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Abstract

A high-order Galerkin Least-Squares (GLS) finite element discretization is combined with a Balancing Do-

main Decomposition by Constraints (BDDC) preconditioner and inexact local solvers to provide an efficient

solution technique for large-scale, convection-dominated problems. The algorithm is applied to the linear

system arising from the discretization of the two-dimensional advection-diffusion equation and Euler equa-

tions for compressible, inviscid flow. A Robin-Robin interface condition is extended to the Euler equations

using entropy-symmetrized variables. The BDDC method maintains scalability for the high-order discretiza-

tion of the diffusion-dominated flows, and achieves low iteration count in the advection-dominated regime.

The BDDC method based on inexact local solvers with incomplete factorization and p = 1 coarse correction

maintains the performance of the exact counterpart for the wide range of the Peclet numbers considered

while at significantly reduced memory and computational costs.

Key words: Galerkin least-squares, high-order methods, domain decomposition methods, BDDC,

preconditioners

1. Introduction

Stabilized finite element methods, which enable high-order accurate discretization of advection-dominated

flows on unstructured meshes, have been extensively studied for high-fidelity CFD simulations on geomet-

rically complex domains. [1, 2, 3, 4, 5]. However, as the high-order discretization captures a wide range of
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spatial scales, the method imposes a stringent restriction on the time step for explicit time marching, making

an explicit method impractical for the calculation of steady state problems. While implicit time integration

removes the time step restriction, the condition number of the discrete system worsens rapidly with the

interpolation order and mesh resolution. The solution strategy for the linear system is further complicated

by the increasing parallelism of the modern computers. Thus, designing an efficient, parallel preconditioner

for the high-order discretization is a crucial issue.

This work employs the Balancing Domain Decomposition by Constraints (BDDC) algorithm [6] to solve

the linear systems arising from the discretization of the advection-dominated problems via the Galerkin

Least-Squares method [7]. The BDDC method constructs a coarse, global space from a set of selected

constraints, and achieves a condition number independent of the number of subdomains when applied to the

Poisson equation, having the same spectrum as the FETI-DP methods [8, 9, 10]. The condition number of the

system only weakly depends on the interpolation order, and its effectiveness for high-order discretizations has

recently been verified by Klawonn et. al. for spectral methods using the Gauss-Lobatto-Legendre quadrature

nodes [11]. This work employs high-order simplex elements and the numerical results confirm that the BDDC

remains an attractive choice for the discretization.

To apply the domain decomposition algorithms to the advection-diffusion equation, Achdou et. al. intro-

duced the Robin-Robin interface condition, which modifies the local bilinear form to ensure the positiveness

of the local problem [12]. The idea has been applied successfully to the FETI [13] and BDDC algorithms [14].

This work generalizes the Robin-Robin framework to systems of conservation laws considering the local en-

ergy stability and applies the modification to the Euler equations.

This work also presents the BDDC method based on approximate local solvers. The use of inexact solvers

for the BDDC method has been considered recently in [15, 16]. In these works, the subdomain problems or the

partially assembled system arising from the linear finite element discretization is solved using an incomplete

factorization or h-multigrid. The requirement for the inexact local solver for the current work differs from

the previous work in two regards. First, the approximate solver must remain effective for the advection-

dominated problems with highly anisotropic features. Second, the solver must work well for the high-order

discretization. In order to address these issues, this work employs a two-level multiplicative preconditioner
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as a local solver. The first component is the dual-threshold incomplete factorization (ILUT) [17] with the

minimum discarded fill (MDF) reordering [18, 19], which orders the unknowns appropriately such that the

incomplete factorization captures the long-range propagation of the perturbations along the characteristics.

The second component is the p = 1 correction for the elliptic mode, which is a natural choice for the

construction of the coarse space for the high-order discretization [19, 20].

This paper is organized as follows. Section 2 describes the high-order GLS discretization. Section 3

introduces the BDDC preconditioner, with the generalization of the Robin-Robin interface condition to

systems of equations. Section 4 presents the BDDC algorithm based on the inexact local solvers designed to

maintain the scalability of the exact counterpart at a reduced cost. Section 5 presents the result of applying

the BDDC algorithm to the advection-diffusion equation with a wide range of Peclet numbers and the Euler

equations. Finally, Section 6 discusses conclusions and ongoing work.

2. The Galerkin Least-Squares Method

2.1. Variational Form of Conservation Laws

Let Ω ∈ R
d be an open, bounded domain, where d is the number of spatial dimensions. In general, a

system of time-dependent conservation laws is expressed in semilinear form as

ũk,t + (F inv
ik (ũ, x, t)),xi

− (F vis
ik (ũ,∇ũ, x, t)),xi

= fk(x, t), in Ω

where k ∈ {1, . . . , m} is the component index of the governing equations, i ∈ {1, . . . , d} is the spatial

index, (·),t denote the temporal derivative, and (·),xi
denote the spatial derivatives with respect to xi.

The conservative variable ũ, inviscid flux F inv(ũ, x, t), viscous flux F vis(ũ,∇ũ, x, t), and the source term

f(x, t), characterize the governing equations to be solved. For conservation laws possessing an entropy

function[21, 22], a set of entropy variables, u, can be defined such that

A0kl =
∂ũk

∂ul
, Aikl =

∂F inv
ik

∂ul
, and Kijklul,xj

= F vis
ik

are all symmetric with respect to k and l, and A0·· is positive definite.
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Let a linear operator Lk,w ·, parametrized by w, be defined as

Lk,wu ≡ A0kl|wul,t + Aikl|wul,xi
− (Kijkl|wul,xj

),xi
, (1)

Using the operator Lk,w , the governing equations in entropy variables can be expressed as,

Lk,uu ≡ A0klul,t + Aiklul,xi
− (Kijklul,xj

),xi
= fk.

This form of the equations is convenient for analyzing the energy stability of the variational form.

The finite element discretization of the problem is performed on a space of functions

Vh = {v ∈ [H1(Ω)]m : v|K ∈ [Pp(K)]m, ∀K ∈ Th}

where Th is the triangulation of domain Ω into non-overlapping elements, K, such that Ω̄ = ∪K∈Th
K̄, and

Pp(K) is the space of p-th order polynomial on K. The superscript m implies the spaces are vector-valued.

The finite element variational problem consists of finding u ∈ Vh such that

(A0klul,t, vk)Ω + Rgal(u, v) + Rls(u, v) = 0 ∀v ∈ Vh, (2)

where

Rgal(u, v) = −(F inv
ik , vk,xi

)Ω + (F vis
ik , vk,xi

)Ω − (fk, vk)Ω + (F̂k(u, B.C.data, n), vk)∂Ω,

Rls(u, v) = (Ll,uv, τlk(Lk,uu − fk))Ω,Th
,

where (·, ·)Ω : L2(Ω)×L2(Ω) → R and (·, ·)∂Ω : L2(∂Ω)×L2(∂Ω) → R denote the L2 inner product over the

domain and the boundary of the domain, respectively. The numerical flux function, F̂ , uses the interior state

and the boundary condition to define the appropriate flux at the boundary. τ is the stabilization parameter.

