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Theoretical Studies for Microwave Remote
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by
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Submitted to the Department of Physics on
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Requirements for the Degree of Doctor of Philosophy

Abstract

In the microwave remote sensing of earth terrain, the
model of a layered random medium can be used to account for
volume scattering effects due to random permittivity fluc-
tuations. Applying the first order Born approximation,
analytic results for the bistatic scattering coefficients
and the backscattering cross-sections have been derived
for active remote sensing of a two-layer random medium with
arbitrary three-dimensional correlation functions. It is
found that as a result of the second boundary, the horizon-
tally polarized return, o can be greater than the verti-
cally polarized return, whggeas for a half-space random medium
o is always greater than o,_, . The theoretical results are
iYYustrated by matching backscggtering data collected from a
vegetation field. The bistatic scattering coefficients are
used to obtain the emissivity of a two-layer random medium
and in the case of thin, low loss layers the emissivity is
shown to exhibit strong coherent behavior in the spectral
dependence.

As a more realistic simulation of earth terrain for
active remote sensing analytic expressions for the backscat-
tering cross-sections are derived for a stratified random
medium by applying the first order Born approximation. In
the special case of a three-~layer random medium two maxima
are found in the spectral dependence of the backscattering
due to resonance scattering within each random layer. The



theoretical results also are found to compare favorably with
data obtained from vegetation and snow-ice fields. The Born
approximation is carried to second order to obtain backscat-
tering cross-sections that account for depolarization effects
in a two-layer random medium. In the half-space limit, ad-
ditional wave effects are found which are not accounted for
by the radiative transfer theory nor by the Bethe-Salpeter
equation in the ladder approximation.

The mean dyadic Green's function for a two-layer random
medium has been obtained by applying a two-variable expansion
technique to solve the non-linear Dyson's equation. The
coherent wave is found to propagate in the random medium as
in an anisotropic medium with different propagation constants
for the characteristic TE and TM polarizations. The ef-
fective propagation constants obtained in the zeroth order
solution are compared with the scattering coefficients of the
radiative transfer theory.

Modified radiative transfer (MRT) equations for the
electromagnetic field intensity are derived from the ladder
approximated Bethe-Salpeter equation together with the zeroth
order solution to Dyson's equation under the non-linear ap-
proximation. The MRT equations contain significant wave-like
corrections not accounted for by phenomenological radiative
transport theories due to the presence of the bottom boundary.
The MRT equations are solved in the first order renormaliza-
tion approximation and comparisons are made with the results
obtained in the first order Born approximation. A method for
resumming an infinite sequence of terms in the intensity
operator is presented. A renormalized Bethe-Salpeter equa-
tion is derived which takes the form of a pair of coupled
integral equations.
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LIST OF PRINCIPAL SYMBOLS

In the following list, a superscript single prime is
used to denote the real part of a quantity and a superscript

double prime to denote the imaginary part of a quantity.

i reflection coefficient of TE wave at i - j
J interface

.z reflection coefficient of T™M wave at i - j

interface
Xi.: transmission coefficient of TE wave at
] i - j interface
Yi.: transmission coefficient of TM wave at
J i = § interface
D2: defined in text
F2: defined in text
501, Ell: dyadic Green's functions for source in region 1
and observation points in regions 0 and 1,
respectively
Ellm: mean dyadic Green's function
dgz depth of ¢-th layer
Elm: mean electric field
Eo’ El: electric fields in regions 0 and 1, respectively
El(n): n-th order electric field in region &
e: unit vector in direction of electric field for
TE wave
h: unit vector in direction of electric field for

™ wave -
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wave vector in region 2
transverse wave vector (kx, ky)
correlation function of random medium
spectral density of correlation function
bistatic scattering coefficient
backscattering cross-section per unit area
permittivity of region 2

mean permittivity in region 2

random permittivity fluctuation

variance of permittivity fluctuations
lateral correaltion length

vertical correlation lengths

emissivity with polarization u

intensity matrix and Stokes vector, respectively

z-component of effective wavevector

scattering phase matrix for incoherent intensity

scattering phase matrix for mean intensity

long distance scales for TM and TE waves
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CHAPTER I

Introduction

In recent years, active and passive microwave remote
sensing techniques have proved to be a useful tool in the

study of earth terrain, such as snow-ice fie.lds,l-30 vegeta-

31-45 46-47 as well as

tion coverage, and meteorological
oceanographic48 phenomena. The majority of the work per-
formed in remote sensing has been experimental in nature
with theoretical developments lagging far behind. Although
past theoretical emphasis has been largely restricted to

49-53

rough surface scattering, recent theoretical models

have been proposed to account for volume scattering effects

in low loss media such as snow, ice and vegetation. Stogryn54
considered the scattering of electromagnetic waves by a half-
space random medium whose dielectric constant contains a

small random part and a non-random part which can vary as a
function of depth. Using first order perturbation theory of
Karal and Keller,55 Stogryn derived bistatic scattering coef-
ficients by assuming that the correlation lengths are small
compared to the wavelength. The cross-polarized scattering

coefficients were shown to vanish in the backscattering di-

rection. This is expected since only first order terms were
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considered and contributions to the cross—-polarized back-
scattering comes from the higher order terms.

Tsang and Kong56 also studied the electromagnetic scat-
tering by a half-space random medium with three dimensional
correlation functions. The scattered fields in the non-random
region are obtained by using the dyadic Green's function for
a half-space medium and the Born approximation where the field
in the random medium is replaced by the unperturbed field.
Following Peake'ss7 definition the bistatic scattering coef-
ficients are derived from the scattered fields. The cross-
polarized backscattering coefficients also vanish since the
Born approximétion is a single-scattering approximation which
is valid only when the albedo is small.

58 investigated the problem

More recently Tsang and Kong
of scattering by a slab of random medium with a laminar
structure. A two-variable expansion technique is used to
solve for the zeroth order mean Green's function from the
scalar Dyson's equation under the non-linear approximation.
The mean Green's function is then used to derive modified
radiative transfer (MRT) equations from the Bethe-Salpeter
equation under the ladder approximation. The MRT equations
are solved for a two-layer random medium with laminar struc-

ture and the reflectivity at normal incidence is determined.

Tsang and Kong59 extended the renormalization method to the
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case of a half-space random medium with three dimensional
correlations. The zeroth order Green's function is solved
from the scalar Dyson's equation under the non-linear appro-
ximation and MRT equations are derived from the ladder ap-
proximated Bethe-Salpeter equation. In the limit of a laminar
structure two effective propagation constants are found to
exist.

Tan and Fung60 also employed the two-variable expansion
technique and solved the non-linear Dyson's equation for the
zeroth order mean dyadic Green's function in the case of a
half-space random medium. Tan and Fung retain terms only to
lowést order in correlation lengths, and the resultant vector
solution contains onlyba single propagation constant for all
components in the Green's dyadic.

The first order renormalization method also has been
employed in the study of electromagnetic scattering by random
media. In this method the incoherent scattered intensity is
obtained from the ladder approximated Bethe-Salpeter equation
by neglecting the scattering of the incoherent field. Fung
and Fung61 applied the first order renormalization method to
a half-space characterized by a random permittivity with a
cylindrically symmetric correlation function. Fung62 extended
the first order renormalization method to study the scattering

of a vegetation layer characterized by a correlation function
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which is cylindrical laterally and exponential vertically.

63 who

Finally, we mention the work of Tsang and Kong,
used radiative transfer theory to calculate the bistatic
scattering coefficients and the backscattering cross-sections
of a half-space random medium with lateral and vertical fluc-
tuations. They solved the radiative transfer equations
iteratively through second order and showed that non-vanishing
cross—-polarized backscattering coefficients result.

All these past works were carried out either with the
model of a half-space random medium or with a two-layer random
medium in the case of scalar wave propagation. Therefore the
objective of this thesis is to study and develop electromagnetic
scattering models which are applicable to the interpretation
of active remote sensing data of earth terrain such as vegeta-
tion coverage or snow-ice fields. To this end, we consider
the model of a two-layer random medium with arbitrary three-
dimensional correlation functions. In Chapter 2, we review
the dyadic Green's functions appropriate for a two-layer medium
where the source and observation points are located in dif-
ferent regioﬂs. We then derive the dyadic Green's function
where both source and observation points are within the same
region.

In Chapter 3, we solve the problem of scattering by a
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layer of random medium with three dimensional correlation
functions with a wave approach by applying Born approximations.
Carrying to first order in albedo, bistatic scattering coef-
ficients are derived which reduce to previous results56 in

the limiting case of a half-space.

In Chapter 4, we study the emissivity of a two-layer
random medium with three dimensional variations. Using the
results of Chapter 3 for the bistatic scattering coefficients,
we calculate the emissivity for arbitrary correlation functions.
The coherent behavior in the spectral dependence of the two-
layer emissivity is illustrated. 4

In Chapter 5, we extend the first order Born approximation
to the case of backscattering by a stratified random medium.
Analytical expressions for the backscattering cross-—-sections
are derived for an arbitrary number of random layers. The
results are illustrated in the special case of a three-layer
random medium, with correlation functions which are gaussian
latterally and exponential verticaliy.

In Chapter 6, we carry the Born approximatiqp to second

order to obtain backscattering cross-sections that account for
depolarization effects. The results are reduced to the half-
space case and wave~like effects not accounted for by radiative
transfef theory are discussed.

In order to account for multiple scattering of the
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electromagnetic field renormalization methods are necessary.
The renormalization approach has been widely used to study

64,55 It gives

wave propagation in random unbounded media.
rise to the Dyson equation for the mean field and the Bethe-
Salpeter equation for the covariance of the field. In Chapter
7, we review the derivations of the Dyson and Bethe-Salpeter
equations and the various approximations which are applied

to the mass and intensity operators.

In Chapter 8, we solve the non=-linear Dyson's equation
for the zeroth order mean dyadic Green's function for a two-
layer random medium. The propagation of the coherent wave
in the random medium is similar to that in an anisotropic
medium with different propagation constants for the charac-
teristic TE and TM polarizations. The effective propaga-
tion constants obtained in the zeroth order solution are
compared with the scattering coefficients of radiative trans-
fer theory by taking the limit of a half-space. Comparisons

are also made with Tan and Fung's60

half-space solution for
the zeroth order mean dyadic Green's function. The special
case of a laminar structure is considered and two effective
propagation constants for each polarization state are found
to exist.

In Chapter 9, modified radiative transfer (MRT) equations

for the electromagnetic field intensity are derived from the
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ladder approximated Bethe-Salpeter equation together with the
zeroth order solution to Dyson's equation under the non-linear

65,66 to

approximation. These approximations have been shown
be energetically consistent and therefore appropriate in the
development of a radiative transport theory. The MRT equations
contain significant wave-like corrections not accounted for by
phenomenoclogical radiative transport theories due to the pres-
ence of the bottom boundary. The significance of these additional
contributions is discussed in the context of backscattering by
solving the MRT equations in the first order renormalization
approximation and comparing with wave solutions obtained in
the first order Born approximation.

In Chapter 10, the physical significance of the cross
terms in the Neumann series for the field covariance is dis-
cussed. A method for resumming an infinite sequence of terms
(including cross terms) in the intensity operator is presented.

A renormalized Bethe-Salpeter equation is derived which takes

the form of a pair of couﬁled integral equations.
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CHAPTER 2

Dvadic Green's Function for Two-Layer Media

The Dyadic Green's function technique of treating
electromagnetic boundary-value problems was first formulated
by Schwinger in the early 1940's. Since that time the subject

matter has been subsequently discussed by Morse and Feshbach,67

c. T. Tai68 and Tsang et al.69 Since a two-layer medium is
the basic geometry in this thesis we will review dyadic
Green's functions appropriate for a two-layer medium.

By matching boundary conditions we then derive the two-

layer dyadic Green's function, Ell(;’ r') where the source

and field points are located within the same region.
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2.1 Dvadic Green's Function with Source and Observation

Points in Different Regions

Consider a point source located within the 2-~th layer
of a stratified medium (Fig. 2.1). Let region 0 be free-space.
The field in region 0, is composed of upward going waves only,

and has been derived69 in the form

= wy g = x| . ik, z°
g (r, ') = -2 g2, & {e(k )[A, e (~k, ) e X2
og ' 812 + Kk oz 2 4 2z
0z )
A~ —ikQZZ' A A~ ikQ'ZZ'
+ B2 e2<kzz) e ] +}h(koz)[cz hz('kzz) e
n -ik, 2z -ik, « T, °'
Lz L i
+ Dz hz(kzz) e 1} e (2.1)
where k =xk_+ vk , d2k, = dk dk and
X v X
e (k, ) =22 x% (2.2)
272z K 2 . :
L
h (k. ) =+ e (k. ) x K (2.3)
272z X 2%z L °
2



Stratified geometry

Figure 2.1
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kgz = (ka,z - k_LZ)l/?‘ (2.4)

~

and kz2 = wzuel, e2 is in the direction of the horizontally

polarized electric field vector and hl is in the direction

of the vertically polarized electric field vector. The

X Bz, CZ and D2 are determined through the

propagation matrix formalism.70 In (2.1) the first subscript

amplitudes A

of the dyadic Green's function indicates the region of the
observation point while the second subscript indicates the
region of the source point. Taking & = N = 1, we obtain
from (2.1) the dyadic Green's function for a two-layer medium.

The result is

501(5, El) = J dsz SSl(EL' z, zp) eikL . (EL - Iy,
(2.5)
where
- WHy 1 Xlo(ki) ~ iZklzdl

=>
g,k , z, z,) = - ek VIR, (k) e
z 2L
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ik, =z -ik. z
1z°1 1z°1 ©
e el( klz) + e el(klz)]
k, Y. (k) - i2k. 4. ik. z.
+ L A0 L ohk s, k) e E e R dn(ek )
kK  F.(k ) z i z
o 271
-ik, z. A ik, z
+e 1271 hk, )1} e 1z (2.6)
yA
and,
k. - k.
Ry, (k) = 12 Z (2.7a)
Jo+L k. + k. o
1z jz
c.k. - e.k,
ij(gL) = —dtZ L Jz (2.7b)
Ejkiz + Elka
ij(k_L) =1 + Rij(kL) (2.8a)
Yij(kL) =1 + sij(kl) (2.8Db)
i2k, 4,
Dz(k_L) =1 + ROl(k_L) Rlz(k.L) e (2.9a)
i2k, d

- 1z71
Fz(kL) =1 + SOl(k¢) Slz(kL) e (2.9b)
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The subscripts i and j in (2.7a)-(2.9b) denote 0, 1 or

2. We note that the portion of 501(5, fl) which contains

the unit vectors e corresponds to TE type waves. In the

same way, the portion of 501(5, El) which contains the unit

~

vectors h corresponds to TM type waves.
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2.2 Dvadic Green's Function with Source and Observation

Points in the Same Region

In this section, we derive the dyadic Green's function,
11 where both source and observation points are within region .

e
1 of the two-layer medium. We first write 511(5, fl) as the

sum of two parts

Gll(r, rl) = GDll(r' rl) + GRll(r' rl) (2.10)

(3]}
[v]
o}
(o)
[

where satisfy the vector wave equations

D11l - "R11

(r, r)) = kg2 Gop1(F, Ty) = leMd8(r - ) (2.1la)

<3
X
<l

x

Gp11

ki? Gy () T

Rll(r, rl) - kg ) = 0. (2.11b)

x G

<
X
<3

1

Physically, EDll represents the direct response to the source

at ;1 and does not contain boundary effects. Alternatively,
ERll represents the response to the image sources produced
by the boundaries at z =0 and 2z = -d,. It is for this

1
reason that ERll satisfies the homogeneous vector wave equa-

tion whereas EDll satisfies the inhomogeneous vector wave

equation. The solution to (2.1la) is just the free space
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dyadic Green's function, which has been derived by Tsang.66

The result may be written in the form:

-— - - - - i AA —-- - - -
GDll(r’.rl) = ;;— zz §(r rl) + GFll(r’ rl) (2.12)
1

where the free space radiating portion of éDll is contained

in E‘;'Fll(?:, r,). Combining (2.10) and (2.12) we obtain,

- - = --iAA —-_ - - - !
Gll(r' rl) = —_— zz § (T rl) + GSll(r' rl) (2.13)
we
1
where
Gsll(r’ rl) = GFll(r' rl) + GRll(r, rl). (2.14)

In view of (2.5), (2.6) and in order to match boundary condi-

tions at 2z = 0, the dyadic Green's function 5811(5, El)

in (2.13) takes the form:

Wi ik, _z .
= = - - o 2 1 1z
Gsll(r, rl) = . { d kL — {[a e el(klz)
8T k
1z
-lklzz ~ ik -lklzz1 A
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e *t L L (z > z). (2.15)

ol

The boundary conditions to be satisfied by 501 and 11 at

z = 0 are:

>

z X 501(2, El) = z X G (r, rl) : (2.16a)

(2.16b)

N
X
<
X
Gl
o
[
R
(2]
'—.l
]
N
X
<1
X
Qi
=
.
H
N
H

Substituting (2.5), (2.6) and (2.12), (2.13) into boundary

conditions (2.16a) and (2.16b), we find the result

a = X7 (2.17a)
R

g = L0 (2.17b)
%01
K

v = =2 vi] (2.18a)
k
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k. S

§ = —+ 10 (2.18b)
ko YOl '
X..R i2k. d

p = _Qi_lé»e 1z71 (2.19a)

Dy

X

g = 9L (2.19b)
D,
kK Y..S

=0 0112 (2.20a)
ky F,
kY

r = -2 01 (2.20b)
k, F

The terms which appear on the right hand sides of (2.17a)-(2.20b)
are defined in equations (2.7a)-(2.9b). Combining equations

(2.15) and (2.17a)-(2.20b), we find the dyadic Green's function

ol

s11 for (z > Zl) to be:

= - - — 2 => ™
Ggyplr, ¥y) = f d*k, g;;(k

N z, zl) e

(z > zl) (2.21)

where:
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)1. (2.22)

For 2z < z, Wwe use the symmetry condition for dyadic Green's
- functions

= - - _=T‘;— -
Gsll(r, rl) = GSll(rl' r) | (2.23)

where the superscript T denotes the transpose of the matrix.

The dyadic Green's function éSll for (z < z;) is found

from (2.21)-(2.23) to be
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ik « (. - ,))
2 = T 4 L 11
I d“k (kL’ z, zl) e

= - - =<

(z < zl) (2.24)

where:

= - wi -ik. 2z A
35y, 2,z = - 22 =— e 17 e (k)

2
8 klz Dz(k¢)

i2k. _d ik, 2z « ik, _z. .
1z71 1z 1z71 -
+ Rlz(kL) e e el(klz)][e el( klz)_

“iky %1 A 1
+ Rlo(k¢) e el(klz)] + —— [e hl(-klz)

F, (kJ_)

i2klzd1 iklzz - ik, 2 A
+ slz(k;) e e hl(klz)][e hl(-k

_ik Z A
1271 § (% . (2.25)

+ S1ptk,) e 1k )]

The net dyadic Green's function, Ell(f' fl) for both source

and observation points within Region 1, may be written as

= - - i o~ - -
Gll(r, rl) = - — z2 §(r - rl)
weq
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=> - ik.x. . (r_L - rl.:.)
9,1k, 20 29) e (z > z,)
+ J azk, _ _ -
=< Tk, o+ (x = ry,)
gll(k r 2, Zq) € (z < zl)
(2.26)

>
with g;; given by (2.22) and (2.25).
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CHAPTER 3

Active Remote Sensing of a Two-Layver Random Medium in the

First Order Born Approximation

In this chapter, we make use of dyadic Green's functions
to solve the problem of scattering by a layer of random medium
with three dimensional correlation functions by applying Born
approximations. Integral equations which govern the scattered
field are solved by iterating to first order in albedo. Making
use of a correlation function that is Gaussian latterally and
exponential vertically, we find backscattering cross—-sections
for the two-layer problem that reduce to previous results63
in the limiting case of a half-space. A brief discussions of
rough surface scattering effects upon the backscattering is
presented. Thevfirst order Born results are illustrated by

matching experimental data.
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3.1 Far Field Dvadic Green's Function by Saddle Point Method

Consider a layer of random medium with permittivity
sl(f) = <g;> + elf(f) where elf(f) is a real function of
position characterizing the randomly fluctuating part whose
amplitude is very small and whose ensemble average is zero.
The layer of random medium has boundaries at 2z = 0 and
z = -d (Fig. 3.1). The upper region is free space with per-
mittivity €s and the bottom medium is homogeneous with
permittivity €y All three regions are assumed to have the
same permeability Hoe

The formal solution to the scattering of electromagnetic
waves with time dependent factor e-imt by the two-layer

random medium can be cast in terms of dyadic Green's functions.

We have
= ;= _ =(0),= 1 3 = = = . = = (=
Eo(r) = Eo (r) + : J 4 r, GOl(r, rl) Q(rl) El(rl)

1wuo Vl

(3.1a)

= = _ ={(0) - 1 3 = - = . = = (=
El(r) = El (r) + . j ad r, Gll(r' rl) Q(rl) El(rl)

lmuo Vl

(3.1b)
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Scattering geometry of a two-layer random medium

Figure 3.1
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where the integrations extend over region 1 occupied by the
random medium. The first and the second subscripts of the
dvadic Green's functions EOl(;' El) and -Ell(f, fl) refer
to the regions of the field and source points, respectively.
The random fluctuating part is accounted for as a source dis-
tribution with Q(r) = klzelf(f)/<el> where kl2 = mzuo<al>.
The superscript zero in ﬁéo)(f) and E{O)(E) refers to the
solutions in the absence of the random fluctuation part which
are also the zeroth order terms in an iterative series solu-
tion. We shall use parenthesized superscripts 1, 2, 3 etc.
to denote higher order terms.

Since we are intefested in the scattered far field, we
evaluate 501(5, El) which appears in (3.la) by the saddle

point method. From Equations (2.5) and (2.6) we may cast

GOl(r’ rl) into the form:

Gyy (T, T = J a2k, e T TFE,zp e * M 3.2
where

= - —ikozz = -

F(k,, zl) = e 901(k¢, z, zl) (3.3)

and k =%k + z k__. We introduce the transformations



kx = kp cos ¢
k. = k_ sin 5
Y p
k = /£ 2 -k 2
oz o o)
and
X = p cos ¢
y = p sin ¢.
Making use
- - - L 2r _ ikpp
GOl(r, rl) = fo kpdkp JO d¢ e
_ -ik . T
[F(k,, z;) e = 14
k =
pe
k =
y
The 5 and kp

saddle point method.

function is simply:

k cos

k sin

of (3.4a)-(3.5b), equation (3.2) becomes

cos(p - ¢) + iko

o1 o

2

2

integrations are performed by using the
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(3.4a)

(3.4Db)

(3.4c)

(3.5a)

(3.5b)

(3.6)

The resultant far field dyadic Green's



GOl(r

where

’

v}

+
N

1z

1z~

]|
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(3.7)

) (3.8a)

(3.8b)

(3.9a)

(3.9b)
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3.2 First Order Scattered Intensity

Solutions to (3.1) can be obtained by iteration. Sub-
stituting (3.1b) in (3.la) we find the total solution in region
0 in the form of the Neumann series

E_(T) = Eé‘” (T) + Eén) (%) (3.10)

([ I

n 1

(n)

where the n-th order £field Eo

is given by:

-(n) - 1 = - - = - -
Eg (r) : f d3rl cee d3rn.GOl(r, rl)-Gll(rl, r2) .o
(1muo)
g, . (F ) - Q(F,) oz - B9 (3.11)
T 711'n - 1" "n S n 1 n’°* ’

Physically, the n-th order field represents the n-th scat-
tering of the incident field E{O)(fn) by the random permit-
tivity fluctuations. 1In (3.11l) it is understood that each of
the volume integrations extends over the layer of random medium.
Forming the square of the absolute value of EO(E) and ensemble

averaging, we obtain the intensity in region 0
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<JE @12 = B0 @2 + 2reE0 7T (E) - R <L) (3)5)
+< 3 EMT@® . o EM@Es . (3.12)
n=1 m=1

It is to be noted the ensemble average of all odd order moments
of Q(r) vanish in the cross terms.

The first order scattered intensity in (3.12) is given by

1)

E, @15 = E @ ¢ 2me®B V@) - <D @)y

It can be shown that the mean field term <E£2)(§)> is

-(l)|z>

specular and is much smaller than <|E o in the low con-

ductivity regime. We thus have, after making use of (3.11)

- - 2 (l) - 1 3 3 = - - . "(0) -
< By (x5 770 = )ZJV d'ry d'ry Gy (re 7y) -+ By (xy)
(wuo 1
c 85, Ty ¢ BOUTE) <0F) o*(Ey> . (3.13)

The unperturbed field E{O)(f) is given by
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ik.. - 1 iK,., e T
£ ) =g [E. & 14 .8 11
El (r) = Eo[f Ai e + £ Bi e ] (3.14)
where
5 - Jo1ifPias F1pi% o - Ko ¥Yo1i8125 12ky559;
. R e — 2 e, .e,., P —m ——m—e
i D 1i714i K F
2i 1 2i
hy (ky,;) hy(=ky,.) (3.15a)
X .. k Y. ...
= _ “01i ~ ° o To01i 7 ~
B, - ej;8p; * = — hy (ky,;) hy(=ky, ;) (3.15b)
2i 1 “2i

. ) e (3.16)

The subscript 1 denotes the incident direction, and the
vector components denote the fractions of the vertically and

horizontally polarized components of the incident wave.

