u′+v+v′ , l→∞,

our original assumption u+ u′ + v + v′ > −1 implies

xk ∼ const · ku+u′+v+v′+1, k →∞, (5.8)

cf. (5.2), and x∞ = limk→∞ xk =∞. Therefore, Corollary 5.3 yields

lim
n→∞

u(xn) =∞.

On the other hand, from (5.5) with i = 0 and any a > 0 we obtain

1

u(xn)
=

∫ ∞

0

e−aτdF0(τ) ≥

∫ t

0

e−aτdF0(τ) ≥ e−at

∫ t

0

dF0(τ) = e−at Prob{T̃n ≤ t}

whence

Prob{T̃n ≤ t} ≤
eat

u(xn)
→ 0, n→ +∞.
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Since T̃n is dominated by Tn, we have shown that our Markov chain does not run
away to infinity in finite time, and hence it is uniquely specified by the transition
rates. Let (P1(t))t≥0 be the corresponding semigroup.

We now need to prove that (P1(t))t≥0 is Feller. This is equivalent to showing that
limn→±∞ P1(t;n, i) = 0 for any i ∈ Z and t > 0.

Shift and sign change invariance (see the beginning of the proof) imply that it
suffices to consider i = 0 and n → +∞. Observe that P1(t;n, 0) cannot be greater
than the probability that the first passage time from n to 0 is not more than t. Let
us denote this first passage time by Sn; we have P1(t;n, 0) ≤ Prob{Sn ≤ t}.

This first passage time is the same for our birth and death process on Z and for
its modification on Z≥0 that was used in the first part of the proof. On the other
hand, for the process on Z≥0 the Laplace transform of Sn is given by (5.6).

By (5.4) we have, as k →∞,

µk =
β0 · · ·βk−1

δ1 · · · δk
= const

Γ(−u+ k)Γ(−u′ + k)

Γ(v + k + 1)Γ(v′ + k + 1)
∼ const · k−2−u−u′−v−v′ .

Hence, cf. (5.8)

xkµk ∼ const · k−1, k →∞,

with a nonzero constant, and
∑

n xnµn diverges. Theorem 5.2(ii) then gives

lim
n→∞

v(xn) = 0

and using (5.6) and estimating the Laplace transform as above we obtain

Prob{Sn ≤ t} ≤
eatv(xn)

v(x0)
→ 0, n→∞.

As P1(t;n, 0) ≤ Prob{Sn ≤ t}, the proof of Theorem 5.1 is complete. �

5.2. The case of general N . Let N > 1 be a positive integer, and let (u, u′) and
(v, v′) be as in Subsection 5.1.

Define a matrix
[
D(N)(λ, ν)

]
λ,ν∈GTN

of transition rates with rows and columns

parameterized by points of EN = GTN via

D(N)(λ, ν) =
DimN(ν)

DimN(λ)

(
D(l1, n1)1{li=ni,i 6=1} +D(l2, n2)1{li=ni,i 6=2} + . . .

+D(lN , nN )1{li=ni,i 6=N}

)
− dN · 1λ=ν (5.9)

with lj = λj +N − j, nj = νj +N − j, 1 ≤ j ≤ N , matrix D( · , · ) as in (5.1), and

dN =
N(N − 1)(N − 2)

3
− (u+ u′ + v + v′)

N(N − 1)

2
. (5.10)



28 ALEXEI BORODIN AND GRIGORI OLSHANSKI

In other words, an off-diagonal element D(N)(λ, ν) can only be nonzero if there
exists exactly one index i such that νi − λi = ±1 while for all other indices j we
have λj = νj. Under this condition

D(N)(λ, ν) =






(li − u)(li − u′)
∏
j 6=i

li + 1− lj
li − lj

, if νi − λi = 1,

(li + v)(li + v′)
∏
j 6=i

li − 1− lj
li − lj

, if νi − λi = −1.

With this explicit description, the diagonal entries of D(N) have to be defined by

D(N)(λ, λ) = −
∑

ν∈GTN : ν 6=λ

D(N)(λ, ν), λ ∈ GTN . (5.11)

The fact that (5.11) holds for D(N) defined by (5.9) will be proved in Step 1 of the
proof of the following theorem.

Theorem 5.4. The matrix of transition rates D(N) is regular. The corresponding
semigroup (PN(t))t≥0 has the form

PN(t;λ, ν) = e−dN t DimN(ν)

DimN (λ)
det
[
P1(t;λi +N − i, νj +N − j)

]N
i,j=1

, λ, ν ∈ GTN ,

(5.12)
with (P1(t))t≥0 as in Subsection 5.1. Moreover, this semigroup is Feller.

Proof. The proof of Theorem 5.4 will consist of several steps.

Step 1. Let us show that with definition (5.9), relation (5.11) holds. It is convenient
to encode signatures of length N by N -tuples of strictly decreasing integers via

λ = (λ1 ≥ λ2 ≥ · · · ≥ λN )←→ (l1 > l2 > · · · > lN ), lj = λj+N−j, 1 ≤ j ≤ N.

This establishes a bijection between GTN and the set

XN = {(x1, . . . , xN ) ∈ Z
N | x1 > x2 > · · · > xN}.

In XN , matrix D(N) from (5.9) takes the form

D(N)(X, Y ) =
VN (Y )

VN(X)

(
D(x1, y1)1{xi=yi,i 6=1} +D(x2, y2)1{xi=yi,i 6=2} + . . .

+D(xN , yN)1{xi=yi,i 6=N}

)
− dN1X=Y (5.13)

with X = (x1, . . . , xN) ∈ XN , Y = (y1, . . . , yN) ∈ XN , and

VN (z1, . . . , zN) =
∏

1≤i<j≤N

(zi − zj).

In this notation, (5.11) is equivalent to

(D1 + · · ·+DN)VN(X) = dNVN(X), X ∈ Z
N , (5.14)
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where Dj denotes a linear operator on ZN with

Dj(X, Y ) = D(xj , yj)1{xi=yi,i 6=j}.

Indeed, both sides of (5.14) are skew-symmetric, and restricting to XN yields (5.11).
Let ∆ and ∇ be the standard forward and backward difference operators on Z:

∆f(x) = f(x+ 1)− f(x), ∇f(x) = f(x)− f(x− 1)

for any function f : Z→ C. Note that ∆∇ = ∆−∇.
One easily checks that the operator D with matrix (5.1) has the form

D = σ∆∇+ τ∆ (5.15)

with

σ = (x+ v)(x+ v′), τ = sx+ (uu′ − vv′), s = −(u+ u′ + v + v′).

Hence, for any m = 0, 1, 2, . . .

Dxm =
(
m(m− 1) + sm

)
· xm + lower degree terms, (5.16)

in paticular, D preserves the degree of a polynomial. This implies that the left-
hand side of (5.14) is a skew-symmetric polynomial of degree at most N(N − 1)/2.
It must be divisible by the Vandermonde determinant VN(X), and it remains to
verify the constant prefactor. Following the highest in lexicographic order term
xN−1
1 xN−2

2 · · ·x0
N we see that upon the action of (D1 + · · · + DN) it collects the

coefficient
N−1∑

j=0

(
j(j − 1) + sj

)
,

which sums to (5.10). Thus, (5.11) is proved.

Step 2. Let us now prove that
∑

ν∈GTN

PN(t;λ, ν) = 1, λ ∈ GTN , t ≥ 0, (5.17)

with PN as in (5.12). In the space XN , (5.12) reads

PN(t;X, Y ) = e−dN t VN(Y )

VN(X)
det
[
P1(t; xi, yj)

]N
i,j=1

, X, Y ∈ XN . (5.18)

Since the action of D in the space of polynomials R[x] is consistent with filtration
by degree, see (5.16), the action of the corresponding semigroup (P1(t))t≥0 in R[x]
is well-defined, and (5.16) implies

∑

y∈Z

P1(t; x, y)y
m = e(m(m−1)+sm)t xm + lower degree terms.
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We obtain

∑

Y ∈XN

PN(t;X, Y ) =
1

N !

∑

Y ∈ZN

PN(t;X, Y )

=
e−dN t

V (X)

∑

σ∈SN

sgn σ
∑

Y ∈ZN

P1(t; xσ(1), y1) · · ·P1(t; xσ(N), yN)y
N−1
1 yN−2

2 · · · yN−1

=
e−dN t

V (X)

∑

σ∈SN

sgn σ et
∑N−1

j=0 (j(j−1)+sj)xN−1
σ(1) x

N−2
σ(2) · · ·xσ(N−1) = 1, (5.19)

where SN denotes the group of permutations of {1, . . . , N}. Note that the first equal-
ity (change of the summation domain) holds because the expression for PN(t;X, Y )
is symmetric in (yj), and it vanishes if yi = yj for i 6= j.

Step 3. Consider N independent copies of the bilateral birth and death process of
Subsection 5.1, and denote by πn(t;X, Y ), X, Y ∈ XN , the probability that these
processes started at x1, . . . , xN end up at y1, . . . , yN after time t having made a total
of n jumps all together, and their trajectories had no common points at any time
moment between 0 and t. We want to show that

P
[n]
N (t;X, Y ) = e−dN t V (Y )

V (X)
πn(t;X, Y ), (5.20)

where P
[n]
N is defined as in Section 4 using D(N) as the matrix of transition rates.

Indeed, computing πn’s boils down to recurrence relations

π0(t;X, Y ) = etD
(N)
ind

(X,Y )1X=Y ,

πn(t;X, Y ) =

∫ t

0

eτD
(N)
ind

(X,X)
∑

Z∈XN , Z 6=X

D
(N)
ind (X,Z)πn−1(t− τ ;Z, Y )dτ, n ≥ 1,

where D
(N)
ind = D1+ · · ·+DN is the matrix of transition rates for the N independent

birth and death processes.
For n = 0, (5.20) follows from (5.9). Assuming (5.20) holds for n− 1, we rewrite

the recurrence relation for πn’s as

πn(t;X, Y ) =

∫ t

0

eτ(D
(N)(X,X)+dN )

×
∑

Z∈XN , Z 6=X

V (X)

V (Z)
D(N)(X,Z) · edN (t−τ)V (Z)

V (Y )
P

[n−1]
N (t− τ ;Z, Y ) dτ. (5.21)

Comparing with the recurrence relation for P [n], cf. Section 4, yields (5.20).
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Step 4. Following Section 4 and using (5.20), we see that the minimal solution for
the backward equation with D(N) as the matrix of transition rates, has the form

PN(t;X, Y ) =

∞∑

n=0

P
[n]
N (t;X, Y ) = e−dN t V (Y )

V (X)

∞∑

n=0

πn(t;X, Y ).

The last sum is clearly equal to the probability that N independent copies of the
bilateral birth and death process of Subsection 5.1 started at x1, . . . , xN end up at
y1, . . . , yN after time t without intermediate coincidences and without any restriction
on the number of jumps. Note that we are using the fact that the birth and death
process does not make infinitely many jumps in finite time (minimal solution is
stochastic), cf. Theorem 5.1.

Such a probability of having nonintersecting paths is given by a celebrated formula
of Karlin-McGregor [KM59]:

∞∑

n=0

πn(t;X, Y ) = det
[
P1(t; xi, yj)

]N
i,j=1

, X, Y,∈ XN .

Hence, the minimal solution PN (t;X, Y ) coincides with the right-hand side of (5.18),
and by Step 2 it is stochastic. We have thus shown that the matrix D(N) of transition
rates on GTN is regular, and the semigroup has the form (5.12) (or (5.18)).

Step 5. To conclude the proof of Theorem 5.4 it remains to show that the Markov
semigroup (PN(t))t≥0 is Feller. This is equivalent to proving that

lim
λ→∞

PN(t;λ, ν) = 0, t ≥ 0, ν ∈ GTN . (5.22)

But this immediately follows from (5.12) because we already know that (5.22) holds
for N = 1 (Theorem 5.1), and DimN(λ) is always at least 1.