(·, ·)Ω,Th
denotes the summation of the element-wise L2 inner product,

∑

K(·, ·)K .
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For the advection-diffusion equation, ũ = u and the inviscid and viscous fluxes are given by

F inv
i = βiu and F vis

i = κu,xi
,

where β is the advection field and κ is the diffusivity coefficient.

The Euler equations are formulated using Hughes’ entropy-symmetrized variables[22] with the scaling

proposed by Barth[23]. The entropy-symmetrized state and the flux functions are given by

u =



















−s+γ+1
γ−1 − ρE

p

ρv1

p

ρv2

p

− ρ
p



















and F inv
i =



















ρvi

ρv1vi + pδi1

ρv2vi + pδi2

ρHvi



















,

where ρ is the fluid density, v is the velocity vector, p is the pressure, and E is the specific stagnation

internal energy. The entropy, s, is given by s = log(p/ργ), the specific stagnation enthalpy, H , is given by

H = E + p/ρ, and the pressure is given by p = (γ − 1)ρ(E − ‖v‖2/2), where γ is the ratio of specific heats.

2.2. Stabilization Parameter τ

The stabilization parameter controls the amount of stabilization added to the Galerkin Least-Squares

discretization. From the variational multiscale perspective, it can be thought of as adding the dissipation

that would have been provided by the unresolved, subgrid scale [24, 25]. It is well known [26, 2, 27] that,

in order to attain optimal convergence rate for the advection-diffusion equation with the element size h, the

stabilization parameter must scale as

τ = O(h/|β|), P e ≫ 1

τ = O(h2/κ), P e ≪ 1.

The first condition is necessary to obtain stability and optimal convergence in the streamline derivative in

advection-dominated cases, and the second condition is necessary to maintain the optimality in diffusion-
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dominated case. As the conservation laws of interest consist of inviscid and viscous parts, τ may be con-

veniently expressed as the sum of these two parts. In particular, the scaling relation can be satisfied by

choosing

τ−1 = τ−1
inv + τ−1

vis ,

where τinv = O(h/|β|) and τvis = O(h2/κ). In addition to satisfying the scaling relations, the τ matrix must

be symmetric and positive-definite for a system of equations [3].

Generalization of the inviscid stabilization parameter to a multidimensional system of equations fol-

lows from [23]. Let the directional vectors associated with the mapping from physical space, described by

coordinate x, to the reference space, described by barycentric coordinate ξ, be

ni = (ξi,x1
ξi,x2

)T , i = 1, 2, 3,

and the unit normal vector be n̂i = ni/|ni|. For example, in two-dimensions, the normal vectors are

n1 = (ξ1,x1
, ξ1,x2

)T

n2 = (ξ2,x1
, ξ2,x2

)T

n3 = −(ξ1,x1
+ ξ2,x1

, ξ1,x2
+ ξ2,x2

)T .

The directional flux Jacobian with respect to the conservative variable, ũ, is given by

Ã(ni) = ni
jÃj ,

where Ãj is the conservative flux Jacobian in the xj coordinate direction, i.e. Ãj ≡ ∂F inv
j /∂ũ. The inviscid

stabilization parameter is defined as

τ−1
inv = |ni||Ã(n̂i)|A0,
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where |Ã(n̂i)| is the matrix absolute value of the conservative flux Jacobian evaluated in the n̂i direction.

Note, the directional flux Jacobian, Ã(n̂), has a real set of eigenvalues for any n̂, as the inviscid problem

constitutes a hyperbolic system.

The viscous stabilization parameter is chosen to be

τ−1
vis =

p2

h2
s

Kii,

where hs is the shortest edge of an element, p is the interpolation order, and Kii is the sum of the block

diagonal entries of the viscosity tensor. The choice of the shortest edge, hs, as the viscous scaling length

follows from the analysis in [28, 29, 30]. The p-dependent reduction of the stabilization parameter is mo-

tivated by recalling that the role of τ is to recover the dissipation that would have been provided by the

subgrid, unresolved features. As pointed out by Hughes [25], p-refinement captures forms of the dissipation

effects present at subgrid scales. Thus, the proposed approach rescales the viscous scaling length based on

the interpolation order.

2.3. Discrete Systems

Once a suitable basis for Vh is chosen, a solution u ∈ Vh can be expressed as u = Ujφj , where {φj}dof
j=1 is

the set of basis functions. Then, Eq. (2) can be expressed as a system of ODE’s

M
dU

dt
+ R(U) = 0,

where R(U)i = Rgal(u, φi)+Rls(u, φi) are the discrete nonlinear residuals, and M = (A0φj , φi)Ω is the mass

matrix. The steady state solution to the conservation laws is given at R(U) = 0. In order to solve for the

steady state, a damped Newton method based on the backward Euler differencing of the ODE is used, i.e.

Un+1 = Un +

(

1

∆t
M +

dR

dU

∣

∣

∣

∣

U=Un

)−1

R(Un).

Even though this work is concerned with steady problems, the pseudo-time stepping improves the robustness

of the solver for nonlinear equations. After the initial transient, ∆t → ∞, and the method approaches the
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full Newton method. The pseudo-time marching scheme requires the solution of a linear equation at each

time step, i.e.

(

1

∆t
M +

dR

dU

∣

∣

∣

∣

U=Un

)

∆Un = −R(Un).

For a small ∆t, the linear equation is well-conditioned as the mass matrix dominates. On the other hand,

as ∆t → ∞, the linear system becomes harder to solve as the condition number of the system increases.

Note, the matrix 1
∆tM + dR

dU plays the role of the stiffness matrix for the Newton step. Thus, the stiffness

matrix, denoted by A, instead of the Jacobian 1
∆tM + dR

dU , is used to describe the linear solver algorithm in

the following sections to be consistent with other literature on domain decomposition methods.

2.4. High-Order C0 Basis Functions

Throughout this study, triangular elements with a Lagrange basis are used to construct the approximation

space. A set of equally-spaced nodes is used to define the basis functions on a reference element.

High-order geometry representation is achieved through polynomial mapping based on the Lagrange

points, i.e. x = xjφj(ξ) where φj is the Lagrange basis function corresponding to node j, xj is the physical

coordinate of the j-th Lagrange node, and ξ is the coordinate on the reference triangle. Note, as the mapping

T : ξ → x is nonlinear, the basis functions in the physical space are not polynomials for curved elements.