(0)
1

far field approximated Green's function GOI(E, fl), we ob-

Making use of the unperturbed field E (r) and the

tain from (3.13)

<|ﬁol2>(1) =L [ d’r; &’r, I EooUg o ¥
r?. V]_ s’sl p’pv r
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(3.17)

where s, s', p and p' take values of either -1 or +1,

and
by, ==& (F.& (3.18a)
’ 4t
- EO = - =
by oy =28. (.35 (3.18b)
r 47',
V1,17 Foe(f-a)) (3.18¢)
T
- Eo = - =
Yi,-1 T (£ - B;). (3.184)
T
The correlation function C(El - 52) = <Q(fl) Q*(§2)> may be

expressed in terms of its Fourier transform

c<El - 22) = Skj* f dig o(B) e (3.19)
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where § is the variance of the fluctuations and kl' =
Re(kl). Substituting (3.19) in (3.17) we may perform the
integraions over the spatial variables. One of the transverse
spatial integrations yields a delta function and the other
transverse spatial integration yields the illuminated area

A of the horizontal plane. Furthermore, the delta function
enables the EL integration to be performed. After carrying

out the zq and z, integrations, we obtain

<]§OIZ>(1) _ 4w255i“A - Ny as’s| . a;,p' f ” ds,
r s,s' p,p -
Q(E"'i ) k"" Bz) (sk1z + s'klzi - Bz)l(pk]":Z + p'kizi - BZ)
(1 + JniRs PR P PR A P ER ]
- e—iISklz * stk T Byl _ ei[pkiz NIRRT Bz]dl].
(3.20)

The Bz integration is performed by noting that for a

low conductivity random layer containing many wavelengths the
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dominant contribution occurs at p =s and p' =s' for

— 1 ¥
the poles at Bz = pklz +p klzi' It is to be noted that

there also exists an additional significant contribution only
in the backscattering direction for the case p' =s = -p = -s'.
To obtain the residues at these poles we must carefully note
the positions of thé poles on the complex Bz—plane. For
example when s = +1 and s' = -1, the pole may lie on

either the upper or the lower half of the complex Bz-plane

according to whether Im(klz) z Im(k ). Carrying out the

1zi

B, integration in this manner, we find:

- (1) §ky*4m’A _
<|EO|2> = — 7 |wss.]2 G(sk,, + s'kq,.)
r? s,s'
+ 44,4 9(2k ., 0) Re[wl,_1 . wil,l] (3.21)
where:
' _ Q(kli B ki’ Sklz + S'klzi)
G(sk + s'k, _.) =
1z 1lzi sk" + g'kh
1z 1zi
2(sk? + s'k? .)d
le 1z 1zi" "1 _ 1]. (3.22)

Here, A 1is one in the backscattered direction and is zero
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for all other scattering directions. Thus given the spectral
density ¢ of a correlation function, the first order scat-
tered intensity from a two layer random medium is readily

determined from (3.21) and (3.22).
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3.3 Bistatic Scattering Coefficients and‘Backscattering

Cross Sections

The bistatic scattering coefficients are defined by

Peakes7 as:

- - 4 r2(1I)
vy (k_.,, k) = lim Y
A+w cOS eoi(Ii)u
oo

(3.23)

where (Ii)u is the incident wave intensity with polarization

U, (I)v is the scattered wave intensity with polarization v,

oi is the incident wave vector at the incident angle 8

oi

and = 0, k 1is the scattered wave vector at angles 8

¢oi
and ¢, and r 1is the distance from the observation point
to the surface. Considering spectral densities with an even
Bz dependence, we find from (3.21) and (3.23) Yhh and th
by letting fe = 1 and fm = 0, and Yoh and Y yv by

letting fe = 0 and fm = 1.

2 [N 2 2 a - " "
, ) w28 kl [kozl ‘XlOXOIi! ®(B,) - e 2(klzi + klz)dl]
hh 2 2 " 1
cos 953 Iklzl 'D2D2i[ Kizi * K1z
-2(k" . + k" )d ®(B_)
2 lzi 1z’ 71 -
[+ [RppRyp;|° @ T

1zi lz
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_2 (k" . - kll )d __2 (kll . + kll )d
- lzi 1z°71 2 1zi 1z° 71
-4k" g [Xqq4 1"
2 1z71 2 2 5 01i 2
+ [Rlzl e 1t cos?¢ + Adrn 6ki TN IRlZil dl
2i
' _4kll -d
- 1zi™1
Q(kai’ 0) e (3.24)
2 Ty 2 2 R
. ) T 6kl 'kozl lYlOXOlil | §(B+)
hV 2 2 " "
oS 8oi kgt IFRFpl® |k, + kg,
-2(kY . + k" ))4a ‘ -2(k"' . + k" )a
- lzi 1z° 71 2 lzi 1z' 71
1 - e 101 + lleRIZil e ]
$(B) -2(ky, . = k§_)d
+ - 1 - e 1zi 1z l]
klzi - klz
=-2(k¥_. + k" )a -4k" 4
lzi 1271 1z71 .
[[Ryg31% e *spplt e Iy sin®o
(3.25)
2 [ 2 2 2 2 a
_ T 6k1 ‘koz] ’klzi, ko IxlOYOIil °(8,)
Yvh ~

2 4 2 " "
cos eoi ]klzl Ikll IDzei, k].zi. + k].Z
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-2(ky,; + k],)d —2(ky .+ k)4
- 1zi 1z’ 71 2 1zi
e T+ [RypSyp51° e 1
‘D(E_) -2(k"” - k" )d
-+ [l - e 1z zZi ]
k1zi = K1z
-2(k” + k" )d -4k"
lzi 1291 .
[lSIZilz e + |R1212 e ] Sln2¢
(3.26)
2 L 2 u 2 -
= T (Skl lkozl ko lYlOYOlil ‘ ‘I’(B )
2 b 2 " n
cos 8oy IRy l® Ikl 1FFpi 1% (Rigs * i,
"2k, ¥ kpyld 2(ky_ .+ kI )d;
- lzi z1l’'71 ) 12i
[L-e 11 + |S1,581551% e o
k «k 2 @(é )
Lzi 1z cos ¢ - sin 6 _, sin 6 + e
k 2 o1 kn - k*
o lzi 1z
-2(ky,; ~ kj,ld -2k}, + kY04,
- 1lzi 1z° 71 2
[1-e 11181,;1% e
-4k 4 k, .k 2
2 1z71 1zi 1z . )
*Isial% e ] B cos ¢ + sin 8_,; sin 9
o
k Yo Yot -4k* .4
2 " 4 O Oll 2 - lZl 1
+ Adw®sky PRTRTNL | 121l d; ¢(2k,;, 0) e
1 2i
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kZ . 2
121 _ gsin%e_, (3.27)
k 2 oi
o
] — i - 1o - v ' :
where By = (k¢i kx) + z(klzi * klz) and subscripts h and

v denote, respectively, horizontal and vertical polarizations.
We consider a correlation function which is Gaussian

laterally and exponential vertically:

_ _ -z, _';"12/2 2 .z, - z.]/8
<Q(ri) Q*(rj)> = (Ski‘! e b Ji P e 1 J .

(3.28)
The corresponding spectral density is
222 _B 22 2/4
3 (B) = 0 e - ° . (3.29)
4m®(1 + B *2%)
Substituting in (3.24)-(3.27) and letting 6 =6 . and ¢ =

ol

T + ¢oi' we obtain the backscattering cross section per unit

defined b o/ = cos 6 ..
area define v pg qu oi
T h 2 4 b 1 29 25:.2
L 8ky 28 |x10il LS . k,®%,%sin®8 .
hh 4 ID,. % |k, .
21 lzi
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-4k

1zi l -4k .d
l - e - (l + ]R12ill.p e 1zi l)
” [ ]
21-:1Z (1 + 4k1nz )
-4k .4
+ 84 R, |2 e TEMI © (3.30a)
t b 2 4 - 2 2
o ki 29 [Ylol{ k21 . k,*2 “sin®e .
v 4 IF,. 1% |k
21 1zi
-4k’ .4
- 1zi"1 -4%k" .4
1 e - (1 + ISlleq e lzi l)
" L
klz (1 + 4kl 19, )
k2 2 -4k .4
1lzi .2 2 1zi™1
;—;— + sin®8 .| + 8dl|812i| e
o
k2 2
Llzi _ sin?6 . (3.30Db)
k 2 o1l
It is to be noted that ohv = th = 0. Thus there is no

depolarization effect in the first order scattering theory.
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3.4 Rough Surface Effects

The backscattering cross sections derived in the preceding
section are based upon the assumption of flat boundaries. This
assumption may not be realistic in many situations of interest
such as vegetation-ground and snow-air interfaces. A more
physical model for such situations is to consider the surface
to be irregular and characterized by a surface correlation
length, ls (or st, lsy for anisotropic rough surfaces)
and R.M.S. height deviation Og- In Fig. 3.2 we illustrate
a two-layer random medium with a rough surface at the bottom.
Such a model would simulate, for example, a vegetation layer
‘with irregular ground. The scattering by a rough surface which
separates two homogeneous, dielectric media has been solved
only in the cases of Qs >> A or zs << A. Scattering by a
composite rough surface and random medium (e.g. Figure 3.2)
is a problem étill unsolved at present.

However, in order to account £for observed rough surface
effects in some fashion we may iricoherently superimpose the
backscaﬁtering of a very rough surface (ls >> A) with the
backscattering of the random medium. It is shown in Section
3.5 that such a superposition of intensities matches experi-
mental data remarkably well. The backscattering cross section

of a very rough surface.is given by Barrick71 and may be
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Hor &5
z =0
H <sl> + slf(r)
z = -dl
rough surface (cs, 25) Mg &y

Two-layer random medium with rough surface

Figure 3.2
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written as

4 2 2
sec’6 _, -tan“e_./s
= ol 2 o1
vh - [ROl(O)[ e (3.31)
where s? is the mean square slope of the surface. Comparing

(3.31) with (3.30) it is clear that the rough surface back-
scattering falls off much faster with angle than does the
volume backscattering. Physically this is due to less rough

surface and more volume being seen at large incident angles.
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3.5 Data Matching and Discussions

We have obtained, for a two-layer raﬁdom medium, the
bistatic scattering coefficients in (3.24)-(3.27) and the
backscattering cross-sections in (3.30) for a correlation func-
tion which is Gaussian laterally and exponential vertically.

It is noted that these results can be derived by using a

Fourier transform method instead of applying the saddle point
method to the evaluation of the dyadic Green's functions. 1In
the case of scattering by a half-space random medium, we let

d, = » and find

1
vh 2 bl 25 2aiwm?2
_ 6k1 zzp . kozi ko zp sin eoi
“hh T G 1 4 2k 12 105 X
1zi 1zi 1zi
[ 2 L 2 2
_ k1" 24 o1 Xozi| | X1zi .,
0.V'V B 2 2 'Ylo.'l.I 2 T sin eOi
sklzi(l + 4klzi2 ) klzi ko
b 20 2atn2
. ko 20 sin eoi

These are exactly the results obtained with the radiative

transfer theory by Tsang and Kong.63 When plotted as a
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function of incident angle, O iy is always larger than Onh*
This is because more vertically polarized wave components
are transmitted and backscattered by the random medium.

For wave scattering by a two-layer random medium, the
results in (3.30) suggest the possibility of - smaller

than o when the first terms in the curly brackets become

hh

smaller than the second terms. In this case o, v [X;4;1°

2 L 2
IRy 55120 o v ¥4 1%81541% and 8,5, < Ry,; due to the

Brewster angle effect at the bottom interface. Thus even
though lYlOil > |X;441+ it is possible to have o < op,.
Physically this is because more horizontally polarized wave
is reflectéd by the bottom boundary resulting in more hori-
zontally polarized wave in region 1 to be backscattered by
the random medium.
The results in (3.30) have been applied to the interpre-

tation of remote sensing data collected in vegetation and

42,1 In order to account for rough surface

snow-ice fields.
effects, which dominate over volume scattering in the angular
region about nadir, we have incorporated the backscattering
cross—-section of a very rough surface in an incoherent fashion
(Section 3.4). In Figs. 3.3-3.5, we have matched the back-

scattering data of a corn field with a height of 2.1 m at

three different frequencies. The letters V and H represent
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experimental O v and Tyh while the continuous curves depict
the theoretical results. In order to match these data, we
assigned the values zp =0.32cm, &2 =1cm, & =0.361, and

s2 = 0.03 where s?

is the mean square slope of the rough
surface. BAs seen from these figures, the match between the
experimental and theoretical results are very good. The volume
scattering dominant portion of the curves for eoi > 20° ac-
counts for frequency change very well which the rough surface
dominant portion for eoi < 20° does not due to the frequency
insensitivity of the very rough surface result. It is inter-
esting to note that in order to match these backscattering
daté, it was necessary to choése L > zp. In Fig. 3.6, we
consider the same corn field and fit the fregquency dependence
of the backscattering cross section at nadir and 30°. The
slight frequency variation in the theoretical result at nadir
is due to the fact that volume scattering coes contribute at

this angle, even though the frequency independent rough sur-

face result dominates.
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CHAPTER 4

Emissivity of a Two—-Layer Random Medium

The study of earth terrain can be effected with the
method of microwave passive remote sensing. In this method,
a radiometer aboard aircraft or satellite records the micro-
wave thermal emissions from naturally occuring media such as
snow-ice fields, vegetation coverage and sea-ice. The volu-
minous data collected and its interpretation has been the
subject of considerable theoretical effort in recent years.

Gurvich et al.72

first derived expressions for the
emissivity of a half-space random médium with laminar struc-
ture in the single scattering approximation. England73 ex-
amined emission darkening of a half-space containing distri-
buted isotropic point scatterers by employing a radiative

69,56,74 pave considered

transfer approach. Tsang and Kong
thermal microwave emission from a stratified medium with
non-uniform temperature distribution, the emissivity of a
two-layer laminar random medium as well as thermal microwave
emission from half-space random media. In particular, Tsang
and Kong56 employed a wave approach in the first order Born

approximation and calculated the emissivities of a half-space

random medium. In this chapter, we follow a wave approach
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similar to Tsang and Kong'ss6 and obtain emissivities of a
two-layer random medium with arbitrary three dimensional

correlation functions.



64

4.1 Emissivity Using Reciprocity Concept

Peake57 has defined the emissivity of a natural surface

as:

- _ - -‘L - - - -
eh(ki) =1 Ty . I dﬂs [Yhh(ki' ks) + th(ki’ ks)] (4.1la)
=1 - - X T T
e (kl) =1 r, . J aqQ [yvv(ki, ks) + Yvh(ki’ k )] (4.1b)

where 2N and r, are the Fresnel reflectivities for hori-
zontal and vertical polarizations for a homogeneous two-layer
medium. The integrands of (4.la) and (4.1b) are the bistatic
scattering coefficients of a two-layer random medium and the

angular integrations extend over the upper hemisphere.
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4.2 Emissivity of a Two-Layer Random Medium

The bistatic scattering coefficients of a two—layer_random
medium have been derived in Chapter 3 and are given in (3.24)-
(3.27). In order to develop an expression for the emissivity
in as general a form as possible, we expand the spectral

density in harmonics of the scattered azimuthal angle, ¢s:

ing,
lzivt 1zs e <I>m(k.;= r k i’ kKizi t K

=
-
|
~
~
I

il o1 8

(4.2)

Substituting (4.2) into (4.la) and (4.1lb), the ¢s integration
may be performed directly. After some algebra, we obtain

emissivities in the form:

2
_ 1 (/2 . [X90s!? (1)
eh = 1 rh Z I 0 de _ sin es Ph A+ |k ]2 is +
1zi
2
sl @ UL, [ Pes!
k 2 is + - !k I2 is -
o) lzs
Ry
+ 10s 8.(2) N (4.3a)
kz 1S -

s P lzi lzs

)
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2 | X
_ 1 (" . 10s 2 ~ (1)
e, =l-r, == [ de_ sin 8_ P_|A_ lky,41% 259 N,
4 0 2
2 2
+ |y 2 2 3(2) lklzi{ lklzs{
lOs‘ o is ok * +
o
+ 2 sin®g,; sin?e_ o_(+)
sin 6, sin es - - ‘
- *
ZRe(klziklzs) s [¢1(+) + @_l(+)]
o
1%, 012 -
10s 2 (1)
+ A 5 |klzi' Bis N_
. [k 5121k, o] .
byl k2 B2 | R 128w+ 2 sin?e_ & (-)
s o is ok b - s o
o
sin eoi sin GS - -
%* - -
+ 2Re(klziklzs) — [@l( ) + @_l( )1 (4.3b)
o
where
TT26 klk lx .‘2
P, = 1 0li 2 (4.4a)

2 02s
2 cos 8, 1D2i|
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2 [ R 2 2 2
T 6kl IYOliI kozs ko (4.4b)
2 2 4 )
cos® IE2il lklzsl Ikl'
(1 - e  Hlzi klzs)dl)
(4.5)
(k121 * Kyzg)
L+ IRypiRyp6l° o et T el
= - (4.6a)
2 -z(klzi + ki'.zs)dl
L+ 1815581561% @
= (4.6Db)
EE
-2(kY . + k" )a -4k 4
2 1zi 1zs’ 71 2 lzs71
[Rigyl® e * IRypgl” @
2
(4.6c)
=2 "o [ - "
IR '|2 e (klZl klZS)dl + IS lz e 4klZSd1
- 121 12s
2
(4.64)
__2 (k" .+ k" )d
1+ IRlZSSIZi!Z e 1zi lzs' 71
= (4.7a)
D, |2
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~(2) (2) 1Pgl?
o, = q. —— (4.7b)
1S 1ls IF lz
2s
ls Iz' e-z (klZi + klZS)dl + lR !2 e-4klzsd1
é(l) 12i 12s - B
t D,
2s
(4.7¢c)
IS Iz e_Z(klZi + klZS)dl + lS lz e-4klzsdl
52 _ [12i 12s
e EE
2s
M, = 20_(2) + 3,(2) + §_,(2) (4.8a)
N, = 28_(t) = 3,(%) = 3_, (%) (4.8b)
5n(:) = 6n(kps, koir Kips * Kigg) n = integer. (4.9)

The subscripts s and 1 denote that a term is to be evalu-
ated at the scattered and incident wavevector angles, respec-

tively.
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4.3 Angular and Spectral Dependence of Two-Layer Emissivity

In (4.3a) and (4.3b) we have obtained the emissivity of
a two-layer random medium with arbitrary correlation function
in the first order Born approximation. To illustrate the

emissivities, we take the spectral density to be

2 - 2 2
o) - zzp . B, zp /4
4T (1 + 32222)

(4.10)

which corresponds to a correlation function that is Gaussian

laterally and exponential vertically. Substituting (4.10)

in
(4.2) we solve for the amplitude 5m:
-k? 2 2/4 - k2.2 2/4
Zﬂ,pze DSD/ plp/
 (k _, k ., k + k ) =
m ps pi 1zi lzs 2 292
4r< [l + (klzi + klzs) 2]
L e z
I 2 (4.11)
m 2

where Im(x) is the modified Bessel function of order m. In

deriving (4.11) we also have taken ¢i = 0, due to the azimu-

thal symmetry of the assumed correlation function. Inserting
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(4.11) into (4.3a) and (4.3b), the es integrations can be
completed numerically. We illustrate the results in Fig. 4.1,
where we plot the emissivities e = e, = ey at nadir as a
function of frequency for a 20 cm thick random layer with

§ = .0005, & = .002m, zp = .01lm, €, = (6.0 + i0.6)eo and
<€y> = (1.8 + ie{m)eo. The dashed curve corresponds to E{m
= .005 whereas the oscillating curve corresponds to E{m =
.0005. The coherent effects due to the boundary at z = --dl

= -20 cm are apparent in the low loss case where the emissivity
oscillates as a function of frequency. As the loss of the
medium is increased, the bottom boundary is seen less. This
is'demonstrated in Fig. 4.1 where for eim = .005 ‘the oscil-
latory behavior has disappeared, in the spectral dependence

of the emissivity. 1In Fig. 4.2 we plot the emissivites e,
and e, as a function of angle at 10 GHz, for a 20 cm
thick random layer with the same parameter values as Fig. 4.1
and eim = .005. The emissivity of the vertically polarized
wave exhibits a slight maximum due to the Brewster angle
effect. The horizontally polarized wave has no Brewster angle

effect so that decreases monotonically with increasing

h

angle.
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CHAPTER 5

Active Remote Sensing of Stratified Random Media

In active microwave remote sensing of earth terrain the
model of a layered random médium has been applied to account
for volume scattering effects. Using the model of a half
space random medium, backscattering cross sections have been

6,63 and with the first-

calculated with an iterative approach5
order renormalization method.61 To improve the simulation of
earth terrain for vegetation coverage, snow-ice fields or
culture targets, two-layer models have been developed, with
the random medium bounded by air above and earth below.62
In these past models, a correlation function with wvariance
and correlation lengths is specified for the entire volume
scattering region of interest. However, in remote sensing
applications a more realistic model might consist of parti-
tioning the entire scattering region into sub-regions or
random media each with a characteristic correlation function.
For example, in vegetation cover such as forest terrain the
sub-regions would be the leaf and trunk regions of the trees,
where the respective lateral and vertical correlation lengths

are significantly different. Similarly, in the case of snow-

ice fields, one usually finds a complex layered structure in
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which the lateral and vertical correlation lengths may vary
significantly from layer to layer.

In this chapter, we use an iterative wave approach to
solve the problem of backscattering by N-layers of random
media with three dimensional correlation functions, arbitrarily
distributed within (M - N) homogeneous layers. Carrying to
first order in albedo and making use of correlation functions
which are Gaussian laterally and exponential vertically, we
find backscattering cross sections for a three layer problem.
The results are illustrated by matching with experimental data

collected from vegetation and snow fields.
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5.1 Backscattered Intensity for a Multilayered Random Medium

in the First Order Born Approximation

Consider a vertically stratified medium consisting of N
random layers and M - N (M 2 N) homogeneous layers, with

4

boundaries at =z —dz, ceaey, =d [Fig. 5.1]. The

1’ M
m-th layer (m =1, 2, ..., M) is characterized by permea-
bility Mg and permittivity €m = € * Amemf(E) where
Ah =0 or 1 according to whether the m-th 1layer ié homo-
geneous or random, and 8mf(f) is a real random function of
position whose magnitude is small and whose ensemble average
is_zero.‘

The formal solution to the scattering of time harmonic
electromagnetic waves by the stratified medium can be cast

in terms of dyadic Green's functions. The first order scat-

tered field is written as

3 = - - . - "(0)
. {V d ry Gom(r, rl) Qm(rl) Em

m

E(l) 1

g = r.) (5.1)

(Ty

i~z

iwpy m

= po e 3 3 ] ] - ——

where Gom(r, rl) is the dyadic Green's function, Qm(rl) =
2 - 3 2 —(0) -

W qumsmf(rl), and the superscript zero in Em (rl) refers

to the solution in the absence of random fluctuations. The

integration in (5.1) extends over the m-th layer occupied by
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Ho» € = <5|>+A| e'f (7)

MOy €E2F <€2>+A2€2f (7)

1o m= <>+ Lyen(T)

Ho €M+

Scattering geometry of M-lavered medium

Figure 5.1
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Z= "d'

Z ='-d2
Z=~dy|
Z = -dM
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random media and the summation is over the M-layers. The

unperturbed field Eéo)(f) is given by

E(O)(E) =E [+ a_. eliml T T + F -8B eiEml . E]
m o mi mi
(5.2)
where
k= ko o+ 2 K i | (5..3a)
R, =K, -zk_.. (5.3b)

The subscript i denotes that a quantity is to be evaluated

at the incident wavevector angles. The amplitudes in (5.2)

are determined through the propagation matrix formalism70

(Appendix'A) and f 1is a vector which denotes the fraction of
TE and TM components of the incident wave. The first and

second subscripts of the dyadic Green's function Eom(;’ ;l)

refer to the regions of the field and source points, respec-

tively. The plane wave representation of Eo (r, rl) has been

m

derived elsewhere.69 The result is
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= b - 2 = = o < 1
Gom(r, rl) = f 4%k, gom(kA' z, zl) e (5.4)
where
- wy ~ ~ ik =z
= - - _o 1 - mz~1l
gom(k;' z, Zl) = — {e(koz)[Am e ( kmz) e
8t< k
0z
~ -lkmzzl ~ ~ ' lkmzzl
+ Bm em(kmz) e 1 + h(koz)[Cm hm(—kmz) e
~ _ikmzzl
+ Dm hm(kmz) e 1} . (5.5)

The amplitudes Am’ Bm' Cm and Dm are also determined by

using the propagation matrix formulation. Taking the obser-

vation point in the far field, Eom(z' rl) is evaluated with

the saddle point method. The result is:

Gom(r, rl) = iy w {H_e + F e

(5.6)

where



79

B =3B e(k,,) e (k ) +D hk ) h (k) (5.7a)
Fm = Am e(koz) em(-kmz) + Cm h(koz) hm(-kmz) (5.7b)
e (k. ) =2 2zxk (5.8a)
m  mz k m :
R
h (k) =—=e (k) xk (5.8b)
m' mz m  mz m :
k
m
- 2 - 2,1/2
kmz (k kL ) ' (5.9)

km2 = w2u<em>, e is in the direction of the horizontally
polarized electric field vector, and ﬁm is in the direction
of the vertically polarized electric field vector.