�

6. Commutativity

The goal of this section is to address the question of compatibility of the semi-
groups of Section 5 and links of Section 3, cf. (2.3).

6.1. Parameterization. As we shall see, in order for the commutativity relations
(2.3) to be satisfied, the parameters (u, u′, v, v′) used to define semigroups (PN(t))t≥0

need to depend on N . For that reason, introduce two new pairs of parameters (z, z′)
and (w,w′) that satisfy the same conditions as (u, u′, v, v′) before:

(z + k)(z′ + k) > 0, (w + k)(w′ + k) > 0 ∀k ∈ Z; z + z′ + w + w′ > −1.
(6.1)

Furthermore, for N ≥ 1 define

uN = z +N − 1, u′
N = z′ +N − 1, v = w, v′ = w′, (6.2)
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and let (PN(t))t≥0 be the Feller semigroup of the previous section with parameters
(u, u′, v, v′) = (uN , u

′
N , vN , v

′
N).

We are aiming to prove the following statement.

Theorem 6.1. With links {ΛN+1
N }N≥1 as in Subsection 3.1 and semigroups (PN(t))t≥0

as above, the compatibility relations (2.3) hold.

6.2. Infinitesimal commutativity. We first prove a version of (2.3) that involves
matrices of transition rates.

Proposition 6.2. For any N ≥ 1, u, u′, v, v′ ∈ C, and λ ∈ GTN+1, ν ∈ GTN , we
have

∑

κ∈GTN+1

D̃(N+1)(λ, κ)ΛN+1
N (κ, ν) =

∑

ρ∈GTN

ΛN+1
N (λ, ρ)D(N)(ρ, ν) (6.3)

or, in matrix notation, D̃(N+1)ΛN+1
N = ΛN+1

N D(N), where D(N) is the operator defined

by (5.9), and in D̃(N+1) we replace N by N+1 and the parameters (u, u′) by (ũ, ũ′) =
(u+ 1, u′ + 1).

Proof. We start with the following simple lemma.

Lemma 6.3. Let
[
A(λ, ν)

]
λ∈GTN+1, ν∈GTN

be a matrix with rows parameterized by

GTN+1 and columns parameterized by GTN , and such that each row of A has finitely
many nonzero entries. If for any symmetric polynomial F in N variables and any
λ ∈ GTN+1 we have

∑

ν∈GTN

A(λ, ν)F (ν1 +N − 1, ν2 +N − 2, . . . , νN ) = 0, (6.4)

then A(λ, ν) ≡ 0.

Proof. Assume A(λ̂, ν̂) 6= 0 for some λ̂ and ν̂. Let ν(1), . . . , ν(l) ∈ GTN be all

signatures different from ν̂ and such that A(λ̂, ν(j)) 6= 0.
Set x = (ν̂1 +N − 1, . . . , ν̂N) ∈ ZN and

y(j) =
(
ν
(j)
1 +N − 1, . . . , ν

(j)
N

)
∈ Z

N , j = 1, . . . , l.

Observe that the orbits of the vectors x, y(1), . . . , y(l) under the group of permuta-
tions of the coordinates do not intersect. It follows that there exists a polynomial
f in N variables, which takes value 1 on the orbit of x and vanishes on the orbits
of the vectors y(1), . . . , y(l). Then for the symmetrized polynomial F (z1, . . . , zN ) =∑

σ∈SN
f(zσ(1), . . . , zσ(N)) the left-hand side of (6.4) is equal to N !A(λ̂, ν̂) 6= 0. Con-

tradiction. �
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Let us now introduce symmetric polynomials on which we will evaluate (in the
sense of Lemma 6.3) both sides of (6.3). For a partition (=signature with nonnega-
tive coordinates) µ ∈ GTN and c ∈ C set

Fµ,c(x1, . . . , xn) =
1

(N)µ

det
[
(xi + c)↓(µj+N−j)

]N
i,j=1∏

1≤i<j≤N(xi − xj)
,

Gµ,c(x1, . . . , xn+1) =
1

(N + 1)µ

det
[
(xi + c)↓(µj+N+1−j)

]N+1

i,j=1∏
1≤i<j≤N+1(xi − xj)

,

where we assume µN+1 = 0 and use the notation (a ∈ C, k ∈ Z≥0)

a↓k = a(a− 1) · · · (a− k + 1), (a)k = a(a+ 1) · · · (a + k − 1), a↓0 = (a)0 = 1,

(a)µ =
N∏

j=1

(a− j + 1)µj
.

Clearly, Fµ,c and Gµ,c are symmetric polynomials in N and N + 1 variables, respec-
tively. Moreover, for any fixed c ∈ C, the polynomials {Fµ,c} with µ ranging over
all nonnegative signatures in GTN form a linear basis in the space of all symmetric
polynomials inN variables. Indeed, this follows from the fact that the highest degree
homogeneous component of Fµ,c coincides with the Schur polynomial sµ(x1, . . . , xN),
and those are well known to form a basis, see e.g. [Macd95].

Hence, to prove Proposition 6.2 it suffices to verify that the two sides of (6.3) give
the same results when applied to Fµ,c for a fixed c and µ varying over nonnegative
signatures of length N .

Lemma 6.4. For any λ ∈ GTN+1, any nonnegative signature µ ∈ GTN , and c ∈ C,
we have
∑

ν∈GTN

ΛN+1
N (λ, ν)Fµ,c(ν1 +N − 1, . . . , νN) = Gµ,c(λ1 +N, λ2 +N − 1, . . . , λN+1).

Proof. The argument is similar to that for relation (10.30) in [OO97]. Denote

(x1, . . . , xN+1) = (λ1 +N, . . . , λN+1), (y1, . . . , yN) = (ν1 +N − 1, . . . , νN ).

Then ν ≺ λ means xi+1 ≤ yi < xi for all i = 1, . . . , N . Taking into account the
definition of ΛN+1

N , one sees that the relation in question is equivalent to the following
one

det
[
(xi + c)↓(µj+N+1−j)

]N+1

i,j=1

=
(N + 1)µN !

(N)µ

∑

y1,...,yN∈Z
xi+1≤yi<xi for all i

det
[
(yi + c)↓(µj+N−j)

]N
i,j=1

. (6.5)
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The last column in the (N + 1) × (N + 1) matrix in the left-hand side of (6.5)
consists of 1’s. Subtracting from the ith row the (i+1)st one for each i = 1, . . . , N ,
we see that the left-hand side is equal to the N ×N determinant

det
[
(xi + c+ 1)↓(µj+N+1−j) − (xi+1 + c+ 1)↓(µj+N+1−j)

]N
i,j=1

.

On the other hand, the summation in the right-hand side of (6.5) can be performed
in each row separately using the relation

b−1∑

y=a

(y + c)↓m =
(b+ c)↓(m+1) − (a+ c)↓(m+1)

m+ 1
.

Collecting constant prefactors completes the proof of Lemma 6.4:

(N + 1)µN !

(N)µ
∏N

j=1(µj +N − j + 1)

= N !

N∏

j=1

(µj +N + 1− j)!(N − j)!

(N + 1− j)!(µj +N − j)!(µj +N − j + 1)
= 1. (6.6)

�

To conclude the proof of Proposition 6.2 we want to prove that, for a suitable
fixed constant c ∈ C, D(N)Fµ,c decompose on {Fν,c} in exactly the same way as

D̃(N+1)Gµ,c decompose on {Gν,c}.
It is actually convenient to take c = v, where v is one of the four parameters

(u, u′, v, v′). With this specialization we prove

Lemma 6.5. For any λ ∈ GTN and any nonnegative signature µ ∈ GTN , with the
notation mj = µj +N − j, j = 1, . . . , N , we have

∑

ν∈GTN

D(N)(λ, ν)Fµ,v(ν1 +N − 1, . . . , νN)

=

(
N∑

j=1

mj(mj − 1) + s

N∑

j=1

mj − dN

)
Fµ,v(λ1 +N − 1, . . . , λN)

+
N∑

j=1

(
(mj − 1)(v′ − v +mj − 1) + s(mj − v − 1) + uu′ − vv′

)
1µj−1≥µj+1

× Fµ−ej ,v(λ1 +N − 1, . . . , λN), (6.7)

where dN is as in (5.10), ej = (0, . . . , 0, 1, 0, . . . , 0) with 1 at the jth place, and we
assume µN+1 = 0.
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Proof. We first compute, cf. (5.15),

D(x+ v)↓m = (x+ v)(x+ v′)∆∇(x+ v)↓m + (sx+ uu′ − vv′)∆(y + v)↓m

= m(m− 1)(x+ v′)(x+ v)↓(m−1) +m(sx+ uu′ − vv′)(x+ v)↓(m−1). (6.8)

This is the place where the choice of c = v matters; for different values of c the
expression for D(x+ c)↓m would have been more complicated.

Substituting

x+ v′ = (x+ v −m+ 1) + (v′ − v +m− 1),

sx+ uu′ − vv′ = s(x+ v −m+ 1) + (s(m− v − 1) + uu′ − vv′),

we obtain

D(x+ v)↓m =
(
m(m− 1) + sm

)
(x+ v)↓m

+
(
(m− 1)(v′ − v +m− 1) + s(m− v − 1) + uu′ − vv′

)
m(x+ v)↓(m−1). (6.9)

The statement now follows from (5.9) and the definition of Fµ,c.
�

Let us complete the proof of Proposition 6.2.
Apply both sides of (6.3) to Fµ,v in the sense of Lemma 6.3. Using Lemma 6.4

we see that the left-hand side of (6.3) turns into

∑

κ∈GTN+1

D̃(N+1)(λ, κ)Gµ,v(κ1 +N, . . . , κn+1),

and repeating the arguments of Lemma 6.5 we see that this is equal to

(
N∑

j=1

m̃j(m̃j − 1) + s̃

N∑

j=1

m̃j − d̃N+1

)
Gµ,v(λ1 +N − 1, . . . , λN)

+
N∑

j=1

(
(m̃j − 1)(v′ − v + m̃j − 1) + s̃(m̃j − ṽ − 1) + ũũ′ − vv′

)
1µj−1≥µj+1

×Gµ−δj ,v(λ1 +N − 1, . . . , λN), (6.10)

where m̃j = µj +N +1− 1 = mj +1, and tildes over the other constants mean that
in their definitions we replace (u, u′) by (ũ, ũ′) = (u+ 1, u′ + 1).

On the other hand, by Lemmas 6.4 and 6.5 the right-hand side of (6.3) equals
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(
N∑

j=1

mj(mj − 1) + s

N∑

j=1

mj − dN

)
Gµ,v(λ1 +N − 1, . . . , λN)

+
N∑

j=1

(
(mj − 1)(v′ − v +mj − 1) + s(mj − v − 1) + uu′ − vv′

)

× 1µj−1≥µj+1
Gµ−δj ,v(λ1 +N − 1, . . . , λN). (6.11)

It is a straightforward computation to see that all the coefficients in (6.10) and
(6.11) coincide. The proof of Proposition 6.2 is complete.

�

6.3. From matrices of transition rates to semigroups. In order to complete
the proof of Theorem 6.1 we need the following lemma.

Lemma 6.6. If f is a finitely supported function on GTN then ΛN+1
N f is in the

domain of the generator AN+1 of the semigroup (PN+1(t))t≥0 (see Section 4 for the
definition of the generator and its domain).

Let us postpone the proof of Lemma 6.6 until the end of this subsection and
proceed with the proof of Theorem 6.1.

