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Theoretical Studies for Microwave Remote

Sensing of Layered Random Media

by

Michael A. Zuniga

Submitted to the Department of Physics on
January 9, 1980, in partial fulfillment of the

Requirements for the Degree of Doctor of Philosophy

Abstract

In the microwave remote sensing of earth terrain, the
model of a layered random medium can be used to account for
volume scattering effects due to random permittivity fluc-
tuations. Applying the first order Born approximation,
analytic results for the bistatic scattering coefficients
and the backscattering cross-sections have been derived
for active remote sensing of a two-layer random medium with
arbitrary three-dimensional correlation functions. It is
found that as a result of the second boundary, the horizon-
tally polarized return, a can be greater than the verti-
cally polarized return, whgieas for a half-space random medium
a is always greater than a . The theoretical results are
iYustrated by matching backscntering data collected from a
vegetation field. The bistatic scattering coefficients are
used to obtain the emissivity of a two-layer random medium
and in the case of thin, low loss layers the emissivity is
shown to exhibit strong coherent behavior in the spectral
dependence.

As a more realistic simulation of earth terrain for
active remote sensing analytic expressions for the backscat-
tering cross-sections are derived for a stratified random
medium by applying the first order Born approximation. In
the special case of a three-layer random medium two maxima
are found in the spectral dependence of the backscattering
due to resonance scattering within each random layer. The



3

theoretical results also are found to compare favorably with
data obtained from vegetation and snow-ice fields. The Born
approximation is carried to second order to obtain backscat-
tering cross-sections that account for depolarization effects
in a two-layer random medium. In the half-space limit, ad-
ditional wave effects are found which are not accounted for
by the radiative transfer theory nor by the Bethe-Salpeter
equation in the ladder approximation.

The mean dyadic Green's function for a two-layer random
medium has been obtained by applying a two-variable expansion
technique to solve the non-linear Dyson's equation. The
coherent wave is found to propagate in the random medium as
in an anisotropic medium with different propagation constants
for the characteristic TE and TM polarizations. The ef-
fective propagation constants obtained in the zeroth order
solution are compared with the scattering coefficients of the
radiative transfer theory.

Modified radiative transfer (MRT) equations for the
electromagnetic field intensity are derived from the ladder
approximated Bethe-Salpeter equation together with the zeroth
order solution to Dyson's equation under the non-linear ap-
proximation. The MRT equations contain significant wave-like
corrections not accounted for by phenomenological radiative
transport theories due to the presence of the bottom boundary.
The MRT equations are solved in the first order renormaliza-
tion approximation and comparisons are made with the results
obtained in the first order Born approximation. A method for
resumming an infinite sequence of terms in the intensity
operator is presented. A renormalized Bethe-Salpeter equa-
tion is derived which takes the form of a pair of coupled
integral equations.

Thesis Supervisor: Jin-Au Kong

Title: Associate Professor of
Electrical Engineering

Michael A. ZunigaAuthor:
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CHAPTER I

Introduction

In recent years, active and passive microwave remote

sensing techniques have proved to be a useful tool in the

study of earth terrain, such as snow-ice fields,1-30 vegeta-

.31-45 46-47
tion coverage, and meteorological as well as

oceanographic4 8 phenomena. The majority of the work per-

formed in remote sensing has been experimental in nature

with theoretical developments lagging far behind. Although

past theoretical emphasis has been largely restricted to

rough surface scattering,49-53 recent theoretical models

have been proposed to account for volume scattering effects

in low loss media such as snow, ice and vegetation. Stogryn5 4

considered the scattering of electromagnetic waves by a half-

space random medium whose dielectric constant contains a

small random part and a non-random part which can vary as a

function of depth. Using first order perturbation theory of

Karal and Keller,55 Stogryn derived bistatic scattering coef-

ficients by assuming that the correlation lengths are small

compared to the wavelength. The cross-polarized scattering

coefficients were shown to vanish in the backscattering di-

rection. This is expected since only first order terms were
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considered and contributions to the cross-polarized back-

scattering comes from the higher order terms.

Tsang and Kong56 also studied the electromagnetic scat-

tering by a half-space random medium with three dimensional

correlation functions. The scattered fields in the non-random

region are obtained by using the dyadic Green's function for

a half-space medium and the Born approximation where the field

in the random medium is replaced by the unperturbed field.

Following Peake's57 definition the bistatic scattering coef-

ficients are derived from the scattered fields. The cross-

polarized backscattering coefficients also vanish since the

Born approximation is a single-scattering approximation which

is valid only when the albedo is small.

More recently Tsang and Kong58 investigated the problem

of scattering by a slab of random medium with a laminar

structure. A two-variable expansion technique is used to

solve for the zeroth order mean Green's function from the

scalar Dyson's equation under the non-linear approximation.

The mean Green's function is then used to derive modified

radiative transfer (MRT) equations from the Bethe-Salpeter

equation under the ladder approximation. The MRT equations

are solved for a two-layer random medium with laminar struc-

ture and the reflectivity at normal incidence is determined.

Tsang and Kong59 extended the renormalization method to the
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case of a half-space random medium with three dimensional

correlations. The zeroth order Green's function is solved

from the scalar Dyson's equation under the non-linear appro-

ximation and MRT equations are derived from the ladder ap-

proximated Bethe-Salpeter equation. In the limit of a laminar

structure two effective propagation constants are found to

exist.

Tan and Fung60 also employed the two-variable expansion

technique and solved the non-linear Dyson's equation for the

zeroth order mean dyadic Green's function in the case of a

half-space random medium. Tan and Fung retain terms only to

lowest order in correlation lengths, and the resultant vector

solution contains only a single propagation constant for all

components in the Green's dyadic.

The first order renormalization method also has been

employed in the study of electromagnetic scattering by random

media. In this method the incoherent scattered intensity is

obtained from the ladder approximated Bethe-Salpeter equation

by neglecting the scattering of the incoherent field. Fung

and Fung61 applied the first order renormalization method to

a half-space characterized by a random permittivity with a

cylindrically symmetric correlation function. Fung62 extended

the first order renormalization method to study the scattering

of a vegetation layer characterized by a correlation function
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which is cylindrical laterally and exponential vertically.

Finally, we mention the work of Tsang and Kong,63 who

used radiative transfer theory to calculate the bistatic

scattering coefficients and the backscattering cross-sections

of a half-space random medium with lateral and vertical fluc-

tuations. They solved the radiative transfer equations

iteratively through second order and showed that non-vanishing

cross-polarized backscattering coefficients result.

All these past works were carried out either with the

model of a half-space random medium or with a two-layer random

medium in the case of scalar wave propagation. Therefore the

objective of this thesis is to study and develop electromagnetic

scattering models which are applicable to the interpretation

of active remote sensing data of earth terrain such as vegeta-

tion coverage or snow-ice fields. To this end, we consider

the model of a two-layer random medium with arbitrary three-

dimensional correlation functions. In Chapter 2, we review

the dyadic Green's functions appropriate for a two-layer medium

where the source and observation points are located in dif-

ferent regions. We then derive the dyadic Green's function

where both source and observation points are within the same

region.

In Chapter 3, we solve the problem of scattering by a
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layer of random medium with three dimensional correlation

functions with a wave approach by applying Born approximations.

Carrying to first order in albedo, bistatic scattering coef-

ficients are derived which reduce to previous results56 in

the limiting case of a half-space.

In Chapter 4, we study the emissivity of a two-layer

random medium with three dimensional variations. Using the

results of Chapter 3 for the bistatic scattering coefficients,

we calculate the emissivity for arbitrary correlation functions.

The coherent behavior in the spectral dependence of the two-

layer emissivity is illustrated.

In Chapter 5, we extend the first order Born approximation

to the case of backscattering by a stratified random medium.

Analytical expressions for the backscattering cross-sections

are derived for an arbitrary number of random layers. The

results are illustrated in the special case of a three-layer

random medium, with correlation functions which are gaussian

latterally and exponential vertically.

In Chapter 6, we carry the Born approximation to second

order to obtain backscattering cross-sections that account for

depolarization effects. The results are reduced to the half-

space case and wave-like effects not accounted for by radiative

transfer theory are discussed.