Forming the absolute square of (5.1) and ensemble aver-

aging, the scattered intensity in region 0 is given by

= (1) %+ -
<JEST %> = z g { [ d°r.d%r, G__(r, r,)
S w?ud m=1n=17v 'V 1772 “om 1
=(0) = =« (2 o =(0)* = = =
E,  (ry) « G} (r, r)) - E (r,) <Q (ry) Q *(r,)>

(5.10)
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Assuming statistical homogeneity throughout the layered medium,
the two point correlation function <Qm(§l) Qn*(E2)> depends
Moreover, if we

only upon the difference of ;l and r

5"

s, m=1, 2, ..., M, that

assume that |4 = 4
m m

m - l‘ e lz
is, the thickness of a typical layer is much greater than any
of the vertical correlation lengths of interest, then it is
clear that random layers separated by one or more homogeneous
layers contribute negligibly to the first order scattered in-
tensity (5.10). In the case of adjacent random layers, with
n=m+1, m~- 1, the range of integrations in (5.10) is
restricted such that contributions only come from boundary '
layers on the order of a vertical correlation length thick
straddling the (m, m + 1), and. (m, m - 1) interfaces.
However, since |4 -4  _ 1l > e, m=1,2, ..., M, the
volume scattering of the boundary layers is much smaller than

the scattering of individual random layers. Therefore, we

approximate the two point correlation function as

<Q () Q *(r,)> = & C (¥; - T,). (5.11)

Making use of the unperturbed field Eip)(f) and the

far field approximated Green's function Ecm<f, El), we obtain

from (5.10):
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M
GEMIB L woxx [ et [ e, B
r " m=1s,s' p,p' Vm Vm ’
' - * '*-
. 5*(m) el(Skmz + s km21)zl e l(Pkmz *P kmzi)zz
p,p'

" where s,s', p and p' take values

- (m) Fo i -« (-8 .
q)—l,--l 4 m 8mi
T
E
= (m) o F F. =
Yo11 Z_'Hm - (£ “mi
T
E
-(m) _ o = . . =
wl,-l - Z_ o (£« Bpy)
T
E
;m - ofF . (2.3
lplrl - 4T Fm (f umi -

-itky; - Ky o-or,,

(5.12)
+1 or -1 and,

(5.13a)

(5.13b)

(5.13c)

(5.134)

The correlation function of random layer m may be expressed

in terms of its Fourier transform:
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-if s (T, = r.)
(5.14)

!
2l
i

- 'L 3 Y
m 1 2 6mkm { ag Qm(%L’ Bz) e

where 5m << 1 1is the variance of the fluctuations, km' =
Re(km),. and the factor A has been absorbed into the spectral
density @m(EL, BZ). Substituting (5.14) into (5.12) and pro-

ceeding as in Chapter 3, we find

Smki“ 473A

l-(m)

= (1) -
<AEgT %> = Vs,s

m

[ Z

|2 G_(sk + s'k
1 r? s,s' m mz

o=

mzi)

- - *
+P4(d -4 _ ) ek ., 0) Re(wl'_l . w-l,l)] (5.15)

m

where P = 1 for backscattering and P = (0 for other scat-
tering directions, A 1is the illuminated area on the hori-

zontal plane,

1 - T -1 '
Gm(Ssz + s kmzi) Qm(k;i k;' Skmz t s kmzi) -

” ] " " 1 "
[eZ(skmz +ostkeog)dy e2(skmz +s'k" )d 1

(5.16)
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and k&z = Im(kmz). Thus, given the spectral densities of the
correlation functions the first order scattered intensity of
a stratified random medium is readily obtained from (5.15)

and (5.16).
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5.2 Backscattering Cross Sections for a Three Layer Random

Medium
The backscattering cross-sections per unit area are given
by

Oy = cos 651 Yuu(koi’ -koi) (5.17)

where Yuu(El' EZ) is the bistatic scattering coefficient as
given by Equation (3.23). The subscript u represents h .or
v for horizontal or vertical polarization and we have noted
in (5.17) that there is no first order depolarized component
in the backscattering direction. Combining (5.15), (5.16) and
(5.17) we find the backscattering cross sections for the strat-

ified random medium:

M .
= (RS (m) - - -
o (2k ., 2k__.J
’ S(m) — = (5.18)
Hu K
mzi

where
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(m) - 2 TE 2 TE 2 TE TE*
Rpn = 27 [lsmi Ami' * Immi Bmi| * 2Re(Ap; Bni Bmi Ui 1
(5.19a)
gm) _ m? [IaTE A |2+ IBTE | 2 e_4kmzi(dm M dm - l)]
hh 2 mi "mi mi “mi
4k%zid 4k"zid -1
(e m . mzi m ) (5.19b)
(m) - 2 ™ 2 ™ 2 ™ *T
Roy' = 202 0l8ns Coyl? + logg Dpyl? + 2Re(Cyy 8y DAL o ™))
|kzi B k;z'lz |
2 = (5.20a)
4
km
vV mi "mi mi mi
4k&zidm 4kI'I'midm -1
(e - e ). (5.20b)
. . TE,T™™ TE, ™ ,
The coefficients Oy , Bmi as well as Ami’ Bmi’ Cmi

and Dmi are given by the propagation matrix formalism in

Appendix A.
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As a special application of (5.18) we consider two adjacent
random layers bounded by air above and earth below. In this
case M = 2 and the amplitudes appearing in Egs. (5.19) and
(5.20) are easily obtained through the method in Appendix A.

The results are

P:¢
= R Oll -y
Spn = Sk T;‘"T:“ 8dy @y (2k ;v 0V [Ryp; + Rygy
21
i2k,,, (d, = dp) i2k,,; (d, = dp)
e 1L+ Ryp3Ro3; © |
~4k1219 . 12kppifdy = dy) | —4ki3d
*+ (IR Ry3i @ | |
i2k, . (d, - d) ~4k"_.d
2zi 72 17, - 1zi"1
+ |1 + Ry5iRyq; © 1Y (1 - e )

-4k™" - 4,) ,
= 2zi 72 1 1zi™1
2 (2k 50 OV [Ry5; % @ e

-4k, (d - dl) —4k521(d - 4,)

+ (]R23i|“ e 2%t + 1)(1 - e )
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-4k" .4, ¢.,(2k, ., 2k.,_.)
e 1zi71 72 Li 221:’ (5.21a)
2kZzi ' '
[Yop5!° X5° =
= 1L, 2
Oy = S3k1™m ECETRE 8dy @1(2k, 57 018195 + Sp33
2i 1
e12k22i(d2 - dl)[2|l ‘s 5 elzkzzi(d2 - dl)‘2
1217231
- " 2 - 2 2
k12391 [Kps = Kigyl (18, + 8
lk,+ 12i 23i
1
i2k,_.(d, - 4.) -4kr .4
e 2z1i 2 1 Iue 1z1i71
i2k., . (d, - .4.) -4k" .4
2z1°72 17, - 1zi™1
+ |1 + $1,4553; © 1) (1 - e )

2k ., 2k, _. Yoo YL ke
CI>l( Li IZLiJ + dzk'“wz I OlJ.I | lZlI o}

" 2 4 4
2k12i |Eqpy | |k, |

-4kt . (d, - 4.)
- T 2 22172 1
[%(dz dy) 0,(2K,;, 0[S, % e
2 - 2 2 -— n - 1 -
[koi = KI5l 4ky,:9 . T4k5p3(dy - dp)
e + ([SZBil e

| ko [*

+ 1)



-4k! . (d, - 4,)
(1 - e 2zi 2 1 )
where
k.z - k.
Ri' = _&_______J_Z_
I3 k. + k.
iz jz
s - <ej>kiz - <ei>kjz
13 <e.>k, + <eg.>k.
3 iz i" 3z
X.. =1+ R,.
1] 1]
Yij =1 + Sij
i2k., (d, - 4,)
= 2z 72 1
E2 =1 + 812823 e .
i2k, _(d, - 4.) i2k, 4
o 2z 2 1 ] e 1z
i2k., (4, - 4,.)
- 2z 72 1
Dy =1+ RiHRy5e
i2k, (4., - 4d.) i2k. d
e 22 72 1 ] e 1z

1

4k121

.dl @2(2¥li, 2k

+ 8510815

+ Rpy[Ryy

1

-+

+

S

R

k321

23

23 °

Zzii]
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(5.21b)

(5.22a)

(5.22Db)

(5.23a)

(5.23b)

(5.24a)

(5.24Db)
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To illustrate the results as given by (5.21la) and (5.21b) we
shall consider correlation functions, which are Gaussian
laterally and exponential vertically:

B o - 7 2,02 _ :
[ri¢ rj$| /2pm z,

0
H
|
HI
0

§ k'* e
mm

where m = 1, 2 and the corresponding spectral densities are

-8 .222% /4
A % 22 Bu  on’
o (B, B, = 2B . (5.26)
: 41 (1 + Bz sz)

The choice of correlation functions of the form (5.25) are
advantageous in that we may vary the variances as well as the
correlation lengths in the lateral and vertical directions

independently for each random layer.
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5.3 Application to Data Matching and Discussion

We have obtained, for a stratified random medium, the
backscattering cross sections in (5.18) for arbitrary corre-
lation functions. In (5.21a) and (5.21b) we have taken the
special case of.two adjacent random layers, bounded above and
below by homogeneous media. Such a case is of considerable
interest, in the active remote sensing of vegetation covers
and snow-ice fields where the correlation lengths describing
the upper scattering region may differ significantly from the
correlation lengths characteristic of the lower scattering
regions.

To illustrate the theory, we plot in Fig. 52 the TE
and TM backscattering cross sections, nh and Oy a8
given in (5.21la) and (5.21b) as a function of frequency. Note
that the spectral variation of the backscattering cross sections
exhibits two maxima due to resonant scattering within each .
random layer. This phenomenon of double resonance (or multiple
resonance in the case of many random layers) may explain the
spectral behavior observed in some backscattering data. In
Fig. 5.3 we have matched TE backscattering cross section as
a function of frequency at 30° and 60° for a 50 cm al-
falfa field. The letters H (or h) represent experimental

Ohh while the continuous curves depict the theoretical results.
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As seen from this figure the model of the two-layer random
medium can account for the observed minimum in the frequency
dependence of the backscattering cross section. In Figs.

5.4, 5.5 and 5.6 we match the observed angular dependence

of the TE backscattering cross section at 9.0 GHz, 13.0
GHz and 16.6 GHz for the same alfalfa field. In order to
account for rough surface effects at the ground-vegetation
interface, we have incoherently superimposed the backscattering
cross section of a very-rough surface with mean square slope
s? and the backscattering cross sections of the random media.
As seen from Fig. 5.4 the backscattering exhibits a rough
surface effect, which dominates o&er volume scattering near
nadir. In Figs. 5.5 and 5.6 the backscattering data does

not manifest ground-vegetation rough surface effects due to
the shielding effect of the random layers at 13.0 GHz and
16.6 GHz. '

In Figs. 5.7 and 5.8 we match for both morning and after-
noon TE backscattering data as a function of frequency at
30° and 50° for a 27 cm snow field. 1In order to account
for the diurnal change in the collected data, we model the
snow field as two-random layers: A top layer 4 cm thick
and a bottom layer 23 cm thick. The oscillations in the

theoretical curves are due to coherent effects of the top
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4 cm layer, and are more evident in the morning than in
the afternoon. 1In order to match the afternoon data, only
the top layer parameters have been changed, the parameters
of the other layers are maintained at the same values used
to match the morning data. It was found that the most signi-
ficant parameter to vary in matching both the morning and
afternoon data is the imaginary part of the top layer mean
permittivity. The increased value of Im<el> required to
match the afternoon data, is consistent with the expected
increase in the free water content of a surface layer due
to the solar illumination. The increased free water content
causes the surface layer to appear more specular thereby
decreasing the amount of backscattering especially at the

higher frequencies.
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5.4 Appendices

Appendix A

The amplitudes Am, Bm’ agE and BiE in each layer are

determined through the TE propagation matrix formalism:

[— -. — e _- -
e 1K z%m : ST m - 1)2% - 1
m _ §TE | m-1

lkmzdm m,m - 1 lk(m _ l)zdm -1

"m € J m - 1 €

where
=TE - r
m,m - 1
Xm,m -1

-ikmz(dm B dm - l) —lkmz(dm - dm -
e R e
m,m - 1
lkmz(dm - m - l) ) lkmz(dm - dm -
R e e
m,m - 1
and Xm,m -1 is given by (5.23a). Em represents Am or
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TE TE _ _TE _
a " Ny represents Bm or B m Eo =R, n. =1 and

I''="1. The TE reflection coefficient has the continued

fraction representation:

-i2k. _d
[% - l;} e 1z71
2 s
JTE U1, Rg //+ £, ~izky 4y
= — e — .
R mi2ky,4 ‘
01 (1/Ry;) e 1
. ™ ™ .
The TM amplitudes Cm’ Dm’ o and Bm , 1in each layer,
are obtained from the above results by letting T =k l/km
and by making the replacement Rm,m -1 Sm,m - 1° In this
™ .
case Em represents Cm or am and nm represents either
D or BTM.

m m
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CHAPTER 6

Depolarization Effects in the Active Remote

Sensing of a Two-Layer Random Medium

For the problem of wave scattering by a half-space random
medium, backscattering cross-sections have been calculated with

63 The radiative transfer theory

a radiative transfer theory.
was derived by a wave approach making use of the nonlinear
approximation to the scalar Dyson equation and the ladder
approximation to the Bethe-Salpeter equation.59 Using the’
technique of Born approximations and evaluating the dyadic
Green's function with the saddle point method, in Chapter 3,
we calculated to first order in albedo the backscattering
cross—-sections for a two-layer random medium.

In this paper we carry the Born approximation to second
order to obtain backscattering cross sections that account
for depolarization effects. Instead of using the saddle point
evaluated dyadic Green's functions, we apply Fourier transform
methods in the calculation of the bistatic scattering coeffi-
cients. The results are reduced to the half-space case and
discussed in the limit of radiative transfer theory. The
backscattering cross-sections are applied to matching experi-

mental data collected from vegetation and ice-snow fields.
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6.1 Depolarization Backscattering Cross Section in the

Second Order Born Approximation

The second order scattering intensity takes the form

(Chapter 3):

1) (3)*

<JES12> ) = EP s+ 2me<BE N B - BT ED

+ Eéo)(E) . <Eé4)*(£)>}. (6.1)

It can\be shown that the terms in the curly bracket are negli-
gible [Appendix A]. We can concentrate on the term giving

rise to depolarization effects

= (2) =(2) = 1
2 — 2 — 3 3 3 3
<}EO| >UV = <|EO (r)| >uV = jv a rld rzd r3d r,
W Hg 1
(&.. (%, £,) - &, . (%,, z.) - {9z
o1'""’ "1 1171 72 1 2" 'uv

<Q(r]) Q(ry) Q*(ry) Q*(r,)> . (6.2)
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Here we use the first subscript u to denote the polarization
of the incident wave and the second subscript v to denote
the polarization of the scattered wave. We shall consider
the case of u # v.
The fourth order moment of Q(r) in (6.2) may be expanded

in clusters:

(6.3)

where C(Ei - Ej) is the two point correlation function for
the random medium. Note that the first term of (6.3) when
substituted into (6.2) gives the square of the second order
mean field which can be neglected in our calculation of

depolarization effects. We thus have

<|E(2)]2>(2) R - d®r.d3r_d%r_ d3r
(&) uv N s Jy

= = = =(0) ,= = - = = - -
. Gll(rl' r2) . El (rZ)]pv . [GOl(r, r3) . Gll(r3’ r,)
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C(r2 - r3)]. | (6.4)

The unperturbed incident field may be cast in the following

form

B0 (@) = 50 o0t T (6.5)
where

E{E) (z) = E_(F « & o 12i® -8, efiklZiz] (6.6)

and £, ii and Ei have been defined in Chapter 3. Intro-
ducing the expressions for the dyadic Green's functions and
the correlation functions of Chapters 2 and 3, we first
perform the integration over transverse spatial variables
which yield delta functions useful in the evaluation of

transverse wave vector variables. We obtain

=(2) (2) _ 2
<|E I2>uv -J a’k, — J da*e f_m dg_da,
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ok, = ky, By ok -k, a)) f_d dz,dz,dz,dz,
1l
=> =X =, (0)
. gOl(k;’ z, Zl) . gll(kx 2, 2Z4) e E (z, )]
ig_(z, = z,) 1ia_{(z, = z,) - -
[e L 3 e 2 4 EOI(EL, z, z3)
>
L=< T . (O)
gll(k.\. ’ 23, 24) E (Z )
ig (z, - z,) ia (z z,) s
+ e 2 1 ¢ e 2 3 gOl(kL' z2, 2 )
=X = = = 5 (%)
. gll(kli kL' + k;’ Z4, 24) . E (z )]* . (6.7)

The integrand of (6.7) is related to the bistatic scattering

coefficients (Fung and Fungsl). In the baskcattered direction,

we set k = -k_. and obtain
oi
_ dm(27k, ") %8%k_2cos 6 . o
UV 0 wuuou |E ,2 — 2z

<If>(k.L + k¢i' BZ) @(ELi -k, 0a))
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BZ' Cl.z)]} (6.8)

where

0 z
- - - _ 1 = _
Loy Gyr ke apr By = [_d | J_d dzylggy (ke 20 2p)
1 1
= - - (0) ~-ia z2 - iszzl
G113 r 290 Z5) ¢ Byt (zy)] e
A A [ (=K. ., z, z,) » g3 (K z.) « {9 (2.)]
, 21991 7 i 20 2 911V %10 3 11 ‘%2
1
-igq z2, - 18 2z
e 272 271 (6.9)

Carefully carrying out the integrations over e, Bz and the

spatial coordinates, we obtain, after considerable manipula-

tions ([Appendix B],

2
(2) 8w Eo cos eo.

@z . ; tp(85) £,(8))

~

¥ k_., - Y k ., -
hv ol oi vh ol oi 2 coszei [F |z

2
231 51Dy
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Wl(el

Wz(e,

WB(G,

(8,
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m/2 sin & sec 8
[ de wl(e. 8,) w32(e, 8,) Ml(e, 8.)
0 (sec g, + sec 8) 2 .
T/2 .
+ J de sin O sec 9 Wi (8, 8;) Wy(8, 8,) Wy(8, 8,)
0 (seczei - sec?g)
m/2 . :
M, (8, 9;) +J qp —=Sin © sec © Wy (8, 8;)
0 (sec ei - sec 0)?
2
W2 (9, Bi) M3(6, Si) (6.10)
k 21 2
reki4)2 T - (sin?6 + sin?sg,)
ei) = 1 e 2 (6.11a)
2
2L 2
8,) = - (6.11b)
4w [l + kizzz(cos 8 - cos 61)2]
28 2
8;) = .0 (6.11c)
4w2[1 + kizzz(cos 6 + cos ei)zl
-4k? .d. |R S,, cos?8|?
8.) = % cos?e, IR,..|2|s,,.|2 e 211 | 12, 12
i 4 i 121 121
D2 F2
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2
R10 Slo cos~9

+ +

)2

_z(kn .+ kn )d
](l -e 1zi 1z’ 71
F

2

2912
R10R12 ) SlOSlZ cos“eo

Dy F,

, 151051517 . .
+ S ... —=%___ co0s?9 sin?@ sin?a.
INE i

-4kY _d -4kY _.d

" n 1z71 1zi71
[Zdl(klzi + klz)(e - 1) e

—2(k" . + k" )d, =2k"_.d -2k" 4, -2k"_.d
+ (1 - e 1lzi 1z l)(e 1zi71 _ o 1z l) o 1zi 1]

(6.12a)

-4k?_.d

2 2 1zi™1
([815512[Ry5;1% @ + 1)
MZ(G, ei) =

1 cos?g,
1D
2

4

klzi

cos?g sin?sg sinzei‘
F + IF [2 J[(klZi - klz)
2 2

+ (k" + k") e-4klzidl - 2" e-Z(klZi + klz)dl
1lzi 1z lzi

]
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2
2 2
cos?g !SIOSIZI

|F

RioR12 _ S10515

D, Fy

+

4

+ (i cos?g,
i

21

0y + K)d

2 3 -2 2o 2 n - "
cos“6 sin®s sin ei}[(klzi klz) e

1271 _ kv e

+ (k + k" ) e 1zi

-4k 4 -Z(kizi + klz)dll
1zi 1z

2412
R Slz‘cos 8

12

D2 _T‘Fz

-1 - zri 2
> 1B12i ™ Sy [5 cos™0; {

TR AL

+ cos?g sin?sg sinze%][l - e

=2ky_.d -2k _d -2k}_.d
1zi™1 _ e lz 1] e 1zi71 (6.12b)

-4k7_.d

2 2
1zi% |R S1g COs°6

10

D, F,
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2
R S cos*f 1291

)

2 -2k" .d -2k" 4
](e 1zi71l _ e

2 F,

2
- 11 2 - 2|1 _ cos?e
5 [4 c0s"8; [Ryp; = Sya;l - "
2 2
2 f 2 22 - L
N lR s !2 cos“f sin“9 sin ei 2k121d1
12i 121 F
2
-2k" .4 -2k" .d -2k" 4
" IR 1z171 1zi71 _ 1z71
[2(klzi klz)dl e + e e ]
2 2
+ 1|1 cos?e. |r... -5, |2|-20f12 _ S10%12 ©°57F
> |2 i 1®124 12i . .
2 2
, cos?8 sin?e sin26i ,
* [Rypy *+ S5l RE —= 18745151
2
e'4k1zid1 e'Zklzdl 2(k" . - k* )a e‘Zkfzdl
lzi 1z’ 71

-2k" d -2k" _.d
-e 121 ., TlziTly (6.12¢)
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2 2
2

A

= 9O 2
ey (8;) £ (8;) = == |X ;1% %595
1 o

|2 (6.13)

~

where Ky = ZkI"' The backscattering cross-section per unit

o(2) 2 (2 g 6,; readily follows from (6.10).

area, uy v



113

6.2 Half-Space Limit and Comparison with Backscattering Cross

Sections of Radiative Transfer Theory

The backscattering coefficient (6.10) reduces to that for

a half-space when we let d, - . We find

1
(2) ;¢ _T _ 2y = T _ . {2) (2)
The (koi’ koi) = Yvh (koi’ koi) =Yy tY. (6.14)
where
412 cos 0, ¢/ 2 V.
YEZ) - o] oi tv(ei) th(ei) J a8 sin 6 sec 6
= k_%c, cos 6, 0 sec 6. + sec §
a 1 i i

. 11 .
2 2 ‘n2
wl(e, ei) w3(e, ei){wz(e, ei) sin?g {4 cas®p, sin®g

sec. 9.
i

2 P02 ' '
+ cos?f sin ei} + W, (8, 0;) [[R10

4 (sec ei + sec 9)

2n]2 2 2 2 iy 2 P 2
+ 8,4 cos?8|?cos?s, = [S;,]? cos®s sin®e sin 6;1}. (6.15)

(2)

+ is also obtained from the radiative trans-

The first term vy
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fer theory derived with the nonlinear approximation to the
Dyson equation and with the ladder approximation to the Bethe-
Salpeter equation.59 The second term YfZ) is an additional
contribution not accounted for by the ladder approximation nor
by the radiative transfer theory. The physical significance

of the additional contribution especially in the context of

renormalization methods will be discussed in Chapter 10.
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6.4 Appendices

Appendix A

The Cross Terms of Equation (6.1)

According to Equation (6.1) the cross terms are

(3)*

=(1) =y . = (0)
2Re{<EO (r) Eo

- - (4)*
(r)> + Eo

(r) -<i:o (£)>}. (A.1)

(3)*

The first cross term, <§él)(§) . Eo (E)> does not contri-

bute to the depolarized backscattering according to the

following argument. It is well known that the first order

(1)

field E has no depolarized component in the backscattering

direction. Therefore, even though E(B)(r)
-— *
(l)(r) . E(3)
o

may have depolar-
ized components the product <E (r)> is easily
seen to prcduce no depolarization effect in the backscattering
direction.

The fourth order scattered mean field is given by equa-

tion (3.11):

=(4) = - 1 3 3 3 3 = = =
<EO (r)> L J d rld r2d r3d r, GOl(r' r
o)

l) ll(rl r2)
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= - - - =(0) ,=
G1(Fpr T3) -+ Gy (Fq, T - BV (F)

<Q(ry) Q(r,) Q(r;) Q(F,)>. (A.2)

Substituting Equation (6.3) as well as Equations (2.5), (2.26)

and (3.14) of the preceding chapters into (A.2), we obtain

=(4) = = 1 3 3 3 3 2 2 2 n3?2 '
<Eo (r)> = J d rld r2d r3d r4 d de kL'd k; d k;

* gol (k zl Zl) * gll (k-‘." zlr zz) . gll (k.-L"’ Zzl 23)

. gll(k 't ozg, 2,) j d36d?g ¢(B) o(a)

~iB (E -r.) -ig - (r, - r,) -ig + (r, - r.)
[e 1 2 o 3 4 + e 1 3
-ig - (r, - T ) -lé s (ry - T7.) -ig » (r, - r.)
o 2 4 + e 1 4 o 2 3 ]
_(0) lk; . (;L - rll) iki' (rl_L rZL)
. l (z ) e e
i
ik, " ¢ (r,, -~ r,) ik '" . (z. -F ) ik . . E
e * 2L 3t e 3L 41 e i 4.
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It is understood here that Sll(EL, Zss zj) actually consisps
of two parts corresponding to z; N zj. Performing the trans-
verse spatial integrations first we then may carry out the
integrations over &L, é;' E¢" and EL'". The result takes

the form:

ik . . + ik .z

<ﬁ(4)(§)> - 5(4)(§ ) e ti 1 ozi (A.4)
o o Li
where
~(4) = (5ki“)2(2w)3 , ,
= L
Eo (kxi) = — I d ng k; [ dazdsz f dzldzdede4
w*ug
= "ikgzi% =» o
ok, ~ k. 8,) e Io1p Kpir Zr Zp)
s gyt zge 2 Mok, -k g 0)) gy (kg 2y 29)
- - -ig_(z, - z,) -ia_(z, - 2,)
gll(kJJ 23’ 24) e z 1 2 e z' "3 4

2 0 I (ks zy0 24
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C B (2. (A.5)

-ik .z
0zi® =2

It is to be noted that the term e gOI(E z, z;)

i’
in (A.5) is independent of 2z. It is clear from (A.4) that
the fourth order scattered mean field is specular and can only
contribute to backscattering at normal incidence. However, .
even for normal incidence it is important to recognize that

the zeroth order reflected field ﬁéo)

has no depolarized

- - - k. -
component. Therefore the cross term 2Re[Eé0)(r) . <E£4) (r)>]
does not contribute to depolarization in the backscattering

direction.
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Appendix B

Derivation of Equation (6.10)

The integrand of Equations (6.9) may be cast into the

form:

- =
o -- L] a x L] _(0)
[y (“kyzr 20 2) = 9y (ke 290 23) = By (2300

- =2 e PTRMR RS PR
= T T (A v(¢))SS' : €
s,s’ p,pl u PP
i(sk, . + s'k, )z ik .z
e 1zi 1z° 73 e ozi (B.1)

where we have used Equations (2.6), (2.22), and (2.25) of
Chapter 2. The indices s, s', p and p' take the values

>
of +1 and -1 and the amplitudes (ﬁ;v(¢)) are listed

ss'pp’
in Appendix C. Substituting (B.l) into (6.9) we form the

following expression:

, a_, B.)