In order to prove (2.3) it suffices to prove that the two sides are equal when applied
to a function f on GTN with finite support (as such are dense in C0(GTN)):

PN+1(t)Λ
N+1
N f = ΛN+1

N PN(t)f, t ≥ 0, N = 1, 2, . . . . (6.12)

Let us denote the left and right-hand sides of (6.12) by Fleft(t) and Fright(t). We will
show that they solve the same Cauchy problem in the Banach space C0(GTN+1).
Then (6.12) will follow from an abstract uniqueness theorem for solutions of the
Cauchy problem for vector functions with values in a Banach space,

d

dt
F (t) = AF (t), t > 0, F (0) = fixed vector,

which holds under the assumptions that (1) A is a closed dissipative operator, (2)
F (t) is continuous for t ≥ 0 and strongly differentiable for t > 0, and (3) F (t) ∈ D(A)
for t ≥ 0; see e.g. [Kat80, IX.1.3].

In our situation, A = AN+1 and the fixed vector is ΛN+1
N f . Obviously, both Fleft(t)

and Fright(t) are continuous for t ≥ 0 and they have the same initial value ΛN+1
N f

at t = 0.
Let us check the differential equation for Fleft(t). By Lemma 6.6 we have ΛN+1

N f ∈
D(AN+1). Hence, Fleft(t) ∈ D(AN+1) (semigroups preserve the domains of the
generators) and it satisfies

d

dt
Fleft(t) = AN+1Fleft(t), t > 0.
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Let us turn to Fright. By Corollary 4.7, f belongs to D(AN). It follows that the
function t 7→ PN(t)f is strongly differentiable and

d

dt
PN(t)f = ANPN(t)f = D(N)PN(t), t > 0.

Hence, Fright(t) is also strongly differentiable and for t > 0

d

dt
Fright(t) = ΛN+1

N

d

dt
PN(t)f = ΛN+1

N D(N)PN(t)f.

By definition, the last expression should be understood as ΛN+1
N (D(N)(PN (t)f)).

However, since all rows of the matrices ΛN+1
N and D(N) have finitely many nonzero

entries, we may write

ΛN+1
N (D(N)(PN(t)f)) = (ΛN+1

N D(N))PN(t)f.

By virtue of Proposition 6.2, this equals

D̃(N+1)ΛN+1
N PN(t)f = D̃(N+1)Fright(t),

so that
d

dt
Fright(t) = D̃

(N+1)Fright(t).

Next, as d
dt
Fright(t) is in C0(GTN+1), so is D̃(N+1)Fright(t). By Proposition 4.6, we

may replace D̃(N+1) by AN+1, which gives the desired differential equation

d

dt
Fright(t) = AN+1Fright(t), t > 0,

and we conclude that Fleft = Fright.
Thus, we have proved Theorem 6.1 modulo Lemma 6.6.

Proof of Lemma 6.6. Let f be a finitely supported function on GTN , g = ΛN+1
N f .

Proposition 3.3 says that g ∈ C0(GTN+1), and by Proposition 4.6 it suffices to check
that D(N+1)g ∈ C0(GTN+1). We have

(D(N+1)g)(λ) =
∑

ε:λ+ε∈GTN+1

D(N+1)(λ, λ+ ǫ)
(
g(λ+ ǫ)− g(λ)

)
,

where λ ∈ GTN+1, ε ranges over {±ej}j=1,...,N+1, with (ej) being the standard basis
in RN+1, and D(N+1)(λ, λ+ ǫ) are off-diagonal entries of the matrix D(N+1).

Without loss of generality we may assume that f is the delta-function at some
ν ∈ GTN . We obtain

g(λ) =
N !
∏

1≤i<j≤N(νi − i− νj + j)
∏

1≤i<j≤N+1(λi − i− λj + j)
· 1ν≺λ,
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and

(D(N+1)g)(λ) =
N+1∑

i=1

∑

εi=±1

DimN+1(λ+ εiei)

DimN+1(λ)
D(li, li + εi)

(
g(λ+ εiei)− g(λ)

)
(6.13)

where lj = λj +N + 1− j, j = 1, . . . , N + 1, and we assume DimN+1(λ + εiei) = 0
in case λ+ εiei /∈ GTN+1 (this is supported by the explicit formula for DimN+1( · )).

Observe that for

g̃(λ) =
N !
∏

1≤i<j≤N(νi − i− νj + j)
∏

1≤i<j≤N+1(λi − i− λj + j)
=

const1
DimN+1(λ)

(we removed the factor 1ν≺λ from g(λ) above), we have

(D(N+1)g̃)(λ) =
const2

Dim2
N+1(λ)

×

N+1∑

i=1

∑

εi=±1

D(li, li + εi)
(
DimN+1(λ+ εiei)−DimN+1(λ)

)
=

const3
DimN+1(λ)

, (6.14)

where we used (5.14).
Next, observe that the function

(D(N+1)g̃)(λ)1ν≺λ =
const3

DimN+1(λ)
1ν≺λ

belongs toC0(GTN+1). Indeed, if λ goes to infinity inside the subset {λ : ν ≺ λ} then
λi−λj → +∞ for at least one couple i < j of indices, which entails DimN+1 λ→ +∞.

The discrepancy between (D(N+1)g̃)(λ)1ν≺λ and (D(N+1)g)(λ) (or rather between
the summations in (6.13) and (6.14)) comes from values of i and εi such that either
ν ≺ λ but ν 6≺ (λ+ εiei), or ν ≺ λ+ εiei but ν 6≺ λ. In both cases, for that value of
i, the quantities λi, li, and D(li, li + εi) must remain bounded as ν is fixed.

Note that λ→∞ inside the subset

{λ ∈ GTN+1 : ν ≺ λ or ν ≺ λ+ εiei for some i},

then either λ1 → +∞ or λN+1 → −∞, or both, while all other λj remain bounded
from both sides. But then a direct inspection of the summands in (6.13) and (6.14)
that contribute to the discrepancy shows that they converge to zero as λ → ∞.
Hence, (D(N+1)g)(λ) ∈ C0(GTN+1). �

7. Invariant measures

In three previous sections we defined a chain of countable sets {EN = GTN}N≥1,
constructed links ΛN+1

N between then, and identified the boundary E∞ = Ω. Fur-
thermore, for any quadruple of complex parameters (z, z′, w, w′) satisfying (6.1) we
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constructed Feller semigroups (PN(t))t≥0 on GTN and showed that they are com-
patible with the links; by Proposition 2.4 this yields a Feller semigroup (P (t))t≥0 on
Ω.

The goal of this section is to exhibit an invariant measure for (P (t))t≥0.

7.1. zw-measures. Let z, z′, w, w′ be complex parameters satisfying (6.1). As was
pointed out in Subsection 5.1, this is equivalent to saying that each pair (z, z′) and
(w,w′) belongs to one (or both) of the sets

{(ζ, ζ ′) ∈ (C \ Z)2 | ζ ′ = ζ̄} and

{(ζ, ζ ′) ∈ (R \ Z)2 | m < ζ, ζ ′ < m+ 1 for some m ∈ Z},

and also z + z′ + w + w′ > −1.
For λ ∈ GTN set

Mz,z′,w,w′|N(λ) = (constN)
−1 ·M ′

z,z′,w,w′|N(λ)

where

M ′
z,z′,w,w′|N(λ) =

N∏

i=1

(
1

Γ(z − λi + i)Γ(z′ − λi + i)

×
1

Γ(w +N + 1 + λi − i)Γ(w′ +N + 1 + λi − i)

)
· (DimN (λ))

2, (7.1)

and

constN =
∑

λ∈GTN

M ′
z,z′,w,w′|N(λ)

is the normalizing constant depending on z, z′, w, w′, N .

Theorem 7.1 ([Ols03]). Under our assumptions on the parameters, for any N ≥ 1,
Mz,z′,w,w′|N is a probability measure, we call it the N th zw-measure. Moreover, these
measures are consistent with the links,

Mz,z′,w,w′|N = Mz,z′,w,w′|N+1 Λ
N+1
N , N ≥ 1,

with ΛN+1
N as in Subsection 3.1.

Theorem 7.1 implies that the system (Mz,z′,w,w′|N)N≥1 defines a probability mea-
sure Mz,z′,w,w′ on the boundary Ω that we call the spectral zw-measure, cf. Theorem
3.1, and a character of the infinite-dimensional unitary group U(∞), cf.[Ols03]. For
z′ = z̄ and w′ = w̄ one can find a geometric construction of the corresponding
representations of U(∞) in [Ols03]. There is also a fairly simple “coordinate-free”
description of general zw-measures that we now give, cf. [BO05c].

Let T be the unit circle in C and TN be the product of N copies of T (the
N–dimensional torus). For any λ ∈ GTN , the character χλ of the corresponding
irreducible representation πλ of U(N) can be viewed as a symmetric function on T

N ,
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where coordinates are interpreted as eigenvalues of unitary matrices. Explicitly, the
character is given by the (rational) Schur function

χλ(u1, . . . , uN) = sλ(u1, . . . , uN) =
det
[
u
λj+N−j
i

]
1≤i,j≤N

det
[
uN−j
i

]
1≤i,j≤N

.

Consider the Hilbert space HN of symmetric functions on TN , square integrable
with respect to the measure

1

N !

∏

1≤i<j≤N

|ui − uj|
2

N∏

i=1

dui ,

which is the push–forward of the normalized Haar measure on U(N) under the
correspondence U 7→ (u1, . . . , uN). Here dui is the normalized invariant measure on
the ith copy of T.

Given two complex numbers z, w, we define a symmetric function on TN by

fz,w|N(u) =
N∏

i=1

(1 + ui)
z(1 + ūi)

w.

If ℜ(z+w) > −1
2
then fz,w|N belongs to the space HN . Let (z

′, w′) be another couple

of complex numbers with ℜ(z′ + w′) > −1
2
. We set

Mz,z′,w,w′|N(λ) =
(fz,w|N , χλ)(χλ, fw′, z′|N)

(fz,w|N , fw′, z′|N)
, λ ∈ GTN ,

where ( · , · ) is the inner product in HN . It turns out that this definition leads us
to the explicit formula given above.

The spectral zw-measures were the subject of an extensive investigation in [BO05a]
the upshot of which is the statement that with ω ∈ Ω distributed according to
Mz,z′,w,w′, its coordinates

{
1
2
+ α+

i ,
1
2
− β+

i ,−
1
2
+ β−

i ,−
1
2
− α−

i

}∞
i=1

(where possible zero values of α±
i and β±

i should be removed) form a determinantal
point process on R \ {±1

2
} with an explicit correlation kernel. See [BO05a], [BO05b]

for details.

7.2. Invariance. The main statement of this section is

Theorem 7.2. For any quadruple (z, z′, w, w′) of parameters satisfying (6.1), the
spectral zw-measure Mz,z′,w,w′ is the unique invariant probability measure with respect
to the semigroup (P (t))t≥0.
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Proof. Let us prove the invariance first. By Subsection 2.8, it suffices to verify that
for each N ≥ 1, the Nth level zw-measure is invariant with respect to (PN(t))t≥0.
We will check this fact on the level of matrices of transition rates:

∑

λ∈GTN

Mz,z′,w,w′|N(λ)D
(N)(λ, ν) = 0, N ≥ 1, ν ∈ GTN .

Since it is easy to check that D(N) is reversible with respect to Mz,z′,w,w′|N(λ),

Mz,z′,w,w′|N(λ)D
(N)(λ, ν) = D(N)(λ, ν)Mz,z′,w,w′|N(ν), λ, ν ∈ GTN ,

an argument in Section 3 of [Kel83] shows that the invariance on the level of tran-
sition rates implies the invariance with respect to the corresponding semigroup.