In order to account for multiple scattering of the
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electromagnetic field renormalization methods are necessary.

The renormalization approach has been widely used to study

wave propagation in random unbounded media.6 4 55  It gives

rise to the Dyson equation for the mean field and the Bethe-

Salpeter equation for the covariance of the field. In Chapter

7, we review the derivations of the Dyson and Bethe-Salpeter

equations and the various approximations which are applied

to the mass and intensity operators.

In Chapter 8, we solve the non-linear Dyson's equation

for the zeroth order mean dyadic Green's function for a two-

layer random medium. The propagation of the coherent wave

in the random medium is similar to that in an anisotropic

medium with different propagation constants for the charac-

teristic TE and TM polarizations. The effective propaga-

tion constants obtained in the zeroth order solution are

compared with the scattering coefficients of radiative trans-

fer theory by *aking the limit of a half-space. Comparisons

are also made with Tan and Fung's60 half-space solution for

the zeroth order mean dyadic Green's function. The special

case of a laminar structure is considered and two effective

propagation constants for each polarization state are found

to exist.

In Chapter 9, modified radiative transfer (MRT) equations

for the electromagnetic field intensity are derived from the
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ladder approximated Bethe-Salpeter equation together with the

zeroth order solution to Dyson's equation under the non-linear

approximation. These approximations have been shown65,66 to

be energetically consistent and therefore appropriate in the

development of a radiative transport theory. The MRT equations

contain significant wave-like corrections not accounted for by

phenomenological radiative transport theories due to the pres-

ence of the bottom boundary. The significance of these additional

contributions is discussed in the context of backscattering by

solving the MRT equations in the first order renormalization

approximation and comparing with wave solutions obtained in

the first order Born approximation.

In Chapter 10, the physical significance of the cross

terms in the Neumann series for the field covariance is dis-

cussed. A method for resumming an infinite sequence of terms

(including cross terms) in the intensity operator is presented.

A renormalized Bethe-Salpeter equation is derived which takes

the form of a pair of coupled integral equations.
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CHAPTER 2

Dyadic Green's Function for Two-Layer Media

The Dyadic Green's function technique of treating

electromagnetic boundary-value problems was first formulated

by Schwinger in the early 1940's. Since that time the subject

matter has been subsequently discussed by Morse and Feshbach, 6 7

C. T. Tai68 and Tsang et al.69 Since a two-layer medium is

the basic geometry in this thesis we will review dyadic

Green's functions appropriate for a two-layer medium.

By matching boundary conditions we then derive the two-

layer dyadic Green's function, G 1 1 (r, r') where the source

and field points are located within the same region.
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2.1 Dyadic Green's Function with Source and Observation

Points in Different Regions

Consider a point source located within the Z-th layer

of a stratified medium (Fig. 2.1). Let region 0 be free-space.

The field in region 0, is composed of upward going waves only,

and has been derived69 in the form

Sik ik z

O (r, r') =- d2k. e {e (k )[A z e (-k Z) e
of8 7r2 k z z

Oz

+ B e (k )

+ D h (k )

-ik z' ik z'
e ]+ h(k )[C h (-k )e Z

-ik z' -ik ( r.'
e lz .e-(2.1)

where x =xk + y k, d2k dk dk
x y x y

and

A A^ -

e(k ) - z x k
k

h (k z e 2 (k Zz x
kz

(2.2)

(2.3)
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z

' E0

L z = 0

0 1

z = -d

z = -d
p-1

; = -d

z =-d

0 n

z = -d
n

O0 n +1

Stratified geometry

Figure 2.1

j
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k = (k 2 - k 2)1/2 (2.4)

and k,,2 = Izys 1 , et is in the direction of the horizontally

polarized electric field vector and h is in the direction

of the vertically polarized electric field vector. The

amplitudes AZ, BZ, CZ and D are determined through the

propagation matrix formalism.70 In (2.1) the first subscript

of the dyadic Green's function indicates the region of the

observation point while the second subscript indicates the

region of the source point. Taking k = N = 1, we obtain

from (2.1) the dyadic Green's function for a two-layer medium.

The result is

> ik _L (rL -r.)

G01  ' 1 ) = J d2k (01 k z, z1 ) e

(2.5)

where

> Io1 X 10 (k ) i2k lzd
9 .k z, z1 ) = - - 1 e(k )[R (k e

8Tr2 k D 2 (k ) oz



iklzzi ^
e e

-ik lz z2 1 e e1 (k)lz]

k 1Y 1 (k _) ,
+ -k F (k h(k lz [S12(k ) e

-ik lz zi ik lz
+ e 2  (k lz 2 .

k. - k.
R..(k ) = i z

R .(k k + k.
lz Jz

s.k. - k
S. (k ) = 3 iz i jz

E kiz + kjz

X..(k )
13 

Y..(k )

= 1 + R. (k
13 + (

= 1 + S..(k )

D 2 (k ) = 1 + R0 1 (k ) R1 2 (k ) e i2klzd 1

i2k d
F2 (k4 . ) = 1 + S 0l(k) S1 2 ( .) e 1z 1

25

and,

(2.6)

(2.7a)

(2. 7b)

(2.8a)

(2.8b)

(2.9a)

(2.9b)

i2k l d 1ik lz 1^
e l h(-k lz
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The subscripts i and j in (2.7a)-(2.9b) denote 0, 1 or

2. We note that the portion of G 0 1 (r, r1 ) which contains

the unit vectors e corresponds to TE type waves. In the

same way, the portion of 301 (r r1) which contains the unit

vectors h corresponds to TM type waves.
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2.2 Dyadic Green's Function with Source and Observation

Points in the Same Region

In this section, we derive the dyadic Green's function,

G where both source and observation points are within region

1 of the two-layer medium. We first write 3 11 (r, r1 ) as the

sum of two parts

G 1 1 (r, r 1) = GDll(r, r ) + GRll(r, r ) (2.10)

where G and GRll satisfy the vector wave equations

x V xGDll (r, 1 ) - k 1 2 D (r, 1) = iW46(r - r1 ) (2.lla)

x 7 x 3Rll (r, 1 ) - k 1 2  Rll(r, ) = 0. (2.llb)

Physically, GDll represents the direct response to the source

at r1  and does not contain boundary effects. Alternatively,

G R represents the response to the image sources produced

by the boundaries at z = 0 and z = -d It is for this

reason that GRll satisfies the homogeneous vector wave equa-

tion whereas GDll satisfies the inhomogeneous vector wave

equation. The solution to (2.lla) is just the free space
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dyadic Green's function, which has been derived by Tsang.66

The result may be written in the form:

DI '. )= - - (r - r + G (r, r) (2.12)
Dll 1 ~WE 1 l1

where the free space radiating portion of GDll is contained

in GF11 r, r1 ). Combining (2.10) and (2.12) we obtain,

r) = - -- ) + G 1 r, r 1

where

GSl (r, r 1 ) = GFll(r, r ) + GRll(r, r

(2.13)~

(2.14)

In view of (2.5), (2.6) and in order to match boundary condi-

tions at z = 0, the dyadic Green's function GSil(r, r1 )

in (2.13) takes the form:

-W111 iklzzG (r, r1 ) = 2 d 2k -- {[a e e (k
lz

-ik z 1 ik z -ik z
+ e ez 1(-k lz lz 1 e (-k1z) + a e e 1 (k z)]
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+

ik z -
[y e h1(k)lz + 6 e

ik lz z
[TI e h1(-k)lz +

ik - (r - r 'L

-ik lz z
1 S(-k lz

-ik lz zi
e h 1(k lz

(z > z ).

The boundary conditions to be satisfied by G01
z = 0 are:

(2.15)

and G at

z x G 0 1 (r, 1 z x G1 1 (r, r 1 )

z x x G 0 1 (, 1 = x x G 1 1 (, ).