- r Lz, =
(k Kiir P Bz) Iuv(kx' k¢i z z

= 3 5 5 $ {(B (9)) (A5 (4)) ==, ==
= o (0 Ly (0))

ss'pp’ ss'pp'



124

(Z ’ ) a ’ B )
dl dl dl dl 1 2
o+ BB, 5,50
(231 241 azr BZ)
- » .
+ (A (¢))ss'pp’ . (Auv(¢))§§ '35

0 zl 0 0 (p p s,s')
4d r ’
j- dzl [_ 22 J_ dz3 j dz4 (z 2’ o, Bz)

1 d; dy Z4 z
F*(pli'l Elg')
(231 Z4r azr BZ)
+ (RS () - (A L ($))22,==
v ¢ ss'pp' ¢ ss' pp

° 0 0 23 (pr + S,8")
J-d dzl j dz, f_ dz, ) dz, F (z 22, o, B.)

1 24 dl dl 1 A -4
p*(0,p', §,8")
(z3l z4l azl Bz)

(Z 221 az, BZ)
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Kl ™ ==
F gg,p A ) 5) (B.2)
3’7 %4’ r Pz
where:
p(@/P', s,8") 1Py, + PRy, = 8,02

(zl' Zor Qpr Bz) -

i{sk, . + s'k - a )z
e lzi 1z z 2' (B.3)

Similarly, we obtain,

Iuv 1r TRy g o, Bz) ‘ Iuv(-kx’ -k¢i' Bgo c‘z)

dl dl dl z
F*(P:P r S,5")
(23, z4, B, )
+ (B (9) C ES (6 + m)Ez, ==
v ® ) sspp: wv'® ¥ g5 g
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=<
F AL g Bl 6+ Tz, 'Bp’

[ 0 0 0 0 (p p s,s')
dz j dz j dz f dz roer
1 2 - 3 (Z 2, azl BZ)

feN

y1 - (B.4)

Substituting Equations (B.2) and (B.4) into (6.8), we then
perform the a, s Bz integrations before carrying out the z

integrations. The only contributions must come from the poles
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of the spectral densities. However, in order to determine the
direction in which to close the contours in the complex a,
and Bz planes, it is necessary to subdivide the domain of

z 1integrations further. 1In Equation (B.2) we must break

the integrations into regions in which z, 2 z, and zq 2 Z4.
In Equation (B.4) we break the integrations into regions in
which zy 2 z, and z, 2 z5. For example, consider the first
term of Equation (B.2) when substituted into (6.8)

(2) = i 2
Yuv (koi' koi) « F z . _Z_' _Z_' J d k;
first term s,s° PP S,S° P/P
of (B.2)
0 zl 0 23
J dzl j dz2 I dz3 J dz4 daz dBZ
-4 —d; =4, -d;
= (p,p', s,8")
d(k, + k. ., B.) ¢(k -k, a) F
L il z ai z (zl, Zor Q1 Bz)
*(prﬁ-)'l grgl) => =< *
F (23, Zyr G, BZ) (Auv(¢))ss'pp' (Auv(¢),ss'pp"

(B.5)

We then break up the integrations over =z, as
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0 zl 0 23
+ J_ dz1 j_ dz2 J dz3 J dz4 (B.6)

when (B.6) is substituted into (B.5) the direction in which

to close the contours in the complex o Bz planes is well

m=1, 2, ...

g 1+

defined. We denote the poles of ¢ as B8
where the superscripts + and - signify the location of the
pole in the upper or lower half complex plane, accordingly.
Therefore, upon performing the a, and Bz integrations,

Equation (B.5) becomes
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Y(z)(E ., =k _.) « T z T I (27i) 2

TRV oi oi '
first term S/S° P
of (B.2)

mzn [Res @(kL + kxi' Bm ) Res Q(Exi - kL’ B )
’

+ Res @(kL + kLi' Bm ) Res Q(kxi - kL, B_ )

(p,p', ss', pp', ss')
W, (87, 87

r UV n

- - + - -
- Res Q(kx + kxi' Bm ) Res @(kLi - kJ: B )

n
(p,p', s,s', 5!5': §,§')
+ -
w3,uv(8m ! Bn )
R (XK. + & ") Res 0(k . -k, g 1)
es olky i’ Bn es Li L’ *n
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- - + - +
+ Res ¢(k¢ + kLi' Bm ) Res Q(k¢i - ki’ Bn )
(p,p', s,s', p,p', S,58")
(%, 8. ] (B.7)
5,uv ' "m ’ Pn . :

where the summations over m and n extend over the poles of

® and

(Ppp": S,S', plp') 0 » zl 22 Z3
Wl,uv(az’ BZ) = f-d dzl f—d dz2 f—d dz3 [—d dz4

1l 1 1 1

Ny A< e —— plPsp', s,8")
{(Auv(¢))ss'pp' (Auv(¢))ss'pp' F(zl, Zyr Oy Bz)

)} (B.8a)

=
[\S]
-
ot
<
—
Q
N
-
w0
N
N
i
Smemm—y
|
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. e - (p/P', s,s8")
' (A (¢))ss 'pp’ F(zl, Zyr 0yr B,)

*(Prﬁ'r glg')
F } (B.8b)
(231 Z4, azl BZ)
(p,p', s,s', 5'5" glg') 0 zl ° [ 22
3,pv(az' B,) = [-d dz, f-d dz,, fz dz, g dz,
1 1 1 1
=~ (p,p', s,8")
A . F
{( nv (¢))ss pp ( (¢))SS pp (zlr 227 azl BZ)
*(p,p', S,8')
F } (B.8c)
(24, Zgr a0 B))
(p,P', s,s', 515'1 EIE') 0 Zl 4 z
_ 1 3
Wy, uy (0gr By z f_d dz, I_d dz, fz dz, L dz,
1 1 2 2
- . —_— —— (plp'l S,S')
CAL () g+ (B (‘1’”55 'B5' T2y, 2y, ays 8)

)} (B.84d)
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(p,p', s,s', 1315'1 grg') 0

zl 0 23
W (ax_, B.) = f dz [ dz f dz f dz
5,uv "z Z 1 2 3 4
-4 =d; 31 Z,
=> . * (p,p', s,s8")
{(Auv(¢))ss'pp' (¢))ss 'pp’ F(zl, Zyr Qy Bz)
p*(P/P', 5,8")
(z3, 24, a, sz)} . (B.8e)

The next step is to perform the z integrations retaining only
those terms which are dominant in the low conductivity regime.

The result is:

v Sk ., ) « - g _I_ _zI_
B oF o first term s,s' p,p' s,s' p,p’
of (B.2)
- - - 2
555 85050 Spp Spizi | (B v () ggrpptl |
"
4Kss' =

,:Res (D(k.’- + k-Ll' Bm—) X

(Kss' - Bn )(Ksp. - B8_)
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-— - + - -
. Res <I>(kJ.i + kL, Bm ) Res @(kli - k;’ Bn )
- +
* - %* -
(Kss' Bh )(Kpp. B )
= - - - - +
. Res @(kLi + k;' Bm ) Res Q(kxi - k¢, Bn )
%* - + * - -
(Kss, Bn )(Kpp. Bm )
Res ¢(k.. + k., B.7) Res 0(k . - & 5
. Li L’ Fm i L’ Bn :} M(s,s', p.pP')
_ + . _ + (k)
(K;S' Bn )(Kppu Bm ) P
(B.9)
[ ] ]
where Mgi’? » P/P") is defined below in (B.lla). Following

steps analogous to those which led to (B.9), we include the
remainder of the terms in (B.2) as well as all of (B.4) when

evaluating (6.8). The result is:

47 (27) % (sk1*)2k 2 cos 9 _.

(2) ,= = 1 o) oi .

yB® L, k) = Jde (27i)2
uv oi oi w““o“‘Eolz L
- -
m?ﬁ s%s' p?p' {(Auv(¢))ss’pp' [(Auv(¢ + "))pp'ss'

A< (Srs'r prp') x>

+ (Auv(¢))ss.pp.]* N(kp) + (Auv(¢))ss'pp'
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- -
* {(Au\)((b + W))ppls'sl + (Auv(¢))55'pp']*
(s,s' p,p') Jmn
x M(k') ’ } —— (B.10)
P drggt

where

2(!(" . + " ')d ZK" ,d an ,d
M(i'?" £,p") 1 - e PP ss'' 71 e ss l(l - o PP 1)

( " " 114
P (KPP' + Kssl) Kppl
(B.11la)
2(k" , + k" d 2" 4
' ' - PP Ss 1 _ pp' 1
Ngis)pp dzlcoe -d-e ) (B.11b)
o) (Kss. Kpp.) Kpp,

J i l:Res <1>(k_L + k_Li, B, ) Res q:(kl_i -k, B )
mn - _ - - -
(K;S. Bn )(KSP' an)

- - - - +

. Res <I>(k_L + k¢i’ Bm ) Res Q(kii - kL' Bn )
-+ -
(K;S. - Bn )(Kgp. - Bm )

- - + - - -

. Res @(EL + k;i' Bm ) Res @(gLi - kl’ Bn )
- +
(K;s. - Bn )(K;p. - Bm )
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+

- - + = +
Res o(k, + k ;. By ) Res o(k ; -k , B i] (B.1lc)

+ +
(kEgr = B, (20 = g

The term r J
m,n
argument. Let

may be simplified by utilizing the following

(B.12)

where @(EL, az) vanishes everywhere on the circle at infinity

and has an equal distribution of poles {am+} and {an—} in
the upper and lower half complex planes. z is a complex

number which lies anywhere in the complex plane. To evaluate

(B.12) we may close the contour either up or down.

Closing up
and assuming Im zp > 0 we find:
- Res (I)(]E_L, am+)
I = (2ri) |-¢{k,, z) + T (B.13)
TP m (z_-a D]
P m
and closing down, we find
Res o(k., a_ )
I =- 2mic: . .a (B.14)
n (z_ - a_ )
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Therefore, it follows that

+ 3 n__ . (B.15)

Multiplying (B.15) by @(k ', z ) yields

- _ [Res Q(EL’ am+) Res. @(il:, an+)
@(k-‘., z_) Q(k.l...' z2) = z
P S m,n (z_ - a +)(z - Q +)
! P m s
- + - -
. Res @(kl, an ) Res @(kL', a, )
(z_ - a )z, - a )
o) m s n
- - - +
. Res @(kL, ay ) Res Q(k;" a, )
(z_ - a_)(z_ - o +)
e) m s n
+ (B.16)

— - - ' -—
Res ¢(k,, a ) Res ¢(k ', o i}

This result would not change if we had assumed Im(zp) < 0
rather than Im(zp) > 0 as we did. Therefore, utilizing the

result (B.1l6) we may sum equation (B.llc) as:
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). (B.17)

Substituting (B.17), Equation (3.29) of Chapter 3, and the
: : |
uv’'ss'pp’

after some algebra; Equation (6.10)

values of (A from Appendix C, into (B.10) we obtain

8m%e cos 6 .
(2) g ., -k ) = o oi
oi

(2 (® ., -k = ol
€, cos ei

Yhe oi oi Yvh

f

J ae sin 6 sec §
TR LY l 0

(sec 6, + sec 8)?

2 )

de W

(6, 8.) W,(8, B.)
0 (sec ei - sec 9) * 2 1

Jw/z sin 8 sec 9
M 1

/2
w,(6, 6.) M (8, 6.) + [ de
3 1 2 1 0 (sec 6§, = sec g)?

sin 8 sec @

4

wl(e, ei) W22(6, Gi) M3(6, ei) . (6.10)
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1,1,1,1 v 12i ®12i
k. . R k. S
1zi 12 cos ¢ sin ¢ - 1z 15 a, (6)
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where

at(¢) S (klzklzi cos ¢ * kpkpi) sin ¢

F ozoE f““o] Y10i%011
H © [87r2 F,.D,. k k. k. _.

2i721i ToT1z 1z

) h(kozi) for scattered TM waves
u = R
e(kozi) for scattered TE waves
. -2 '
The coefflélents (Avh(¢))ss'pp' are obtained from the rela-
tion
> <

- -
(Avh((b))ss'pp' (Ahv(¢ + W))pp.ss,
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CHAPTER 7

Renormalization Methods in the Active Remote

Sensing of Random Media

In the preceeding chapters the problem of electromagnetic
scattering by a two=-layer random medium is solved with an
iterative approach. However, if multiple scattering effects
are to be included renormalization methods are necessary in
which the Neumann series for the mean and covariance of the
electromagnetic field are resummed. Tatarskii64 employed a
Feynman diagrammatic technique to develop the Dyson equation
for the mean field and the Bethe-Salpeter equation for the
covariance of the field. He also considered the bilocal and
ladder approximations to the Dyson and Bethe-~Salpeter equations,
respectively. Rosenbaum65 also investigated the coherent wave
motion by applying a non-linear approximation to the Dyson
equation.

In this chapter we review the development of the Dyson
and Bethe-Salpeter equations and discuss the various approxima-

tions made in the solution of these equations.
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In Chapter 3, we obtained the integral equation which

governs the scattering of electromagnetic waves by a random

medium. In the case of a point source, we have:

Gz, £ ) =80 E, E) JV er 89, £ oEn - @, £
(7.1)
where Q(r) = wzuoelf(f). Iterating (7.1) leads to the in-
finite Neumann series given by:
gz, 20 =39, ) + j asr 39z, ) iy - 0, T
Q (@) v (o]
+J adr J arer 9z, 79 . Pz,
v v
. o(r") a(E") - &) (zn, Eo) + ... (7.2)

—

Ensemble averaging (7.2) yields
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5Oz, 1 - FO@E, B cE - B o+ ... (7.3)

where it should be noted that all odd order moments of Q(r)
vanish and all even moments of Q(r) are cluster expanded
in terms of the two-point correlation function, C(r - r').
A convenient method of handling cumbersome equations of the
type (7.3) is through the use of Feynman diagrams. The fol-

lowing symbols are used in constructing the Feynman diagrams

= <G(r, r)>
=89z, £
m =C(r-r")
) = vertex over which integration is implied.

Thus (7.3) may be expressed as
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+ ... (7.4)

where, for example:

m =Io}_ - - (o} -
= J d3r'dsr" G(r, r') « G(r', ")
v

]

. G(r", :‘:O) c(r' - "). (7.5)

We now define diagrams (minus end connectors) as strongly
connected if it is impossible to bisect the diagram withoﬁt
breaking the correlation connections. All other diagrams are
called weakly connected. The sum of all strongly connected

diagrams defines the mass operator, given by

(7.6)

We note that with (7.6), Equation (7.4) may be written in

the form

+ B B B + ... (7.7)
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+-——-—E[' + ‘E + T B+ L, L]

(7.8)

5

(7.9)

where (7.9) is the diagrammatical representation of the Dyson
equation for the mean Dyadic Green's function. In énalytiC\

form (7.9) reads:.
EE 5> =89 £ f airraier 39z, 9
. O(F', T") . <G(¥", T )> (7.10)

Here Q 4is used to denote the mass operator.

In a similar fashion we introduce the symbbl for the

field covariance:

= B(T Z ) BR(ZU. T %y, - B(F. F *(F' F Ot
= <G(r, T)) G*(f', T *)> <G(T, r01><§ (', £_")>

(7.11)
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The Neumann series for the field covariance has the following

diagrammatical representation:

:
X

(7.12)
where for example
- 3 3 ' =(0) - - =(0) ,= -
' = fv d rld ry [G (r, rl) « G (rl, ro)]
@z, 5 - 89@, 51T eE - F . (7.1

The sum of all strongly connected diagrams is defined as the

intensity operator:

x = I + :Zggz: + ‘:::i::>‘4+ ce (7.14)

This allows the infinite Neumann series (7.12) to be written

as:
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]

j - (7.15)
X _+_ X X +---

il
|
X
+.
uﬁf—j
+

(7.17)

I||
LLX|
|

Equation (7.17) is the diagrammatic representation of the
Bethe~Salpeter equation, which will be given in the next

section in analytical form.
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7.2 Approximations to the Mass and Intensity Operators

In (7.10), Q(¥', ") denotes the mass operator, which
must be approximated if Dyson's equation is to be solved
analytically. The most popular approximation to the mass
operator is the bi-local approximation, which consists of

retaining only the first term in the series for 5, that is,

(r', ") C(xr' - "). (7.18)

0l
Y
HI
i
o)

Physically the bilocal approximation corresponds to a single
scattering of the mean field as can be seen by substituting>
(7.18) into (7.10). The validity of the bilocal approximation
has been discussed by Tatarskii,64 and Rosenbaum65 has shown
that the bilocally approximated Dyson equation together with
the ladder approximated Bethe-Salpeter equation do not lead
to an energy conserving formalism.

Another approximation to the mass operator which circum-

vents these difficulties is the non-linear approximation, in

which an infinite sequence of terms in (7.6) is summed.
&=Q=Q+m+... (7.19)

Substituting (7.19) into (7.10), we obtain a non-linear integral




152

equation for the mean dyadic Green's function

<G(z, T)> = 80z, )+ ] asr' a’rm 800 (g, 9
v

. <G(T', T")> - <B(E", I )> C(E' = ") (7.20)

Physically, the non-linear approximation accounts for multiple
scattering of the mean field and in this regard is superior
to the bi-local approximation.

The usual approximation made for the intensity operator
is the so called ladder approximation in which only the first

term of the series (7.14) is retained. That is,

(7.21)

R
o——o

-]

In which case the Bethe-Salpeter equation reduces to:

::::I: - ::I:: + j:I. - (7.22)

or:
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FE E) B E> = [ amatn ol - BOIRE s
- <B(Ty, T )><B*(F', Fy")> - <Br(EY, T)>
+<&<B(F, T))> F(ZF,, T )<BH(E', T")> S*(F,', ']
(7.23)

where §(§, Eo) = G(T, Eo) - <G (%, fo)>, is the incoherent

mean dyadic Green's function.
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CHAPTER 8

Mean Dvadic Green's Function of a

Two Layer Random Medium

The study of the mean dyadic Green's function for a two
layer random medium is of special importance in the fields 6f
scattering, radiation, and diffraction of electromagnetic
waves as applied to optical communications in the atmosphere,
radar backscattering from earth terrain, and active remote
sensing of the terrestrial environment. It is well known
that the coherent wave motion in a random medium can be de-
scribed by Dyson's equatibn, which is an exact equatioﬁ for
the mean field. Dyson's equation expresses the coherent
field in terms of a mass operator Q which is in the form
of an infinite series and must be approximated. The most
commonly used approximation to Q 1is the so called bilocal
approximation which follows by retaining only the first term
in the infinite series representation for Q. Solutions to
the bilocally approximated Dyson's equation have been the

subject of extensive investigation in the 1iterature.64'65

However, as pointed out by Rosenbaum,65 the bilocal approxi-
mation not only leads to solutions with potentially severe

range restrictions; due to the omission of higher order terms
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in the mass operator, it also leads to solutions which are
energetically inconsistent with the Bethe-Salpeter equation
under the ladder approximation. An approximation to the
mass operator, which circumvents these difficulties is the

65 in which an infinite sequence of

non-linear approximation
higher order terms in the series for Q 1is summed. This
approximation to the mass operator results in an intractable
non-linear integral-differential equation for the coherent

field. Rosenbaumss'75

found approximate solutions to the
non-linearly approximated scalar Dyson's equation, for un-
bounded random media in the limit of large and small scale

58,53 using a two variable ex-

fluctuations. Tsang and Kong
pansion technique have solved the scalar Dyson's egquation in
the non-linear approximation for the cases of a one~dimensional
two-layer laminar structure and a three dimensional half-space
random medium. In the limit of a laminar structure they found
the coherent wave motion to possess two effective propagation
constants. More recently, Tan and Fung60 also employed the
two-variable expansion technique and solved the hon—;inear
Dyson's equation for the zeroth order mean dyadic Green's
function in the case of a half space random medium. Their
vector solution contains only a single propagation constant

for all components in the Green's dyadic.

In this paper we employ the two variable expansion tech-
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nique to obtain the complete zeroth order solutions for the
mean dyadic Green's functions of a two layer random medium
with arbitrary three dimensional correlation functions. It

is found that the coherent vector field in general propagates
in the random layer as if in an’anisotropic medium with dif-
ferent propagation constants for the characteristic TE and
TM polarizations. Moreover, in the limit of a laminar struc-
ture two propagation constants for each polarization state

are found to exist.
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8.1 Zeroth Order Mean Dyadic Green's Function Using the

Two Variable Expansion Technique

Consider a two-layer random medium with boundaries at
z=0 and z = -dl [Fig. 3.1]. The random medium has a
permittivity consisting of the sum of a mean part €4m =
<el(§)> and a random part' elf(E) whose ensemble average
vanishes. The media in the regions 2z > 0 and 2z < --d1 are
nonrandom having permittivities €s and €y respectively.
All regions are characterized by permeability Moo The random
fluctuations slf(f) will be assumed to be statistically
homogeneocus so that the two-point correlation function of the
fluctuations is a function only of the difference in the two
points. The coherent dyadic Green's function of a point source

imbedded in the random medium satisfies Dyson's equation which

under the nonlinear approximation takes the form

— -— —_— - — - 2 —1 - — = = -— - -
V x V x Gllm(r’ ro) klmcllm(r' ro) I §(r ro)
3 = - - = - - - =
+ IV d r, Gllm(r’ r2) allm(rZ’ ro) C(r rz) (8.1)

where kim = wzuoglm and the spatial integration extends over

the layer of the random medium. The first subscript of the
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dyadic Green's function indicates the region containing the
observation point, the second subscript indicates the region
containing the source point, and the third subscript indicates
that the dyadic Green's function is the mean dyadic Green's
function. We introduce the Fourier transforms of the mean

dyadic Green's function and of the correlation function:

= - = 1 ( 2 = = lk..l. ) (r.l., - rO_L)
Gllm(r’ ro) = 2 d L gllm(k.L’ Z, zo) € |
(2m)2 J
(8.2)
o . ~ie - (xr - )
C(r - rz) = f dla ¢(a) e (8.3)

1
Hi

— _ A ~ 2
where Kk b4 kx + vy ky and d k_L

L dkxdkyt Substituting

(8.2) and (8.3) into (8.1l) and performing the transverse

spatial integrations, we obtain

(jﬁL + k2 g.. (k,, z, z) - |ik + z 21ik. + 2 Jij
4 (4
322 lmz 1lm L o} L 5z L 5z
3y1m K 2o 2) = =T 6(z = z) - —2
(2m) 2
=) de ' r ® 4 ¢ 0 E . - ) "iClz(Z - 22)
J_m n J-m a, J—d dz2 3 ( T kL, a,) e
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where

k

2 2,1/2
1mz [klm kL 1 . (8.5)

To solve equation (8.4) we make use of the two variable ex-
pansion technique, which has been used to solve for the long
distance behavior of the wave propagation in a random medium
with laminar structure.58 Following the procedure as in

58,59 and defining a bookeeping parameter, s,

0

Tsang and Kong

we find that to zeroth order of s

37 4 k2 g (k,; z, £, z_, ) - (ik + z iL] iR o+ oz 2
I 14 4 4

322 lmz llmo 'L o o] L BzJ L 2z

gllmo(ki: 2, &; ZO’ EO) = -I §(z - ZO) (8.6)

and to order, s for =z z zo,

- 82

32 =
+ k2 g (k.;: z, £§; 2, £§) = -2
[322 lsz 1iml ‘" o o] 329E
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0 o @ _ _ ~ia,(z = 2,)
- 2 ' | -
j- d22 J_m daz f- d<k @(kL k;' az) e

gllmo(kx" Z, & 2yt 52) : gllmc(k.t.’ 2y EZ; 207 Eo)

(8.7)

where £ = sz, go = sz, 52 = sz, are long distance scales
and the subscripts o and 1 which follow the subscript m
on the meaﬂ dyadic Green's function denote, respectively, the
zeroth and the first order solution. In deriving (8.7) we

have used the divergence relation for the mean dyadic Green's

function in Fourier transform space, which for z > z and

o
z <z is given by
iEL + ; 2 4 s 2 . réllmo(EL; z, &; zgr go)
3z 9
+ sgllml(EL, z, &; Zgr go) + ..Z] = 0. (8.8)

From which it follows that:
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( b
- - - —a— » pt k 7 =
Zeroth Order: (lk* + z BZJ gllmo(kL’ z, &; Z So) 0
(8.9a)
3 . i e - -a—- . p= - .
First Order: 1kL + 2 az} gllml(kL’ z, &; zZ Eo)
A 33 (E zZ, £&; z_, & )
== 2 llmo "L’ o o] ) (8.9Db)
13

The zeroth order Fourier transform mean dyadic Green's
function satisfies an equation identical to that satisfied by
the Fourier transformed dyadic Green's function of the non-
random problem. This is not surprising since in the limit of
vanishing random fluctuations the zeroth order solution ob-
tained from (8.6) must reduce to the dyadic Green's function
0of the corresponding homogeneous problem. Moreover, the two
variable expansion technique carried to zeroth order, accounts
for the random fluctuations essentially by introducing correc-
tions to the phase of the unperturbed dyadic Green's function.