As in the proof of Theorem 5.4, it is convenient to employ the bijection λ ↔
(λj + N − j)1≤j≤N between GTN and XN , see Subsection 5.2 for the notation and
also recall that we are using parameterization (6.2). Under the bijection of GTN

and XN , the desired identity takes the form (removing irrelevant prefactors)

∑

X∈XN

(
N∏

i=1

W (xi)

)
VN(X)

((
D(x1, y1)1{xi=yi,i 6=1} + . . .

· · ·+D(xN , yN)1{xi=yi,i 6=N}

)
− dN1X=Y

)
= 0, (7.2)

where

W (x) =
1

Γ(z +N − x)Γ(z′ +N − x)Γ(w + 1 + x)Γ(w′ + 1 + x)
, x ∈ Z.

Let p0 = 1, p1, p2, . . . , deg pj = j − 1, be monic orthogonal polynomials on Z

corresponding to the weight function W (x). As

W (x) = O(|x|−z−z′−w−w′−2N ), x→∞,

the assumption z + z′ + w + w′ > −1 implies that W (x) has at least 2N − 3 finite
moments, and polynomials pj with j = 0, 1 . . . , N − 1 are well defined.

Polynomials {pj} can be written explicitly in terms of the hypergeometric function

3F2 evaluated at 1. They were discovered by R. Askey [Ask87], and independently
by P. Lesky [Les97], [Les98]; see also the recent book [KLS10, §5.3, Theorem 5.2,
Case IIIc]. We call them the Askey-Lesky polynomials .

The Askey-Lesky polynomials are eigenfunctions of the operator D on Z, see
[BO05a, §7]:

∑

y∈Z

D(x, y)pj(y) = γjpj(x) ∀x ∈ Z, j = 0, 1, 2, . . . ,

where

γj = j((j − 1)− (uN + u′
N + vN + v′N )).
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Multiplying both sides by W (x) and using the fact that W (x)D(x, y) is symmetric
with respect to transposition x↔ y we obtain

∑

x∈Z

pj(x)W (x)D(x, y) = γjpj(y) ∀y ∈ Z, j = 0, 1, 2, . . . . (7.3)

Let us rewrite the Vandermonde determinant in the left-hand side of (7.2) as

VN(x) = ± det
[
pi−1(xj)

]N
i,j=1

.

Applying operators D1, . . . ,DN to individual columns in this determinant multi-
plied by W (x1) · · ·W (xN) according to (7.3), and recalling the definition of dN , we
obtain (7.2).

Let us now prove uniqueness. As explained in Subsection 2.8, it suffices to
show that the Nth level zw-measure is the unique invariant probability measure
for (PN(t))t≥0 for any N ≥ 1. But uniqueness of invariant measures holds in general
for irreducible Markov chains on countable sets, see e.g. Theorem 1.6 in [And91].

�

8. Stochastic dynamics on paths. General formalism

8.1. Overview. Let us return to the general setting of Section 2 and assume that
all EN ’s are discrete. For N = 1, 2, . . . set

E(N) =
{
(x1, . . . , xn) ∈ E1 × · · · × EN |

N−1∏

k=1

Λk+1
k (xk+1, xk) 6= 0

}
. (8.1)

There are natural projections ΠN+1
N : E(N+1) → E(N) consisting in forgetting the

last coordinate; let E(∞) = lim
←−

E(N), where the projective limit is taken with respect

to these projections. Obviously, E(∞) is a closed subset of the infinite product space∏∞
N=1EN . Thus, elements of E(∞) are some infinite sequences. Let Π∞

N : E(∞) →
E(N) be the map that extracts the first N members of such a sequence.

Definition 8.1. We say that a probability measure µ(N) on E(N) is central if there
exists a probability measure µN on EN such that

µ(N)(x1, . . . , xN) = µN(xN )Λ
N
N−1(xN , xN−1) · · ·Λ

2
1(x2, x1) (8.2)

for any (x1, . . . , xN) ∈ E(N). Relation (8.2) establishes a bijection between proba-
bility measures on EN and central probability measures on E(N).

We say that µ(∞) ∈Mp(E
(∞)) is central if all its pushforwards under projections

Π∞
N are central. Relation (8.2) also establishes a bijection between central measures

on E(∞) and elements of lim
←−
Mp(EN) of Subsection 2.5.

Finally, we say that a Markov semigroup (P (N)(t))t≥0 on E(N) is central if the
associate linear operators inM(E(N)) map central measures to central measures.
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Clearly, a central Markov semigroup (P (N)(t))t≥0 defines a Markov semigroup on
EN — in order to obtain µNPN(t) for µN ∈ Mp(EN ) one needs to define µ(N) via
(8.2), evaluate µ(N)P (N)(t), and read off a measure on EN using Definition 8.1.

Proposition 8.2. Let (P (N)(t))t≥0, N ≥ 1, be a sequence of central Markov semi-
groups on E(N)’s that are compatible with the system of projections:

P (N+1)(t) ◦ ΠN+1
N = ΠN+1

N ◦ P (N)(t), t ≥ 0, N ≥ 1.

Then the corresponding Markov semigroups (PN(t))t≥0 on EN , N ≥ 1, are compat-
ible with projections ΛN+1

N as in (2.3).

Proof. Follows from the fact that if µ(N+1) and µN+1 are related as in Definition 8.1
then µ(N+1)ΠN+1

N and µN+1Λ
N+1
N are also related in the same way. �

The goal of this section and the next one is to construct central Markov semigroups
(P (N)(t))t≥0 that would yield, as in Proposition 8.2, semigroups (PN(t))t≥0 on EN =
GTN that we dealt with in the previous sections. One reason for such a construction
is the fact that for the Gelfand-Tsetlin graph, the isomorphism between central
measures on GT

(∞) and probability measures on the boundary Ω, cf. Definition 2.2,
is somewhat explicit, see Section 9 below. Thus, (P (N)(t))t≥0 can be thought of as
providing a more “hands-on” description of the corresponding semigroup (P (t))t≥0

on Ω.

8.2. Construction of bivariate Markov chains. Let E and E∗ be countable
sets, and let Q and Q∗ be matrices of transition rates on these sets. Let Λ =
[Λ(x∗, x)]x∗∈E∗,x∈E be an additional stochastic matrix which we view as a stochastic
link between E∗ and E.

We will assume that for each of the three matrices Q, Q∗, and Λ, each row contains
only finitely many nonzero entries. In addition, we assume the relation

∑

x∈E

Λ(x∗, x)Q(x, y) =
∑

y∗∈E∗

Q∗(x∗, y∗)Λ(y∗, y), x∗ ∈ E∗, y ∈ E, (8.3)

or ΛQ = Q∗Λ in matrix notation.
Observe that in case Λ(x∗, y) = 0, the diagonal entries Q(x, x) and Q(x∗, x∗) give

no contribution to (8.3), and the commutativity relation can be rewritten as
∑

x∈E,x 6=y

Λ(x∗, x)Q(x, y) =
∑

y∗∈E∗,y∗ 6=x∗

Q∗(x∗, y∗)Λ(y∗, y), x∗ ∈ E∗, y ∈ E. (8.4)

We will denote the above expression by ∆(x∗, y); it is only defined if Λ(x∗, y) = 0.
In what follows we also use the notation

qx = −Q(x, x), x ∈ E; q∗x∗ = −Q∗(x∗, x∗), x∗ ∈ E∗.

Consider the bivariate state space

E(2) = {(x∗, x) ∈ E∗ × E | Λ(x∗, x) 6= 0}.
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We want to construct a Markov chain on E(2) that would satisfy two conditions:
• The projection of this Markov chain to E gives the Markov chain defined by Q;
• It preserves the class of measures on E(2) satisfying Prob(x|x∗) = Λ(x∗, x);
• In this class of measures, the projection of this Markov chain to E∗ gives the
Markov chain defined by Q∗.

To this end, define a matrix Q(2) of transition rates on E(2) with off-diagonal
entries given by

Q(2)
(
(x∗, x), (y∗, y)

)
=






Q(x, y), x∗ = y∗,

Q∗(x∗, y∗)
Λ(y∗, x)

Λ(x∗, x)
, x = y,

Q(x, y)
Q∗(x∗, y∗)Λ(y∗, y)

∆(x∗, y)
, Λ(x∗, y) = 0,∆(x∗, y) 6= 0,

0, otherwise.

Note that Λ(x∗, y) = 0 implies x∗ 6= y∗ and x 6= y (provided that (x∗, x), (y∗, y)
are in E(2)) so all the cases in the above definition are mutually exclusive.

The diagonal entries Q(2)
(
(x∗, x), (x∗, x)

)
with (x∗, x) ∈ E(2) are defined by

−Q(2)
(
(x∗, x), (x∗, x)

)
= q

(2)
(x∗,x) :=

∑

(y∗,y)6=(x∗,x)

Q(2)
(
(x∗, x), (y∗, y)

)
.

Clearly, any row ofQ(2) also has only finitely many nonzero entries. One immediately
verifies that for any (x∗, x) ∈ E(2) and y ∈ E with x 6= y,

∑

y∗:(y∗,y)∈E(2)

Q(2)
(
(x∗, x), (y∗, y)

)
= Q(x, y). (8.5)

Indeed, one needs to consider two cases Λ(x∗, y) = 0 and 6= 0, and in both cases the
statement follows from the definitions. As the row sums of Q(2) and Q are all zero,
we obtain (8.5) for x = y as well.

For any x ∈ E, let us also introduce a matrix of transition rates Qx on the fiber
Ex = {x∗ ∈ E∗ | Λ(x∗, x) 6= 0} via

Qx(x
∗, y∗) = Q(2)((x∗, x), (y∗, x)) = Q∗(x∗, y∗)

Λ(y∗, x)

Λ(x∗, x)
, x∗ 6= y∗,

and

Qx(x
∗, x∗) = −

∑

y∗∈Ex, y∗ 6=x∗

Qx(x
∗, y∗).

The following statement is similar to Lemma 2.1 of [BF08+] proved in the dis-
crete time setting. As we will see, the proof of the continuous time statement is
significantly more difficult.
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Proposition 8.3. Assume that the matrices of transition rates Q, Q∗, and Qx for
any x ∈ E are regular. Then Q(2) is also regular, and denoting by P (t), P ∗(t), and
P (2)(t) the transition matrices corresponding to Q,Q∗, and Q(2), we have

∑

y∗:(y∗,y)∈E(2)

P (2)
(
t; (x∗, x), (y∗, y)

)
=P (t; x, y), (8.6)

∑

x:(x∗,x)∈E(2)

Λ(x∗, x)P (2)
(
t; (x∗, x), (y∗, y)

)
=P ∗(t; x∗, y∗)Λ(y∗, y), (8.7)

where in the first relation (x∗, x) ∈ E(2), y ∈ E are arbitrary, while in the second
relation x∗ ∈ E∗, (y∗, y) ∈ E(2) are arbitrary.

Proof. The regularity of Q(2) and collapsibility relation (8.6) follow from Proposition
4.4 with (4.5) specializing to (8.5).

Proving (8.7) is more difficult, and we will follow the following path. First, we will
show that both sides of (8.7) satisfy the same differential equation (essentially the
Kolmogorov backward equation for P ∗(t; x∗, y∗)) with a certain initial condition.
Then we will see that the right-hand side of (8.7) represents the minimal of all
nonnegative solutions of this equation. Since for a fixed x∗, both sides of (8.7)
represent probability measures on E(2), the equality will immediately follow.