The basis functions for the high-order continuous Galerkin method must be C0 continuous across the

element boundaries. In order to enforce the continuity, it is convenient to categorize the basis functions

into one of the three types of modes in two dimensions, as shown in Figure 1. The first is the node mode,

which has support on all elements sharing the node. For a given node, this mode always has a single degree

of freedom regardless of the polynomial order. This is the only active mode for p = 1 discretization. The

second type of basis is the edge mode, which has support on two elements sharing an edge. The degrees

of freedom associated with a given edge are equal to p − 1. The third type of basis is the element mode,

which has support on a single element. The degrees of freedom associated with a given element are equal to

1
2 (p − 2)(p − 1). Except on the boundary, the node mode has the largest support out of all basis types.
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3. Balancing Domain Decomposition by Constraints

3.1. The BDDC Preconditioner

Let {Ωi}N
i=1 be a decomposition of domain Ω into N non-overlapping subdomains such that Ωi ∩ Ωj =

∅, i 6= j and Ω̄ = ∪N
i=1Ω̄i. The decomposition is assumed to align with the finite element triangulation, Th.

The interface of a subdomain Ωi is denoted by Γi and defined as Γi ≡ ∂Ωi \ ∂Ω. The collection of the

subdomain interfaces is denoted by Γ, and is defined as Γ ≡ ∪N
i=1Γi. The space of finite element functions

on Ωi is denoted by V
(i)
h . The subset of these functions that vanish on Γi is denoted by V

(i)
I , and the subset

that have nonzero traces on Γi is denoted by V
(i)
Γ . In order to define the local Schur complement system, the

local degrees of freedom are decomposed into the interior part u
(i)
I ∈ V

(i)
I and the interface part u

(i)
Γ ∈ V

(i)
Γ .

The local stiffness matrix, the solution vector, and the load vector are denoted by

A(i) =







A
(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ






, u(i) =







u
(i)
I

u
(i)
Γ






, and f (i) =







f
(i)
I

f
(i)
Γ






,

where the subscript I and Γ denote the interior and interface degrees of freedom, respectively.

In order to relate the local problem on V
(i)
h to the global problem on Vh, let R(i) : Vh → V

(i)
h be the

restriction operator that extracts the degrees of freedom associated with V
(i)
h from Vh. The global stiffness

matrix and the load vector are obtained by assembling the interface degrees of freedom, i.e.

A =

N
∑

i=1

(R(i))T A(i)R(i) and f =

N
∑

i=1

(R(i))T f (i).

The global system Au = f is solved using the Generalized Minimum Residual (GMRES) algorithm [31], with

the BDDC preconditioner.

In order to define the BDDC algorithm, the space of local interface degrees of freedom, V
(i)
Γ , is decomposed

into two parts, i.e. V
(i)
Γ = V

(i)
∆ ⊕V

(i)
Π . The local primal variables, V

(i)
Π , are a selected few degrees of freedom

on the interface, which constitute the global coarse space for the BDDC preconditioner. The local dual

variables, V
(i)
∆ , consists of functions in V

(i)
Γ that vanish on the primal degrees of freedom. For convenience,

let the product of the interior and the dual space be denoted by V
(i)
r ≡ V

(i)
I ⊕ V

(i)
∆ . Then, the local stiffness

9



matrix, the solution vector, and the load vector can be partitioned as

A(i) =







A
(i)
rr A

(i)
rΠ

A
(i)
Πr A

(i)
ΠΠ






, u(i) =







u
(i)
r

u
(i)
Π






, and f (i) =







f
(i)
r

f
(i)
Π






,

where

A(i)
rr =







A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆






, A

(i)
rΠ =







A
(i)
IΠ

A
(i)
I∆






, and A

(i)
Πr =

(

A
(i)
ΠI A

(i)
Π∆

)

.

The space V
(i)
Π is chosen such that the problem defined on V

(i)
r has a unique solution, i.e. A

(i)
rr is non-singular.

For example, for the Poisson equation, it is sufficient to choose the degrees of freedom on the corners of the

subdomain as primal variables, which prevents the subdomains from floating. Two coarse primal variable

spaces are considered in this study: the first is the space spanned by coarse basis functions defined on

the subdomain corners, and the second is the space spanned by coarse basis functions on the subdomain

corners and edges (i.e. the average value along an subdomain edge). When the edge average constraints

are employed, the basis functions of V
(i)
h are modified such that all primal and dual degrees of freedom are

explicit, using the method described in [32, 9]. For either set of the primal variables, the degrees of freedom

of V
(i)
Π is on the order of the number of subdomains connected to Ωi. While the use of the corner only

constraints is sufficient to produce a preconditioned operator with the condition number independent of the

number of subdomains, the addition of the edge average constraints further improves the conditioning of the

operator.

The problem on A
(i)
rr is refered to as the constrained Neumann problem from here on, as, for the Poisson

equation, the inversion of A
(i)
rr corresponds to solving the problem with the Neumann boundary condition

almost everywhere on Γ, except at locations where the boundary values are required to vanish due to primal

constraints.

The key space used in the BDDC algorithm is the partially assembled space, Ṽ , defined by

Ṽ =
(

⊕N
i=1V

(i)
r

)

⊕ VΠ,
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where VΠ is the primal variable space, which is continuous across the interface. By construction, the degrees

of freedom of VΠ is on the order of the number of subdomains. Let R̄(i) : Ṽ → V
(i)
h be the restriction operator

that extracts the degrees of freedom associated with V
(i)
h from Ṽ . The stiffness matrix on Ṽ is given by

Ã =

N
∑

i=1

(R̄(i))T A(i)R̄(i) =



















A
(1)
rr Ã

(1)
rΠ

. . .
...

A
(N)
rr Ã

(N)
rΠ

Ã
(1)
Πr · · · Ã

(N)
Πr ÃΠΠ



















≡







Arr ÃrΠ

ÃΠr ÃΠΠ






,

where

Ã
(i)
rΠ ≡

(

A
(i)
IΠR

(i)
Π A

(i)
∆ΠR

(i)
Π

)

, Ã
(i)
Πr ≡

(

(R
(i)
Π )T A

(i)
ΠI (R

(i)
Π )T A

(i)
Π∆

)

,

and ÃΠΠ =

N
∑

i=1

(R
(i)
Π )T A

(i)
ΠΠR

(i)
Π .

In other words, Ã is created by assembling the local spaces with respect to only the primal variables.

In order to inject a function from the partially assembled space, ṼΓ, into the fully assembled space, VΓ, a

scaling operator that takes a weighted average of the interface variables must be defined [6]. For this study,

the scaling operator δ†i is simply set to 1/Nx, where Nx is the number of subdomains sharing the same

degree of freedom on the interface. For an elliptic problem with discontinuous coefficients, it is known that

the scaling parameter should be weighted by the coefficient of neighboring subdomains [33]. The scaling

factors, δ†i , are collected to form a diagonal matrix, D(i), which operates on V
(i)
Γ . The weighted interface

restriction operator, R̃
(i)
D,Γ, is obtained by multiplying the rows of R(i) corresponding to the dual variables

by δ†i and applying an identity mapping to the primal variables.