Therefore the zero order solution takes the form

- AA 6(2 - Zo)

(kL’ 2, &; Z 50) = - zz =
1m

911mo
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+ (8.103)

where
=> (]—{- . -
gllmo J z, &; Zol EO) =
. ~ ik z ~ -ik V4
1lmz lmz
[Al(k;’ £) e(klmz) e + AZ(EL, £) e(-klmz) e ]
~ ik 4 A -ik A
- Imz"o imz
[Bl(k.‘_, go) e( klmz) e + Bz(k_,_, go) e(klmz) e o
{ +
~ ik z -ik z
1mz o 1mz
[Cl(k.L' £) h(klmz) e + Cz(kg.' £) h(—klmz) e ]
~ ik z N -ik 2
- Imz"o lmz "o
L[Dl(kJ_, go) h( klmz) e + D2(ki, 'c:o) h(klmz) e ]
(z > zo) (8.10b)

gllmo(k

_L,ZIS:Z:E)



163

( ~ iklmzz A -iklmzz
[By kv &) elkyy,) e + By(k , &) el(-k, ) e ]
ik z -ik z
e (- Imz o A 1mz“o

[Al(kL, £,) el klmz) e + A,k , go) e(klmz) e ]
J +

[Dl(kL’ £) h(klmz) e + Dz(gL, £) h(-klmz) e ]

. (x £ ) ﬂ(-k ) eiklmzzo + Co(k ) ﬂ(k ) e-lklmzzo]
L1 o imz 2% 5o 1mz

(z < z) (8.10¢)

The unit vectors e(klmz) and h(k ) point in the

1mz
directions of the electric field for the TE and TM polarized
waves, respectively, we next substitute (8.10a)-(8.1l0c) into
(8.7) and eliminate secular terms independently for each
polarization. This yields four differential equations per
polarization in the variable, §, for Al’ A2, Bl’ BZ and

D D

for Cl, C2, 17 Dy

ential equations may be cast into the following compact form:

After careful manipulations, the differ-

(

. 3 - T,= -
0 = =2ipk —_— (k , &) + (27i) £ = ¢ 2 1
1mz sg P+ ms T fd k,
Res ¢(k ' -k , o ) - omr o i R
——— &+ 0§ TR, R R, 8
il-skypy * PRyp, + oy ]



0

- - +
L Res 0(k ' -k , o ™)
. apT(k_‘_, £)] + J dzk‘L' = L _n -
O 1
i Sklmz * pklmz * %n ]
=T -T' = - T =
Bs (-k_‘_', E)[a_s(-k"_', £€) ap (k,r )]
iam 2 =, _ = + oS =T
+ ;?- i J d°k, ' Res Q(kL' k,,o ) zz up (kx’ £€)
1m
-2ipk 23 Tk, + (2ri) £ £ f d?k !
lmz 50 P & nsT +
Res ¢(k. ' = k., a ") _mt _ T .
B 5Tk, O BT (R, )
i["S'k]'.mz * pklmz + %n ]
- +
Res ¢(k ' -k, «
-eT(—E,a>1+Jd2k' = =1
p L 1 i[-sk pk +a t
lmz 1lmz n
=T" =T T, -
Bg kJ_', E)la_(=k ', §) Bp (-kJ_, €)1
i2m 2y =, = S
- 12 i[d k' Res 8(R ' - K., o) 22 B TR, ©)

1m
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(8.11a)

(8.11b)



where

=]
[}

Q1

g)

£)

£)

£)

£)

TE

™

TE

™

TE

™

TE

™
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(8.12a)

(8.12b)

(8.13a)

(8.13b)

(8.14a)

(8.14b)

(8.15a)

(8.15b)
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In (8.1la) and (8.11b) the indices p and s take the wvalues
of +1 or -1, whereas the superscripts T and T' stand
for either TE or TM. Moreover we have performed the a,
integration using residue calculus, with an+ and an-
denoting, respec¢tively, the n-th poles.of @(&L, az) in
the upper and lower halves of the complex a, plane. In the

case of laminar structures, for which k + o, equations

lmlp
(8.11a) and (8.1llb) are different. Treatment of this case is
deferred to Section 8.5.

Solutions to (8.1lla) and (8.11b) have the form:

T
- - - - ipA~(k )§
apT(kL, g) = apT(kJ_) e + (8.16a)
. T =
- - - ipA~(k )¢
B, (k. 8) =B TR e = (8.16b)
where
P e (k) T = TE (8.17a)
1 L T A
hky ) T = ™ (8.17b)
. Ay (k) el-ky ) T = TE (8.18a)
a_l(EL) =

CZ(EL) h(—klmz) T =TM (8.18b)
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Bl(kL) e(—klmz) T = TE (8.19a)
B, T(k,) =
l L— A
Dl(kL) h(-klmz) T =™ (8.19b)
o BZ(kL) e(klmz) T = TE (8.20a)
b, (k) =
1 L ~
DZ(kL) h(klmz) T =T (8.20b)

In (8.17a) through (8.20b), we have redefined the coefficients
in the right hand side of (8.12a)-(8.1l5b). First note that the

g-dependence of Al' Az, Bl' B2, Cl’ C2, Dl and D2 is

exponential in behavior and thus may be combined with their
tik.,. 2

multiplying exponentials, e imz which appear in the mean

dyadic Green's function (8.10a). We then factor out the am-
plitudes of Al and Cl
combine these with the other amplitudes in (8.10a). This

which depend only on k,, and

defines a new set of coefficients which are given in (8.17a)-
(8.20b) and are determined through the boundary conditions on
the zeroth order mean dyadic Green's function. Substituting

(8.16a) and (8.16b) into (8.l1lla) and (8.11b), we obtain

- T,z =T : 21 f
0 = 2\ (EL) klmz ap (kL) + (2mwi) g i gl [ d KL
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(8.21a)

+ (27i) ¥ £ 3 fdzki_'-
nsT'
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i2q ( ae - - B U I

+— L . -
2 g J d kL Res Q(kL KL' a, ) z2 bp ( gL)
1m

(8.21b)

It is to be noted that equations (8.2l1la) and (8.21b) are con-
sistent, yielding the same result for XT(EL). This may be

seen as follows. In (8.21la) let p + -p and s -+ -s then
- T = -

dot with the wvector bp (EL). In (8.21b), let kL + =K,
then change integration variables as E¢' - -EL" and finally,
dot with the vector Efp(i ). We also make use of the fol-

lowing properties of the spectral density, which are valid for

a large class of physically interesting correlation functions:

@(QL, az) = @(-qL, az) : (8.22a)
- - - +
Res @(aL, a ) = - Res ¢(QL, o ) (8.22b)
- + ’
o, = o, - (8.22¢)

Upon performing the described operations on (8.21la) and (8.21b),
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we find the consistent result:

T - T 2
TR = - - - zzz[dk'
=T = T & L
klmz[a (k;) bp (k;)l ns T
- ' - +
Res @(k-‘_ k.L' an)
=T = =T' = 2T, = . T
[a_g(kL) ©ag (k; )][b_s( kl') bp (k;)]
. - +
(Sklmz pklmz * %n )
=T = .  =T' = -T' = = T =
_ [afp(k¢) . bS (kL')][a-S(kL') . bP (kL)]l
\ ~ _ +
(Sklmz pklmz %n ) J
- in 2 ' s - I +
-———;;- T f d k; Res @(k$' k¢, a, )
n
lmz 1lm

2 =T = ~ =T =
[z - a_p(kx)][z . bp (k, )]

T .
(SKimz - pklmz ®n )

(8.23)

Utilizing (8.17a)=-(8.20b), we evaluate (8.23) for the cases

T=TE and T = TM. The results are:
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TE , =~ 27 = - +
Ao k,) = 2k " -
(k) , z f d k_‘_ Res <I>(k_L' kL, a )
lmz
¥ 2 - ] +
Bz(k_L ) cos” (¢ ¢ )(kimz +a )
1 +, 2 - 2
(klmz + O‘n ) klmz
v t 2 - +
_ Az(k;.) Bl(gL ) cos® (¢ ¢')(kimz - an )
' - +yv2 _ 2
(klmz 0‘n ) klmz
2
N lmz _. 2 - +
DZ(kL ) sin® (¢ ¢')(kimz + on )
+ 1lm .
' 2 2
(klmz + OLn ) klmz
) 12 .
Imz . +
c,(k° ') === sin’(¢ - ¢ -
2( N ) Dl(k; ) o sin® (¢ ¢ )(kimz % )
- — im — - (8.24a)
(kimz = % )7 - Kimz
™ = 2T - = +
)\ k . 2 1 -
( J) , i J d k; Res @(kl k;' a )
lmz
2
( klmz + 2
Bz(k¢') ;:—— (kimz + oo ) sin“ (¢ - ¢'")
1m |
* (k! +a Ty2 - g2
1mz O‘n 1mz
\
1
' mz + .
Byt ") By(k ") kx Kimz = @p ) sin®(e = ¢")
) 1m _ o
(k! - a +)2 - k2

1mz n 1mz
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Dy(k, ")

-’ 2 1.2 2 - A 2v,.12
-—;:——— (kimzklmz cos“ (¢ o) + kL ki )
1lm
+
+y2 _ L2
(kimz + o‘n ) k1mz
2D (k ")
2-1- 2 ) ] - h !
Kb klmzklszLka cos (¢ $")
+ 1lm
« (k! + +
( 1lmz %n ) (k! + a +)z - k2
1mz n 1lmz

C, (k{)D, (k)

+
kb kimz = % )(kiézkimz cos? (¢ = ¢') + kik?)
1m
1 - +y2 _ 2
(klmz an ) klmz

2
' lmz )
2C2(kL ) Dl(kx') s kimszk¢' cos (¢ d')
1m
,
+

- 2 _ 12
(kimz 0‘n ) klmz

) k 2
- AT L v | g2k ' Res 0(k.' -k , a_ ). (8.24b)
Kk k* n + L +° n
lmz T1lm ‘

Here, ¢ and ¢' are the azimuthal angles subtended by EL
and k, ' respectively. The coefficients, Az, Bl' Bz, C2,
D and D must now be determined by imposing the boundary

conditions on the zeroth order mean dyadic Green's function.
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The Zeroth Order Mean Dvadic Gregn's Function

Combining Equations (8.16a)-(8.20b), together with (8.10b)
and (8.10c), the zeroth order mean dyadic Green's function may

be written in the form:

_ L L , . i(ky o + ATE) 4
Gllmo(r' ro) = P f d KL {[e(klmz) e
. iy + ATEy 5
+ay(k) el-k;_) e ]
~ i(klmz + ATE)ZO
[By (k) el-k;p,) e
. ik + xTE)zO
+ By(k,) elk; ) e ]
+
. il + AT 5
[h(klmz) €
. ~itky ATz
+ CZ(kL) h("klmz) e ]
™

i( + A" Yz

~ klmz o}
[Dl(kL) h(—klmz) e



N -i(k + A )z ik -« (¢
lmz o) 4 L
+ Dz(kl) h(klmz) e 1} e

(z > zo)

l(klmz

= - = 1
Gllmo(r' ry) =

2 ~
o P j d*k, {[By(k ) e(ky ) e

. ik, + ATE)z
+ Bz(k*) e(-klmz) e ]

: TE
- 1lmz o
[e( kl ) e

~ -i(klmz + ATE)ZO
*Aylk) elkyy,) e 4 ]

n ik + ATy,
[D, (k) hiky ) e

. ~ilky o+ ATz
+ D, (k,) hi-k, ) e ]

. ™
~ ) el(klmz + A )zO

174

(8.25a)

TE)z
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-i(k + A7)z

~ 1mz fo)
+ Cylk,) hikyy) e 1}

r
e —+ + oL (z < z). (8.25b)

The boundary conditions which the zeroth order mean dyadic

Green's function must satisfy are:

At z = 0:
; x EOlmo(E’ EO) = ; X allmo(z’ fo) (8.26a)
2 x T x &gy (F) F) =z x T x Gy, (F, F_). (8.26b)
At =z = —dlz
z x 8y (%, F) =zx 8, (% E) (8.27a)
2 x T x 8y (F, E) =z x T x G, (F, T). (8.27b)

From (8.6) it follows that
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~ ag ag ~
k; * {lim 1imo _ lim ——Llimo - lgL z

Z+2 9z z+z

« |1im ., g - lim _ g ﬁ = -1 (8.28a)

[;+z + “1llmo >z lln%]
o o)
R r 3g 5g
e(k, ) + |lim , —2IM0 _ 555 _“llmo
lmz Z+Z + 3z z+z 3z
o) o)

. e(klmz) = -1 (8.28b)

where k = k /k . 1In region 0, the Fourier transformed mean

dyadic Green's function assumes the following form in order

to match the boundary conditions at z = 0:

(K, z, 2)) =7, ek, ) e °F (B (k) e(-k, )

gOlmo oz 170 lmz

. TE . TE
:L(klmz + A"z ~ -i(k + A"z

o) lmz o)
e + Bz(ki) e(klmz) e ]

. ik z . i(k + ATM)ZO

oz 1mz
h(k__) e [Dl(k*) h(—klmz) e
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, ™

~ -i(k + A7)z

lmz o) .

+ Dz(k;) h(klmz) e 1. (8.29)

Similarly, in Region 2, the mean dyadic Green's function is

taken to be:

= - ~ -ikzzz ~
ngmO(k.L’ Z, ZO) = F3 e(-kzz) e [e(-klmz)
. TE TE
i(k + A7)z ~ -i(k + A7)z
lmz o lmz o)
e + A2(k.L) e(klmz) e ]
+
. -ik, z . ik, o+ A TMy
F4 h(~k22) e [h(-klmz) e
. —iky o+ AT z_
+ Cz(k;) h(klmz) e 1. (8.30)

Applying boundary conditions (8.26a)-(8.28b) to (8.25a), (8.25b),
(8.29) and (8.30), results in the following equations for the
unknown coefficients contained in (Q.ZSa), (8.25b), (8.29)

and (8.30):



Pl =1 + A2
ko klm
STy = —= = (-1 + C,)
k k
1m “oz
k
r, = Amz g L a,)
k
oz
. TE TE
ik, 4 -iK:~4d iR:d
2z71 _ Im™ 1 1m™1
PB e o= Bl e + B2 e
. ., TM ™
ik, 4 k k -iR:d iR d
T e 221 _ _1lmz "2 D. e Im™1 D. e 1m l]
4 Kk X 1 2
2z 1m
., TE . ,TE
ik, d k -iK; -4 ik:~d
T, e 2z71 _ lmz [Bl e Im™1 B, e Im l]
k
2z
., TM ™
ik, d -iK:'d i1R:°d
2z71 _ Im™1 Im™1
k2T4 e = klm[Dl e + pz e ]
1
B, - A,B, = -
2 21 2ik
imz
1
D, - C.D, = =
2 271 2ik

lmz
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(8.31)

(8.32)

(8.33)

(8.34)

(8.35)

(8.36)

(8.37)

(8.38)

(8.39)

(8.40)
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T T
where Klm = klmz + A

solved for the unknown coefficients. The resulting zeroth

. Egquations (8.31)-(8.40) are easily

order mean dyadic Green's functions are:

_ - ik, « (r, = r_)
allmo(rr rO) = - 1 [dzk_,- e + + oL 1
(2m) 2 2iky
mz
. TE
~ i(k + A7)z
1 [e(klmz) e 1mz
D2(k )
~ -l(klmz + ATE)z
+ Rlo(kL) e(-klmz) e ]
. TE . TE
i2K;°d. . i(k + A" )z
Im 1 1lmz o
[Rlz(k;) e e(—klmz) e
. TE
-i(k + A7)z
- 1mz o)
+ e(klmz) e : ]
+
1 . ik, o+ Ay,
[h(kl ) e
F., (k. ) mz
24
ik, + 1My,

- 1mz
+ Slo(k¢) h( klmz) e ]



. ™
12K, . i(k
1m™1 1mz
[Slz(k¢) e h(-klmz) e
~ _i(klmz + XTM)ZO
+ h(klmz) e )
(Z, T 1 fdzk k- &,
’ = =- e
1lmo o (27) 2 L
1 izxfﬁdl R
[Rlz(k;) e e(kl )
D, (k) mz
L
R -i(k + A TEyz
+ e(-k, ) e 1Mz 1le(~k
lmz 1mz
TE
~ -i(k + A7) 2
1mz o]
+ Rlo(kl) e(klmz) e ]
+
1 izxfﬁdl R
S
Fz(k ) [ lZ(kL) e h(klmz) e
L v
. ik o+ AMy .
+ h(-klmz) e ][hj-klmz
, ™
l(klmz + A7)z

ATM)Z

21klmz

TM)
lmz

(z < zo)

2
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(8.41)

(8.42)



= - - ik - (r =-T_)
G (r, r ) = - L d2k e * L or’ __ 1
Olmo ° (27) 2 + 2ik
ilmz
’ . TE .
XAk ) A 12K 74, A i(k
10L Im~1 1mz
e(koz)[Rlz(k ) e e(-klmz) e
Dz(k )
4
. TE
~ -i(k + A" )z k Y. . (k )} .
+ e(kl ) e Imz o] " Im ~10'" L h (k
mz 0z
k F.(k )
o] 278
izxfﬁdl . (kg + ATM, z_
[Slz(k;) e h(-klmz) e
~ iy + ATz
+ h(klmz) e 1
= - - -ik
_ - ik - (r - ) K2z
g (Z, L) = - 1 a’k e + L oL’ e
21lmo fo) (2ﬂ)z L 2ik
1mz
. TE
X1k ) A ~ ilkyp, + 2 )2
e(-k2 )[e(-—k1 ) e
D. (k) z mz
24
. ik o+ ATE)ZO
+ Rlo(kx) e(klmz) e 1
. ™
k Y. (k) A ~ i(k + A7)z
4 im 12 "+ h(-kz )[h(—kl ) e 1mz o
X F_(k ) z mz
2 2L
. —ifky o+ ATy z_
+ SlO(kL) h(klmz) e ]
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18.43)

(8.44)
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where:
TE - w 2 ' o - +
A (kL) = = i J d k; Res @(kL' k¢' a, )
imz
+
¥
cos?{p - ¢"') {i (k'lmz ooy )
+y2 _ L2
k]'_mz D2 ('k.x.') (k]'.mz + O‘n ) k1mz
iZK]';Edl N
L] 1 1 -
- RlO (k.L ) R12 (k.L ) e (klmz “n )jl
1 - +v2 _ L2
(klmz %n ) klmz
' in2 _. ' ‘ ' +
+ klmz sin® (¢ ") [ (k'lmz *oon )
' ' + 2 o 2
k:Lm FZ (k.x. ) (klmz + %n ) klmz
iZKir'fthl +
[ ] ! -
) Slo(k; ) 512(k¢ ) e (k_lmZ a i} (8.45)
' - + 2 2 :
(klmz O‘n ) k1m:z
AME ) = —"— 5 [ a%k ' Res o(k ' - k., o)
X ik n L N L n
1mz
k2 sin?(4 - ") (k! . i)
lmz ¢ ¢ [ 1lmz %n
2 ' ' . +2 _ 2
klm klmz Dz(k.:. ) (klmz + cxn ) klmz
. TE
i2K!~°™4a
] ] lm l ] - +
_Ryolk, ") Biptk ) e Kimz =~ % )_}
- +2 L2
(k]'.mz O‘n ) klmz —j
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1

1 L
klmz klm FZ(kL')

+

[%k%mcosz (6 = 81 + kD) Gefpy + o) + 24 Kdk kicos (6 = 6]
' +
Kimg ¥ 0n )2 - K3, .l
cne TM
12Klm dl

]
o S0k, Syplk ") e

[] s
klmz 1m Fz(k;')

3

2 ! ' ' 1 '
Fﬁ.\“zklmzkgk; COS(d) - ¢ ) - (klmz - :'-l) (klI;ZkimZ COSZ(Q) -0+ k.szjL)—’

] - + 2 _ 2
uﬁnz % ) ]ﬁmz -
. k 2
im - -
- - kj 5 J d*k ' Res o(K,' - k , an+) (8.46)
lmz "1m n
and
kiz B k'z
i3 (k.l.) = k——;—;—l— (8.47a)
iz jz
e.k., - eg.k.
13%,) = —Jklz lka (8.47b)
€585z T 1%y,
(k) =1+ R..(k,) (8.48a)

X5t ik
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Yij(kL) = 1 + Sij(kL) ' (8.48h)
izxfidl
Dz(kL) =1+ RyR;, e (8.49a)
izxfﬁdl
Fy(k) =1+ S91515 © (8.49b)
g!T = ko + AT(E ') T = TE, TM (8.50)
1m - Tlmz L ’ * °

In (8.47a)-(8.49b) i and j take the values 0, 1 and 2,
where klz and e, are to be interpreted as klmz and €1m’
respectively. Equations (8.41)-(8.49b) represent the complete
zeroth order solution for the mean dyadic Green's function of

a two layer random medium in the non-linear approximation to

Dyson's equation.
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8.2 Effective Propagation Constants for TE and TM Modes

The two variable expansion technigque has been applied to
Dyson's equation in the non-linear approximation to obtain
the zeroth order mean dyadic Green's function for a two layer
random medium. The results as given by (8.41)-(8.49b) indi-
cate the anisotropic effect of the random medium to vector
fields resulting in effective propagation constants which in
general are different for the characteristic TE and TM
modes. Physically, this is not surprising if we consider wave
propagation within a random medium with distinctive vertical
and lateral correlation lengths. Waves with vertical polari-
zation will experienceian effective decay differing from that
of waves with horizontal polarization. However, for correla-
tion functions with azimuthal symmetry, and for wave propaga-
tion aiong the_. z-direction, we expect idential propagation
characteristics for both the TE and TM modes. This ob-
servation is substantiated by the results given in (8.45) and
(8.46) by letting E* - 0 in which case AT ATE.

To illustrate the results given by (8.45) and (8.46), we

take the spectral density to be

4
6kl

2 _a 29 2
) oot . B 22, %/4
L2 4m2 (1 + B_22%)

(8.51a)
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which corresponds to a correlation function of the form:

-z, =, |%3/2 % - |z, = 2,|/2
- _ = _ % 14 21 o) 1 2
C(rl r2) = éklm e

where Rp and £ denote the lateral and vertical correlation

lengths, respectively and § 1is the variance of the fluctua-

tions. Taking the residue of (8.5la) at the pole an+ = Sn 1
[4
(i/%), where §. 1 is the Kronecker delta symbol, we find
4
_ Sk* ¢ 2 =g 28 %/4
Res 9(F,, i/1) = —H8 e = P, (8.52)

8mr2i

Substituting (8.52) into (8.45) and (8.46) yields

_ -k, 28 2/4 - k'2g 2/4
vKTE(kL) - _ Zp °im f %k ' e + 7o + 7
87rklmZ
k. k "2 2
=% P cos(¢p - ¢')
. 2 cos? (¢ = ¢") M. (R ")
k! D.(k ') 1s
Imz 2" &
k! .2 1
+ -lmz sin®(¢ = ¢') R ") (8.53a)
p, 21

1m FZ(EL.)
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and,
_ 2 28k ~k'%2p 274 -k 22 2
)\TM(k)=-—B-——]-'E[d2k'eJ‘p/ J_p/4
* 8tk -
1mz
kLkL'z 2
- '
5 cos(e = ¢') [y sin2(¢ - ¢'")
e I1mz MI(E '
2 = ol
klmk]'.mz DZ(kL')
+ - “l - kM3(EL') + M, (k")) (8.53b)
1
klmzklm Fz(k; )
where
1 X
& [k 1mz * l]
M, (k ') = -
174 ) . i) 2 , RlO(kL') RlZ(k¢')
[klmz * ;J K 1mz
S ¥
e12klmzdl iy i
lmz 2
> (8.54a)
1 _i 2
[klmz 2] X imz
1
] *ime + 2]
M k! = - — 1 1
2k, ) ' . ) S1o(k.") Sy, ")
[klmz * ;} = Kimg
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(imz = 3]
i2k! 4 1mz
e 1Mzl - . (8.54b)
[] — 3.-_ - 2
{klmz 2] klmz
i2k! 4

T o1y — imz 1
Malk, ") =815k ") S50k, ") e
4

2] KK, K, (oS (0 = ¢") = (2 KD cos? (9 - ¢") + Kik!2) {kimz * -lﬂ

k! ~+£2-k2 '
lmz ~ 2 1mz

(8.54¢c)

In (8.53a) and (8.53b), ¢ - ¢' is the angle between k|

and EL'. If we make the transformation kx' = klm sin @'
cos ¢', ky' = klm sin 8' sin ¢' and neglect the evanescent
portion of E—space, we obtain dzki: = kim cos 6' sin 8' d8'de’,

where the angular integrations extend over the hemisphere de-
fined by 0 < ¢' < 2r and 0 < e‘i m/2. The ¢' integration
may be performed directly. However, the 6' integration can
only be carried out numerically. The numerical results are
illustrated in Figs. 8.1, 8.2 and 8.3 where we have plotted

T

r- = ZIm[kT(kL)]/k{z versus angle and frequency for T = TE



189

and T waves.

In Fig. 8.1 we have plotted rT at 10 GHz as a function

of propagation angle, 6, with 20 = ,0lm, 2 = .1lm and

§ = .1 for a 40 cm thick random layer. Note that at nadir

rTE - r™  this follows from the azimuthal symmetry of the

correlation function used. At large angles, FTM becomes

greater than PTE, indicating a grater scattering loss for

the TM wave than for the TE wave. This is because 2 > zo,
which presents a greater scattering cross section for TM

waves than for TE waves. To illustrate the case of lp > %,

we have plotted in Fig. 8.2 PT at 10 GHz as a function of

angle, with Zp = ,009m, & = .000dm and § = .1 for a

40 cm thick random layer. It is interesting to note that in

this case, both TI'F and ™

FTE > FTM, indicating a greater scattering loss for the TE

decrease with angle with

wave than for the T™ wave. 1In Fig. 8.3 we have plotted

FT at 20° as a function of frequency for a 40 cm thick

]

random layer. We have taken zp = ,95 m, ¢ .002 m and

TE

§ = .0005. Both T and FTM are seen to exhibit a broad

maximum around 27 GHz, and a slow decay at higher frequencies.

This behavior is due to the effect of resonant scattering, upon

TM(}-E ).

the propagation constant corrections, ATE(E¢), and A N
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8.3 Comparison with Scattering Coefficients of Radiative

Transfer Theory

It is of interest to compare in the half space limit the

imaginary parts of the effective propagation constants ATM

and ATE as obtained from the zeroth order solution to Dyson's

equation with the scattering coefficients Kh(e) and Kv(e)
as given by the radiative transfer theory.63 Taking the half

space limit of (8.53a) and (8.53b), we obtain

sk* g 22
Im[)\TE] = ......_lin__&__ [ dq’
87 cos @

k2 g 2
- Amo (sin?g + sin?8' - 2 sin 6 sin 8"' cos(¢d - ¢'))

2
e

[1 + k2_22(cos?8 + cos?8')]

1m

2 2 2 2 2 - 1y 2
(1 + klmz (cos 8 + cos 6')%]1[1 + klml (cos 6 cos 6')°?]

{cos? (¢ = ¢') + cos?6' sin?(¢p - ¢')} (8.55a)

sk g 23
min ™) = e (g,

8T cos 8§
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kzlz
- im (sin?f + sin?9' - 2 sin 0 sin §' cos(¢p - ¢'))
4
e
2 g2 1y 2 2 g2 - ty2
[1 + klmz (cos 6 + cos 6')2]1[1 + klmz (cos © cos 6')?]