(2.16a)

(2.16b)

Substituting (2.5), (2.6) and (2.12), (2.13) into boundary

conditions (2.16a) and (2.16b), we find the result

a =X1 (2.17a)
01

(2.17b)

xo01

-1 (2.18a)
k 
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k Sk 1 S10

ko Y0 1

x01 12. i2klzd1
p = e

D 2

x 0 1

k Y Sk o 01 12

k F2

k Y

k 1F2

(2.18b)

(2.19a)

(2.19b)

(2.20a)

(2.20b)

The terms which appear on the right hand sides of (2.17a)-(2.20b)

are defined in equations (2.7a)-(2.9b). Combining equations

(2.15) and (2.17a)-(2.20b), we find the dyadic Green's function

OGil for (z > z ) to be:

(2.21)

G ( , r1) = d k , 11(k z, z 1) e

(z > z)

where:



S ,k z, z1 )

+ R10 (k )

1 1 ik lzz

Se 1 D(k (k)8T2klz D2 (k I.

-ik z
e J z e(-klz

-ik z z
lz 

1 (klz

+ R 12(k )
i2k lzd 1ik lz (-k^

e zie ezi1e(-kilz)]}

ik lz ik z -+ F [e h (k)lz + S1 0 (k ) e h(-klz
F 2(k L)

-ik lz kl i2k lzd ik lzz(eh 1(k l) + S 1 2 (k ) e e

h1 (-k lz) ].

For z < z we use the symmetry condition for dyadic Green's

- functions

S l , 1 G= l' r) (2.23)

where the superscript T denotes the transpose of the matrix.

The dyadic Green's function Sil

from (2.21)-(2.23) to be

for (z < z1 ) is found

31

(2.22)
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2 <) = dzk ,k z ) e( - rl.L)

(z < z1 ) (2.24)

where:

l , z, z1 )

+ R1 2 (k)

- - -- -- 11 -iklzz k

S 8ir 2 klz D2(k ) e

i2klzde Lz

+ R 1 0 (k)

+ S1 2 (k )L

-ik z
e i~lz 1

i2k d
e z 1

(klz) + 1
F2 (k )

ik z 
e z h 1(k lz )Il

-ik z z
[e hlz (-klz

ik lz
hz h (-k lz

+ S1 0 (k ) 1-iklz 1e h1 (klz)].

The net dyadic Green's function, G11(, r )

(2.25)

for both source

and observation points within Region 1, may be written as

G r) = - -E- zz 6(r - r1 )

ik lzz - ik lz zi
e e 1(k lz )e1 (-k lz
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=> ~ ik - (r. - .)
91 (k i-, z, z ) e

+ fd 2k_ -
.k - (r -r )

g1 (k L, z, z ) e J

(z > z1 )

(z < z1 )

(2.26)

with g1 l given by (2.22) and (2.25).
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CHAPTER 3

Active Remote Sensing of a Two-Layer Random Medium in the

First Order Born Approximation

In this chapter, we make use of dyadic Green's functions

to solve the problem of scattering by a layer of random medium

with three dimensional correlation functions by applying Born

approximations. Integral equations which govern the scattered

field are solved by iterating to first order in albedo. Making

use.of a correlation function that is Gaussian latterally and

exponential vertically, we find backscattering cross-sections

for the two-layer problem that reduce to previous results 6 3

in the limiting case of a half-space. A brief discussions of

rough surface scattering effects upon the backscattering is

presented. The first order Born results are illustrated by

matching experimental data.
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3.1 Far Field Dyadic Green's Function by Saddle Point Method

Consider a layer of random medium with permittivity

E l()= <E1 > + E 1f(r) where E (r) is a real function of

position characterizing the randomly fluctuating part whose

amplitude is very small and whose ensemble average is zero.

The layer of random medium has boundaries at z = 0 and

z = -d (Fig. 3.1). The upper region is free space with per-

mittivity e0  and the bottom medium is homogeneous with

permittivity E2. All three regions are assumed to have the

same permeability p%.

The formal solution to the scattering of electromagnetic

waves with time dependent factor e-iwt by the two-layer

random medium can be cast in terms of dyadic Green's functions.

We have

- - (O) -1 =3
E (r) = 0) (r) + 1 d3r1 G01 (r, r1 ) 1 Q(r ) E 1(r )

0 0ip V1

(3.la)

- (0) -3
E = E (r) + 1 d3r G1 (r, r1 ) 1 Q(r ) E 1(r )iWP0 VI

(3.lb)
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z
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110 F
0

0

z= 0

0i~ < F_1 + if~r

e.

Scattering geometry of a two-layer random medium

Figure 3. 1
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where the integrations extend over region 1 occupied by the

random medium. The first and the second subscripts of the

dyadic Green's functions G0 1 (r, r ) and G11 (r, r ) refer

to the regions of the field and source points, respectively.

The random fluctuating part is accounted for as a source dis-

tribution with Q(r) = k 2E:if (r)/<E 1 > where k = 1 2

The superscript zero in E (r) and E (r) refers to the
01

solutions in the absence of the random fluctuation part which

are also the zeroth order terms in an iterative series solu-

tion. We shall use parenthesized superscripts 1, 2, 3 etc.

to denote higher order terms.

Since we are interested in the scattered far field, we

evaluate G 0 1 (r, r 1) which appears in (3.la) by the saddle

point method. From Equations (2.5) and (2.6) we may cast

G0 1 (r, r 1) into the form:

G0 1 (r, r 1) dk e ( (, z ) e (3.2)

where

-ikozz 
F(k z = e g01 , Z -) (3.3)

and k = k + z k oz. We introduce the transformations



k = k cos
x p

k = k sin
y p

oz 0 p

x = p cos $

y = p sin$.

Making use of (3.4a)-(3.5k

CO 2 7.

G 01' r 1 = k dk 27r

[F(kL, z ) e

The c and k

), equation (3.2) becomes

ik p cos( - 5) + ik z
d e OZ

-iii * r L

k = k cos $
x =p

k = k sin i
y p

integrations are performed by using the

saddle point method. The resultant far field dyadic Green's

function is simply:

38

(3.4a)

and

(3.4b)

(3.4c)

(3.5a)

(3. 5b)

(3.6)



ik r
e 0

G 0 1 (r, r1) iW 0 {H e
4Trr

-i+ Fr
+e }

where

= 01 k Y 01H=- e (k ) e (k)lz + -- 01 h(k ) h (k)lzD 2 k zF 2

k 01 koY 01A
=12 e(k ) e (-k lz) + s12 h(k h (-klz

2 1 1 2

ei2k lzd

k + z klz

K k - z klz.

(3.8a)

(3.8b)

(3.9a)

(3.9b)

39

(3.7)



40

3.2 First Order Scattered Intensity

Solutions to (3.1) can be obtained by iteration. Sub-

stituting (3.lb) in (3.la) we find the total solution in region

0 in the form of the Neumann series

E ( (r) = r + E E(n)(r) (3.10)
0 0 n = 1 0

-(n) i ie ywhere the n-th order field En is given by:

-(n) - 1= - - = - -
E9 (r) = W n f dr ..."' d r n -G 01(r, r 1)-G 11(r , r2) ...

. 11 . n - l' n 1  '''L 0 n n) (3.11)

Physically, the n-th order field represents the n-th scat-

tering of the incident field E( (in ) by the random permit-1 n

tivity fluctuations. In (3.11) it is understood that each of

the volume integrations extends over the layer of random medium.

Forming the square of the absolute value of E (r) and ensemble

averaging, we obtain the intensity in region 0



<L!ECo(2>y . (0) Th2 + 2Re{E(0)(r)
0 0

C(n)
01

CO

m=l1
E (m) 0 (r>

It is to be noted the ensemble average of all odd order moments

of Q(r) vanish in the cross terms.

The first order scattered intensity in (3.12) is given by

<(Er,(r)I2 (1) 1 E (-)2>
0

+ 2Re{E (0)*
0

It can be shown that the mean field term (2)

specular and is much smaller than <|EC 2> in the

is

low con-

ductivity regime.

2>(1) 1

(Wp ) V 1

We thus have, after making use of

d r d r G (r r1 2 0 1jr 1

(3.11)

(0) 
-* 1 (r)

r2) - (0) -

eld Cr0) r)

<Q(r 1 ) Q*(r2 )>

The unperturbed fi

41

00

nl

2n)

(3.12)

(2)
0

01 (3.13)

0

+ < E

n=

< IE (r)

0

is given by



(0) - li *
E (r) = E[f -A e

K -r
+ B . e i

I

where

X .R . i2k .id 1 k Y .S . i2k .d
A e e e . + -- e
D. k F .21 1 21

h 1(k lzi h1 (-k lzi)

X A k YOli
B - e e + h 1 (k lzi 1 (-klzi)

2 k1 F2 i

f = e 11 + f h (k .).