The BDDC preconditioner is defined as

M−1
BDDC = H̃1Ã

−1H̃2,
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where the extension operators are given by

H̃1 =







I A−1
II ÃIΓJD,Γ

R̃T
D,Γ






and H̃2 =







I

JD,ΓÃΓIA
−1
II R̃D,Γ






,

where AII ≡ diagN
i=1

(

A
(i)
II

)

and JD,Γ is the jump operator on the interface variables defined by JD,Γ =

IΓ − R̃D,ΓRT
Γ . Recall, because the primal variables VΠ are continuous across the subdomain interfaces, the

jump operator maps the primal variables to zero. Thus, the operator A−1
II ÃIΓJD,Γ extends the jump in the

dual variables to the interior using the discrete harmonic extension, which is the minimum energy extension

for the symmetric positive definite systems [34].

3.2. Implementation of the BDDC Algorithm

A single step of the BDDC preconditioning requires the inversion of the partially assembled matrix, Ã,

and the application of extension operators, H̃1 and H̃2. Most of the operations required for the application

of these operators parallelize, making the algorithm suitable for massively parallel architectures.

With a Cholesky-like factorization, the inverse of the partially assembled matrix can be expressed as

Ã−1 =







A−1
rr 0

0 0






+







−A−1
rr ÃrΠ

I






S−1

Π

(

−ÃΠrA
−1
rr I

)

,

where SΠ = AΠΠ−AΠrA
−1
rr ArΠ is called the primal Schur complement. The application of Arr corresponds to

solving the constrained Neumann problem on each subdomain, which parallelizes completely as the continuity

across the subdomain interface is not enforced in ⊕N
i=1V

(i)
r . The inversion of the primal Schur complement is

a globally coupled problem; however, the primal Schur complement problem is much smaller than the local

problems, as the degrees of freedom associated with VΠ is approximately equal to the number of subdomains

when only the corner constraints are employed and is approximately three times the number of subdomains

when both the corner and edge average constrains are employed. Moreover, SΠ is sparse as only the primal

degrees of freedom that share the same subdomain connect to each other. Thus, in this work, SΠ is factored

exactly.
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Similarly, application of the extension operators, H̃1 and H̃2, can be carried out almost completely in

parallel; the communication is required only for calculating the action of the jump operator, JD,Γ. The

majority of the cost comes from the application of A−1
II , which corresponds to solving the local Dirichlet

problem on each subdomain.

At first glance, the application of Ã−1 seems to require solving the constrained Neumann problem, Arr,

twice. However, when the factorization of the local stiffness matrix, A(i), is available, Ã−1 can be applied

using a forward substitution, followed by the inversion of SΠ, and finally a backward substitution. Thus, the

cost of applying Ã−1 is approximately equal to the cost of solving a single constrained Neumann problem.

Similarly, when the factorization of the local problem is available, the extension operators H̃1 and H̃2 can be

applied by single backward solve and forward solve, respectively. Thus, the total cost of a single step of the

BDDC algorithm is approximately equal to the cost of solving the local problem twice. The implementation

details of the BDDC method are discussed in [35].

3.3. Robin-Robin Interface Condition

As the BDDC preconditioner was originally designed for symmetric positive-definite systems, the method

must be modified for nonsymmetric systems. A local bilinear form that conserves the energy stability

property of the global form is first derived for the advection equation. Then, the approach is generalized to

a symmetrized system of conservation laws such as the Euler equations.

3.3.1. Advection Equation

The variational form of the time-dependent advection equation is: find u ∈ V ≡ H1(Ω × I), with

I = (0, T ), such that

a(u, v) = ℓ(v), ∀v ∈ V

where

a(u, v) = (v, u,t)Ω×I − (v,xj
, βju)Ω×I + (v, βjunj)∂Ω+×I

ℓ(v) = (v, f)Ω×I − (v, βjgnj)∂Ω−×I ,
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with (·, ·)Ω×I denoting the L2 inner product over the space-time domain. The inflow and outflow boundaries

are denoted by ∂Ω− = {x ∈ ∂Ω|βj(x)nj(x) < 0} and ∂Ω+ = {x ∈ ∂Ω|βj(x)nj(x) > 0}, respectively.

Integrating by parts the temporal and spatial derivative terms, the energy stability of the advection equation

follows from

1
2‖u|t=T‖2

L2(Ω) + 1
2 (u, uβj,xj

)Ω×I + 1
2 (u, u|βjnj |)∂Ω×I

= 1
2‖u|t=0‖2

L2(Ω) + (u, f)Ω×I + (u, g|βjnj |)∂Ω−×I .

In other words, assuming βj,xj
≥ 0, the solution at t = T is bounded by the initial state, the source function,

and the inflow condition.

Consider designing a local bilinear form, ǎ(·, ·) : V (Ω̌)×V (Ω̌) → R, with the criterion that the local form

maintains the energy stability of the global bilinear form on a subset Ω̌ ⊂ Ω. Although the analysis generalizes

to the case where Ω̌ is any subset of Ω, the setting that is most relevant to the domain decomposition method

is the case where the subset is the subdomain (Ω̌ = Ωi) and the local bilinear form acts on the subdomain,

i.e. ǎ(·, ·) = ai(·, ·) with ai(·, ·) : V (i) × V (i) → R. First, consider the local bilinear form and the linear form

defined by restricting the global bilinear form and the linear form, respectively, to the subdomain, i.e.

âi(u, v) = (v, u,t)Ωi×I − (v,xj
, βju)Ωi×I + (v, βjunj)(∂Ωi∩∂Ω+)×I

ℓ̂(v) = (v, f)Ωi×I − (v, βjgnj)(∂Ωi∩∂Ω−)×I .

The energy statement arising from the bilinear form âi(·, ·) is

1
2‖u|t=T ‖2

L2(Ωi)
+ 1

2 (u, uβj,xj
)Ωi×I + 1

2 (u, u|βjnj |)(∂Ωi∩∂Ω)×I

− 1
2 (u, u|βjnj |)Γ+

i
×I + 1

2 (u, u|βjnj|)Γ−

i
×I

= 1
2‖u|t=0‖2

L2(Ωi)
+ (u, f)Ωi×I + (u, g|βjnj |)(∂Ωi∩∂Ω−)×I .

Note, the local problem does not maintain the energy conservation property of the global problem due to

the presence of the term − 1
2 (u, u|βjnj |)Γ+

i
×I + 1

2 (u, u|βjnj |)Γ−

i
×I . In particular, the local problem can be

14



unstable due to the negative term on Γ+
i . In order to preserve the energy stability property of the global

problem, the terms on the interface Γi must be eliminated by adding 1
2 (u, uβjnj)Γi×I . The resulting bilinear

form is

ai(u, v) = âi(u, v) + 1
2 (u, vβjnj)Γi×I .

As the interface term added to one side of the interface is subtracted from the neighboring subdomain, this

does not modify the global bilinear form, i.e.
∑N

i ai(u, v) = a(u, v). The same modification to the interface

condition is proposed in [12] to make the local bilinear form positive definite. The resulting interface condition

is called the Robin-Robin interface condition as the resulting local problem involves the Robin boundary

condition. The method has been also successfully applied to solve the advection-diffusion equation using

Finite Element Tearing and Interconnect [13] and recently BDDC [14].