For the first step, let us show that the left-hand side ft(x
∗, y∗, y) of (8.7) satisfies

d

dt
ft(x

∗, y∗, y) =
∑

z∗∈E∗

Q∗(x∗, z∗)ft(z
∗, y∗, y) (8.8)

with the initial condition

lim
t→+0

ft(x
∗, y∗, y) = 1x∗=y∗Λ(y

∗, y). (8.9)

The initial condition satisfied by P (2)(t) implies (8.9), so let us prove (8.8).
Using the Kolmogorov backward equation for P (2)(t), we obtain

d

dt
ft(x

∗, y∗, y) =
∑

x:(x∗,x)∈E(2)

Λ(x∗, x)

(
−q

(2)
(x∗,x)P

(2)
(
t; (x∗, x), (y∗, y)

)

+
∑

(z∗,z)6=(x∗,x)

Q(2)((x∗, x), (z∗, z)
)
P (2)

(
t; (z∗, z), (y∗, y)

)
)
. (8.10)

For the first term in the right-hand side, we use

q
(2)
(x∗,x) = qx +

∑

w∗:w∗ 6=x∗

Q∗(x∗, w∗)
Λ(w∗, x)

Λ(x∗, x)
,
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which follows directly from the definition of Q(2). Thus, we can rewrite the first
term in the right-hand side of (8.10) as

−
∑

x∈E

qxΛ(x
∗, x)P (2)

(
t; (x∗, x), (y∗, y)

)

−
∑

x: (x∗,x)∈E(2)

∑

w∗:w∗ 6=x∗

Λ(w∗, x)Q∗(x∗, w∗)P (2)
(
t; (x∗, x), (y∗, y)

)
. (8.11)

For the second term of the right-hand side of (8.10), according to the definition
of Q(2), let us split the sum over (z∗, z) into three disjoint parts: (1) x∗ = z∗, x 6= z;
(2) x∗ 6= z∗, x = z; (3) Λ(x∗, z) = 0 (hence, x∗ 6= z∗, x 6= z).

Part (1) gives

(1) =
∑

x:(x∗,x)∈E(2)

Λ(x∗, x)
∑

z: z 6=x, (x∗,z)∈E(2)

Q(x, z)P (2)
(
t; (x∗, z), (y∗, y)

)
.

Interchanging the summations over x and z, we can employ the commutativity
relation (8.3). This gives

(1) =
∑

z: (x∗,z)∈E(2)

∑

v∗∈E∗

Λ(v∗, z)Q∗(x∗, v∗)P (2)
(
t; (x∗, z), (y∗, y)

)

+
∑

x∈E

qxΛ(x
∗, x)P (2)

(
t; (x∗, x), (y∗, y)

)
. (8.12)

Observe that the last term cancels out with the first term in (8.11), while the sum
of the first term of (8.12) and the second term of (8.11), with identification z = x,
v∗ = w∗ of the summation variables, yields (only terms with v∗ = x∗ survive)

− q∗x∗

∑

x∈E

Λ(x∗, x)P (2)
(
t; (x∗, x), (y∗, y)

)
. (8.13)

Further, part (2) of the second term of (8.10) reads

(2) =
∑

x:(x∗,x)∈E(2)

∑

z∗:z∗ 6=x∗

Λ(z∗, x)Q∗(x∗, z∗)P (2)
(
t; (z∗, x), (y∗, y)

)
. (8.14)

Finally, part (3) gives

(3) =
∑

x:(x∗,x)∈E(2)

∑

(z∗,z)∈E(2):Λ(x∗,z)=0

Λ(x∗, x)Q(x, z)
Q∗(x∗, z∗)Λ(z∗, z)

∆(x∗, z)

× P (2)
(
t; (z∗, z), (y∗, y)

)

=
∑

z:(x∗,z)/∈E(2)

∑

z∗:z∗ 6=x∗

Λ(z∗, z)Q∗(x∗, z∗)P (2)
(
t; (z∗, z), (y∗, y)

)
, (8.15)
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where we used the definition of ∆, see (8.4), to perform the summation over x 6= z.
One readily sees that adding (8.13), (8.14), (8.15) yields the right-hand side of (8.8).

Assume now that we have a nonnegative solution ft(x
∗, y∗, y) of (8.8) satisfying

the initial condition (8.9). Multiplying both sides of (8.8) by exp(q∗x∗t) we obtain
(
exp(q∗x∗t)ft(x

∗, y∗, y)
)′
= exp(q∗x∗t)

∑

z∗ 6=x∗

Q∗(x∗, z∗)ft(z
∗, y∗, y).

Integrating both sides over t and using (8.9) gives

ft(x
∗, y∗, y) = 1x∗=y∗Λ(y

∗, y) exp(−q∗x∗t)

+

∫ t

0

exp(−q∗x∗s)
∑

z∗ 6=x∗

Q∗(x∗, z∗)ft−s(z
∗, y∗, y)ds. (8.16)

Set F
(0)
t (x∗, y∗) = 1x∗=y∗ exp(−q

∗
x∗t), and for n = 1, 2, . . . define

F
(n)
t (x∗, y∗) = F

(0)
t (x∗, y∗) +

∫ t

0

exp(−q∗x∗s)
∑

z∗ 6=x∗

Q∗(x∗, z∗)F
(n−1)
t−s (z∗, y∗)ds.

Clearly, (8.16) implies ft(x
∗, y∗, y) ≥ F

(0)
t (x∗, y∗)Λ(y∗, y), and substituting such

estimates into (8.16) recursively we see that

ft(x
∗, y∗, y) ≥ F

(n)
t (x∗, y∗)Λ(y∗, y), n = 0, 1, 2, . . .

On the other hand, we know that

lim
n→∞

F
(n)
t (x∗, y∗) = P ∗(t; x∗, y∗),

see Section 4, [Fel40], [And91]. Hence, any nonnegative solution of (8.8), (8.9) is
bounded by P ∗(t; x∗, y∗)Λ(y∗, y) from below, and the proof of Proposition 8.3 is
complete. �

The following statement is the analog of Proposition 2.2 in [BF08+].

Corollary 8.4. Let µ∗(x∗) be a probability measure on E∗. For t ≥ 0, let (x∗(t), x(t))
be an E(2)-valued random variable with

Prob
{
(x∗(t), x(t)) = (x∗, x)

}
=

∑

(y∗,y)∈E(2)

µ∗(y∗)Λ(y∗, y)P (2)
(
t; (y∗, y), (x∗, x)

)
.

Then for any time moments 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ tk+1 ≤ · · · ≤ tk+l, the joint
distribution of

(
x∗(t0), x

∗(t1), . . . , x
∗(tk), x(tk), x(tk+1), . . . , x(tk+l)

)

coincides with the stochastic evolution of µ∗ under transition matrices
(
P ∗(t0), P

∗(t1 − t0), . . . , P
∗(tk − tk−1),Λ, P (tk+1 − tk), . . . , P (tk+l − tk+l−1)

)
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Proof. In the joint distribution

µ∗(y∗)Λ(y∗, y)P ∗
(
t0; (y

∗, y), (x∗
0, x0)

)
P ∗
(
t1 − t0; (x

∗
0, x0), (x

∗
1, x1)

)
· · ·

· · ·P ∗
(
tk+l − tk+l−1; (x

∗
k+l−1, xk+l−1), (x

∗
k+l, xk+l)

)
(8.17)

one uses (8.7) to sum over y, x0, . . . , xk−1 and (8.6) to sum over x∗
k+1, . . . , x

∗
k+l. �

8.3. Construction of multivariate Markov chains. Let E1, . . . , EN be count-
able sets, Q1, . . . , QN be matrices of transition rates on these sets, and Λ2

1, . . . ,Λ
N
N−1

be stochastic links:

Λk
k−1 : Ek × Ek−1 → [0, 1],

∑

y∈Ek−1

Λk
k−1(x, y) = 1, x ∈ Ek, k = 2, . . . , N.

It is also convenient to introduce a formal symbol Λ1
0 with Λ1

0( · , · ) ≡ 1. It can be
viewed as a stochastic link between E1 and a singleton E0.

We assume that for each of the matrices Qj, Λ
j
j−1, each row contains only finitely

many nonzero entries, and that the following commutativity relations are satisfied:
∑

u∈Ek−1

Λk
k−1(x, u)Qk−1(u, y) =

∑

v∈Ek

Qk(x, v)Λ
k
k−1(v, y), k = 2, . . . , N,

or Λk
k−1Qk−1 = QkΛ

k
k−1 in matrix notation. If Λk

k−1(x, y) = 0, the terms with u = y
and v = x give no contribution to the sums and thus can be excluded. In that case
we define (x ∈ Ek, y ∈ Ek−1)

∆k
k−1(x, y) :=

∑

u:u 6=y

Λk
k−1(x, u)Qk−1(u, y) =

∑

v:v 6=x

Qk(x, v)Λ
k
k−1(v, y), (8.18)

and also

Q̂k(x, v, y) =





Qk(x, v)Λ
k
k−1(v, y)

∆k
k−1(x, y)

, if ∆k
k−1(x, y) 6= 0,

0, if ∆k
k−1(x, y) = 0.

In case ∆k
k−1(x, y) 6= 0, Qk(x, v, y) is a probability distribution in v ∈ Ek that

depends on x and y.
In the application of this formalism that we consider in the next section, there is

always exactly one v that contributes nontrivially to the right-hand side of (8.18),

which means that the distribution Q̂k(x, v, y) is supported by one point.
We define the state space E(N) for the multivariate Markov chain by (8.1) and

then define the off-diagonal entries of the matrix Q(N) of transition rates on E(N) as
(we use the notation XN = (x1, . . . , xN ), YN = (y1, . . . , yN))

Q(N)(XN , YN) =





Qk(xk, yk)
Λk

k−1(yk, xk−1)

Λk
k−1(xk, xk−1)

,

Qk(xk, yk)
Λk

k−1(yk, xk−1)

Λk
k−1(xk, xk−1)

Q̂k+1(xk+1, yk+1, yk) · · · Q̂l(xl, yl, yl−1),
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where for the first line we must have xj = yj for all j 6= k and some k = 1, . . . , N ,
while for the second line we must have xj = yj iff j < k or j > l for some 1 ≤ k <
l ≤ N , and Λ(xj , yj−1) = 0 for k+1 ≤ j ≤ l. If neither of the two sets of conditions
is satisfied, we set Q(N)(XN , YN) to 0.

The diagonal entries Q(N)
(
XN , XN

)
are defined by

Q(N)
(
XN , XN

)
= −

∑

YN 6=XN

Q(N)
(
XN , YN

)
.

The definition of Q(N) can be interpreted as follows: Each of the coordinates xk,
k = 1, . . . , N , is attempting to jump to yk ∈ Ek with certain rates. Only yk’s with
Q(xk, yk) 6= 0 are eligible. Three situations are possible:

(1) The change of xk to yk does not move XN out of the state space, that is

Λk+1
k (xk+1, yk)Λ

k
k−1(yk, xk−1) 6= 0. Such jumps have rates Qk(xk, yk)

Λk
k−1(yk ,xk−1)

Λk
k−1(xk,xk−1)

.

Note that for k = 1 the last factor is always 1.

(2) The change of xk to yk is in conflict with xk−1, that is Λk
k−1(yk, xk−1) = 0.

Such jumps are blocked.

(3) The change of xk to yk is in conflict with xk+1, that is Λk+1
k (xk+1, yk) = 0.

Then xk+1 has to be changed too, say to yk+1. We must have Λk+1
k (yk+1, yk) 6= 0;

relation (8.18) guarantees the existence of at least one such yk+1. If the double jump
(xk, xk+1) → (yk, yk+1) keeps XN in the state space, it is allowed, and its rate is

Qk(xk, yk)
Λk
k−1(yk ,xk−1)

Λk
k−1(xk,xk−1)

Q̂k+1(xk+1, yk+1, yk). Otherwise, xk+2 has to be changed as

well, and so on.