{[1 + kimzz(cosze + cos?g')1[sin?e sin?s’

+ cos?9 cos?8' cos?(p - ¢') + cos?p sin?(¢p - ¢')]

+ 4kim12 cos?8 cos?9' sin 6 sin 8' cos(p - ¢')}. (8.55b)

The scattering coefficients as defined in radiative transfer

theory are given by Tsang and Kong:63

Skt
Kh(e) = Idg' [@(8', Cb'; 6, ¢) +¢(1T"e'r (b'; 0, ¢)]
2
[(\Ar' . h)? + (h' . h) 2] (8.56a)
6kim'n' A P A ~
K, (8) = [[aar oter, 6% 0, LB W24 @ L 2
2

+ o(m - 68", ¢'; 6, ¢)[(ﬂ' -3)24- (3' -3)2] }

T - 08'

(8.56b)
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where

o(e', ¢'; &, ¢)

k,2g 2
-t o (sin?6' + sin2?§ - 2 sin 6' sin 8 cos(¢ - ¢'))
2 % e 4
o)

4am? [l + kimzz(cos 8 - cos 8')?]

(8.57)
(3' . v)2 = sin?@ sin?e + cos?0 cos?s’ cos?(¢p - ¢")
+ 2 sin 6 sin 8' cos 6 cos 6" cos(d - ¢') (8.58a)
(h' « v)2 = cos?8 sin?(¢ = ¢') (8.58b)
(v' + h)? = cos?8' sin®($ - ¢') (8.58¢)
(h' . h)? = cos? (¢ = ¢'). (8.584)

Combining (8.56a)-(8.58d4), we obtain
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Gk;_ [
K, (8) = o f an'
4T

k 22 2 )
- 1 0o (sin%?e + sin?@' - 2 sin 6' sin 6 cos(¢ - ¢"))
e 4
[1 + kimzz(cosze + cos?g')]
[1 + kimzz(cos 8 - cos 8')2][1 + kimzz(cos 8 + cos 9') 2]
[cos?8' sin?(¢p - ¢') + cos?(¢p - ¢')] (8.59%a)
6k:‘|’_ L 22
K (8) = —52 J an'
47
klzz 2
- ——FL2_ (sin%¢ + sin?8' - 2 sin 8' sin 8 cos(¢p - ¢'))
e 4
[1 + kimzz(cos 8 - cos 6')2]1[1 + kimﬂz(cos 6 + cos 8')?]

{[1 + k2

lmzz(cosze + cos?6')][sin?6 sin?g’

+ cos?8 cos?8' cos?(¢ - ¢') + cos> 8 sin?(¢ - ¢')]

+ 4kim22 cos?6 cos?8' sin 6 sin 6' cos(d - ¢')}. (8.59b)
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Comparing (8.59a), (8.59b) with (8.55a), (8.55b), we find that

2 Im[ATE] cos o

Kh(e) (8.60a)

it

2 Im(A™) cos 8 K, (6) . (8.60b)

It is clear from (8.60a) and (8.60b) that the scattering
coefficients as defined in the radiative transfer theory are
related to the imaginary parts of the effective TE and TM
propagation constants obtained in the zeroth order solution
to the non-linear Dyson's equation for a half space (or un-
bounded) random medium. In the case of a two (or more) layer
random medium the terms in (8.53a) and (8.53b) which contain
Fresnel reflection coefficients, are present in the effective
‘propagation constant and represent coherent effects due to

the presence of the bottom boundary.
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8.4 Half-Space Limit-Comparison with the Result of Tan and

Fung

As another interesting case, we consider the limit of

small scale fluctuations for a half

space random medium,

characterized by a correlation function of the form:

—- - - 14
C(rl r2) lem e
where k!_ = Re(klm). The spectral

im
~ tion function is:

4 2
6klmzp L

o B r2.L|/2p -

lz, = z,|/%
1 2| i (8.61)

density of this correla-

(8.62)

[
N

22 (1 + 3L2202)3/2

Substituting (8.62) into (8.45) and

through first order in the vertical

(1 + 82222)

(8.46), and retaining terms

correlation length we ob-

tain, the leading corrections to the propagation constant,

klmz'

TE

§k3 g 2y
A >~ i —imp

3klmz

(8.63a)
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kr® ski o 22
ATM L o L gz Mg aper2 oy IMD L (p2 4oz
1mz 1m 1mz

(8.63b)

We again observe that in the limit of small scale fluctuations
the propagation constant corrections as given by (8.63a) and
(8.63b) are distinct, but reduce to an identical result for
propagation in the z-direction. The results (8.63a) and
(8.63b) should be compared to those of Tan and Fung,so who

for the same correlation function, (8.61) obtained a single
propagation constant correction for all components in the mean

dyadic Green's function. They found the zeroth order mean

dyadic Green's function to be:

o) 'y o= iy'|z - z!
gij(u, v, z, 2') [Cij(u. v) e
+Ty50u, v) e iv'lz + 271, (8.64a)
with,
1 ko“
y'(u, v) =y|Ll - — (u? + v2?) - cz(ka'lp)2 (8.64b)
4y ka
vy = (k_%2 - u? - VZ)l/z (8.64c)
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2 is the variance of

where ka is the mean wavenumber, o
fluctuations and the transverse Fourier transform variables
are denoted by u and v. Comparing the second term in the
square bracket of (8.64b) with the first term of (8.63b), it
is clear that Tan and Fung's result represents the lowest
order correction to the real part of the TM propagation
constant. The terms of order kimzpzz in (8.63a) and (8.63b)
correct the imaginary parts of the propagation constants and
account for the decay of the coherent field as it propagates
in the random medium.

In the case of laminar structures, with klmzp - ®, it
is found (Section 8.5) that additional secular terms arise
in the first order equation and that elimination of the sec-
ularities results in two propagation constants per mode of
polarization. The existence of two propagation constants also
has been found in the case of scalar wave propagation in a

half-space random medium59

~when the limit of a laminar struc-
ture is taken. However, in the limit of an unbounded, laminar
random medium, we recover one propagation constant per polari-

zation in the mean dyadic Green's function.
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8.5 Special Case of a Laminar Structure

In the limit of a laminar structure, we have

$la,, a,) = (2m?* §(a,) o(a,). (8.65)

Substituting (8.65) into (8.7) and eliminating secular terms
results in four coupled differential equations per polariza-

tion to be solved for the £ dependence of the coefficients:

- - —a_“T- - 2 . +
0 = 2ip klmz - ap (ka £) (2w) % (27i) nfs Res @(an )
a (&, B)E_ SR, &) - at®, 0]
illp - S)klmz * OLn-.]
=T, = - T = -7
_ Bg (=k, E)[a_s(kl, g) - oy (KL, £)1
+

il(p - s)k1m2 + o, ]

+ (2m)?% (27i) I Res @(un+)
n



+ i(2m)

k

B

2

lm

n

- T
— R
3 P

A A

+ - T
Y Res @(an Y ZZ e ap (

K. £).
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(8.66a)

- 2 . +
('kL’ E) - (2m)*® (2mi) I Res @(an )

, E)IB_L(K,, &)

B

. BP

T

n,s

(=K, , &)1

S

T

(-kL

il(p =

, E)IB_

T
S

S)k}.mz

(-k.L’ g)

+

o

]

if(p - S)klm

2z

-+

+ (2m)2 (2ri) £ Res d(a_’)

8

P

T(~

k

Ao

n

- T
’ E) [up

EXN

(-E r &)

B

T -

. +
1q
n
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-7, - - T - - T -
} o, (kJ_, E)[Bp (k_z_, g) - 8_p(-k1_, £)1
ian
i(Z'n') + - T - A A
- . .66
+ —;;—— g Res @(an ) Bp ( kL: £) zz (8 b)

ilm

where &pT and §pT are given by (8.12a)-(8.15b). For
example with T = TM, and after careful manipulations, the

coupled differential equations to be solved take the form:

k, _ aC _
0 = - 11“32-l+c12Res ¢(an)’:2cl L - LI
4 3E n : ia 1(2klmZ +oa, )
k2
+ C,D; “3+ + 1 — b+ L ]
: . 212 2 _ 2
ia) :L(Zklmz + oy ) (27) klm(k_L klmz)
(8.67a)
k oD 1
0 = .!ﬁ%i.__a + D, I Res @(an-)[%zcl 1__ - L T
4T 3E n iog 1(2klmz + a )J
k 2 ]
+ C.D =34 L + L
R R (21)2k2_(k % - k2_ )
n 1lmz n 1m 2 lmz ~

(8.67b)
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k 5C : _
o=—lﬂa"l-—-2-+czzRes¢(an)t}2cl - 3+-_ = —
4T d& n ia J.(Zklmz + oy )J
k 2 7]
+ C,D; 4 L —1 + S
: ; 21,2 2 _ g2
*%n J'(Zklmz Toep) (2m) klm(k_L klmzL
(8.67¢c)
k aD
0=-.._]%__.]:.+D12Res®(an)l}zcl '3+-. = -
47 3L n ia l(zklmz +a )
. k 2
+ C,D; L 1 —! + = ]
: ; 212 2 - 2
Cn 1(2kypy *oap ) (2m) *kyp (k) % 1mz’
(8.674)
Solutions to (8.67a')—(8.67c) have the form
g (MTM + MTM)g
™ n D n 2n
Cl = C:L e (8.68a)
-L g_(Nph o+ NIE
™ n ¢ n n
C2 = C2 e (8.68b)
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L'gM L9 (Nln N8
Dl = -—l-r-ﬁ e (8.69%a)
C
2
™ ™
LiM i gn(Mln * M2n)g
D2 = T e (8.69Db)
<
where
k 2
MIe L‘]I:M‘: . L +:] + s (8.70a)
1an 1(2klmz + a, ) (27) k (kL - klmz)
T A B r (8.70Db)
ian i(2k z + o )
\
k 2
NI L']I_‘M[‘:;_*_ - L +j} + P (8.71a)
lO‘n l(Zklmz + O‘n ) (2m) klm(gL - klmz)
Nom = LgM[. - . _] (8.72b)
ia, i(2k mz + an )
_ 4mS3 -
9, = Res @(an ). (8.73)
klmz
Here, LiM = ClDZ LgM = Cle. A similar set of equations
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and corresponding solutions follow from (8.66a) and (8.66b)
for T = TE. Substituting these results as well as (8.68a)-
(8.73) into (8.10a) and (8.10b) and applying boundary condi-
tions (8.26a)-(8.28b), yields the zeroth order mean dyadic

Green's functions for a laminar structure:

- ik - (¢ -1 )
llmo(r’ ro) - _ 1 2 J dsz o L 1 o4l .l
(27) Zlklmz
TE
Dz(k ) [e(klmz) e + Rlo(k¢) e('-vklmz)
L

. TE . TE . TE
-i(k + A")z - i2k:7d i(k + Az
e lmz D 1IR. . (k ) e(-k ) e Im™1 e 1lmz D

1274 1mz
, TE
~ -1(k + A7)z
1mz u o
+ e(klmz) e ]
. ™
~ i(k + AT )z

+ 1 [h(k ) e 1mz u

F_(k ) 1mz

2 74

. ik * ng)z .

* SlO(kL) h( klmz) € ][812(k;) h(-klmz)



. ™ . ™
i2K:;°d i(k + A )z n ~-i(k
e 1m™1 e lmz D o h(k ) e 1mz
1mz
(z > z)
_ ik, « (¥, - r_,)
(r, r) = - 1 [dzk_,_e'x' + oL
(2m) 2 2i
. TE .
~ i2K."d i(k + A
1 [R..(k ) e(k ) e 1m™1 e 1lmz
1274 lmz
Dz(k )
R
. TE
- -i(k + A7)z . i(k
- Imz u - Imz
+ e klmz) e 1le( klmz) e
~ —i(klmz + AgE)z
+ RlO(kL) e(klmz) e
. ™ .
~ i2X:d itk +
+ L [Slz(k ) hik ) e Im 1 1mz
F(k ) < Lm
2 4
. ™ .
~ -i(k + A7)z . i(k
- 1mz u _ lmz
+ h klmz) e ] [h{ klm ) e

+

A

i

)z
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(8.74)



. ™
A -l(k + ;\ )Z
1mz D
+ Slo(k¢) h(klm ) e ]
(z < zo)
= - - ik =z
= _ 1 ik - (x, -z ) oz
GOlmo(r' ro) = - P f d2k¢ e o ‘
Zlk1mz
X9tk ) A i2KTBq. ik
104 ~ Im1 lmz
b k) e(koz)[RlZ(k;) e ( klmz) e e
2.
. TE
~ bt k <+
+e(k, ) e Fimz * A )zo] + “1m Y10 (k) h
1mz (koz
k F,(k )
o) 2 L
. ™ . ™
R i2R;d i(k A )z
- im™1 lmz D o
[Slz(k;) h( klmz) e e
. ™
~ -i(k + A7)z
. 1lmz u o
+ h(klmz) e ]

7 = = -ik,_z
= = - 1 lk; ) (?; - rol) e 2z
GZlmo(r’ ro) = - - [ dsz e

(27) 2ik
lmz
X, (k) . TE
12( .1.) J'(klmz '>‘u )zo

208

(8.75)

(8.76)
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1lmz D o)
+ Rlo(ki) e(klmz) e ]
. ™
im le(k;) ~ ~ l(klmz + >‘u )zo
+ h(-k2 )[h(-kl ) e
K F_(k ) z mz
o) 274
. ik o+ ng)zo
+ SIO(EL) h(klm ) e ] (8.77)
where
T _ T T
AU = i gn(gln + MZn) , (8.78a)
T T T
AD = ﬁ gn(Nln + NZn) (8.78b)
LfM = - L (8.79)
2J.klmz Fz(ké)
12 Mg
S..s e Im™1
LgM = - 10712 (8.80)
2lklmz Fz(k¢)
L':{'E - - 1 | (8.81)
21klmz Dz(kL)
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12K TEg
R. .R e Im™1
LgE = - 1012 i (8.82)
2ik, D, (k)

The two effective propagation constants per polarization of

a laminar structure follow from (8.78a) and (8.78b).
(8.83a)

T' —
nl (k¢) = k + A

n,t (k) =k + A (8.83b)
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CHAPTER 9

Modified Radiative Transfer Theory for a

Two-Layer Random Medium

Modified radiative transfer (MRT) equations appropriate
for electromagnetic wave propagation in bounded random media
are derived from the Bethe-Salpeter equation in the ladder
approximation together with the solution to the non-linearly
approximated Dyson equation. The MRT equations are solved in
the first order renormalization approximation to obtain analy-
tical results for the backscattering cross-sections, of a
twd—layer random medium with arbitrary three-~dimensional
correlation functions. The coherent effects of MRT theory
are illustrated and comparisons are made with backscattering
cross sections obtained in the first order Born approximation

to the wave equation.
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9.1 Derivation of MRT Equations from Bethe-Salpeter Egquation

The Bethe-Salpeter equation for the dyadic field covariance,

under the ladder approximation may be written as

= oty = o - 3 3 - .= = - =
<sl(r) el*(r )> = JV a ry fv d‘r2 C(r1 rZ){Gllm(r' rl)

-~ =* - - . -* -
Eim(Ty) Ggp(x'y 1) « B (xy)
+‘<Gllm(r, rl) . El(rl)_Gilm(r" rz) . sl*(r2)>} (9.1)
where El(f) = ﬁl(f) - ﬁlm(i) and Elm'z <El> is the mean

electric field in Region 1 (Fig. 3.1) and is a solution to

Dyson's equation. The zeroth order mean field propagating

within the random layer, due to an incident plane wave Eoi'

takes the general form:

in..2 . -in, .2 . ik,.. +
= -\ - hi hi - L3 -
Eim(T) = [Epyy © eKymzi) ¥ Bpgy © el~kypngi)l ©

+
in .z -in;z 4 iELi - T,
[Evui € h(klmzi) + Evdi € h(_klmzi)] e
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where the subscript i denotes that a quantity 1is to be
evaluated at the incident wave vector angles. The unknown
amplitudes which appear in (9.2) are determined by matching
boundary conditions on the mean fields to zeroth order, and
are l§sted in Appendix B. The effective propagation constants

n and are defined in (8.50).

v "h
We first decompose the incoherent field into a spectrum

of upward and downward propagating plane waves:

5
™

}_
Mt

: ]
lBlmzZ

e () = f d?g e [e,(z, B ) e

- - -ig! =z
+ ad(z, B ) e lmz ] (9.3)

where

A

€af2zs B =g, (2, B ) e(zp! ) +e_ (z, B ) h(sg] ).

d d d

(9.4)

In (9.3) and (9.4), ). The z-dependence re-

Bimz = Re(Blmz

tained in eu(z, 3;) and ed(z, QL) is a long distance scale

characterized by the quantities Qv = {Im(nv)}-l and 2h =

{Im(nh)}-l. Therefore, two points can be close together on
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the 2 ., 2

v scale and yet far apart on a scale characterized

h

by le or lz (22 being the vertical correlation length).

We will assume that for points 2z and 2z' close together on

the 2V, Rh scale:

§(a - B ) J ) '19.5a)

<e. (z, & )‘eiu(z'. B )>

<ejd(z, “;) ekg(z', 8;)> = 6(qL - BL) ijd(z, z', ¢) (9.5Db)
<eju(z, aL) sid(z', 3*)> = G(QL - SL) ijcl(z’ z', aa) (9.5¢)
<sjd(z, uL) eiu(zL,.BL)> = S(aL - B8,) ijcz(z, z', aL) (9.54)

where 3j, k =‘h or v for horizontal or vertical polarizations.
Thus incoherent fields with different transverse directions of
propagation are uncorrelated. However, for a given transverse
direction there exist correlations between upward and downward
propagating incoherent fields due to the presence of reflecting
dielectric interfaces at z-=0 and z = -dl. These correla-
tions are represented by ijcl and ijc2 in (9.5¢) and
(9.5d4).

Combining Equations (9.3) and (9.5a)-(9.5d), the left hand

side of the Bethe-Salpeter equation (9.1) may be written as
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ig - (r, =T ")

<€ (T) £ *(EY)> = [ a?g e * R S S CPRE AP I
eieimz(z - 2') . ?d(z’ 2t EL) e_ieimz(z - z')
+ Fcl(z, z', E;) eiBimZ(z vz + ?cz(z, z', EL)
e—isimz(z ’ z')} (9.6)

where

~

Fu(zr z', BA.) = thu(zr z', B.L) e(Slmz) e(Blmz)
vvua

+ J (z, z', B_L) h(slmz) 'h(Blmz) + thu(z, z', BJ_)

e(slmz) h(elmz) + Jvhu(z, z', BJ_) h(slmz) e(Blmz)

(9.7a)
fd(z' 2% B;) = thd(zf z'y 8,) e(~B1mz) e(=B1mg)

+ vad(z' z' 5;) h(-'Slmz) h(-slmz)
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(z, z', 8,) (-8, )h(-8, ) + T p.(z, 2', B;)

+ thd 1mz

h(-g; ) e(-8; ) (9.7b)

Fop(zr 2% By) = thCl(QJ 2ty B ) elByp,) e(=8yy,)

(Z,- Z'l B.L) h(Blmz) h(—BlmZ) + thcl(zl zll 8 )

+
N1

vacl

-~

e(Bypmy) B(-Biny) + Typc1(2r 2'0 8) h(Byg,) el=8yp,)

(9.7¢c)

Too(z, 2", B = 3y (2, 2", B) el(=8y ) e(8y )

+ vacz(z, z', QL) h(-Blmz) h(slmz) + thcz(z, z', gL)

e(_Blmz) h(Blmz) + JVhCZ(z’ Z'l 8 ) h(-Blmz)

~

e(Blmz). (9.74)
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The right hand side (RHS) of the Bethe-Salpeter equation (9.1)

may be expanded as:

z z!
= 2 2 ke r. r
R.H.S. Iv(i rlL JV d o J_ dzl j- [Gllm(r, rl)

1 1
* (r) Gllm(r" rz) . (r )
+ <Gl (E E)) - E E GiinE' Ty - T *(E)>IC(E, - z,)
+

z 0
= - - - - = - -
j- dzl j dzz[Gllm(r' r,) « E, (r.) Glim(r ’ r2)

© e *(Ty)>] C(F) - T,)

0 z!
=< - — . bl 1 -
J dzl f- dzZ[Gllm(r’ rl) Elm(rl) G11 (r', r

(r, fl) . e (r ) Go* (F', T

llm
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. El*(22)>] C(El - I,)

-+
0 0 . - e - e - - -
G . G x ' . E*
fz dz; Iz. A2y (G p(Tr T1) = Epplry) Gin(E'y Tp) - Efplxy)
+ <G, (F, Fy) + &, (F) B * (', T,)
llm =’ ~1 171 1lm r=2
e e.*(T r. - r -
€1 (ry)>] C(rl r,) (9.8)
=> =< .
where Gllm and Gllm are defined by (8.25a) and (8.25b)

respectively. In the limit 2z + z' it can be shown by sub-
stituting (8.25a), (8.25b) and (9.2) together with (9.3) and a
typical correlation function into (9.8) that the second and
third terms in (9.8) do not contribute as significantly as the
first and fourth terms. The same conclusion may be reached by
the following argument. The correlation functions which appear

in (9.8) restrict the integration variables z and z to be

1 2
separated by not more than the order of a vertical correlation
length, ZZ. Therefore, in the limit =z -+ 2z', it is clear that
in (9.8) the first and fourth terms contribute over the entire

range of the Zy1 2, integration whereas the second and third
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terms can contribute only over a narrow range on the order of
a correlation length which straddle the point 2z = z', Thus,
we approximate (9.8) by retaining only the first and fourth
terms.

Introducing the Fourier transform of the correlation func-

tion

-ia » (r, - r,)
1 2 (9.9)

C(r; - r,) = f da o(a) e
We substitute (8.25a), (8.25b), (9.2), (9.3) and (9.9) into the
approximated form of (9.8) and make use of (9.7a)-(9.74).
Equating this result to (9.6), we next balance terms of similar
phase and polarization. This yields:

ig! (z - z")
Phase Factor e lmz :

- igl (z - z') in,z = in, *z'
2', B ) e M2 =e B h [IA]_(BJ_)I2

(z, z', B,) + |B(8)]? I,°(z, 2', B,)

e

(Z, Z'l -é )] (9.10&)
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iRl (z - z') in_.z - in_*z!
+ 3 1lmz - v \'4 2
T g (2 zv, B) e | = e [lCl(ﬁL)I

> - -
IZ (Z, Z', Bl.) + lDl(BJ.)Iz I2<(z' z'l B.L)

> ' r < ' a
+ 16 (z, z', BL) + 16 (z, z', gL)] (9.10b)
iR! (z - 2') in,z = in_*z! -
T~ lmz _ h v
thu(z, z!, B;) e = e [AI(S;) cl*(8¢)
I,7(z, 2', B ) + B, (B,) D,*(8.) I.(z, z', B.)
3 ' TRy 1 "2 1 L 3 ! roRy
> - < - .
+ I, (z, 2%, B) + I (2, 2', B,)] (9.10c)
igy (z = z') in.z = in _*z!
v 3 1mz _ v h
Jvhu(z’ z', BL) e = e [Cl(gL) Al*(s;)

> ' - < ' - =
I, (z, z', QL) + Dl(B;) Bl*(BL) I, (z, z', B,)

+1.7(z, z', B) + I.%(z, z', B)1. (9.104)

8



-igy _(z - z')
Phase Factor e lmz :

Lo . s C e
- iB{pz (2 = 2") ingz + ing*z

thd(z, z', BL) e = e

[la,(8)1% 1,7z, 2', B + 1,°(z, z', §)
+ Ig>(z, z', é;) + Ig<(z, z', ?L)]

Ciat o s + in ko
lslmz(z z') lnvz lnv 4

vad(z, z', QL) e = a
> - < ' -
fjc, (8 )12 1,7 (2, 2, B) + I, (z, 2", B,)

< (z, z', 8 )1

> ' -
+ Ilo(z, z', 3;) + Ilo N

-ig!

o s [
lmz(z z') 1nhz 1nv z

Thva
. > . — < ' -

L

> ' - < . -
+ Ill(z, z', B;) + Ill(z, z', SL)]
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(9.11a)

(9.11b)

(9.11c)
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- 1 - ] - S * )
lBlmz(Z z') in,z + iny *z

Vhd(z' Z', B.L) e

. > ' - < '
[C,(8,) B,*(B) I,7(z, 2', B)) + I,%(z, 2*, B)
+ I0.( ', B 5. ¢ ', B (9.114)
12 Z, Z r B.L) + 12 Z, zZ r B.L)] .

where the coefficients Al, Bl’ Cl' Dl' A2’ C2 and the terms

>
1.° (j =1, 2, ..., 12) are listed in Appendices A and C

J
respectively. A similar set of equations may be obtained for
the cross correlation terms . thcl’ thc2 ... Dby balancing
phase factors of the type

iR!? (z + z') -ig! (z + z')
e lmz and e Imz .

The resultant set of equations, however, is not required in the
development of MRT equations for three dimensional random media.
In the case of a one dimensional laminar structure in which

k + o the set of equations for the cross correlation terms

lmlp
is required in the derivation of MRT equations. In order to

see this point more clearly and moreover to illustrate the
<

. . > . .
evaluation and reduction of the Ij terms in Appendix C, we

will consider IS>(Z' z', 8,) in detail.
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>(z, z', B,)

The Term I5 N

The term IS> takes the form:

a, a, +
C(F (2, 2,0 B ikme (21 ?2)
+ Ttz 2y, kW) e—ikimz(zl e
+ T_y(zq0 250 K Hing (21 * 7o)
+ ?Cz(zl, Zys E;) —ikimz(zl ' 22)} . §*(22, E;) (9.12)
where kimz = Re(klmz) and
F(z,, B,) = A;(8)[B(8)) N "% e(Byp,) ]
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We note from Equations (9.7a)-(9.7d) that ?u, r and

&l

4’ “cl

?cz vary on the long distance zy and z, scales. There-
fore, in (9.12) due to the extremely sharp peak in the corre-
lation function relative to the long distance scale, we may

replace z, by zy in the arguments of ?u' ?d’ ?cl and

il

c2* Next we take the limit 2z + z' and break up the z,

integration into the intervals —dl < z < Z, < Z.

2 17 %1 2

The a, integration then is performed using residue calculus

followed by the =z

< 2

2-integration. In performing the z,

integration we retain only constructive interference terms
£2n,. "z +2n_"z
of the form e h 71 or e v 1, where nQ" = Im(ng).