3.3.2. Interface Condition for Symmetrized System of Equations

The Robin-Robin interface condition can be generalized to a system of symmetrized nonlinear equations.

Recalling a linearized system is solved at each Newton step, the objective is to specify the interface condition

such that the local linearized problem maintains the energy stability of the global linearized problem. For a

time-dependent hyperbolic system of conservation laws, the semilinear form is expressed as

R(u, v) = (A0klul,t, vk)Ω×I − (F inv
jk , vk,xj

)Ω×I + (F̂k(u, B.C.data, n), vk)∂Ω×I .

and the linearized equation is

Rlin(u, v; w) = (A0kl|wul,t, vk)Ω×I − (Ajkl |wul, vk,xj
)Ω×I + (Abc,kl|wul, vk)∂Ω×I ,

where Abc ≡ ∂F̂
∂u and the bilinear form is parametrized about the previous state, i.e. w = un. As the

linearization is always about the previous state un in this section, the explicit notation (·)|un is dropped for
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the rest of the section for brevity. The energy statement of the global equation is of the form

1
2‖u|t=T‖2

A0,Ω − 1
2 (A0kl,tul, uk)Ω×I + 1

2 (Ajkl,xj
ul, uk)Ω×I − 1

2 (A(n)klul, uk)∂Ω×I

+ (Abc,klul, vk)∂Ω×I = 1
2‖u|t=0‖2

A0,Ω

where ‖u‖A0,Ω ≡ (A0u, u)Ω is the energy norm weighted by the symmetric positive definite matrix A0. Note,

for a linear system of equations with the boundary flux F̂k = A+
klul + A−

klgl, the boundary flux Jacobian

is given by Abc = A+, and the integrals on the boundary can be simplified as − 1
2 (A(n)klul, uk)∂Ω×I +

(Abc,klul, vk)∂Ω×I = 1
2 (|A|u, u)∂Ω×I .

In order to develop an appropriate local bilinear form, first consider the form obtained by simply restrict-

ing the global linearized form to the local space, i.e.

R̂lin
i (u, v) = (A0klul,t, vk)Ωi×I − (Ajklul, vk,xj

)Ωi×I + (Abc,klul, vk)(∂Ωi∩∂Ω)×I

Integrating by parts the temporal and spatial derivative terms and taking advantage of the symmetry of A0

and Aj , the energy statement for the local bilinear form is

1
2‖u|t=T‖2

A0,Ωi
− 1

2 (A0kl,tul, uk)Ωi×I + 1
2 (Ajkl,xj

ul, uk)Ωi×I

− 1
2 (A(n)klul, uk)(∂Ωi∩∂Ω)×I + (Abc,klul, vk)(∂Ωi∩∂Ω)×I − 1

2 (A(n)klul, uk)Γi×I

= 1
2‖u|t=0‖2

A0,Ωi

Again, due to the presence of the term − 1
2 (Akl(n)ul, uk)Γi×I , the local energy statement is not consistent

with the global energy statement. Using the same approach as the advection equation case, the consistent

local energy statement is derived by modifying the local linearized form to

Rlin
i (u, v) = R̂lin

i (u, v) + 1
2 (Akl(n)ul, vk)Γi×I .
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A local semilinear form that has the desired linearized form is

Ri(u, v) = −(F inv
jk , vk,xj

)Ωi
+ 1

2 (F inv
jk ni, vk)Γi

+ (F̂k(u, B.C.data, n), vk)∂Ω∩∂Ωi
.

Thus, for a system of nonlinear equations with a symmetric flux Jacobian, the Robin-Robin interface condi-

tion corresponds to adding half of the nonlinear flux on the interfaces.

4. Inexact BDDC

For a large scale problem, the cost of computing and storing the exact factorization of A
(i)
rr and A

(i)
II can

be prohibitively high, and the cost only escalates for three-dimensional problems. In this section, the inexact

BDDC preconditioner is constructed by replacing the solutions to the Dirichlet and the partially subassembled

problem with actions of inexact local solvers. The inexact BDDC algorithms have been previously applied

to linear systems arising from the linear finite element discretization of elliptic systems [15, 16]. In [15], the

exact local solvers are replaced by the action of h-multigrid V-cycles and applied to the Poisson equation, for

which the multigrid converges uniformly. In [16], the incomplete factorization is employed to approximate

the solutions to local problems.

The local solver used in this work is a two-level multiplicative preconditioner consisting of the dual-

threshold incomplete factorization (ILUT) [17] and a p = 1 coarse correction, following the approach used

in [19] for the high-order discontinuous Galerkin discretization. The use of the two-level preconditioner is

motivated by the presence of the convective mode and the elliptic mode in the equations of interest. The

incomplete factorization, with a proper reordering, have been shown to work well for advection-dominated

problems [19, 20]. This work uses the minimum discarded fill (MDF) algorithm introduced in [18], and

generalized to block matrices in [19]. The method orders the unknown that produces the least discarded

fill-in first and repeats the process in a greedy manner. The incomplete factorization is performed block-wise

to take advantage of the block structure of the stiffness matrix arising from the high-order discretization

of system of equations. The Frobenius norm is used to measure the contribution of a given block to the

factorization. The coarse correction is performed by projecting the high-order solution to the p = 1 space,

and solving the coarse problem exactly. The prolongation operator P : Vh,1 → Vh,p, p > 1 is defined by a
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simple interpolation.

The two-level preconditioner induced by the p = 1 variational coarse correction followed by the ILUT

smoothing is

M−1
MG,1 = PA−1

0 PT + M−1
s (I − APA−1

0 PT ), (3)

where A0 ≡ PT AP is the coarse correction matrix and M−1
s represents the action of the ILUT preconditioner.

Alternatively, the order of the multiplicative projectors can be commutated, resulting in the preconditioner

given by

M−1
MG,2 = PA−1

0 PT + (I − PA−1
0 PT A)M−1

s . (4)

When a preconditioner defined by Eq. (3) or (4) is used as the approximate local solver for the BDDC

algorithm, the matrix A is replaced by local matrices as described in Section 4.1 and 4.2.

As shown in Table 1, the stiffness matrix for the linear finite element discretization is significantly smaller

than that for the high-order discretization, making the direct solution to the coarse problem practical at

least for the problems considered in two dimensions. The coarse problem arising from h-multigrid based

on the variational correction is known to be unstable due to the mesh-dependent bilinear form of the GLS

discretization [36, 37]. However, a similar problem has not been observed for the p-based coarse correction

despite the presence of the p-dependent stabilization parameter, τ .

4.1. Inexact Discrete Harmonic Extensions

The inexact discrete harmonic extension operators are given by

H̃1 ≈







I M−1
II,1ÃIΓJD,Γ

R̃T
D,Γ






and H̃2 ≈







I

JD,ΓÃΓIM
−1
II,2 R̃D,Γ






,

where M−1
II,1 and M−1

II,2 are approximate solvers. When ILUT is used as the approximate local solver,

M−1
II,1 = M−1

II,2 = M−1
II,ILUT, where M−1

II,ILUT denote the operator obtained by applying the incomplete
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factorization to AII . Similar to the exact factorization case discussed in Section 3.2, the approximate

extension operators H̃1 and H̃2 can be applied by a single backward solve and forward solve, respectively,

of the approximation factorization.