The subscript i denotes the incident direction, and the

vector components denote the fractions of the vertically and

horizontally polarized components of the incident wave.

Making use of the unperturbed field E(O)(r) and the1

far field approximated Green's function 50 1(r, r 1), we ob-

tain from (3.13)

~~f1d3 r d3r E Z i , - lp*1 2 s , s,s p,p

42

(3.14)

(3.15a)

(3.15b)

(3.16)

< r2 >1
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i(sk + s'k .)z -i(pk* + p'k* )z
lz lzi 1e 1 lzi 2

i(k . - k ) - r -i(k .
e d'-e 3

-k ) r2 -L
C (r1 - 2)

where s, s', p and p' take values of either -1 or +1,

and

E
- 0 = - =

=-H - (f * A.)

4 7E
-- =. - =~ .

Eo

S= --- - (f -

47

E
- = F= (- =

$4= -- F1 f -A )

(3.18a)

(3.18b)

(3.18c)

(3.18d)

The correlation function C(r1 - r2  <Q(r 1 Q*(r2)> may be

expressed in terms of its Fourier transform

4-i( - ( 1  - r )
(r 1 - r2 6k fC d (D 2

(3.17)

(3.19)
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where 6 is the variance of the fluctuations and k1 ' =

Re(k 1 ). Substituting (3.19) in (3.17) we may perform the

integraions over the spatial variables. One of the transverse

spatial integrations yields a delta function and the other

transverse spatial integration yields the illuminated area

A of the horizontal plane. Furthermore, the delta function

enables the Sj integration to be performed. After carrying

out the z and z2 integrations, we obtain

(1) 4r2 6k' 4A
<IE 12 (1) _ E E f 3 daz

r2 s"s' P.P'I so's prp zC

+ s'k lzi

-i [ (sk l
[1 + e z

1

- Sz)+ pk1 k+

- pk* ) + (s'k . - p'k* .)d1z 1z z

+ s'kzi - $ZId i[pkiz + p'k i - z Id
-e l i z11

(3.20)

The z integration is performed by noting that for a

low conductivity random layer containing many wavelengths the

-z

-i [sk lz

(k k-. z (sk 1z



45

dominant contribution occurs at p = s and p' = s' for

the poles at az = pklZ + p'klzi. It is to be noted that

there also exists an additional significant contribution only

in the backscattering direction for the case p' = s = -p = -s'.

To obtain the residues at these poles we must carefully note

the positions of the poles on the complex Sz-plane. For

example when s = +1 and s' = -1, the pole may lie on

either the upper or the lower half of the complex Sz-plane

according to whether Im(klZ) Im(klzi). Carrying out the

Pz integration in this manner, we find:

<|E 01 2 G(sk + s'k .)
r s,s,

+ 4d1 A #(2k , 0) Re[ 1 * ] (3.21)

where:

*- , sk + s'k .)

G(sk + s'k .). = Li -. l 1z + klzi.
lZ lzi sk" + s'k".

lz lzi

2(sk" + s'k" )d
[e lz lzi 1- ]. (3.22)

Here, A is one in the backscattered direction and is zero
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for all other scattering directions. Thus given the spectral

density (D of a correlation function, the first order scat-

tered intensity from a two layer random medium is readily

determined from (3.21) and (3.22).
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3.3 Bistatic Scattering Coefficients and Backscattering

Cross Sections

The bistatic scattering coefficients are defined by

Peake 57as:

y ( .,k ) =lim 4 r2 (1) (3.23)
y A-*.o cos 6 .i (I.)

where (I.) is the incident wave intensity with polarization

1y, (I) is the scattered wave intensity with polarization v,

is the incident wave vector at the incident angle 6e0

and $ = 0, k is the scattered wave vector at angles 6

and , and r is the distance from the observation point

to the surface. Considering spectral densities with an even

z dependence, we find from (3.21) and (3.23) Yhh and Yhv

by letting f = 1 and f = 0, and y vh and y by
e m vhvv

letting f = 0 and f = 1.e m

Tr 26 k'4 k Z 2 IX 10X0 ij2  
_ () -2(k" + k" )d

Yhh =z 10 1 l2 -I + - l e lzi. 1z 1
cos e0  Ikizi 2 ID 2D2 i 2  k + k [ e

-2(k". + k" )d
[1 + IR R 2 e IZI 1z 1] +

12121 u, ,,k . -k
lzi lz



-2 (k" .
-e lzi

-2(k" + k" )d
e lzi lz 1

-4k d
+ [R1 2

2 e z 1] cos 2p + A47r 2 dk '4
Ixoli 1

ID2~i14
IR1 2i 2 d1

-4k" d
e lzi 1(

_ r2 6k{4  ko1I 2  Y10X0li 2

Yhv 2  10F~I
Cos Be i k2 F 2F 2

+{ k + k"
lz j lz

-2 (k" .
-e lzi

+ k" )d
lz 1][ + IS 1 2R1 2i 1 2

-2(k" + k" )d
e lzi lz 1

+ ~

k -k

[I R1 2

[1 -
-2 (k".

e lzi

-2 (k" + k")d
e li 1+

- k" )dlz 1

|s 1 2 1
2 e-4k" d

Tr 26k' 4

Cos eoi

oz 2lzi

|k lz 2

k 2
0

I 1

Jx1 0 yoli2

ID 2 F 2 i 2

+kIk" + k"lz i 1z
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[1

f (2k 0)

[l

sin 2

Yvh

(3.25)

-k" )d
lz 1] [|R 2 2

(3.24)



-2(kizi + k )d [
e [z- z 1+IR1 2 S 1 2 i1 2

-2 (k"
e )-zi

+ k-

klzi - k

[J -
-2 (k"
e izi

- k" )dlZ 1]

-2 (k" .
e izi

+ k" )d
lz 1

-4k"l dlz 1
+ IR12 2

Tr 2 6k' 4  Ik 0 I 2

cos 60i Iklz I 2

k 4
0

k 1 1

-2 (kizi + k )d
lzi-e

lYloY 012
10 oli2

IF F2 F2il 2

k +

kzi lz

[1 + IS1 2 S1 2 iI 2

-2 (k"
e izi

sin G . sin
03.

2

+

izi lz

e-2(k" - k")izi. lz
e [IS1 2i 2

-2 (k
e izi.

+ is121 2

-4k" d
e lz 1

k .k
lzi lz

0

+ sin eo

+ A47r26k{
k 4

0

k 1 4 F2i

Is
12i 1 d, ((2k , 0)

-4k" .d
lzi 1e

49

[1 -
+ k" )d
iz1

[(IS 12i 12 }sfn2

(3.26)

klzi klz

k 2
0

+ k" )d
lz1

cos $ -

[1 -
+ k )d

cos

2}

sin e

d I
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k 2 2
lzi - sin26. (3.27)
k 2  o
0

where S = (k. - k + z(k k' ) and subscripts h and
-Li -Lzi 12

v denote, respectively, horizontal and vertical polarizations.