Destructive interference terms of the form

. . +
i(2n' + a )z

e 1
or
i2n'z
e 1
(where n' = Re(nh) or Re(nv) and ant is explained below)

+
will contribute a small fraction n"/(2n' + an') or n"/n'
of the constructive interference terms when integrated over

z Upon performing the operations discussed above, the ex-

1-
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. >
pression for I5 becomes:

z
> - s » : - _ = +
I5 (z, z, ?L) = i(27)° ¢ J d<k f dzl Res <I>(k-L ﬁlr o )
n -dl
2n,. "2
- + = h "1
l(an an ) thu(zlr le k..L) [Mln(B_L’ k.l..) e
2n. "z
= h “1
+ M2n(8;’ k;) e ]
+
: -2n, "z 2n, "z
T - = h "1 - - h "1
+
—2n. "z 2n, "z
= h 1 - h "1
thu(zl' 2y k )[MSn(B;' KL) e + M6 (BL, k;) e ]
+
_ - _ _znhlvz _ Znhuzl
Jvhu(zl’ 2y kL)[M7n(BL’ kL) € + M8n(BL’ k;) e ]
+
zn "o zn "oy
- - h 1 = h "1
Tnng (217 Zpr KM, (8 k) e * Ny (B k) e ]
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+
-2n. "z 2n, "z
- - - h %1 - - h %1
Tova(Zyr 210 kK VINg (B, k) e * N (B k) e T
+
_ -2n. "z 2n, "z
- - - h %1 - h 21
Tnva(Zyr 21 K N5 (B, k) e * Nen(B» k) e
) -2n, "z 2n, "z
- - h 21 - h 21
Jyng (217 Zpr KV IN, (B, k) e * Ng, (B, k) e
i(n, + no*x + 2k!_ )z
- h h Imz’ ~1
Ihhe1 (17 277 k)W (B, k) e
-i{n, + n 2k )z
- h h 1mz’ “1
+ W2n(5.;.' _L) e ]
i, + Mm% - 2k! )z
= - - h h 1mz’ 1
Ihhe2 (217 27 K )IW, (B , k) e
~i(n, + n* + 2k! )z
- h ™ " 1mz’ %1
+w, (B, k) e ] (9.14)
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where an+ and @ represent the n-th poles of @(a;,‘az)
in the upper and lower half complex-az plane. The functions

M, and W, (i=1,2, ..., 8 j=1,2, 3, 4) are

, N. ,
in in jn
listed in Appendix D, for reference. In deriving (9.14), we
have made use of the following properties of the spectral den-
sity which are valid for a large class of physically interesting

correlation functions:
a = - g (9.15a)

Res @(QL, ol ) = - Res @(qL, o Y. {9.15b)

Ny, and Ny

However, for

It is important to note in (9.14) that the terms

which appear in the phases are function of B¢'

laminar structures the spectral density attains a delta function

dependence G(EL - EL) so that in (9.14) k! In this

]
imz ~ Blmz’
case a typical cross correlation term in (9.14) takes the form:

=ilny (B,) + ny *(8,) - 284 .1z
- - - h "4y h - Imz' "1
thcl(zl’ Zqs BL) WZn(BL' B;) e .

(9.16)

A typical equation obtained by balancing phases and pol-
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arization terms (as was done in (9.10a)-(9.11d)) and then letting

z * z' is:

- -i(n, (B ) + n *(E ) - 287 )z
thcl(z' z, B;) e h' . h L 1lmz

<

> - - -

z, B ). (9.17)
e

It is clear that equation (9.17) may be used to express (9.16)

in terms of I >, Il<’ I;B and IEB each of which contains

1 2n_"z
constfuctive interference terms of the form e vl or
e 2nh zl. However, for general non-laminar structures, the
cross correlation terms of (9.14) do not have the form (9.16)
and therefore cannot be expressed in terms of contructive in-
terference terms by means of equations like (9.17). Therefore,
as discussed above, the equations obtained by balancing phases
and polarizations for cross—-correlations are not required in
the development of MRT equations for three dimensional random
media. Finally, the residue of the spectral density which
appears in (9.14), may be reduced by the method described in

>

Appendix E, and the final foim of I5 is:
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r 2
) — 5 2 2
Ig (z, z, @L) = (2m) [ d KL J—d dzl{[lAl(qL) Bl(g;)l
1

-2n "y 27] "o
== = = h
By a8 |2 BL, (B, k) e N

- = -
Phu(BJ., k_\_) e n

- _ sz 2 =, 2'E
» I (zy, k) + []ag(8) By (B)[* P g(B,, k) e

A

Znh zl

s - -
+ |a (B2 Py, k) e 1 - I,(z, k)} (9.18)

= . .
where, Phu and Phd are row matrices, defined as:

-t iy - - — A_ ~
PoyB., k) =0k -8, 8,)e(#8 ) « el )15,

1mz

(e(sB, ) - h(k; )}?,

imz

~

{e(:elmz) . e(klmz)}{e(:slmz) . h(klmz)}, 0] (9.19a)

- - - "'_" ~ .A— 2
(B, k) = ol -8, 8,)[{elz8yp,) e(Kymg) 17
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A

~ . _ 2

{e(iBlmz) h( klmz)} ’

{e(tBlmz) . h(-klmz)}{e(tBlmz) . e(—klmz)}, 0] (9.19b)
where Bi = kimz + Blmz' iu and id are column matrices given
by:

'ﬁhhu(z, z, EL)
d
_ vau(z, z, k,)
Iu(z, kL) = d (9.20)
d -
2Re{Jvhu(z, z, @L)}
d
ZIm{Jth(z, z, k;)}
d

AV

The other terms Ij listed in Appendix C, may be reduced and
cast into a form similar to that of the I5> term (9.18).

We illustrate the development of MRT equations by con-
sidering equations (9.10a)-(9.104) in the limit z' -» z.

Equation (9.10a) may be written as

- 2ny, "z s -
hhu(zl z, BJ_) e = |A1(8.L)'2 Il (z, z, B)

S

+ By (8| I,%(z, 2, B)) + [I7(2z, 2, B))
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+ 15<(z, z, 8 )1. (9.21)

Operating on both sides of (9.21) with d/dz, we obtain

- 2n,." J (z, z
dz h “hhu'™’" =7’

-2n,. "2 dr, " (z, z, B )
+e B [la (8 )2 L =

d < - d > -
+ |B;(B)|2 = 1I,°(z, 2z, B ) + — (I."(z, z, B,)
171 dz 1 i dz 5 i

+I.5(z, z, B 1. (9.22)

The transport equation for J (z, =z, EL) is similar to that

for thu(z, z, B*) and can be obtained from (9.22) by making
> >
< <

the replacements h » v, Il > I6 ’ Al - Cl and Bl > Dlh

Equations (9.10c) and (9.104) may be cast into the following

forms:

3 _ o .
g; 2Re{Jvhu(z, z, B;)} = .ZIm[th Jvhu(z' z, QL)]
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ik , z a1, (z, 2z, B ) dI <(z, z, B )
+e "Bllca x4 L+ pB . * —2 -
l 171 dz 171 az
[ =ik* z -
+ e vh "'d"' (I7>(Z; Z, B ) + I7<(zl z, B )
dz
ik . =z
+ e vh ‘d— (I8>(Zr z, § ) + IB<(ZI z, -é ))] (9.23)
dZ ER kN

d -
—iK*hz a S - a < - ]
dz dz * J
ik . 2
- e Vh C A 4. 1,7(z, z, B,) + DB * 4 1,%(z, z, §)
dz dz +
AN
ik* =z
h 4 - < -
+ 1[% v ;E— (I7 (z, z, QL) + I, (z, z, BL))
z
ik .z - _ ]
-e VB 4 (IS>(z. z, 8) + I.(z, z, B ){J (9.24)
L 8 1
dz
2
= - * + ¥ 3
where Koh = N, n*. Reducing the terms Ij listed in
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Appendix C, according to the method outlined above for the IS>

term and then substituting into (9.21)-(9.24), we may cast the
MRT equations governing the upward propagating intensity into

matrix form:

8pg ) = T (2, B = = [8, |2 R(E) - T (z, B

+ Q. (B, k .) «I (z, k .)+2Q k.)-Imd(z,kJ_i)

= - - . 2 = g ot
M Al ch(QL' kLi) Imcl(z’ k; )+ I d KL[Puu(B ’ kL)
< I, (z, k) + ?ud(s_‘_, k) o« Igz, k1. (9.25a)

Similarly, equations (9.1lla)-(9.11d) may be reduced to matrix

form governing the downward propagating intensity:

- 2 4 = _ , == .
Bimel® - Talz B = = (81,7 AE) - Tqlzr B)
+ Qdd(sx' ;1) . Imd(z, ¢i) + Qdu(8¢' kLl) . mu(z' k¢1)
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- Al QCl(B-L' k.Ll) Ich(z' k_Ll) + J dékL[Pdd(B-&' k.L)
. Id(Z: k) + Pdu(BL' k;) . Iu(zl KL)] (9.25Db)

where in (9.25a) and (9.25b)}, Al =1 if B; = tk;i and is

zero otherwise. Mathematically this arises in the reduction of
>
<

Ij (j =1, 2, 3, 4), where terms of the form

ei[nh(BJ_) - nh* (k_‘_i)]z:L

occur. It is clear that these terms are of the constructive

interference type only for §L = tk;i and otherwise afe of the
destructive interference type. Discussion of the physical sig-
nificance of this result is deferred to Section 9.5.

The Q and P matrices in (9.25a) and (9.25b) are scat-
tering matrices for the mean and incoherent field intensities
respectively and are defined in Appendix F, together with the
other matrices in (9.25a) and (9.25b). 1In order to complete

the derivation of MRT equations we must obtain boundary condi-

tions satisfied by the intensity matrices, iu and id’
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9.2 Boundary Conditions for MRT Equations

—

The boundary conditions appropriate for the modified
radiative transfer equations are obtained from Equations (9.10a)
-(9.11d), by first taking the limit z' » z and then setting
z =0 and =-d,. To illustrate the technique, consider (9.10a)

1
and (9.11la) at 2z = 0. We have

- _ > - > -
Tpnu (07 0/ B = |2, (8% 1,70, 0, B) + I.7(0, 0, B))
(9.26a)
- . > - > -
(9.26b)

5> and 19> according to the method de-

scribed above for 15>, it is easily shown that

Upon evaluating I

|A, (B )]? -
= _Al_-‘.-__’_..x >(0, 0, B). (9.27)

(0, 0, B8)
2 9 L
|2, (8 )|

5 L

From Appendix A, we obtain [A,[? = [R;,(8 )[?[A,|%, which
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upon combining with (9.27), (9.26a) and (9.26b) yields

thd(O, 0, 8,) = RlO(B;) * Jhn (0, 0, B.). (9.28)

u A

A similar procedure may be applied to the other equations in
(9.10a)~-(9.114d), so that the complete set of boundary conditions

satisfied by iu and id takes the form:

) (9.29a)

Id(O, B;) = RlO(BL) . Iu(O, QL
where:
2 ey
"]Rij[ 0 0 0
- 0 |s]_.|2 0 0
R;5(8) = ) . (9.30)
* -
0 0 Re(RijSij) Im(Rijsij)
* *
0 0 Im(Rijsij) Re(RijsijLJ
where i =1 and j =0 or 2.

The incoherent intensity transmitted from region 1 into



region 0, is given by

Iou(o' QL) = Tlo(ﬁL) . Iu(O, B;)
where:
|X;512 0 0
2
n
o
0 n— YlO 0
= _ 1
Tlo(ex) = - -
0 %o *
0 Re|— Yloxlo
5] .
?] -
o *
0 0 Im . Yloxlo
. ~'1 -
and,
<€°hu(0. QL) e;hu(o’ 8;)>
_ _ <€Ovu(0, BJ_) E;vu(ol B-L)>
Iou(o' sx) = - -
*
2Re<¢ (o, BL) eohu(O, QL)>
2Im<e (0, B8)) €Xp,(0s B )>

Re
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(9.31)

(9.32)

(9.33)
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Boundary condition (9.31) is obtained by noting that the plane
wave components of the incoherent fields in regions 1 and 0

satisfy the boundary conditions

€ovu(o’ g;)

"
o
~
H
o
w
F_
m
=
~~
o
-
™l

(9.34a)

Veohu(o' BL) XlO(QL) Elhu(o’ BL)' (9.34b)

Upon forming the appropriate ensemble averages, boundary con-

dition (9.31) results.
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9.3 Comparison of MRT and RT Eqguations and Solutions in the

First Order Renormalization Approximation

It is of interest to compare the MRT equations (9.25a)
and (9.25b) with the conventional RT equations in current use.
For example the RT scattering phase matrix coupling the four
Stokes parameters of the scattered wave in direction § to
the four Stokes parameters of the incident wave in direction
' 1is given in Ref. 63 and may be cast into the notation of

this thesis as:

s 27 Ty <= -z -
Puu(gg’ k¢) - 2 2 ( i B.r Bimz klmz)
@+ o' @ - h') @ .a)(e - h" 0 1
th.e') th - h') 2 h.e)(h - h') 0
2h - &)@ -e') 2 -h"(-h') (h-hE-a) 0
+e -+ h)(h +e")
o 0 0 e -e)h - h')
(@ + h')(h - ")
, N
(9.35)
where e = e(Blmz), h = h(slmz), e' = e(klmz) and h' = h(klmz
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Comparing (9.35) with (F,16)-(F.20), we note that the MRT
scattering phase matrix has additional terms not present in the
RT scattering phase matrix. These additional terms represent
wave like corrections due to the bottom interface at 2z = —dl.
This can be seen by removing the effects of the bottom boundary
(i.e. by letting R12’ 512 -+ 0) in which case Qpr Gor Oop > 1,

v
e, * 0 and the MRT scattering phase matrix (F.16) reduces
identically to the RT result (9.35).
We now consider the MRT scattering coefficient matrix as
given by (F.l) and (G.13). The RT scattering coefficient

matrix is given in Reference 63, and in the notation of this

thesis is given by

’Kh(e) 0 0 0

0 K, (6) 0 0
R(o) =
(K (8) + K, (8))
0 0 v h 0
2
(R (8) + K, (8)

0 0 0 v h

2

o )

(9.36)

In Chapter 8 it was shown that,
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2m(2\"F] cos 8 = K_(8) (9.37a)

2mm[3™] cos 0 = K_(6) (9.37b)
where

AEERD = (R - Ky, (9.38a)

ATM(}-EJ.) = n (R = k- (9. 380)

Therefore, it is clear that (G.13) reduces to the form

PKh(e) 0 0 0
KV(G) 0 0
RK(Q) =
(K_(8) + K, (8))
0 0 N4 h (nvv - nhl)
2
(K (8) + (8))
. ) Cny = ) v (9 * X

2

(9.39)

Comparing (9.39) and (9.36) it is apparent that the MRT result

(9.39) exhibits additional wave-like correction terms of the



242

form t(nv' - nh'). Physically these terms arise from the
fact that TE and TM polarized waves in general propagates in
the random medium with distinct phase velocities, thereby
affecting their cross correlation. However, should the random
medium be such that TE and TM polarized waves have identical
phase velocities, then the MRT result (9.39) reduces to the
standard RT result (9.36).

As an application of the MRT equations (9.25a), (9.25b)
and to illustrate the significance of the auv matrix terms
(particularly the term with factor Al) we compute the back-
scattering cross section fof a two-layer random medium by ap-
-pPlying the first order renormalization approximation.6l In
the first order renormalization method, the scattering of

the incoherent intensity is neglected in the Bethe-Salpeter

equation. In this approximation the MRT equations reduce to

d L= 1 5 g
a’;‘ Iu(zl g.) = n(B‘L) Iu(zr B.L) + IB lz {Quu B_LI k..Ll)
1mz
* Tou (2 ki) * Qua (B, i) Tna (Zr 1i)

+8, 0B, k) T _(z, K )} (9.40a)
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ad - _ == .7 - 1 - - -
— Id(zl BL) = n(SL) Id(2, QL) - " {Qdd(QL' k;i)
dz ‘Blmzl
) Imd(z' kLl) + Qdu(B;’ kLl) ’ Imu(z’ kLl) P
- Al ch(8¢' k¢i) Imcz(z, k;i)} . (9.40b)

Since the z-dependence of the terms within the curly brackets
of (9.40a) and (9.40b) is known, we can readily solve for fu
and Ed in conjunction with boundary conditions (9.29a),

(9.29b). Moreover we consider the backscattering direction,

EL = -ELi in which case Al = 1., The results are
[ Xy 312
2 - - I 0li 2 T
lklmzil Iuh(o’ k;i 4 fe CD(2k.1.i’ Zklmzi)
2 |Dy;l
-4n"'d N
hi™l -4n'.d
(1 - e ) 4 hi 1
e (1 + [Ryp;l° e )
hi
-4n".4d
+4d, o(2k ., 0)|Ry,;[% e hi 1] (9.41a)
k 2 |Y...|2
2 - = T _° 01i 2
lklmzil Lav(0r k;i) 4 En (002K 57 ZKypgy)
2 k. |F,.|
1m 21
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-4n"'d

1 -4n".d
(L-e V&% " vi9l =
o (1 + |512i| e ) + 4d; o(2k ., 0)
vi
(k2, - k2 .) =-4n".d
lleilz 11 2lmz:L e vi'l (9.41b)
klm

where Iuh and Iuv signify respectively the first and second
elements of Tu' The intensity transmitted into region 0, is

found by applying boundary condition (9.31) to (9.41la) and
(9-4lb) -

— 2 _i
Ioun = |%10il? Tgn(0r =k, ;) (9.42a)
n 2
I = '-‘3 Y I_(0, =k ;) (9.42b)
ouv In 104 uv '’ i’ ’
1

The backscattering cross sections per unit area follow from

the relation

%hh Iouh
= 47 k % cos?g , (9.43)
o) ol )
T Iouv
with £ =1 in I and £ =1 in I .
e ouh m ouv

We now consider a spectral density of the form
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_ Skitg 29 -B 22 %/4
23, 8,) = Imp 2 o L7p

2 " ” (9.44)
474 (1 + B, 22)

which corresponds to a correlation function which is Gaussian
laterally and expcnential vertically. Combining equations
(9.41a)-(9.43), we obtain the backscattering cross sections per
unit area for a two-layer random medium in the first order

renormalization:

t4y 2 4 b ol 29 2ain2
o Skimts 2, [ X094 1" TRyl k%2, *sin®e ;
hh
4 IDys 1" Ikyqsl”
-4n".d
- "4
(1L - e hi 1) (1 + |R 4 4nhJ. l)
2nt. (L + 4k12 .9 2) Fral®
"hi lmzi~z
_4nu .d
+ 84, [R,;|*e P (9.45a)
'y 2 4 b 1 2 2032
c = lemzp 2 IY'lOi‘ lkozil %o lp SR04
vV
4 [Fasl* ks l®
"4T1"'d " 2
- .d k .
(L - e vi l) 1+ |s 2'1“ e 4nv1 l) lmzi + sin?g .
" 12 2 121 2 o1
2nvi(l + 4k1mzilz ) kO
‘47‘1"-5 k2 . 2
2 vi'l lmzi _ _. 2
+ 8d,[8,,,]% e —;—;- sin®6 (9.45b)

o
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9.4 Illustration of Backscattering Cross-Sections

In order to illustrate the backscattering cross sections
(9.45a) and (9.45b) obtained from MRT theory, we plot in Fig.
9.1 Oh = gy = O at nadir, as a function of frequency for
a 20 cm thick random layer. The coherent effects of MRT
theory are apparent in the oscillatory behavior exhibited by
the spectral dependence of o¢. In Fig. 9.2 we plot ¢ as
a function of frequency for the same parameters as Fig. 9.1
but with increased 6. We see that increased scattering
dampens the interference pattern by shielding the bottom
boundary to a greater extent.

A particularly significant coherent effect arises from
the A terms in (9.25a) and (9.25b). As discussed in Sec-

1
tion 9.2 these terms constructively interfere only for E; =

tkLi (i.e. forward or backward scattering). Physically,
this is illustrated in Fig. 9.3 where we have sketched the
path lengths traversed by the single scattered mean field

and its conjugate in the two cases of forward and backscat-
tering. Constructive interference terms of this type are

not included in phenomenological radiative transport theories.
In order to gauge the error produced by omitting these con-

structive interference terms, we set Al = 0 1in (9.25a) and

(9.25b) and rederive backscattering cross sections, LI and
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Or® The results are similar to (9.45a) and (9.45b) except
that the second terms within the curly brackets are reduced
by a factor of 2. 1In the case of thin layers with low ex-
tinction the contribution of the Al terms can be significant.

However, for thick lossy layer the error produced by omitting

the Al terms is minimal.
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9.5 Comparison with First Order Born Approximation Cross

Sections

As another case of interest, we compare the backscattering
cross sections of MRT theory, (9.45a) and (9.45b) with those

obtained in the first Born approximation to the wave equation.

@

In Chapter 3, the Born approximated cross sections for a two-
layer random medium with spectral density (9.44) are given in
(3.30a) and (3.30b). Comparing (3.30) with (9.45), the MRT

results are seen to have the same form as the Born-wave results

and nvi

but with renormalized decay constants in place

Thi
of the decay constant kimzi' In the limit of small permittivity

fluctuations (small scattering) & - 0 and nﬂi, n;i > kimzi
and the MRT backscattering cross sections reduce to the first
order Born results. This is illustrated in Fig. 9.4 where for
fixed incident angle eoi, frequency, £, and decay constant
k{m' we plot backscattering cross sections, O iy (in db) as
a function of the variance, &6, 1in both the wave-Born and
MRT-first order renormalization approximations.

For large permittivity fluctuations the MRT result is
bounded by the asymptote v = constant. Physically, this
is due to a balance between the increased backscattering and

increased shielding of the medium produced by large permittivity

fluctuations. Alternatively, the Born result is unbounded as
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§ 1increases. This follows from the absence of multiple
scattering and the associated shielding effect in the first

Born approximation.
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9.6 Appendices

g

APPENDIX A

A (k) =
174
Dz(k_,.)
R, (k)
Az(kJ_) =0 L0
DZ(kL)
i2n. d
_ h'l
c, (k) = —2
1L
Fé(kx)
S,alk )
2L F. (k. )
24
i2n_ d
_ v 1l
Dl(kJ.) = slz(k.l.) €
where:
_ 1
g = -
(27) % 2ik

1lmz
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(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.7)

(A.8)
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i2nhd1
DZ(k.l.) =1 + R01(k.1) Rlz(k_L) e (A.9)
i2nvdl
F2(kL) =1 + 801(k¢) SlZ(kL) E (A.10)
ki, = ks,
L, o= 22 (A.11)
1) k. + k.
iz jz
€.k, - g.k.
s, ., = —1-12 ]z (A.12)
1] e. k., + e.k,
j iz i jz

where i, j =0, 1, 2 and klz as well as e, are to be

interpreted as klmz and ¢,_, respectively.

1m
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APPENDIX B

Here we list the amplitudes in Equation (9.2) for the zeroth
order mean field in the two-layer random medium. Assuming a

unit amplitude incident plane wave, we have:

X. ... 12nhid

_ 0li 1
Ehui = fe > R12i e (B.1)
21
X .
= 01li
Ehdi fe S (B.2)
2i
kY .. i2n_.d
E . =f 9 0115 o vil (B.3)
vui m X P 12i
Im ~21i
k Y... .
E .. = f —2 _01i (B.4)
vdi m F 3
Im " 2i
xoli =1 + Roli (B.5)
Y911 =1 * So11 (B.6)

where fe and fm denote the fraction of TE and TM com-

ponents in the incident wave.
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APPENDIX C

>
The terms Ij<(z, z', EL) (3 =1, 2, ..., 12) which

appear in Equations (13a)-(14d) are listed. For j =1, 2, 3,
>

4, Ij< has the generic form:

) VA
> ' _ 4 -
IJ (Zy z', B ) (27\') J-m da q)(kli BJ.I dz) J-d dzl
1
z! -ig (2, = z.)
z 1 2" = > = =
J-d dz2 e {PJ (zl, BL) Elm(zl, Ll)}
1
—> - . —* -
where
in, .z . -in,.z .
= = _ hi » hi -
Elm(z' Ll) - EhuJ. € e(klmzi) + Ehdi € e klmzi)
ln . 2 A~ -in . Z ~
vi vi

The coefficients in (C.2) are given in Appendix B. I.<(z, z',
é;) has the same form as (C.l) except the integration ranges

become =z < z, < 0, z' < z, < 0 and 5; ’ 6; are replaced
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§l>(z, EL) = Bl(qa ;(—Blmz) einh(é““')z + ;(Blm ) e—inh(g"")z
(C.3)
9,7 (z, B) =Bz, B) (C.4)
- < - A inh(E;)Z A
Py (z, B,) = a,(8)) e(-Byp,) © + A,(8 ) e(B )
e“inh(-‘é‘aZ ~(c.5)
9,"(z, B) =B (z, B) (C.6)
§2>(z, §¢) - Dl(BL) IAl(-Blmz) einV(El)z * 1;(Blmz) e-inV(éL)z
(C.7)
9,7 (z, B) = 3,7 (z, B) (c.8)

inv(éL)z

- < - ~ ~
B,(z, B) = Cy(8,) h(-8, ) e +Cy(8,) h(By )
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(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)
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For j =5, 6, ..., 12 the Ij< terms which appear in

(9.10a)~(9.11d4) have the generic form:

J_Z dz4 J_Z' dz, e-iaz(z1 T %) §j>(zl, gL)
1 1
- {T (21, 2, R ) eikimz(zl z,)
N ?d(ZI’ - KL) —ikimz(zl - 2,)
+ ?cl(zl’ Z, E;) Himz (71 * 22)
F Toplags 20 F e-ikimz(zl + zz)} . §j>*(22' 5)  (c.19)

where the dyads T are defined in (9.7a)-(9.7d). The expres-
<

sion for Ij (j =1, 2, ..., 12) 1is identical to (C.1l9)
except the ranges of the zyr 2, integrations become 2z < zq
<0, z'<z,<0, and §j> and ﬁj> are replaced by §j<

and H. .
J



> -

L

4

+ Al(8¢) e

I}l

+ 31(84) AZ(BL) e

)

4

+ Cl(QL) e

el

6 (Zr 8

+D(8) Cy(p ) e

inh(E_L)z .