When ILUT with the p = 1 coarse correction (ILUT-p1) is used, the preconditioners are given by

M−1
II,1 = PA−1

II,0P
T + (I − PA−1

II,0P
T AII)M

−1
II,ILUT

M−1
II,2 = PA−1

II,0P
T + M−1

II,ILUT(I − AIIPA−1
II,0P

T )

The order of the coarse correction and the smoothing are different for the two cases to exploit the structure

of the ILUT factorization generated. Namely, when the projectors are applied in this order, the extension

operator H̃1 and H̃2 require a single backward solve and forward solve, respectively, to apply the ILUT

smoother, M−1
II,ILUT.

Note, due to the block structure of AII , both the ILUT smoothing and the coarse correction can be

performed in parallel. In other words, applying the ILUT-p1 preconditioner to each local problem results in

the ILUT-p1 preconditioning of the global problem.

4.2. Inexact Partially Subassembled Solve

Two types of the inexact partially assembled solvers are considered in this study. The first is based on

performing the ILUT factorization on the partially assembled matrix, i.e.

Ã−1 ≈ M̃−1
ILUT.

The second is based on the ILUT factorization with the p = 1 coarse correction, i.e.

Ã−1 ≈ P̃ Ã−1
0 P̃T + M̃−1

ILUT(I + ÃP̃ Ã−1
0 P̃T ),

where Ã0 ≡ P̃T ÃP̃ is the p = 1 correction of the partially assembled system and M̃−1
ILUT is the ILUT

factorization of the partially assembled system. The prolongation operator, P̃ , interpolates the p = 1

solution on the partially assembled space to the higher-order partially assembled space.
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5. Results

5.1. BDDC with Exact Local Solver

5.1.1. Advection-Diffusion Equation: Isotropic Mesh

The advection-diffusion equation is solved on a unit square domain to evaluate the performance of the

parallel preconditioner applied to the high-order GLS discretization. The cross-stream boundary layer prob-

lem solved has the solution that is essentially 1 everywhere, except it decreases to 0 in the vicinity of the y = 0

boundary, as shown in Figure 2(a). The boundary layer thickness is inversely proportional to the square root

of the Peclet number. The solution is initialized to random values, which results in a random right hand

side vector for the linear system, and the system is solved using BDDC preconditioned GMRES until the

2-norm of the preconditioned residual reduces by a factor of 1013. Three different values of the viscosity are

considered: the diffusion-dominated case (κ = 102), the balanced advection-diffusion case (κ = 10−2), and

the advection-dominated case (κ = 10−6). The Robin-Robin interface condition is used for all cases.

The result of solving the advection-diffusion equation using the BDDC preconditioner with exact local

solvers is shown in Table 2. In the upper half of the table, the size of the subdomain (H/h) is fixed to 8× 8

(128 triangular elements), and the number of subdomains is varied from four to 256. In the lower half of

the table, the number of subdomains is fixed to 16 and the size of the subdomain is varied from H/h = 4 to

H/h = 16. For each case, the interpolation order is varied from p = 1 to 4.

In the diffusion-dominated case (κ = 102), the iteration count is independent of the number of subdomains

for N ≥ 64 for the corner constraints case and N ≥ 16 for the corner and edge average constraints case.

When the size of subdomains is varied while keeping number of subdomains fixed, the iteration count

increases slowly, as expected from the (1 + log(H/h))2 dependence of the condition number on the size of

the subdomain. [38] In general, using the higher-order interpolation increases the iteration count, but the

scalability is maintained for all values of p.

For the advection-dominated case, the iteration count increases with the maximum number of the subdo-

mains that a characteristic passes through, Nchar, as the hyperbolic equation does not possess the smoothing

property of the elliptic equation. In particular, the residual does not decay significantly for the first Nchar/2

iterations, but decays rapidly after Nchar/2 iterations; this is consistent with the theoretical analysis of the
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Robin-Robin interface condition conducted in [12]. Note, the iteration count is largely independent of the

size of the subdomain, the interpolation order, and the choice of constraints. Thus, in the advection limit,

a partitioning strategy based on capturing the strong characteristics, such as those used in [39] and [40],

is expected to improve the performance of the preconditioner. However, these strategies are sequential in

nature and tend to increase the communication volume, especially in three-dimensions.

5.1.2. Advection-Diffusion Equation: Anisotropic Mesh

In realistic problems, highly-anisotropic meshes are employed to resolve the thin boundary layer of high

Peclet number flows. The meshes used in this section have the exponential y-spacing such that the elements

on the boundary have the aspect ratio approximately equal to 1/
√

κ. Thus, for κ = 10−6, elements on the

boundary have the aspect ratio of 1000, and the area of an element on the boundary is less than 1/1000 of

the largest element in the domain.

Table 3 shows the scalability result using the series of anisotropic meshes. Comparing to Table 2, the

iteration count increases in general. In particular, the performance degrades considerably on the fine mesh

used for the 256-subdomain partition. The difference in the iteration count for the corner only and the

corner and edge average constraints suggests that the problem exhibits diffusive behavior in the boundary

layer region even for κ = 10−6 with the highly anisotropic mesh.

5.1.3. Euler Equation

The performance of the BDDC method applied to the Euler equations is assessed in this section. The

equation is solved on a (−10, 10)×(0, 10) rectangular domain with a Gaussian bump, y = 1/(σ
√

2π) exp(−x/(2σ2)),

with σ = 5/6, as shown in Figure 2(b). The stagnation pressure, stagnation temperature, and the flow angle

are specified at the inflow, and the static pressure is specified at the outflow such that the freestream Mach

number is M∞ = 0.2. The boundary state for the subsonic inflow and the outflow are reconstructed from

the compatibility relations of the Riemann invariants. The flow tangency condition is set on the upper and

the lower walls.

The problem is solved using the subdomain-wise block Jacobi, BDDC with corner constraints, and BDDC

with corner and edge average constraints. Both naturally arising and Robin-Robin interface condition are
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considered. The size of the subdomain is fixed to 160 elements, and increasingly larger problems are solved

as more subdomains are added. The linear system arising from the Jacobian for the converged solution is

used, and the CFL number is set to infinity so that there is no mass matrix contribution to the linear system.

Table 4 shows the result of the comparison. For all types of the preconditioners considered, the Robin-

Robin interface condition improves the performance of the preconditioner significantly. Unlike the advection-

dominated case of the advection-diffusion equation on uniform meshes, the iteration count is dependent on

the type of constraints for the BDDC method, and using both the corner and edge average constraints reduces

the iteration count, especially when a large number of subdomains is employed. The difference suggests the

underlying ellipticity of the acoustic modes in steady, subsonic flow.