To say it differently, unless Λk
k−1(yk, xk−1) = 0, the move xk → yk always happens

with rate Qk(xk, yk)
Λk
k−1(yk,xk−1)

Λk
k−1(xk ,xk−1)

, and it may cause a sequence of displacements of

xk+1, xk+2, . . . , where each next xj uses the distribution Q̂j(xj , · , yj−1) to choose its
new position. Displacements end once XN is back in E(N). This description implies
the following formula for the diagonal entries of Q(N):

Q(N)(XN , XN) = −
N∑

k=1

∑

yk∈Ek:yk 6=xk

Qk(xk, yk)
Λk

k−1(yk, xk−1)

Λk
k−1(xk, xk−1)

. (8.19)

The definition of Q(N) is explained by the following statement.

Proposition 8.5. Consider the matrix Λ with rows marked by elements of EN ,
columns marked by E(N−1), and entries given by

Λ(xN , (x1, . . . , xN−1)) = ΛN
N−1(xN , xN−1) · · ·Λ

2
1(x2, x1). (8.20)

Then the commutativity relation ΛQ(N−1) = QNΛ holds.
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Proof. We have

ΛQ(N−1)(xN , YN−1) =
∑

XN−1∈E(N−1)

Λ(xN , XN−1)Q
(N−1)(XN−1, YN−1). (8.21)

By (8.19), the contribution of XN−1 = YN−1 to the right-hand side has the form

− Λ(xn, YN−1)
N−1∑

k=1

∑

zk∈Ek:zk 6=yk

Qk(yk, zk)
Λk

k−1(zk, yk−1)

Λk
k−1(zk, yk−1)

. (8.22)

For XN−1 6= YN−1, the contribution of matrix elements of Q(N−1)(XN−1, YN−1) that
correspond to jumps (xk, xk+1, . . . , xl) → (yk, yk+1, . . . , yl), 1 ≤ k ≤ l ≤ N , with all
other xj = yj, has the form

∑
ΛN

N−1(xN , yN−1)Λ
N−1
N−2(yN−1, yN−2) · · ·Λ

l+2
l+1(yl+2, yl+1)

× Λl+1
l (yl+1, xl)Λ

l
l−1(xl, xl−1) · · ·Λ

k+1
k (xk+1, xk)

× Λk
k−1(xk, yk−1)Λ

k−1
k−2(yk−1, yk−2) · · ·Λ

2
1(y2, y1)

×Qk(xk, yk)
Λk

k−1(yk, yk−1)

Λk
k−1(xk, yk−1)

Q̂k+1(xk+1, yk+1, yk) · · · Q̂l(xl, yl, yl−1), (8.23)

where the summation is over xk, . . . , xl satisfying xi 6= yi for all k ≤ i ≤ l and

Λk
k−1(xk, yk−1) 6= 0, Λi

i−1(xi, yi−1) = 0, k < i ≤ l. (8.24)

Denote this expression by A(k, l).
Observe that in (8.23), the factors Λk

k−1(xk, yk−1) cancel out. Let us denote by
B(k, l) the sum of same expressions (8.23) with canceled Λk

k−1(xk, yk−1), and with
conditions (8.24) replaced by

Λk
k−1(xk, yk−1) = 0, Λi

i−1(xi, yi−1) = 0, k < i ≤ l.

Thus, the sum A(k, l) +B(k, l) has no restrictions on xk other that xk 6= yk.

Using the definitions of ∆k+1
k and Q̂k+1 we see that

∑

xk:xk 6=yk

Λk+1
k (xk+1, xk)Qk(xk, yk)Q̂k+1(xk+1, yk+1, yk)

= Qk+1(xk+1, yk+1)Λ
k+1
k (yk+1, yk). (8.25)
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Hence, A(k, l) + B(k, l) = B(k + 1, l). Noting that B(1, l) = 0, we obtain, for any
l = 1, . . . , N − 1,

A(1, l) + A(2, l) + · · ·+ A(l, l) = A(l, l) +B(l, l)

=
Λ(xN , YN−1)

Λl+1
l (yl+1, yl)

∑

xl:xl 6=yl

Λl+1
l (yl+1, xl)Ql(xl, yl)

=
Λ(xN , YN−1)

Λl+1
l (yl+1, yl)

∑

xl∈El

Λl+1
l (yl+1, xl)Ql(xl, yl)− Λ(xN , YN−1)Ql(yl, yl)

= Λ(xN , YN−1)




∑

zl+1∈El+1

Ql+1(yl+1, zl+1)
Λl+1

l (zl+1, yl)

Λl+1
l (yl+1, yl)

−Ql(yl, yl)




= Λ(xN , YN−1)

(
∑

zl+1 6=yl+1

Ql+1(yl+1, zl+1)
Λl+1

l (zl+1, yl)

Λl+1
l (yl+1, yl)

+Ql+1(yl+1, yl+1)−Ql(yl, yl)

)
, (8.26)

where we used the commutativity relation Λl+1
l Ql = Ql+1Λ

l+1
l along the way. Hence,

using (8.21) we obtain

ΛQ(N−1)(xN , YN−1) =
∑

1≤k≤l≤N−1

A(k, l) + Λ(xN , YN−1)Q
(N−1)(YN−1, YN−1)

=
∑

zN 6=yN

QN(xN , zN)Λ(zN , YN−1) +QN (xN , xN )Λ(xN , YN−1) = QNΛ(xN , YN−1).

(8.27)

�

For any N ≥ 2 and xN−1 ∈ EN−1 let us define a matrix QxN−1
of transition rates

on the fiber

ExN−1
= {xN ∈ EN | Λ

N
N−1(xN , xN−1) 6= 0}

via

QxN−1
(xN , yN) = QN(xN , yN)

ΛN
N−1(yN , xN−1)

ΛN
N−1(xN , xN−1)

, yN 6= xN ,

QxN−1
(xN , xN) = −

∑

yN∈EXN−1
, yN 6=xN

QxN−1
(xN , yN).

(8.28)

The next statement is analogous to Proposition 2.5 in [BF08+].
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Proposition 8.6. Assume that the matrices of transition rates Q1, . . . , QN and
Qx1 , . . . QxN−1

for any xj ∈ Ej, j = 1, . . . , N − 1 are regular. Then Q(2), . . . , Q(N)

are also regular. Denote by {Pj(t)}1≤j≤N and P (N)(t) the transition matrices for
{Qj(t)}1≤j≤N and Q(N)(t).

Let µN be a probability measure on EN , and for t ≥ 0, let (x1(t), . . . , xN(t)) be a
E(N)-valued random variable with

Prob
{
(x1(t), . . . , xN(t)) = (x1, . . . , xN)

}

=
∑

YN∈E(N)

µN(yN)Λ(yN , YN−1)P
(N)
(
t; YN , XN

)
. (8.29)

Then for any sequence of time moments

0 ≤ tN0 ≤ tN1 ≤ · · · ≤ tNkN = tN−1
0 ≤ tN−1

1 ≤ · · · ≤ tN−1
kN−1

= tN−2
0 ≤ . . .

. . . ≤ t2k2 = t10 ≤ t11 ≤ · · · ≤ t1k1 (8.30)

the joint distribution of {xm(t
m
k )} ordered as the time moments coincides with the

stochastic evolution of µN under transition matrices

PN(t
N
0 ), PN(t

N
1 − tN0 ), . . . , PN(t

N
kN
− tNkN−1),Λ

N
N−1,

PN−1(t
N−1
1 − tN−1

0 ), . . . , PN−1(t
N−1
kN−1
− tN−1

kN−1−1),Λ
N−1
N−2, . . .

. . . , P1(t
1
1 − t10), . . . , P1(t

1
k1
− t1k1−1). (8.31)

Proof. It is a straightforward computation to see that the construction of the bivari-
ate Markov chain from the previous section applied to Q = Q(N−1), Q∗ = QN , and
Λ given by (8.20) (the needed commutativity is proved in Proposition 8.5), yields
exactly Q(N). We apply Corollary 8.4, and induction on N concludes the proof.
. �

Corollary 8.7. In the assumptions of Proposition 8.6, (P (N)(t))t≥0 is central in
the sense of Definition 8.1, and the induced semigroup on EN is exactly (PN(t))t≥0.
Furthermore, compatibility relations of Proposition 8.2 also hold.

Proof. The first two statements follow from Proposition 8.6 with

kN = 1, kN−1 = kN−2 = · · · = k1 = 0.

The third statement is (8.7) with Q = Q(N−1), Q∗ = QN , Q
(2) = Q(N), and Λ given

by (8.20). �

9. Stochastic dynamics on paths. Gelfand-Tsetlin graph

9.1. Central measures on paths and the boundary. Let us return to our con-
crete setup, cf. Section 3. We have EN = GTN , the space of signatures of length
N , and E(N) of (8.1) is the set of Gelfand-Tsetlin schemes of length N ; we denote

it by GT
(N).
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Due to (3.1), the notion of centrality for µ(N) ∈Mp(GT
(N)) means the following,

cf. (8.2): For any λ = (λ(1) ≺ λ(2) ≺ · · · ≺ λ(N)) ∈ GT
(N), µ(N)(λ) depends only

on λ(N). For branching graphs, the notion of central measures was introduced in
[VK81], see also [Ker03].

In Subsection 8.1 we explained that central measures on the space E(∞) =: GT
(∞)

of infinite Gelfand-Tsetlin schemes are in bijection, thanks to Theorem 3.1, with
Mp(Ω). Let us make this bijection more explicit.

Given a signature λ ∈ GTN , denote by λ+ and λ− its positive and negative parts.
These are two partitions (or Young diagrams) with ℓ(λ+) + ℓ(λ−) ≤ N , where ℓ( · )
is the number of nonzero rows of a Young diagram. In other words,

λ = (λ+
1 , . . . , λ

+
k , 0, . . . , 0,−λ

−
l , . . . ,−λ

−
1 ), k = ℓ(λ+), l = ℓ(λ−).

Given a Young diagram ν, denote by d(ν) the number of diagonal boxes in ν.
Introduce Frobenius coordinates of ν via

pi(ν) = νi − i, qi(ν) = ν ′
i − i, i = 1 . . . , d(ν),

where ν ′ stands for the transposed diagram. We also set

pi(ν) = qi(ν) = 0, i > d(ν).

An element λ = (λ(1) ≺ λ(2) ≺ . . . ) ∈ GT
(∞), which can be viewed as an infinite

increasing path in the Gelfand-Tsetlin graph GT, is called regular if there exist
limits

α±
i = lim

N→∞

pi(λ
(N))

N
, β±

i = lim
N→∞

qi(λ
(N))

N
, i = 1, 2, . . . , δ± = lim

N→∞

|λ±|

N
.

The corresponding point ω = (α±, β±, δ±) ∈ Ω is called the end of this path.

Theorem 9.1 ([Ols03]). Any central measure on GT
(∞) is supported by the Borel set

of regular paths. Pushforward of such measures under the map that takes a regular
path to its end, establishes an isomorphism between the space of central measures on
GT

(∞) andMp(Ω).

We refer the reader to Section 10 of [Ols03] for details.

9.2. Matrices of transition rates on GT
(N). With EN = GTN , E

(N) = GT
(N)

and QN = D(N), let us write out the specialization of the matrix Q(N) from Subsec-
tion 8.2. We will use the notation D(N) for the resulting matrix of transition rates
on GT

(N). As for the parameters, we will use (6.1) and (6.2) as before.