We consider a correlation function which is Gaussian

laterally and exponential vertically:

-lI. - 9..|j 2/k 2
<Q(r.) Q*(r)> = 6k e

1 j 1

-Iz. - zj/
e

(3.28)

The corresponding spectral density is

4()= P
224 Tr 2(1 + 2Z2

e (3.29)

Substituting in (3.24)-(3.27) and letting e = e . and $ =

Tr + $., we obtain the backscattering cross section per unit

area defined by a = Y cos 6 ..

pq pq 01

6k'4{ 2 IX 0 ij4 k . 4 -k 2Z 2 sin2 O

hh 4 ID 2 i 4 k .2i izi



-4ki dzie zi

(1 + 4k' 2 , 2 )
Lzi

(1 + IR 12i
-4k" d

e lzi l

+ 8diIR 12i 2

Sk' 4 tj 2 jYj I4

4 IF 2 iI 4

k .
ozi

4

e
-k 2Z 2sin 2e
o p

{ 1 - e
2k" (1

lzi

-4k" d
lzi 1

+ 4k' .
izi

z2)

-4k" d
(1 + IS 12 i 4 e )zi 1

2

+ sin2e95 + 8d11.S 1 2 i 2

-4k" d
e lzi 1

2}

sin 2 e o.
01

It is to be noted that ahv S =vh 0. Thus there is no

depolarization effect in the first order scattering theory.
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1 -

2k" .1lz

-4k" d
e lzi 1

avv

(3.30a)

oi

k 2

klzi

0

k 2
lzi

k 2
(3.30b)
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3.4 Rough Surface Effects

The backscattering cross sections derived in the preceding

section are based upon the assumption of flat boundaries. This

assumption may not be realistic in many situations of interest

such as vegetation-ground and snow-air interfaces. A more

physical model for such situations is to consider the surface

to be irregular and characterized by a surface correlation

length, Zs (or 2.sx Isy for anisotropic rough surfaces)

and R.M.S. height deviation a . In Fig. 3.2 we illustrate

a two-layer random medium with a rough surface at the bottom.

Such a model would simulate, for example, a vegetation layer

with irregular ground. The scattering by a rough surface which

separates two homogeneous, dielectric media has been solved

only in the cases of Z >> X or << X. Scattering by a

composite rough surface and random medium (e.g. Figure 3.2)

is a problem still unsolved at present.

However, in order to account for observed rough surface

effects in some fashion we may incoherently superimpose the

backscattering of a very rough surface (Is >> X) with the

backscattering of the random medium. It is shown in Section

3.5 that such a superposition of intensities matches experi-

mental data remarkably well. The backscattering cross section

of a very rough surface-is given by Barrick71 and may be
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z

0' 0

S<1 > + s if

rough surface (as s 9 '1 E 2

Two-layer random medium with rough surface

Figure 3.2

z= 0
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written as

ahh sec4 G R0 1 (0)1 2 e -tan2
0 /S 2  (3.31)

vv

where s 2 is the mean square slope of the surface. Comparing

(3.31) with (3.30) it is clear that the rough surface back-

scattering falls off much faster with angle than does the

volume backscattering. Physically this is due to less rough

surface and more volume being seen at large incident angles.
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3.5 Data Matching and Discussions

We have obtained, for a two-layer random medium, the

bistatic scattering coefficients in (3.24)-(3.27) and the

backscattering cross-sections in (3.30) for a correlation func-

tion which is Gaussian laterally and exponential vertically.

It is noted that these results can be derived by using a

Fourier transform method instead of applying the saddle point

method to the evaluation of the dyadic Green's functions. In

the case of scattering by a half-space random medium, we let

d + 4 and find

Sk'' 9, 2 k 4 -k 2Z 2 sin2 e 
a = 1 Ixi4 oz e o p 01

hh 8k" .(1 + 4k 2  k2)lzi lzi lzi

6k' 4 9, 2 k . 4 k2  2
a_ = 1 izi + sin2e
vv 8k"I (1 + 4k2 z 2) 1i k . k 2 0i

lzi lzi lzi i

-k 2 2 sin2 o
eo p 01

These are exactly the results obtained with the radiative

transfer theory by Tsang and Kong.63 When plotted as a
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function of incident angle, a v is always larger than a hh

This is because more vertically polarized wave components

are transmitted and backscattered by the random medium.

For wave scattering by a two-layer random medium, the

results in (3.30) suggest the possibility of -a v smaller

than a hh when the first terms in the curly brackets become

smaller than the second terms. In this case ahh 10i

IR1 2 ilI, aV ,, Jy1 QiJ4 j 1 2 i 2 and '12i < i due to the

Brewster angle effect at the bottom interface. Thus even

though Yl1 iJ _ JX10ij, it is possible to have avv < Chh*

Physically this is because more horizontally polarized wave

is reflected by the bottom boundary resulting in more hori-

zontally polarized wave in region 1 to be backscattered by

the random medium.

The results in (3.30) have been applied to the interpre-

tation of remote sensing data collected in vegetation and

snow-ice fields. 42,1 In order to account for rough surface

effects, which dominate over volume scattering in the angular

region about nadir, we have incorporated the backscattering

cross-section of a very rough surface in an incoherent fashion

(Section 3.4). In Figs. 3.3-3.5, we have matched the back-

scattering data of a corn field with a height of 2.1 m at

three different frequencies. The letters V and H represent
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experimental avv and ahh while the continuous curves depict

the theoretical results. In order to match these data, we

assigned the values Z = 0.32 cm, z = 1 cm, 6 = 0.361, and

s2 = 0.03 where s2 is the mean square slope of the rough

surface. As seen from these figures, the match between the

experimental and theoretical results are very good. The volume

scattering dominant portion of the curves for 8 > 20* ac-

counts for frequency change very well which the rough surface

dominant portion for e . < 20* does not due to the frequency

insensitivity of the very rough surface result. It is inter-

esting to note that in order to match these backscattering

data, it was necessary to choose Z > Z . In Fig. 3.6, we
p

consider the same corn field and fit the frequency dependence

of the backscattering cross section at nadir and 30*. The

slight frequency variation in the theoretical result at nadir

is due to the fact that volume scattering coes contribute at

this angle, even though the frequency independent rough sur-

face result dominates.
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CHAPTER 4

Emissivity of a Two-Layer Random Medium

The study of earth terrain can be effected with the

method of microwave passive remote sensing. In this method,

a radiometer aboard aircraft or satellite records the micro-

wave thermal emissions from naturally occuring media such as

snow-ice fields, vegetation coverage and sea-ice. The volu-

minous data collected.and its interpretation has been the

subject of considerable theoretical effort in recent years.

Gurvich et al. 7 2 first derived expressions for the

emissivity of a half-space random medium with laminar struc-

ture in the single scattering approximation. England 73ex-

amined emission darkening of a half-space containing distri-

buted isotropic point scatterers by employing a radiative

transfer approach. Tsang and Kong6 9 ,5 6 ,7 4 have considered

thermal microwave emission from a stratified medium with

non-uniform temperature distribution, the emissivity of a

two-layer laminar random medium as well as thermal microwave

emission from half-space random media. In particular, Tsang

and Kong56 employed a wave approach in the first order Born

approximation and calculated the emissivities of a half-space

random medium. In this chapter, we follow a wave approach
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similar to Tsang and Kong's56 and obtain emissivities of a

two-layer random medium with arbitrary three dimensional

correlation functions.
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4.1 Emissivity Using Reciprocity Concept

Peake57 has defined the emissivity of a natural surface

as:

e (k) = 1 - rh f d [Yhh(ki k) + Yhv (Ki k )] (4.la)

4 7r

e (k.) = 1 - r~ - -- fda [y (k., k ) + yh (kk) (4.lb)

where rh and r are the Fresnel reflectivities for hori-

zontal and vertical polarizations for a homogeneous two-layer

medium. The integrands of (4.la) and (4.lb) are the bistatic

scattering coefficients of a two-layer random medium and the

angular integrations extend over the upper hemisphere.