Table 5 shows the variation in the iteration count with the size of the subdomains using eight subdomains

for the BDDC method with the Robin-Robin interface condition and the corner and edge average constraints.

There is no significant increase in the iteration count as the subdomain size grows, particularly when 640 or

more elements are employed per subdomain for all interpolation orders considered.

5.2. BDDC with Inexact Local Solvers

This section presents the result of solving the advection-diffusion equation using the inexact BDDC

algorithm. Before using inexact solvers with the BDDC algorithm, the performance of the inexact solvers

on a single subdomain is studied. Table 6 shows the result of solving the linear system arising from the

p = 4 discretization of the advection-diffusion equations on uniform meshes for three different values of

viscosity: κ = 102, 10−2, 10−6. In the advection-dominated cases (κ = 10−6), the ILUT with or without

the p = 1 coarse correction achieves low iteration count, as the MDF algorithm orders the unknowns along

the characteristics and the factorization becomes nearly exact. This is similar to the result obtained for

the DG discretization in [19], despite the worse connectivity structure of the stiffness matrix arising from

the high-order GLS discretization. In the diffusion-dominated case, the ILUT with p = 1 coarse correction

performs significantly better than the method without the coarse correction. In the absence of the coarse

correction, the iteration count increases linearly with 1/h, whereas the iteration count is independent of h

with the p = 1 coarse correction.

Table 7 shows the result of applying the inexact BDDC algorithm discussed in Section 4 to the p = 4
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discretization of the advection-diffusion equation. The result of solving the equation using the exact local

solver is reproduced for convenience. Similar to the single domain case, the incomplete factorization with or

without the p = 1 coarse correction achieves low iteration count for the advection-dominated cases. However,

in the diffusion-dominated case, the performance of the BDDC algorithm degrades significantly when only

the ILUT is employed as the local solver. With the p = 1 correction, the inexact BDDC algorithm achieves

a similar iteration count as the exact counterpart. For some cases, the BDDC preconditioner with ILUT-p1

local solvers achieves lower iteration count than the exact local solvers due to the slight difference in the

convergence criteria, as the preconditioned residual is used as the convergence criterion.

5.2.1. Cost Estimate for the Inexact BDDC

In order to assess the benefit of using the BDDC algorithm based on approximate local solvers, the cost

of solving a linear system is estimated in terms of the number of floating point operations (FLOPS). The

objective of this section is to obtain an order of magnitude estimate of the computational cost; characteri-

zation of the precise execution time is not attempted as it is highly dependent on the implementation and

the hardware architecture.

In general, the key difference in the computational cost for the exact and inexact local solver is its scaling

with the size of the local problem. If n is the degrees of freedom associated with the local problem, the

computational cost and the memory requirements scale as O(n3/2) and O(n log(n)), respectively, for the

exact factorization using optimal reordering in two dimensions. The scaling worsens in three dimensions,

with the computational cost and the memory equation scaling as O(n2) and O(n4/3), respectively. On the

other hand, both the computational cost and the memory requirement for an incomplete factorization scales

as O(n). Thus, the difference between the exact and inexact BDDC algorithm is more pronounced for large

problems.

As an example, consider a p = 4 discretization of the advection-diffusion equation on a subdomain

consisting of 32768 triangular elements (128×128). Approximately 50MB of memory is required to store the

local stiffness matrix, which is a moderate requirement for modern computers. The computational cost for a

linear solve is consisting of two parts: the preprocessing stage and the iterative stage. In the preprocessing

stage, the local matrices and the primal Schur complement, SΠΠ, are factorized, and the p = 1 matrix for the
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two-level multiplicative preconditioner is formed and factorized (if ILUT-p1 is used). In the iterative stage,

the BDDC algorithm requires application of the discrete harmonic extensions and solution to the partially

assembled system Ã, as well as the matrix-vector multiplication and Gram-Schmidt orthogonalization for

GMRES.

The major operations required in the preprocessing stage and the iterative stage are summarized in

Table 8. The cost for each of the operation is calculated for the p = 4 discretization of the advection-

diffusion equation mentioned above. The total linear solver cost is estimated assuming the GMRES iteration

count does not change significantly from the 128 element per subdomain case. The result of the comparison

is shown in Figure 3. For both the diffusion-dominated case and the advection-dominated case, the inexact

BDDC based on the two-level multiplicative local solver reduces the estimated computed cost by an order

of magnitude compare to the BDDC based on the exact local solver. The local solver based on the ILUT

alone does not scale well in the diffusion-dominated case as the cost increases with the GMRES iteration

count. While the ILUT local solver achieves the lowest cost in the advection-dominated case, the ILUT-p1

local solver reduces the cost for the wide range of the flow regimes considered.

It is worth mentioning that the computational cost for the factorization of SΠΠ is approximately five and

three orders of magnitude less than the direct and ILUT factorization, respectively, of A(i) even for the case

with 256 processors. The cost of solving the SΠΠ in each iteration step is also approximately three orders of

magnitude less than the cost for the rest of the operations for computing the preconditioned operator. Thus,

the estimate confirms that the BDDC algorithm is highly scalable and is well suited for massively parallel

systems.

6. Conclusion

This work presented the high-order accurate Galerkin Least-Squares method combined with a BDDC

method to provide efficient solutions on massively parallel architectures. The BDDC method was applied to

the high-order discretization of the advection-diffusion equation and the Euler equations. In the diffusion-

dominated case, the BDDC method achieves an iteration count independent of the number of subdomains, as

predicted by the theory. In the advection-dominated case, the method maintains low iteration count when
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the Robin-Robin interface condition is employed such that the local problem inherit the energy stability

of the global problem. The Robin-Robin interface condition was generalized to the Euler equations using

the entropy symmetrization theory, and the BDDC method is shown to achieve good performance for the

subsonic inviscid flow considered.

The paper also presented the inexact BDDC method based on inexact local solvers. Two inexact local

solvers are used in this study: the ILUT preconditioner and the two-level multiplicative preconditioner

based on the ILUT and p = 1 coarse correction. On a single domain case, the ILUT preconditioner with the

minimum discarded fill ordering achieves low iteration counts in the advection-dominated case. In diffusion-

dominated cases, the use of a p = 1 coarse correction is needed to maintain an iteration count independent

of the grid size. When combined with the BDDC preconditioner, the ILUT preconditioner with the MDF

ordering was sufficient to maintain low iteration counts in the advection-dominated case. However, the p = 1

coarse correction was necessary to maintain scalability in the diffusion-dominated cases. The inexact BDDC

method based on the ILUT-p1 local solver provides an effective strategy to maintain good parallel scaling

for high-order discretization over a wide range of flow regimes.
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(a) Node mode (b) Edge mode (c) Element mode

Figure 1: Diagram of basis modes and their support. The degree of freedom for each mode for p = 4 discretization is shown in
dots.
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(a) Cross-stream boundary layer (b) Euler Gaussian bump

Figure 2: Advection-diffusion problem on a unit square domain and inviscid subsonic flow over a Gaussian bump.
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(a) κ = 102
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(b) κ = 10−6

Figure 3: Estimated cost of the linear solve for the p = 4 discretization of the advection-diffusion equation with each subdomain
having 32768 elements.