- -—

lnh(B‘L) Z A~

= H5 (z, QL) Al(BL) Bl(BL) e e ( 81mz

-inh(§¢)z ~

in. (B )z .

s (z, B = §6>(z, 8,) =cy(8,) D (g,) e h(=8yp,) -

-in_(B )z

in (B )z

-< -
) = Hg (z, BL) Cl(sk) Dl(BL) e h(-elmz)

-in. (B )z A
+ h(Blmz)

)
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)

(C.20)

)

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)
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F, (z, B,) =F. (z, B) (C.26)

B, (z, B,) = F¢ (z, 8, (C.27)

Fy~ (z, B) = Fe (2, 8) (C.28)

gy (z, B,) = Fe (2, E,) (C.29)

Fg“(z, §;> = Fg(z, B)) (C.30)

' (z, B) = F“(z, B,) (C.31)
Fy (z, B) = Hy (z, B) = 2,(8)) e-inh(-éi-)z e (8 )

+ By (B) Ay(8)) eléh(éi-)z e(-8, ) (c.32)
Fo (z, B,) = Hy“(z, ) = Az.“BJ_) e—inh(-éi-)z e(8)n)

in (B )z &

+ BZ(B.L) Al(BA_) e e(—Blmz) (C.33)
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= > = = - -in, (8, )z .
Flolz, B =8z, B) =Cy(8) e h(8yp,)
+C,(8,) Dy(8) e h (=81 ) (C.34)
< - =< -in (§_‘_)z N
Flo(z, 34_) = Hlo(z, B_‘_) = CZ(B_L) e h(Blmz)
in (B )z .
v 4L
+C(8) e h(=8y,) (C.35)
Fl,(z, 8,) = Fg (2, B,) (C.36)
HI,(z, B ) = F{4(z, B)) (C.37)
Eil(z, B, = §9<(z, 8,) (C.38)
=< - _ =< - g
Hy,(z, B,) = Fig(z, 8)) (C.39)
=> - _ = - ,
F1,(z, B,) = Fjy(z, B)) (C.40)
Hi,(z, B,) = Fg'(z, B)) (C.41)
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]

wi

- -< -

I
A

- - -
le(zr B_\.) = F9 (Zr B..L)' (C.43)



e

£ {e(-slmz) . e(klmz)}2 (D.1) |
£5 . {a(B, ) - elk, )}2 (D.2)
Imz lmz ‘
- * - - L ] h 2
£+ (e(-gy ) » Alky )} ®.3)
+ ~ ~ 2
£« (elgy,) * hlc )} (D.4)
{e(-elmz) ' e(klmz)}{e(-slmz) : h(k].mz)}
(D.5)
{e(Blmz) * e(klmz)}{e(slmz) « hikyp )}
(D.6)
* {e(-almz) ' h(klmz)}{e(“ﬁlmz) * e(klmz)}
(D.7)

APPENDIX D
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. {e(Blmz)

]

+ ey
g {e(BlmZ)

g+ {e(=Byn,) * hi-ki )} {e(=8y,,)
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. h(klmz)}{e(slmz) . e(klmz)}
(D.8)
”~ A 2
{e(-Blmz) . e(-klmz)} (D.9)
- ~ 2
{e(Blmz) . e(-klmz)} (D.10)
”~ A 2
{e(-Blmz) . h(-klmz)} (D.11)
PN A 2 .
{e(slmz) . h(-klmz)} (D.12)
g - fe(-Blmz) . e(-klmz)}{e(-ﬁlmz) . h(-klmz)}
(D.13)
. e(-klmz)}{e(Blmz) . h(-klmz)}
(D.14)

~

. ;(-slmz)}

(D.15)



267

~

R) =g" - fe(g, ) » -k _)}elp ) - el-ky )}

(D.16)
. Where:
+ C+
£z —— = (D.17)
- ' * — 1 *
(an klmz * lmz)(an klmz * Blmz)
C
gt = —— - = — (D.18)
L] 1
(an + klmz * B1mz)(°‘n + klmz * Blmz)
= 2
C+ = IAl(B;) Bl(gL)I (D.19)
- 2
C_ = |Al(eJ_)| (D.20)
Also,

+y A ~ ~ ~ -
Won (B, k) = b[ﬂ—]{e(-slmz) elky e (By,) ¢+ el=k, )}

ln'"a C+ imz z
(D.21)
W (B, k) =b*||(e(p, ) - ek, )}{e(=8, ) « al~k, )}
2n " "A" L lc ilmz 1mz 1mz Imz

(D.22)
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+ A ~ Fa A
z = £
Wi (B, k) = b[z-] {e(-B ) * e(-ky )}e(B ) - elky,,))
+
(D.23)
- - _ f- A . A _ A _ . A
W, (B, K = b*[E_J{e(Blmz) el-k, ) He(-8, ) « elky )}
(D.24)
where:

- 2
b = |Al(BJ_)| B, (B).
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‘APPENDIX E

In this appendix, we illustrate the technique used to sum
the residue terms which appear in (9.14). Referring to equation

(9.14) and Appendix D, a typical sum over residues has the form:

= +
Res ¢(k =~ B8 a_ )
I —— 2L - (E.1)
-z -z
n (a p)(a p)
. ' *
where the complex variable zp represents (k1mz + Blmz) or
' - * - ! * - ! - * -
(klmz Blmz) or (klmz lmz) or (klmz Blmz)’ ac

cording to the specific term in (9.14) we are trying to sum.
Let Im(zp) > 0 and consider the following integral, along

the real o, axis:

. (E.2)

The spectral density ¢ has an equal distribution of poles
+ -

{an } and {an } in the upper and lower half complex--az

plane and vanishes everywhere on the circle at infinity. 1In

this case we evaluate (E.2) by closing the contour both up
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and down in the complex a plane:

_ _ Res Q(EL - B, an+)
ap - <I>(k_L - B¢, zp) + i ) T - (E.3)
n P
Res ¢(k - B ’ -
I =~z B~ By o) (E.4)
down - * )
n o -z
n
Equating Iup and Idown’ we obtain
_ _ - - + (.~ = an+)
®(k¢ - B8, zp) = ﬁ Res ®(kL - B,y ) " - (e o,
n P n P
(E.5)

where we have made use of Equations (9.15). Result (E.5) is
unchanged if the initial assumption Im(zp) > 0 1is replaced
by Im(zp) < 0. Therefore, (E.5) may be used to sum the re-

sidue terms of the form (E.l) which appear in (9.14).
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APPENDIX F

Here we list the matrices of the MRT equations (9.25a)

and (9.25b).

Znh"(B;) 0 0 0
0 2n_ " (R 0 0
RE) = | My (L) | | |
0 0 (nV + ny ) (nv = Ny )
0 0 _(nvl - nhl) (nV" + nh-"
(F.1)
where nh“ = Im(nh) and nh' = RE(nh)-
v v v v
8 B,k .)="9¢k. -8, 8 )
ua ‘"L’ Tai’ o 2 i L’ "lmz lmzi
~ . ~ 2 "~ . A 2
O‘h{e(elmz) e(klmzi)} ah{e(slmz) h(klmzi)} 0 0
. 2 . 2
OLv{h(slmz) e(klmzi)} OLv{h(slmz) h(klmzi)} 0 0
0 0 0 0
0 0 0 0

(F.2)
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same as Quu except let klmzi > _klmzi (F.3)
same as Quu except let Blmz - _Blmz
and  Kymzi -Elmzi (F.4)
same as Q . except let Bimz ~ ~Bimz (F.5)
’n’ - -
; @(kii - B_L, 0)
e(-klmzi)}
{h(slmz) h(klmzi)} 0 0
th(=81nz) h(—klmzi)}
0 0 0
0 0 0

(F.6)



B $2nt. (B )z
= F e+ nhl( $)z
hui
d 2n". (R )z
B .|2e YV +
- - vui
Imu(z’ 3*) = a
d 0
0
B -2n". Z]
hi
* :
2Re{E,\; Efai Yhil ©
=2ng;2
3
_ _ 2Re{E ; Efgy Yyil ©
Imcl(z’ K;i) =
0
0
B 2nt .z
~ hi
*
2Re{Ey ; Bfgs YThil ©
= 2nviz
*
_ 2Re{E \; Blgq; Yuil ©
Imcz(z' Exi) =
0
0

where:

oL =

- 2 2
1 !Rlo(BL)l lRlz(B;)l e

-4n, " (8 )d;

h

IDZ(B_J_)I2
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(F.7)

(F.8)

(F.9)

(F.10)



vi

Yhi

=<

vi

=4n," (8,)d,

We also have:

uu '

where:

- 2 2
1 - [5,,(8,)|2]S,,(8) % e
|F,(8,) ]2
i2n,.d
. hi™l
- *
- lznh dl (L + ROliRlZi e )
., e
1231 ID lz
2i
i2n_.d
-t Ok vi'l
. i2ng;dy (1 + Spy58155 © )
S1o; ©
ENE
%*
- R D2i
101 lD |2
2i
*
_ Fli
101 2
|F,; |
= ! =
A | B
= I 17 - R - ;____J _____
) 2 °(¥¢ B;’ Blmz klmz) = | =
C i D
{
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(F.11)

(F.12)

(F.13)

(F.14)

(F.15)



il

il

Ol

ah{;(B

av{h(s

r- A
ZaCl{h(B

acz{h(B

oLh{e(Blmz) :

av{h(slmz)

1mz

lmz)

)
)

1mz

{e(Blmz

)

N 1mz
{E(Blmz)

« ae(k

. f(klm )}
- e(k

)}?

1lmz

) }?

1lmz

e(klmz)}{e(ﬁ

. e(klmz)}(h(B

lmz)}

e(klmz)}

z
)}

1mz

ah{e(Blmz)

1lmz

ZaCl{h(B

-2acz{h(8
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. " 2
h(Blmz)}
) . h(klmz)}2
2
1mz)} 0
2
lmz)} 0
. lmz) ’ ?(klmz
{e(Blmz) . h(klmz
. 1mz) : ?(klmz
{E(Blmz) : h(klmz

(F.17)

(F.18)

) F
) }

)}
)}

(F.19)
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acl[{h(Blmz) . h(klmz)} acz[{e(slmz) . e(klmz)
{e(slmz) ’ e(klmz)}' {h(slmz) * h(klmz)

+ {;(Blmz) ) 1,;(klmz)} - {;(Blmz) ‘ ﬁ(klmz)
{h(Bypy) + elkyp,)}] Th(Byp,) - e(klmz)
-acz[{h(slmz) ' h(klmz)} OLcl[{e(e’lmz) * e(klmz)
{e(elmz) ’ e(klmz)} {h(slmz) ' h(klmz)

+ {e(By ) » hiky )} - {e(8y,) - hlky,)
{h(klmz) . e(klmz)}] {h(Blmz) . e(klmz)

(?L, k; = same as Puu(gx’ k¢) except let klmz + =k
(Bl, KL = same as Puu(s*' k*) except let 8, . + -8

}
}
}
H

}
}
}
H

(F.20)

1mz

(F.21)

1mz

(F.22)
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Pijg(B s k) = same as P_ (B , k) except let Bimz ~ ~Bimz
and klmz > _klmz (F.23)
, _ Xy
rl - R R - elz(nh Ny )dl
+ . = Re 01712 ®01°12 F.24)
cl D.F_*
L 252 -
. - 4
1 - R..R.. S*.S* elZ(nh Ny
o, = In 01712 ®01°12 F.25)
*
_ D,F, N

where Appendicés A, B and C should be referenced for the de-

finition of the variables in (F.l)-(F.25).
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APPENDIX G

In this appendix we convert the MRT equations (9.25a)
and (9.25b) to standard form by using solid angles and specific
intensities. To illustrate we consider the angular decomposi-
tion of the upward Poynting flux associated with the vertical

polarization:

Sou = "E1g/" ;( a8, <e . (z, B ) eX (z, B )>
= Ve /n Jr a*s T (2, z, B). (G.1)
Let
Bx = Blﬁ sin 8 cos ¢ | (G.2)
By = Bim sin 6 sin ¢ (G.3)

then the integral operator J dZQL becomes

(/2 2m
[ dZB* = J . sin 6ds fo d¢8im cos g = f dneim cos 9 (G.4)



279

where we have neglected the evanescent portion of g space.

L

Therefore (G.l) becomes:

QL)] . (G.5)

= 2
Svu J dq [/elm7u Bim COS © J (z, =z,

We define the quantity within the square brackets of (G.5) as
the upward specific intensity, =£;u(z, ) of the vertical
polarization. Therefore we define upward and downward specific

intensity matrices v?u(z’ Q) as:
d

_(u(z, Q) = —— cos § Iu(z. B.x.) (G.6)
N d

where n, = /u/e and fu(z, E;) is given by (9.20). Using
(G.2), (G.3), and (G.4) d together with (G.6) the MRT equa-

tions (9.25a) and (9.25b) may be cast into the form:

cos f;.@u(z, 2 = -k J .z 2 -R@ -J, z, 2

*Qua @ 83) fnalze @) + 8y Qo (20 83) = Pgy (20 0y)

0
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+ f d' [P (R, 9 = 2. (z, @) + B (2, @) - F (z, a")]

(G.7)
~cos 8 f—z-jdu, Q) = - K, Jsz, 2 - R(@ - Jy(z, )
+ Qg (0 2p) - ooz, 0 + a0, 0 L7 (2, )
- 8y By (@, 0 - Fooatz, ) + J an' 5, (2, a')
‘Zulzr 2" + By, 2 *Lg(zr 2] (G.8)
fwm, 2') = 1=>W(§-L, k") (G.9)
S, (@ 9 = 58\:(@:;512?) = - (6.10)
1m i
0y (2 0;) = M (G.11)
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e
]

a ZB{m = ZIm(Blm) (G.12)

K(Q) = cos 6 n(B.) - K.I » (G.13)

where I is the identity matrix and it is understoocd that

B,/

is to be expressed in terms of 6 and ¢ by means of
(G.2) and (G.3). The subscripts u and v signify, re-
spectively u or d. Combining (G.6) with (9.29a) and (9.29b)

the boundary conditions relating bzu and céd are easily de-

rived.
cgd(o, Ql) = Ry, (2;) -ggu(o, Ql) (G.14)
Ju(“dl' Q) = ﬁlzml) -\_(d(-dl, 2y) - (G.15)

Conversion of boundary condition (9.31l) to standard form may
be accomplished by first multiplying both sides of (9.31) by

a2 and then making use of the transformation implied by
A

(G.4) :

2 = = . T 2 2
d?s, I, ,(0, B) =T (8) - I (0, B) a*g (G.16)
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2 T = - = . T I 2
dQOBo cos eo Iou(o' g;) = Tlo(qL) Iu(O, QL) Blm cos el dQl
(G.17)
;Z €4 cos‘eo Ny = - .
ou(o, S}O) = - s ——-Tlo(Ql) 'ezu(o' szl). (G.18)
im 1 "o

In going from (G.1l7) to (G.lS) we have used (G.6) and the

result:

cos 6., €

an n
o 1 "Im ‘o
—— e 78 = —_—, (G.lg)
daq 1 © cos © £ n '

1 o o© 1l
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CHAPTER 10

Renormalization of the Bethe-Salpeter Equation

In Chapter 6, it was found that the cross-polarized
backscattering cross-section computed in the second order
Born approximation does not agree with the cross-polarized
backscattering cross section obtained from radiative transfer
theory. 1In this chapter we examine the reason for the dis-
crepancy between the wave and radiative transfer results. It
is found that an infinite sequence of terms in the intensity
operator may be summgd resulting in a renormalized Bethe-
Salpeter equation which contain coherent effects not accounted
for by the ladder approximated Bethe-Salpeter equation nor by

the radiative transfer theory.
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10.1 Physical Significance of Cross Terms

The additional contribution to the depolarized backscat-
tering as shown in (6.14) originates from the last term of
the cluster expansion (6.3) which correlates ;l with 54 and
52 with 53. To see this more clearly, consider the last
term of (6.4) in the limit of very strong correlations. It
becomes

3 3 = - - . = - - . —(0) -
J d rld rZ[GOI(r’ rl) Gll(rl’ r2) El (rz)]uv

(,, ) - E{° (r)]*

(r, rz) 1

ll

The backscattering path of the field represented by the first
of the square brackets is depicted in Fig. 10.1 by a solid
line. The backscattering path of the field contained in the
second set of square brackets is depicted in Fig. 10.1 by a
dashed line. We may consider each represents the wave vector
of a piane wave. Thus in the backscattering direction the

two path lengths are equal and the two waves interfere con-
structively. 1In the radiative transfer theory only the ladder

terms are included and the constructive interference is con-



Constructive interference path lengths for second
order backscattering

-Figure 10.1
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sidered due to coincidental ray paths rather than phase fronts.
Thus only the first term of (6.14) is accounted for in the
radiative transfer theory.

Mathematically we see that the phases of E{o)(Ez) and

=(0)* =
El (rl)

52) and 5{1(52, El) combine in such a way that when integrated

over the respective z-coordinates, a contribution of second

Gsl(r, rz), and G01(r, rl), as well as Gll(rl,

order in albedo is produced. This argument may be applied to
higher order intensities with the result that additional signi-
ficént contributions besides the ladder terms in the radiative
transfer theory may be identified. Therefore in the limit of
low loss and high scattering these additional contributions
may be included in a renormalization of the Neumann series

for the covariance of the field. We then obtain a Bethe-
Salpeter equation with a renormalized intensity operator in

which the infinite sequence of cross type terms are summed.
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10.2 Resummation of Cross Terms in the Intensity Operator

The dyadic Green's function for a random medium satisfies

an integral equation similar to that of the field El(E).

- = . ~(0) = =
Gij(r, ro) = Gij (r, ro)

3 (0) = = = (0) ,= -

+ IV d ry Gik (r, rl) Q(rl) ij (rl, ro)
1
3 3 (0) = = (0) = =

+ JV d rld r, Gik (r, rl) Gy g (rl, r2)

1

(%) ot ¢ E., ) + (10.1)
1 2 23 2" "o tt :

To simplify the analysis we associate Feynman diagrams with

the various terms in (10.1) according to the following rules

<Gij(r, r°)> = : (10.2a)

(0) = = _
Gij (r, r,) = (10.2b)
C(El - EZ) = e Or (10.2¢)
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= oy * =1 - 1 -
<Gij(r' ro) le(r ' To )> I (10.24)

The correlation of the dyadic field in (10.1) is given by

T-—-T-02

T -

Integration is performed over the coordinates of all internal

(10.3)

vertices and convolution is carried out over all indices of
internal vertices. The second order ladder and cross terms
which lead to an equally significant contribution are readily
recognized in (10.3).

We consider the sum of the strongly connected diagrams
and identify the "kernel" of the this expression as the intensity

operator:
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-1+ + ffm
Ko 2R

The approximation usually made is to retain only the first term

+

of (10.4) resulting in the so-called ladder approximation. The
ladder approximation reproduées, for examble, the second and
fourth terms on the right hand side of (10.3) as well as higher
order ladder terms.

In order to reproduce the cross terms of (10.4) which con-
tribute significantly to the backscattering cross sections, we

renormalize (10.4) by considering the following expression

- ST

(10.5)
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Equation (10.5) resums an infinite sequence of cross terms in
the intensity operator. We may proceed with the usual develop-

ment of the Bethe-Salpeter equation to obtain

(10.6)

and approximate the intensity operator by

0 | = +:>>I<<: | (10.7)

Equations (10.6) and (10.7) lead to a nonlinear integral equation
from the correlation of the dyadic Green's function. 1In analytic

form, (10.6) and (10.7) may be written as
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- = * (P! = B = prod * (=) =
<Gij(r' ro) le(r r T ) > <Gij(r, ro)><G2k(r P T )>

I -~

[C(r El') a(El - 22) 5(21' - T,")

1 6ps 6qr

ot oS B > = >t t
+ C(rl T, ) C(rl r2)<Gps(r1, r2) Gar(rl r T )> 1]

<st(r2, ro) G;k(rzf, ro')>. (10.8)

Consequently the covariance of the scattering field takes the

form

l)>

1

o * -l - 3 3 3 ] 3 1 - - * - -
<€, (r) €5 (r')> f d°r,d°r,d°r, 'd’r, <Gip(r, rl)><qu(r ) T

[C(rl - rl') G(rl - r2) G(rl' - r2') Gps Grq

- - = ! - S - - -
+ C(rl - T, ) C(rl r.) <Gps(r1, rz) G* (rl', r, )>]

2 gr

[<Es(22)><Er(Ez')> + <€S(§2) gr*(fz')>] (10.9)
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where ¢. E. - <E.>.
i i i
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10.3 Renormalized Bethe-Salpeter Equation and Discussion

Continuing with the renormalization we write (10.8) in

diagrammatic form:

+ T (10.10)

___l\/‘
=1 I

Using the first two-terms on the right hand side of (10.10)
as the zeroth order iteration, and iterating with respect to
the correlation which appears on the right side of the third

term in (10.10), we obtain:

I = + l I -+

4_
DK I
.___;1I\N
=]

/.-—:t\/.___

+ 2<\o——~-o/“t————-=

(10.11)

+
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We regroup the terms of (10.11l) as follows:

= +
I X
____;Jlg ;;IL____; _—
+ + oo | +
= ]
+ + e e I
_____¢ \‘————

(10.12)

In (10.12) we define the sum of all the terms which appear in

the square brackets by the symbol Zz » It is easily
proven that ( 2 satisfies the following integral egqua-

tion:

g > = i + :j/>1</' ( ) (10.13)
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in which case (10.12) takes the form:

HIERORNOME

Equations (10.13) and (10.14) are a pair of coupled integral

equations for the correlation of the dyadic Green's function

which analytically takes the form:

—-"l"|= - = * (=t -
Uij,zk(r’ r lr', r ) <Gij(r, ro)><G2k(r P T ) >

3 3 3 3 -z _ =z = _ =
+ f d rld rl'd rzd rz’ C(rl r2') C(rl r2)

- = * (3t Tt - - * [ 1 1
<Gip(r, rl)><G2q(r , rl )><Gps(r1, rz) qu(rl ' T, ) >

(10.15)
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—- - * (w ' =
<Gpj(rl, ro) Gsk(rl , r ")> (10.16)

where we have defined Uij,lk as Z 2 . It is interesting
to note that the renormalized equation (10.16) has a structure
similar to the ladder approximated Bethe-Salpeter equation.

In fact, if Uij,kk is approximated by the first term on the
.right hand side of (10.15), then (10.16) reduces identically

to the Bethe-Salpeter equation in the ladder approximation.

In order to determine which terms have been picked up in the
resummation of (10.1) (or equivalently, (10.6), (10.7)), we

may solve equations (10.15) and (10.16) by successive itera-

tions. The result is:

TRt s s
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IR IR
TR

It is clear from (10.17) that the renormalization includes

(10.17)

ladder terms, strongly and weakly connected cross terms as

well as weakly connected ladder-cross terms.
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CHAPTER 11

Conclusions and Suggestions for Further Study

In this thesis, theoretical models have been developed
for electromagnetic wave scattering from layered random
media with applications to microwave remote sensing. Applying
Born approximations which are valid for small albedo, back-
scattering cross-sections have been derived with a wave approach
for a two-layer random medium with arbitrary three-dimensional
ccrrelation functions. Carrying to first order the backscat-
tering cross sections illustrate the possibility of Sph > Ty
due to the Brewster angle effect at the bottom bodndary.
Previous models of a half-space random medium do not reproduce
the effect of o

“hh
scattering data.

> va which is observed in certain back-

The first order Born approximation also has been applied
to the case of backscattering by a stratified random medium
with arbitrary three-dimensional co:relation functions. It
has been found that multiple resonances occur which may explain
the spectral dependence observed in active remote sensing data.
The multiple resonances are due to resonant scattering in each
random layer and to illustrate this important effect the

special case of a three-layer random medium has been used.
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In addition the three-layer model also has been found useful
in interpreting the diurnal change of snow-ice field due to
solar illumination.

Cross polarized backscattering cross sections for a two-
layer random medium have been derived by applying the second
order Born approximation to the integral equations of scattering
theory. 1In the half-space limit the cross-polarized backscat-
tering cross sections do not reduce to previous results63
obtained using radiative transfer theory. The discrepancy is
due to cross terms not accounted for by radiative transfer
theory nor by the Bethe-Salpeter equation under the ladder
approximation. In order to account for these additional cross
terms the Bethe-Salpeter equation has been renormalized by -
summing an infinite sequence of terms in the intensity operator:
The result takes the form of coupled integral equations for the
covariance of the electromagnetic field. It is found that the
renormalization accounts not only for cross terms but many
other terms in the infinite series repfesentation for the
intensity operator.

In this thesis we have applied renormalization methods to
study the multiple scattering of electromagnetic waves by a
two-layer random medium. Due to the presence of a bottom

boundary there exist significant coherent effects in a two-

layer random medium.
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We have solved Dyson's equation in the non-linear appro-
ximation for the zeroth order mean dyadic Green's function.

The coherent field is found to propagate within the random
medium as if in an anistropic medium with characteristic TE
and TM polarizations. The zeroth order'solution to Dyson's
equation in conjunction with the ladder approximated Bethe-
Salpeter equation have been used to derive modified radiative
transfer (MRT) equations appropriate for electromagnetic
scattering within a two-layer random medium. The MRT equations
have been solved in the first order renormalization approxima-~
tion and significant coherent effects not accounted.for by
phenonienoclogical radiative transport theories are found.

The task of developing theoretical models is by no means
complete. We have considered primarily the case of a two-layer
random medium with three dimensional correlation functions.
Although the first order Born approximation has been applied
to a stratified random medium, the second order Born approxima-
tion as well as the renormalization approach should be extended
to multi-layer random media. The coupled-integral equations
of the renormalized Bethe-Salpeter equation need to be developed
into a wavé radiative transfer (WRT) theory which accounts for
the cross terms discussed in Chapter 10.

Finally, scattering by a composite medium including rough

surface and random permittivity fluctuations is an important
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and challenging problem to be solved especially when we consider
the inability of volume scattering to account for backscattering

data near normal incidence.
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