65

4.2 Emissivity of a Two-Layer Random Medium

The bistatic scattering coefficients of a two-layer random

medium have been derived in Chapter 3 and are given in (3.24)-

(3.27). In order to develop an expression for the emissivity

in as general a form as possible, we expand the spectral

density in harmonics of the scattered azimuthal angle, $s

cD(K .-L , k k ) =
siis izi lzs

im
e s (k , k ,k k

m ps pi lzi lzs

(4.2)

Substituting (4.2) into (4.la) and (4.lb), the s integration

may be performed directly. After some algebra, we obtain

emissivities in the form:

1 h/2f

h h4 4 0
de sin e P A { :::: 2a.() M

s s h + lk .i1 2 is +

+ I 10 s (2) N + A f 1 0s (1) M

k 0 2 is + Ik 1 z5 2 is -

+ k 2 2 ) N-

0 kJ

(4.3a)

E
M = -CO



1 7r/2
ev v - -

de s sin 6s Pv A+

2 -2 (2) 'Jklzi 2iklzs 2

+ IY 0 ls j k 0 ais L 2k 4

+ 2 sin2e60 sin2es D0 (+)

- 2Re (k* k
izi lzs

sin %, sin 6

k 
2

0

+ A Ixosi

- 2

+ I~l0sK 2 k2 -(2) klzi

+ 2Re (k* k
lzi lzs

sin 6 i

1 1klzs

2k 4
0

sin e
1k 2

0

M_ + 2 sin 2Ss D 0

(-) + + (-) ij U.(4. 3b)

STr26 k' 4  
_X_ 2

= 1 li k2

ozs2 cos 60 i ID 2 i 2
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2
I(1)

I k 2

M+

+ 
1

N

where

(4.4a)

k2. 2(1)12k lz is

s [



p= 1rzck{ 'olil
cos6 | IE2i 2

(1 - -2 (ki
e izi

2 k2

ozs

Iklzs 
2

+ kis)di

k 2
0

1k 11 4

(kii k is
izi - kz5

1+R1 -22J (kit + kit)d1

ID 2s1
-2(k". + k" )d

1+s 12i 1 2 2 e izi lzs 1

ID2s 2

-2(k" . + k" )d
e zi lzs 1 + |R 1 2 s12

-4k" d
e zs 1

F2 s 2

(4.6c)

-2(k" . + k" )d
e lzi lzs 1 + i ~s 2 2

-4k" d
e zs 1

IF 2 sj 2

(4.6d)

1 + IR 1 2sS1 2 iI2 (ki + ki" )d
e z izs

ID 2s
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A+

(4.4b)

(4.5)

(1)
is

(2)
ais

(4.6a)

2
(1)
i-s

(4.6b)

(2)
is

IR1 2 i 2

-(1)
ais (4.7a)



-(2) (2)
O is is

s()
Sis

jD- 2s

1F2 2

-2(k" . + k" )d -4k" d
Is12 i

2 e lzi lzs 1 + IR1 2 e lzs 1

1 D 2s1 2

is12i1 e
(2)
is

-2(k" . + k" )d
lzi lzs 1 + is 1 2 5 2 e

-4k" dlzs 1

IF [2

M = 2( () + (2 + (-

N = 259( ) - 62 -2

( ) = n (k , k ., k )n n s p k1 i lzs n = integer.

The subscripts s and i denote that a term is to be evalu-

ated at the scattered and incident wavevector angles, respec-

tively.
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(4.7b)

(4.7c)

(4.8a)

(4.8b)

(4.9)
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4.3 Angular and Spectral Dependence of Two-Layer Emissivity

In (4.3a) and (4.3b) we have obtained the emissivity of

a two-layer random medium with arbitrary correlation function

in the first order Born approximation. To illustrate the

emissivities, we take the spectral density to be

2, 2

4112(1 + 2 22
z

-a 2z, 2/4
e 9

which corresponds to a correlation function that is Gaussian

laterally and exponential vertically. Substituting (4.10) in

(4.2) we solve for the amplitude Dm

D (k , k ., k . k ) =m ps pi lzi lzs

-k2 t 2/4 - k 2 .Z 2 /4
2 Ps P pip

4T2[1 + (k k )292]
lzi lzs

( k k .Z 2
Ips Pi pj

M 2
(4.11)

where I m(x) is the modified Bessel function of order m. In

deriving (4.11) we also have taken $. = 0, due to the azimu-

thal symmetry of the assumed correlation function. Inserting

=z
(4.10)
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(4.11) into (4.3a) and (4.3b), the 6 integrations can be

completed numerically. We illustrate the results in Fig. 4.1,

where we plot the emissivities e e ev = eh at nadir as a

function of frequency for a 20 cm thick random layer with

6 = .0005, Z = .0021, 2 = .0l'0 1 2 = (6.0 + iO.6)e and

<E1> = (1.8 + is m ) . The dashed curve corresponds to E m

= .005 whereas the oscillating curve corresponds to Es =

.0005. The coherent effects due to the boundary at z = -d

= -20 cm are apparent in the low loss case where the emissivity

oscillates as a function of frequency. As the loss of the

medium is increased, the bottom boundary is seen less. This

is demonstrated in Fig. 4.1 where for Elm = .005 the oscil-

latory behavior has disappeared, in the spectral dependence

of the emissivity. In Fig. 4.2 we plot the emissivites e

and eh as a function of angle at 10 GHz, for a 20 cm

thick random layer with the same parameter values as Fig. 4.1

and E" = .005. The emissivity of the vertically polarizedlm

wave exhibits a slight maximum due to the Brewster angle

effect. The horizontally polarized wave has no Brewster angle

effect so that eh decreases monotonically with increasing

angle.
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CHAPTER 5

Active Remote Sensing of Stratified Random Media

In active microwave remote sensing of earth terrain the

model of a layered random medium has been applied to account

for volume scattering effects. Using the model of a half

space random medium, backscattering cross sections have been

calculated with an iterative approach 5 6 ,6 3 and with the first-

order renormalization method.61 To improve the simulation of

earth terrain for vegetation coverage, snow-ice fields or

culture targets, two-layer models have been developed, with

the random medium bounded by air above and earth below.6 2

In these past models, a correlation function with variance

and correlation lengths is specified for the entire volume

scattering region of interest. However, in remote sensing

applications a more realistic model might consist of parti-

tioning the entire scattering region into sub-regions or

random media each with a characteristic correlation function.

For example, in vegetation cover such as forest terrain the

sub-regions would be the leaf and trunk regions of the trees,

where the respective lateral and vertical correlation lengths

are significantly different. Similarly, in the case of snow-

ice fields, one usually finds a complex layered structure in
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which the lateral and vertical correlation lengths may vary

significantly from layer to layer.

In this chapter, we use an iterative wave approach to

solve the problem of backscattering by N-layers of random

media with three dimensional correlation functions, arbitrarily

distributed within (M - N) homogeneous layers. Carrying to

first order in albedo and making use of correlation functions

which are Gaussian laterally and exponential vertically, we

find backscattering cross sections for a three layer problem.

The results are illustrated by matching with experimental data

collected from vegetation and snow fields.
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5.1 Backscattered Intensity for a Multilayered Random Medium

in the First Order Born Approximation

Consider a vertically stratified medium consisting of N

random layers and M - N (M I N) homogeneous layers, with

boundaries at z 0, -d 1, -d2 , ... , -dM [Fig. 5.1]. The

m-th layer (m = 1, 2, ... , M) is characterized by permea-

bility U and permittivity em = <Em> + AmEmf (r) where

= 0 or 1 according to whether the m-th layer is homo-

geneous or random, and Mf(r) is a real random function of

position whose magnitude is small and whose ensemble average

is.zero.

The formal solution to the scattering of time harmonic

electromagnetic waves by the stratified medium can be cast

in terms of dyadic Green's functions. The first order scat-

tered field is written as

M
-( - 1 =N- - - -(0) -
s 1 _ d3r Gom(r, r )-Qm(r 1 Em (r ) (5.1)

iWOm = 1 Vm

where Gom (r, r1) is the dyadic Green's function, Qm(r 1
W0A m Emfr 1' and the superscript zero in Em (r ) refers

to the solution in the absence of random fluctuations. The

integration in (5.1) extends over the m-th layer occupied by
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random media and the summation is over the M-layers. The

unperturbed field (0) (r) is given bym

() (r) = E ff - c. e mi + r . mi
m o mi Mi

(5.2)

where

mi =Ki + z kmzi (5.3a)

mi = k - z kmzi- (5.3b)

The subscript i denotes that a quantity is to be evaluated

at the incident wavevector angles. The amplitudes in (5.2)

are determined through the propagation matrix formalism70

(Appendix A) and i is a vector which denotes the fraction of

TE and TM components of the incident wave. The first and

second subscripts of the dyadic Green's function Gom (r, 1

refer to the regions of the field and source points, respec-

tively. The plane wave representation of Gom ' r) has been

derived elsewhere.69 The result is



i - - ik -
om (r, r 1k om (K., z, zi) e 0 - .

where

gom (k , Zam L z1)

+ B e (k )m m mz

+ D h (k )m m mz

= ---- {e(k )[A e (-k )
87r 2 k oz m m mz

oz

-ikz z 1
e ] + h(k )[C h (-k )oz m m mz

-ik z
e mz 1]. -

The amplitudes Am' B' m C

eikmzz1

ik z
e mz 1

(5.5)

and D are also determined bym

using the propagation matrix formulation. Taking the obser-

vation point in the far field, Gom (r, r1)

the saddle point method. The result is:

is evaluated with

Gm (r, r1 ) = i W0m e
-ik z ik z

mz 1 + e mz 1
m

ik r - ik * r
e

47r

(5.6)

where
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(5.4)
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H = B e(k ) e (k ) + D h(k ) h (k )
M m( oz m mz m( oz M( mz

F = A e(k ) e (-k ) + C h(k ) h (-k )
in i oz in mz in oz m mz

e(kmz k xmk

(5.7a)

(5.7b)

(5.8a)

(5.8b)

(5.9)

h (k) = -- e (k ) x k
mk mz m

m

k
mz

- (k 2 - k 2)1/2
m L

km2 m= W21Em >, e is in the direction of the horizontally

polarized electric field vector, and h is in the direction

of the vertically polarized electric field vector.