32



p 1 2 3 4 5
Elemental basis 3 6 10 15 21

DOF/elem. 0.5 2.0 (4) 4.5 (9) 8.0 (16) 12.5 (25)
Matrix nnz/elem. 3.5 23.0 (6.6) 76.5 (21.9) 188.0 (53.7) 387.5 (110.7)

Table 1: The degrees of freedom associated with high-order continuous Galerkin discretization on an average mesh. Numbers
in the parenthesis are the ratios with respect to the p = 1 discretization.
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κ = 102 κ = 10−2 κ = 10−6

#. Sub. H/h p = 1 2 3 4 1 2 3 4 1 2 3 4
4 8 5 7 7 7 5 8 8 8 3 3 3 3
16 11 15 17 18 8 10 10 11 7 6 6 6
64 16 21 24 25 11 13 14 16 10 9 8 8
256 17 22 24 27 19 22 23 25 14 13 12 13
16 4 10 13 15 16 8 10 11 11 10 10 9 9

8 11 15 17 18 8 10 10 11 7 6 6 6
16 13 17 18 18 8 10 11 12 5 5 5 5

(a) Corner constraints only

κ = 102 κ = 10−2 κ = 10−6

#. Sub. H/h p = 1 2 3 4 1 2 3 4 1 2 3 4
4 8 4 6 6 7 6 8 8 8 4 4 4 4
16 7 10 11 12 8 10 10 11 8 7 7 7
64 8 11 12 14 10 12 13 14 11 10 10 9
256 8 10 12 13 10 12 14 16 15 14 14 13
16 4 6 8 10 11 8 10 11 11 10 10 9 9

8 7 10 11 12 8 10 10 11 8 7 7 7
16 9 11 12 13 8 10 11 12 6 6 6 6

(b) Corner and edge average constraints

Table 2: The GMRES iteration count for the BDDC method based on exact local solvers for the boundary layer problem on
uniform meshes.
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κ = 10−2 κ = 10−4 κ = 10−6

#. Sub. H/h p = 1 2 3 4 1 2 3 4 1 2 3 4
4 8 7 9 9 8 7 9 9 10 8 9 10 11
16 9 10 12 13 10 11 13 15 9 11 11 12
64 18 20 21 22 17 18 18 19 14 15 17 19
256 37 40 41 43 45 38 37 36 34 36 41 46
16 4 9 11 10 11 11 11 12 14 12 12 12 12

8 9 10 12 13 10 11 13 15 9 11 11 12
16 9 12 13 15 10 12 14 15 9 10 12 13

(a) Corner constraints only

κ = 10−2 κ = 10−4 κ = 10−6

#. Sub. H/h p = 1 2 3 4 1 2 3 4 1 2 3 4
4 8 7 9 9 8 7 9 10 11 7 8 9 10
16 8 10 11 12 9 11 12 13 9 10 11 12
64 12 14 16 17 14 15 17 18 12 13 15 17
256 19 23 25 27 31 26 26 28 26 28 30 32
16 4 8 11 10 10 10 11 12 13 11 12 12 13

8 8 10 11 12 9 11 12 13 9 10 11 12
16 9 11 13 14 10 12 13 14 8 10 12 12

(b) Corner and edge average constraints

Table 3: The GMRES iteration count for the BDDC method based on exact local solvers for the boundary layer problem on
anisotropic meshes.
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Subdomain BDDC BDDC
Block Jacobi (Corner only) (Corner + edge)

#. Sub. p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
2 50 87 113 34 57 75 30 55 74
8 190 359 565 156 284 428 223 276 455
32 914 - - 580 - - 476 - -

(a) Naturally arising interface condition

Subdomain BDDC BDDC
Block Jacobi (Corner only) (Corner + edge)

#. Sub. p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3
2 37 50 63 16 20 21 15 18 20
8 92 155 199 51 77 106 38 66 89
32 209 334 415 90 130 180 52 82 116
128 478 - - 158 220 309 65 106 159

(b) The Robin-Robin interface condition

Table 4: The GMRES iteration count for the Euler bump problem using exact local solvers. (160 elem. per subdomain,
∆t = ∞)
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Elem. per sub. p = 1 p = 2 p = 3
40 30 49 71
160 38 66 89
640 46 74 100
2560 52 78 102

Table 5: Variation in the GMRES iteration count with the size of subdomains using the BDDC method with the Robin-Robin
interface condition and exact local solvers. (8 subdomains, corner and edge constraints)
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ILUT(10−8, 2) ILUT(10−8, 2)-p1
h κ = 102 10−2 10−6 102 10−2 10−6

1/8 22 9 6 10 7 5
1/16 40 11 6 10 7 6
1/32 74 17 7 9 8 6
1/64 145 32 8 8 7 7
1/128 290 66 8 7 7 7

Table 6: The GMRES iteration count for p = 4 discretization of the advection-diffusion equation using the ILUT and ILUT
with p = 1 coarse correction on a single domain (uniform mesh).
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ILUT(10−8, 2) ILUT(10−8, 2)-p1 Exact
# Sub. H/h κ = 102 10−2 10−6 102 10−2 10−6 102 10−2 10−6

4 8 38 12 12 13 9 11 7 8 3
16 73 17 15 19 12 14 18 11 6
64 135 31 19 23 17 18 25 16 8
256 266 61 26 24 24 25 27 25 13
16 4 37 12 17 18 11 16 16 11 9

8 73 17 15 19 12 14 18 11 6
16 146 33 14 21 14 14 18 12 5

Table 7: The GMRES iteration count for the p = 4 discretization of the advection-diffusion equation using the inexact BDDC
method with the Robin-Robin interface condition.
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Method Preprocessing Iterative

Direct
LU factorize A(i)

LU factorize SΠΠ

Solve LU(A
(i)
II ) and LU(A

(i)
rr )

Solve SΠΠ

Multiply A(i) and apply Gram-Schmidt

ILUT
ILUT factorize A

(i)
II and A

(i)
rr

LU factorize SΠΠ

Solve ILUT (A
(i)
II ) and ILUT (A

(i)
rr )

Solve SΠΠ

Multiply A(i) and apply Gram-Schmidt

ILUT-p1

ILUT factorize A(i) and A
(i)
rr

LU factorize SΠΠ

Form A
(i)
0 = PT A(i)P

LU factorize A
(i)
II,0 and A

(i)
rr,0

Solve ILUT (A
(i)
II ) and ILUT (A

(i)
rr )

Solve LU(A
(i)
II,0) twice and LU(A

(i)
rr,0) once

Apply p = 1 restriction/prolongation three times
Solve SΠΠ and SΠΠ,0

Multiply A(i) and apply Gram-Schmidt

Table 8: Operations considered for the cost estimate of the BDDC algorithm
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