To any λ ∈ GT
(N) we associate an array {lji | 1 ≤ i ≤ j, 1 ≤ j ≤ N} using

lji = λ
(j)
i + j − i. In these coordinates, the interlacing conditions λ(j) ≺ λ(j+1) take

the form

lj+1
i > lji ≥ lj+1

i+1
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for all meaningful values of i and j.1

Similarly, assign GT
(N) ∋ ν ←→ {nj

i = ν
(j)
i + j − i}1≤i≤j,1≤j≤N . Gathering all the

definitions together, we obtain that the off-diagonal entries of D(N) have the form

D(N)(λ, ν) =

{
(lki − z − k + 1)(lki − z′ − k + 1),

(lki + w)(lki + w′),

where for the first line we must have i, k and l, 1 ≤ i ≤ k ≤ l ≤ N , such that

lji+k−j = lki + k − j, nj
i+k−j = lji+k−j + 1 for all k ≤ j ≤ l,

and all other coordinates of λ and ν are equal, while for the second line we must
have i, k, l with 1 ≤ i ≤ k ≤ l ≤ N such that

lji = lki , nj
i = lji − 1 for all k ≤ j ≤ l,

and all other coordinates of λ and ν are equal.
The Markov chain generated by D(N) can be described as follows:

(1) Each coordinate lki tries to jump to the right by 1 with rate (lki −z−k+1)(lki −
z′ − k + 1) and to the left by 1 with rate (lki + w)(lki + w′), independently of other
coordinates.

(2) If the lki -clock of the right jump rings but lki = lk−1
i−1 , the jump is blocked. If its

left clock rings but lki = lk−1
i +1, the jump is also blocked. (If any of the two jumps

were allowed then the resulting set of coordinates would not have corresponded to
an element of GT

(N) as the interlacing conditions would have been violated.)

(3) If the right lki -clock rings and there is no blocking, we find the greatest number
l ≥ k such that lji = lki + k − j for j = k, k + 1, . . . , l, and move all the coordinates

{lji }
l
j=k to the right by one. Given the change lki 7→ lki + 1, this is the minimal

modification of the set of coordinates that preserves interlacing.

(4) If the left lki -clock rings and there is no blocking, we find the greatest number

l ≥ k such that lji+j−k = lki for j = k, k + 1, . . . , l, and move all the coordinates

{lji+j−k}
l
j=k to the left by one. Again, given the change lki 7→ lki − 1, this is the

minimal modification of the set of coordinates that preserves interlacing.

Certain Markov chain on interlacing arrays with a similar block-push mechanism
have been studied in [BF08+], see also [BK10]. In those examples the jump rates
are constant though.

1One could make the interlacing condition more symmetric (both inequalities being strict) by

considering the coordinates l̃ji = λj

i + (j + 1)/2 − i instead. This would imply however that

l̃ji ∈ Z+ 1/2 for odd j while l̃ji ∈ Z for even j.
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9.3. Regularity. In order to claim the benefits of Proposition 8.6 and Corollary
8.7, we need to verify the regularity of the fiber matrices of transition rates (8.28).
In our concrete realization, they take the following form.

For any N ≥ 2 and any κ ∈ EN−1 = GTN−1, the fiber Eκ =: GTκ ⊂ GTN takes
the form

GTκ = {λ ∈ GTN | κ ≺ λ}.

Using the coordinates {li = N + λi − i}Ni=1 for λ ∈ GTN and {ni = N + νi − i}Ni=1

for ν ∈ GTN , the off-diagonal part of the matrix of transition rates Dκ := Qκ on
the fiber GTκ has the form

Dκ(λ, ν) =

{
(li − z −N + 1)(li − z′ −N + 1),

(li + w)(li + w′),

where for the first line we must have i, 1 ≤ i ≤ N , such that

ni = li + 1, nj = lj for j 6= i,

and for the second line we must have

ni = li − 1, nj = lj for j 6= i.

Proposition 9.2. For any N ≥ 2 and any κ ∈ GTN−1, the matrix of transition
rates Dκ on GTκ is regular.

Proof. The interlacing condition in the definition of GTκ implies that Dκ is the
matrix of transition rates for N independent birth and death processes conditioned
to stay within N non-overlapping intervals inside Z; one interval per process. The
results of Section 3.2 show that any such birth and death process is regular as such
a process either lives on a finite set or it is a one-sided birth and death process of
the type considered in the proof of Theorem 5.1. �

Corollary 9.3. For any N ≥ 1, the matrix D(N) of transition rates on GT
(N)

is regular, and the corresponding semigroup (P (N)(t))t≥0 is central. The induced
Markov semigroup on GTN coincides with that of Section 5.

Proof. Follows from Proposition 8.6 and Corollary 8.7. �

9.4. Exclusion process. Observe that the projection of the Markov chain gener-
ated by D(N) to the coordinate l11 is a bilateral birth and death process. Further-
more, the jumps of l21 are only influenced by l11, the jumps of l31 are only influenced
by l11 and l21, and so on. On the other side, the jumps of lkk are only influenced by
{l11, l

2
2, . . . l

k−1
k−1} for any k ≥ 2.

Hence, the projection of the Markov chain defined by D(N) to the coordinates
(lNN ≤ lN−1

N−1 ≤ · · · ≤ l11 < l21 < · · · < lN1 ) is also a Markov chain2. The fibers of

2Once again, all the inequalities would be strict if we considered coordinates l̃ji = λj

i+(j+1)/2−i.
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this projection are finite, hence, according to Proposition 4.4, our Markov chain on
GT

(N) collapses to the smaller one, whose matrix of transition rates is also regular.
Let us project even further to (l11 < l21 < · · · < lN1 ). Killing extra coordinates one

by one and using the results of Section 5.1 to verify the regularity for the fiber chains,
we see that the collapsibility of Proposition 4.4 holds. Let us give an independent
description of the resulting Markov chain on {lj1}j≥1.

Set

YN = {y1 < y2 < · · · < yN | yj ∈ Z, 1 ≤ j ≤ N},

Y∞ = {y1 < y2 < · · · | yj ∈ Z, j ≥ 1}.

Define the matrix D
(N)
top of transition rates on YN by

D(N)(Y ′, Y ′′) =

{
(yk − z − k + 1)(yk − z′ − k + 1),

(yk + w)(yk + w′),

where for the first line we must have k and l, 1 ≤ k ≤ l ≤ N , such that

y′j = y′k + k − j, y′′j = y′j + 1 for all k ≤ j ≤ l,

and all other coordinates of Y ′ and Y ′′ are equal, while for the second line we must
have

y′′k = y′k − 1, y′′m = y′m, for m 6= k.

In other words, each coordinate yk tries to jump to the right by 1 with rate
(yk − z − j + 1)(yk − z′ − j + 1), and it tries to jump to the left by 1 with rate
(yk + w)(yk + w′), independently of other coordinates. If the left yk clock rings but
yk = yk−1 + 1 then the jump is blocked. If the right yk-clock rings we find the
greatest number l ≥ k such that yj = yk + k− j for j = k, k+1, . . . , l, and move all
the coordinates {yk, . . . , yl} to the right by one. One could think of yk “pushing”
yk+1, . . . , yl. Alternatively, if one forgets about the labeling one could think of yk
jumping to the first available site on its right.

Clearly, these Markov chains are compatible with projections YN+1 → YN that
remove the last coordinate. Thus, we obtain a Markov semigroup on lim

←−
YN = Y∞.

This semigroup is a sort of an exclusion process — it is a one-dimensional interact-
ing particle system with each site occupied by no more than one particle (exclusion
constraint). A similar system, but with constant jump rates, was considered in
[BF08] and called PushASEP. A system with one-sided jumps and blocking mecha-
nism as above is usually referred to as Totally Asymmetric Simple Exclusion Process
(TASEP), while a system with one-sided jumps and pushing mechanism as above
is sometimes called long range TASEP. See [Spi70], [Lig99] for more information on
exclusion processes.

Proposition 9.4. The exclusion process defined above has a unique invariant prob-
ability measure. With probability 1 with respect to this measure there exists a limit
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r = limN→∞ yN/N , which is a random variable with values ≥ 1. Under certain
additional restrictions on parameters (z, z′, w, w′), see below, the function

σ(s) = s(s− 1)
d

ds
Prob{r ≤ s} − a21s+

1
2
(a3a4 + a21)

is the unique solution of the (2nd order nonlinear) differential equation

− σ′
(
s(s− 1)σ′′

)
=
(
2((s− 1

2
)σ′ − σ)σ′ − a1a2a3a4

)2

− (σ′ + a21)(σ
′ + a22)(σ

′ + a3)
2(σ′ + a24) (9.1)

with boundary condition

σ(s) = −a21s+
1
2
(a3a4 + a21) +

sin πz sin πz′

π2
s−2a1 + o(s−2a1), s→ +∞,

where the constants a1, a2, a3, a4 are given by

a1 = a2 =
z + z′ + w + w′

2
, a3 =

z − z′ + w − w′

2
, a4 =

z − z′ − w + w′

2
.

Remarks 1. The quantity limN→∞ yN/N can be viewed as the asymptotic density
of the system of particles (yj) at infinity. Proposition 9.4 claims that for the invariant
measure, this quantity is well-defined and random.

2. The restrictions on parameters come from Theorem 7.1 of [BD02]. They can
be relaxed, see Remark 7.2 in [BD02] and the end of §3 in [Lis09+].

3. The differential equation above is the so-called σ-form of the Painlevé VI
equation first appeared in [JM81].

Proof of Proposition 9.4. The invariant measure is simply the projection to

y1 = λ(1), y2 = λ
(2)
1 + 1, y3 = λ

(3)
1 + 2, . . .

of the central measure on GT
(∞) corresponding to the spectral zw-measure. The

uniqueness follows from the uniqueness of invariant measure on countable sets YN ,
cf. Theorem 1.6 of [And91] (a similar argument was used in the proof of Theorem
7.2). The existence of limN→∞ yN/N follows from Theorem 9.1. Finally, the charac-
terization of the distribution of this limit in terms of the Painlevé VI equation was
proved in Theorem 7.1 of [BD02], see [Lis09+] for another proof. �

10. Appendix

10.1. Truncated Gelfand-Tsetlin graph. Fix two numbers k, l = 0, 1, 2, . . . not
equal to 0 simultaneously. Denote by GTN(k, l) the subset of GTN formed by the
signatures λ subjected to the restrictions

k ≥ λ1 ≥ · · · ≥ λN ≥ −l.

Obviously, this subset is finite and nonempty, and if λ ∈ GTN(k, l) and ν ≺ λ then
ν ∈ GTN−1(k, l). Thus, the union of the sets GTN(k, l) for N = 1, 2, . . . forms
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a subgraph of the Gelfand-Tsetlin graph. Let us denote this truncated graph as
GT(k, l). The definition of the links ΛN+1

N (λ, ν) in the truncated graph remains the
same, the only difference is that we assume λ and ν to be vertices of GT(k, l).

The boundary of GT(k, l) is the subset Ω(k, l) ⊂ Ω determined by the restrictions

α± ≡ 0, γ± = 0, β+
i = 0 (i > k), β−

j = 0 (j > l),

so that only k + l parameters are nontrivial:

β+
1 ≥ · · · ≥ β+

k ≥ 0, β−
1 ≥ · · · ≥ β−

l ≥ 0,

where, as before, β+
1 + β−

1 ≤ 1. The definition of the links Λ∞
N (ω, λ) remains the

same, only ω is assumed to belong to Ω(k, l). Viewing Ω(k, l) as a subset of Rk+l

one sees that it is a closed simplex of full dimension.
The boundary is Feller. Since Ω(k, l) is compact, this simply means that the links

Λ∞(ω, λ) are continuous in ω ∈ Ω(k, l).
Fix parameters

z = k, z′ = k + a, w = l, w′ = l + b, where a, b > −1. (10.1)

Setting

u = z, u′ = z′, v = w, v′ = w′

in (5.1) we obtain a truncated birth and death process on {−l, . . . , k} ⊂ Z; the rates
of jumps k → k+1 and −l → −l− 1 being equal to 0. Note that the nonnegativity
of the jump rates on {−l, . . . , k} ⊂ Z is ensured by the inequalities a, b > −1.