Forming the absolute square of (5.1) and ensemble aver-

aging, the scattered intensity in region 0 is given by

1 M M
<|E( 2 -> Z En

s 2 12 m =1n = 1 V fVa M n

d3 r d3 r ( r- )1 2 om 1

-(0)
- m (r ) - (r, r2) E En (r 2) m(rl) Qn* (r2)>

(5.10)
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Assuming statistical homogeneity throughout the layered medium,

the two point correlation function <Qm Cr 1 n *(r 2 )> depends

only upon the difference of r1  and r2. Moreover, if we

assume that Id - d - 1 zM, m = 1, 2, ... , M, that

is, the thickness of a typical layer is much'greater than any

of the vertical correlation lengths of interest, then it is

clear that random layers separated by one or more homogeneous

layers contribute negligibly to the first order scattered in-

tensity (5.10). In the case of adjacent random layers, with

n = m + 1, m - 1, the range of integrations in (5.10) is

restricted such that contributions only come from boundary

layers on the order of a vertical correlation length thick

straddling the (m, m + 1), and (m, m - 1) interfaces.

However, since Idm - dm - 1 z M m = 1, 2, ... , M, the

volume scattering of the boundary layers is much smaller than

the scattering of individual random layers. Therefore, we

approximate the two point correlation function as

<Qm(rl) Qn (r2)> = 6mn Cm(r1 - r2). (5.11)

Making use of the unperturbed field r() and the

far field approximated Green's function 3 (r, r we obtain
om w

from (5.10):



M
- mE E E

r2z m = 1 s,s' Ppp I

i(sk + s'k .)z
e mz mzi 1

V
d 3r1  fV

m

-i (pk*
mze

d3r -(m)2 sfs

+ p'k* )z
mzi 2

Cm r1 - r2

where s,s', p and p' take values

E
0

4w

E

47r

E
0:=-J

* 47T

E

47r

H
m

Hm

Em

mi)

- (f - ami)

SCf * mi)

n

The correlation function of random layer

in terms of its Fourier transform:

+1 or -1 and,

(5.13a)

(5.13b)

(5.13c)

(5.13d)

m may be expressed
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<| IE 2 1
s

-* (m)

pp

e -i (kL
e

- k) 22.

(5.12)

-Cm)

-(m)

1,1

: )
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Cm(r - r2 mk' d6 a (aL z) e 1 2 ) (5.14)

where 6 << 1 is the variance of the fluctuations, km =

Re(km)' and the factor A has been absorbed into the spectral

density 0 M(' ,z ). Substituting (5.14) into (5.12) and pro-

ceeding as in Chapter 3, we find

Sm 3 A(M) 2 G (sk
r 2 s,s' ss m mz

+ P 4 (dm - d- ) 0(2k , 0) Re( 1 * )]

+ s'k .)
mzi

(5.15)

where P = 1 for backscattering and P = 0 for other scat-

tering directions, A is the illuminated area on the hori-

zontal plane,

+ s'k .) = D (i . - , skmza. m ai ' mz

2(sk" + s'k" .)d
[e mz mzi m

+ s'k .)
mz i

2(sk" + s'k" .)d
_e mz mzi m-1

(5.16)

M

m = 1

G (sk
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and k" = Im(k ). Thus, given the spectral densities of themz mz

correlation functions the first order scattered intensity of

a stratified random medium is readily obtained from (5.15)

and (5.16).



84

5.2 Backscattering Cross Sections for a Three Layer Random

Medium

The backscattering cross-sections per unit area are given

by

a cos e . y (k, -K .) (5.17)

where y (Ki, K2) is the bistatic scattering coefficient as

given by Equation (3.23). The subscript u represents h .or

v for horizontal or vertical polarization and we have noted

in (5.17) that there is no first order depolarized component

in the backscattering direction. Combining (5.15), (5.16) and

(5.17) we find the backscattering cross sections for the strat-

ified random medium:

M
S = E 6 k'4  R(m) (d -d ) + (2K 0)

P m= m m M m m Ii'

(D (2k . 2k )
+ S(m) m Limzi (5.18)

Pll k" Imzi-

where



R(m) 2 r2[ TE A .1 2
Nh -mi mi

S (m) 11

hh 2
[aT A.j 2

mi Mi

+ aT B.j 2

mi mi

+ I T B . 2

mi miI

+ 2Re(A

-4k"i m (d
e mzi m

4k" .d
(e mzi M

4k" .d
_e mzi m -5.)b

= 2 7r2 [T C . 2

mi mi I + IaTM D .i2
mi miI + 2Re(C 

k2 . - k 2  2
p1 mzi.

k m
m

S (m) - -
vV 2

[!ci Cmi 2 mi
D . 12

-4k" . (d +
e mzi m

dM - 1

4k" .d
(e mzi m

4k" .d
_e mz3 M (5.20b)

The coefficients

and D .

aTE,TM TE,TM
mi mi as well as

are given by the propagation matrix

mi mij mi

formalism in

Appendix A.
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TE B*.
mi mi

TE*
mi

(5.19a)

+ dm - 1
I

R m)
vv

TM D*.
mi mi

(5.20a)

(5.19b)
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As a special application of (5.18) we consider two adjacent

random layers bounded by air above and earth below. In this

case M = 2 and the amplitudes appearing in Eqs. (5.19) and

(5.20) are easily obtained through the method in Appendix A.

The results are

yhh = 51ki4 Tr 2

X Oli
Sd

D2i
0) IR12i + R23i

ei2k2zi (d2
- d 1 )

21 + R12i 23i ei2k2zi (d2

-4kii d
e lzi 1 + (IR12i + R23i

i2k2 zi (d2
-d1 )

1 4
-4k'f d

e 1

+ R R.12i 23i

2k to

i2k2zi (d2

I

0) 1R2 3 i

- d )

+ 6 2k 2  2

2 e 2

(1
-4k" dzid

Oli 1 l21i
2i(d

ID2 i -

- d1 )

-d)

-4k" d
lzi 1

+ (JR 2 3 1 4
-4k" -(d - d

e 2zi 2 1
-4k" (d

+ 1) (1 -e 2zi ( 2

- d1 )

12

+ 1l

- d1 ))

D1 ( 2k, , 2k lzi



-4k" d
e izil1

2k"2z

v ki 4 T 12 1 0i 4

1 E 2il

ei2k2zi (Cd 2

-4k" d
e izi 1

ei2k 2 z i (d2

k 4 ~
0 8d

k 1
0) Is12i + s23i

- d 1 )
2| + Se12i 23i i2k2zi (d2

k2. - k2 . 2
l 1j4  +

k +

- d1 )
14

- d 1 )
2

(IS 1 2 + s

-4k izid

+ 11 + s12i 23i

( 1 (2K L

2k

8(d
2

I 2klzi

lz_

i2k 2  (d2 -

+ 6 2 k 42 

- d 1 ) D 2 (2EL , 0) |S23i 12

d )
1I4) (1

-4k" d
-e zi 1

yoliI 4 y1 2i 14 k04

-4k" (d
e 2zi 2

-k21

-1)