More generally, for any N ≥ 1 the same expressions as before correctly determine
a matrix of transition rates on GTN(k, l). Due to finiteness of the state space, the
existence of the corresponding Markov semigroup (PN(t))t≥0 becomes obvious.

The semigroups (PN(t))t≥0 with varying N = 1, 2, . . . are consistent with the links
and thus determine a Feller Markov semigroup (P (t))t≥0 on the boundary Ω(k, l).

The expression for Mz,z′,w,w′|N(λ) given in §5.1 vanishes unless λ belongs to the
subset GTN(k, l), and it is strictly positive on this subset. Thus, the same defi-
nition gives us a probability measure on GTN (k, l). The invariance property and
the compatibility with the links ΛN+1

N remain valid. The limit measure lives on the
boundary Ω(k, l) and it is invariant with respect to the semigroup (P (t))t≥0.

The whole picture sketched above is consistent with the automorphism of GT

described in Remark 3.2. More precisely, the shift of all coordinates of signatures by
1 amounts to the transformation k → k + 1, l → l − 1 of the main parameters (the
other two parameters a and b do not change). The use of this shift automorphism
allows one to reduce the case of general parameters (k, l) to the special case (n, 0)
with n = k + l, which simplifies some formulas and computations.

Hence, let us now assume that l = 0. Then the coordinates β−
j disappear and we

are left with n coordinates yi := β+
i subjected to

1 ≥ y1 ≥ · · · ≥ yn ≥ 0.
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The signatures λ ∈ GTN(n, 0) may be identified with Young diagrams contained
in the rectangular shape N×n; that is, λ has at most N rows and n columns. Under
this identification, one has a simple expression for the link:

Λ∞
N (ω, λ) = DimN λ ·

N∏

i=1

(1− yi)
Nsλ′

(
y1

1− y1
, . . . ,

yn
1− yn

)
(10.2)

where sλ′ is the Schur polynomial indexed by the transposed diagram λ′.
Further, the invariant measure on the boundary takes the form

const ·
∏

1≤i<j≤n

(yi − yj)
2 ·

n∏

i=1

(1− yi)
aybi dyi (10.3)

with an appropriate constant prefactor that turns the measure into a probability
distribution. The random n-tuple (y1, . . . , yn) ⊂ [0, 1] with this distribution is known
under the name of the n-particle Jacobi orthogonal polynomial ensemble.

The fact that the integral of (10.2) against the distribution (10.3) reproduces the
measure Mn,n+a,0,b|N on GTN (n, 0) can be verified directly; this is a version of the
Selberg integral.

For more detail, see [Ker03] and [BO05a].
Since the boundary has finite dimension, there is a possibility to describe the

Markov process defined by (P (t))t≥0 more directly; this is done in the theorem
below.

Consider the ordinary differential operator associated with the Jacobi orthogonal
polynomials with weight (1− y)ayb,

D(a,b) = y(1− y)
d2

dy2
+ [b+ 1− (a+ b+ 2)y]

d

dy
.

More generally, abbreviate

Vn = Vn(y1, . . . , yn) =
∏

1≤i<j≤n

(yi − yj)

and consider the partial differential operator in variables y1, . . . , yn given by

D(a,b)
n :=

1

Vn
◦

(
n∑

i=1

(
yi(1− yi)

∂2

∂y2i
+ [b+ 1− (a + b+ 2)yi]

∂

∂yi

))
◦ Vn + (· · · )

=

n∑

i=1

(
yi(1− yi)

∂2

∂y2i
+

[
b+ 1− (a+ b+ 2)yi +

∑

j: j 6=i

2yi(1− yi)

yi − yj

]
∂

∂yi

)
,

where (· · · ) stands for the constant annihilating the constant term arising from the
conjugation by the Vandermonde determinant:

(· · · ) =
n−1∑

m=0

m(m+ a + b+ 1).
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Although the coefficients in front of the first order derivatives have singularities on
the hyperplanes yi = yj, the operator is well defined on smooth symmetric functions
in variables y1, . . . , yn, and it preserves this space. It also preserves the space of
symmetric polynomials.

Theorem 10.1. Let z = n, z′ = n + a, w = 0, w′ = b, where a, b > −1. Let
y1 = β+

1 , . . . , yn = β+
n be the coordinates on the boundary Ω(n, 0) of the truncated

graph GT(n, 0), and recall that 1 ≥ y1 ≥ · · · ≥ yn ≥ 0.
The Markov process on the simplex Ω(n, 0) determined by the Markov semigroup

(P (t))t≥0 is a diffusion whose infinitesimal generator is the differential operator

D
(a,b)
n with an appropriate domain containing the space of all symmetric polynomials

in variables y1, . . . , yn.

As shown in [Gor09], the same diffusion process also arises in a scaling limit
transition from some discrete time Markov chains on the sets GTN(n, 0), as N →∞.

The above description of the infinitesimal generator remains true in the general
case (10.1) of the degenerate series parameters. The only change concerns the cor-
respondence between the β±-coordinates and the y-coordinates; now it takes the
form

(y1, . . . , yn) = (1− β−
l , . . . , 1− β−

1 , β
+
1 , . . . , β

+
k ), n := k + l.

10.2. The formal generator. A natural question is how to extend the explicit de-
scription of the infinitesimal generator obtained in Theorem 10.1 to the case of gen-
eral (admissible) values of parameters (z, z′, w, w′). There are some indications that
a direct generalization is impossible, in the sense that the generator cannot be ex-
pressed as a second order differential operator in the natural coordinates (α±, β±, δ±)
on Ω. 3 Instead of this, we present below an explicit expression for the generator in
a different system of coordinates.

Introduce the functions ϕn = ϕn(ω) on Ω, n ∈ Z, as the coefficients in the Laurent
expansion of Φω(u), see (3.3) and (3.4),

Φω(u) =
∑

n∈Z

ϕn(ω)u
n.

The functions ϕn are continuous and nonnegative on Ω, and they satisfy the relation
∑

n∈Z

ϕn(ω) ≡ 1, ω ∈ Ω,

which is an immediate consequence of the fact that Φω(u) takes value 1 at u = 1 for
all ω ∈ Ω.

Let us extend this definition by setting, for any N = 1, 2, . . . and any signature
ν ∈ GTN ,

ϕν(ω) = det
[
ϕνi−i+j(ω)

]N
i,j=1

, ω ∈ Ω.

3A possible explanation is that these coordinate functions are not in the domain of the generator.
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For instance, for N = 2 we have ν = (ν1, ν2) and

ϕ(ν1,ν2) =

∣∣∣∣
ϕν1 ϕν1+1

ϕν2−1 ϕν2

∣∣∣∣ = ϕν1ϕν2 − ϕν1+1ϕν2−1.

The functions ϕν appear in the expansion

N∏

i=1

Φω(ui) =
∑

ν∈GTN

ϕν(ω)sν(u1, . . . , uN).

Their fundamental role is explained by (3.2).
By definition, the functions ϕν are contained in the algebra of functions generated

by the functions ϕn, n ∈ Z. Conversely, any monomial in ϕn’s of degree N can be
expanded into a series on the functions ϕν , ν ∈ GTN . Namely, for arbitrary integers
n1, . . . , nN , one has

ϕn1 . . . ϕnN
=
∑

ν∈GTN

K(ν | n1, . . . , nN)ϕν ,

where the numbers K(. . . ) are defined as the “rational” analogs of the Kostka num-
bers, that is, these are the coefficients in the Laurent expansion of the rational Schur
functions,

sν(u1, . . . , uN) =
∑

n1,...,nN∈Z

K(ν | n1, . . . , nN)u
n1
1 . . . unN

N .

For instance, for N = 2 and ν = (ν1, ν2) we have

K(ν1, ν2 | n1, n2) =

{
1, if n1 + n2 = ν1 + ν2 and |n1 − n2| ≤ ν1 − ν2,

0, otherwise,

which implies

ϕn1ϕn2 =

∞∑

p=0

ϕ(n1+p,n2−p).

Definition 10.2. Fix an arbitrary quadruple (z, z′, w, w′) of complex parameters
and introduce the following formal differential operator in countably many variables
{ϕn : n ∈ Z}

D =
∑

n∈Z

Ann
∂2

∂ϕ2
n

+ 2
∑

n1,n2∈Z
n1>n2

An1n2

∂2

∂ϕn1∂ϕn2

+
∑

n∈Z

Bn
∂

∂ϕn
,
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where, for any indices n1 ≥ n2,

An1n2 =

∞∑

p=0

(n1 − n2 + 2p+ 1)(ϕn1+p+1ϕn2−p + ϕn1+pϕn2−p−1)

−(n1 − n2)ϕn1ϕn2 − 2

∞∑

p=1

(n1 − n2 + 2p)ϕn1+pϕn2−p

and, for any n ∈ Z,

Bn = (n+ w + 1)(n+ w′ + 1)ϕn+1 + (n− z − 1)(n− z′ − 1)ϕn−1

−
(
(n− z)(n− z′) + (n+ w)(n+ w′)

)
ϕn.

Note that only coefficients Bn depend on the parameters (z, z′, w, w′).
Assume now that the quadruple (z, z′, w, w′) satisfies the condition (6.1). As

above, let PN(t) (N = 1, 2, . . . ) and P (t) be the corresponding Markov semigroups
and let AN and A stand for their infinitesimal generators. These are densely defined
operators in the Banach spaces C0(GTN) and C0(Ω), respectively. We know that
all finitely supported functions on GTN belong to the domain of AN . This implies,
cf. (3.2), that all the functions ϕν lie in the domain of A.

Theorem 10.3. Let A be the infinitesimal generator of the Markov semigroup
(P (t))t≥0 with parameters (z, z′, w, w′) satisfying condition (6.1), and D be the for-
mal differential operator introduced in Definition 10.2. Regard D as an operator
from the space C[ϕn : n ∈ Z] of polynomials in countably many variables ϕn, n ∈ Z,
to the larger space C[[ϕn : n ∈ Z]] of formal series in the same variables.

Then for any N = 1, 2, . . . and any ν ∈ GTN one has

Dϕν = Aϕν .

Moreover, D is the only formal second order differential operator in variables ϕn,
n ∈ Z, with such a property.

Note some properties of D:
1. Formal application of D to the infinite series

∑
n∈Z ϕn gives 0. This agrees with

the fact that the sum of this series on Ω equals 1 and the fact that A1 = 0.
2. For any fixed integerm, D is invariant under the change of variables ϕn → ϕn+m

(n ∈ Z) combined with the shift of parameters

z → z +m, z′ → z′ +m, w → w −m, w′ → w −m,

cf. Remark 3.7 in [BO05a].
3. Set z = k and w = l, where (k, l) is a couple of nonnegative integers not equal

to (0, 0). Then D respects the relations

· · · = ϕ−l−2 = ϕ−l−1 = 0 = ϕk+1 = ϕk+2 = . . .
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and thus can be reduced to an operator in the polynomial algebra C[ϕ−l, . . . , ϕk].
More precisely, this means the following assertion: When D is applied to a monomial
containing at least one variable ϕn with index n outside [−l, k] then all monomi-
als entering the resulting series with nonzero coefficients have the same property.
Indeed, this follows from the structure of the coefficients An1n2 and Bn.

Moreover, the resulting operator in the algebra C[ϕ−l, . . . , ϕk] can be further re-
duced modulo the relation ∑

−l≤n≤k

ϕn = 1,

and then it coincides with the differential operator D
(a,b)
k+l from Theorem 10.1, where

a = z′ − k, b = w′ − l. Here we use the fact that quotient algebra

C[ϕ−l, . . . , ϕk]/(ϕ−l + · · ·+ ϕk = 1)

can be identified with the algebra of polynomial functions on the simplex Ω(k, l).
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