-4k" d
e 1zi1 + (is23i 1

-4k" (d
e 2zi

- d )
1+ 1)

87

2k 2 'zi ]

ii-
(5.21a)

k2 - k2 .2

Ik2

I E2i 1 4



-4k" (d2zi 2 - di) -4kid-1) izi 1
) e

(5.21b)

where

k. - k.= z Jz

k. + k.
Iz Jz

<E .>k.
J 1Z

<E .>k.
J Iz

X..=1+ R
1J

- < .>k.z

+ <E.>k.
1 JZ

(5.23a)ii

Y..=1 + S.1) ij

E 1 + s2s e i2k2z 2
2 12 23

- 1 )
+ s01 [S1 2

i2k2z (d 2e
- d 1 ) i2klzd1 

(5.24a)

D 2 = 1 + R1 2R 2 3 ei2k2z(d2 - d1)l

i2k2z (d2 -e

+ R01 [R 1 2

d 1 ) ei2klz d

88

k2z i(D2 (2k- , 2

2k"2zi

R..
13

S.
13

(5.22a)

(5.22b)

(5.23b)

+ S 2 3

+ R2 3 "

(5.24b)
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To illustrate the results as given by (5.21a) and (5.21b) we

shall consider correlation functions, which are Gaussian

laterally and exponential vertically:

-4r. - r. 2 /z 2 - jz. - z. 1/9.
C (r. - r.) = 6 k'* e ii ji pm I 3zm (5.25)
m i j mm

where m 1, 2 and the corresponding spectral densities are

-$ 2;2 /4
A 2 e a pm

m ( m zm pm . (5.26)
472(l + 2 )zzm

The choice of correlation functions of the form (5.25) are

advantageous in that we may vary the variances as well as the

correlation lengths in the lateral and vertical directions

independently for each random layer.
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5.3 Application to Data Matching and Discussion

We have obtained, for a stratified random medium, the

backscattering cross sections in (5.18) for arbitrary corre-

lation functions. In (5.21a) and (5.21b) we have taken the

special case of two adjacent random layers, bounded above and

below by homogeneous media. Such a case is of considerable

interest, in the active remote sensing of vegetation covers

and snow-ice fields where the correlation lengths describing

the upper scattering region may differ significantly from the

correlation lengths characteristic of the lower scattering

regions.

To illustrate the theory, we plot in Fig. 5,2 the TE

and TM backscattering cross sections, ahh and a as

given in (5.21a) and (5.21b) as a function of frequency. Note

that the spectral variation of the backscattering cross sections

exhibits two maxima due to resonant scattering within each

random layer. This phenomenon of double resonance (or multiple

resonance in the case of many random layers) may explain the

spectral behavior observed in some backscattering data. In

Fig. 5.3 we have matched TE backscattering cross section as

a function of frequency at 30* and 60* for a 50 cm al-

falfa field. The letters H (or h) represent experimental

ahh while the continuous curves depict the theoretical results.
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As seen from this figure the model of the two-layer random

medium can account for the observed minimum in the frequency

dependence of the backscattering cross section. In Figs.

5.4, 5.5 and 5.6 we match the observed angular dependence

of the TE backscattering cross section at 9.0 GHz, 13.0

GHz and 16.6 GHz for the same alfalfa field. In order to

account for rough surface effects at the ground-vegetation

interface, we have incoherently superimposed the backscattering

cross section of a very-rough surface with mean square slope

s2 and the backscattering cross sections of the random media.

As seen from Fig. 5.4 the backscattering exhibits a rough

surface effect, which dominates over volume scattering near

nadir. In Figs. 5.5 and 5.6 the backscattering data does

not manifest ground-vegetation rough surface effects due to

the shielding effect of the random layers at 13.0 GHz and

16.6 GHz.

In Figs. 5.7 and 5.8 we match for both morning and after-

noon TE backscattering data as a function of frequency at

30* and 50* for a 27 cm snow field. In order to account

for the diurnal change in the collected data, we model the

snow field as two-random layers: A top layer 4 cm thick

and a bottom layer 23 cm thick. The oscillations in the

theoretical curves are due to coherent effects of the top
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4 cm layer, and are more evident in the morning than in

the afternoon. In order to match the afternoon data, only

the top layer parameters have been changed, the parameters

of the other layers are maintained at the same values used

to match the morning data. It was found that the most signi-

ficant parameter to vary in matching both the morning and

afternoon data is the imaginary part of the top layer mean

permittivity. The increased value of Im<e > required to

match the afternoon data, is consistent with the expected

increase in the free water content of a surface layer due

to the solar illumination. The increased free water content

causes the surface layer to appear more specular thereby

decreasing the amount of backscattering especially at the

higher frequencies.
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5.4 Appendices

Appendix A

The amplitudes A , B , a TE
M M m

TEand m in each layer areM

determined through the TE propagation matrix formalism:

-ik d~
e mz m

m
ik d

m e mz m
L- --j

.n-

m,m - 1

Sr-ik

Lnm -1 e m
Lik

- 1

d ~
l)z m -

d) zm - J1

TE _
m,m -1

A
m,m -

Ci d -d )
e z m m - 1

R e ik mz m - m -
m,m - 1

R -
m,m - 1

-ik (d - dmz m ~M -19
M )ik (d - dmz m -

is given by (5.23a). m represents Aand Xm,m - 1

where

1

e

or



101

TE TE TEa Tr ' m represents B or m ' I o = R , n = 1 andm mm m 0 0

r = 1. The TE reflection coefficient has the continued

fraction representation:

-i2klzd1

RTE 1 0 R-- -i1 klz 1 R = + -i2k _ d + -i 

R01  (l/R0 1 ) 2 d

TM TM
The TM amplitudes Cm' Dm, am and m in each layer,

are obtained from the above results by letting r = km /km

and by making the replacement Rmfm - SMm - In this

TM
case E represents Cm or am and Tm represents either

TM
D or TM
m m
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CHAPTER 6

Depolarization Effects in the Active Remote

Sensing of a Two-Layer Random Medium

For the problem of wave scattering by a half-space random

medium, backscattering cross-sections have been calculated with

a radiative transfer theory.63 The radiative transfer theory

was derived by a wave approach making use of the nonlinear

approximation to the scalar Dyson equation and the ladder

59
approximation to the Bethe-Salpeter equation. Using the'

technique of Born approximations and evaluating the dyadic

Green's function with the saddle point method, in Chapter 3,

we calculated to first order in albedo the backscattering

cross-sections for a two-layer random medium.

In this paper we carry the Born approximation to second

order to obtain backscattering cross sections that account

for depolarization effects. Instead of using the saddle point

evaluated dyadic Green's functions, we apply Fourier transform

methods in the calculation of the bistatic scattering coeffi-

cients. The results are reduced to the half-space case and

discussed in the limit of radiative transfer theory. The

backscattering cross-sections are applied to matching experi-

mental data collected from vegetation and ice-snow fields.



6.1 Depolarization Backscattering Cross Section in the

Second Order Born Approximation

The second order scattering intensity takes the

(Chapter 3):

(2) (-)( 2 > + 2Re{<E (r)
0

-E(3)* -0 r)>

+ (0)
0

S< (4)* (r>}.
0 (r>

It can be shown that the terms

(6.1)

in the curly bracket are negli-

gible [Appendix A]. We can concentrate on the term giving

depolarization effects

< - 2 (2)JOI > v 1V
< (2 ) (-

0 r) 12
1

W4 1104

0 1 1 G 11 (r, r 2) -E

[ 01 3 11 (r 3

d 3 r d3 r d 3r dar1 2 3 4

2 ) ]Iv

r4) * (0)
' 4 1 6.4

Q*(4)> .
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< z 2 (2)

form

rise to

fV1

<Q(r 1) Q (r2) ( 3) (6.2)
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Here we use the first subscript u. to denote the polarization

of the incident wave and the second subscript v to denote

the polarization of the scattered wave. We shall consider

the case of U # v.

The fourth order moment of Q(r) in (6.2) may be expanded

in clusters:

1 (r2) Q*(r3 Q*(r4)> = C(r1 - r2) C(r3 - r4)

+ C(r1 - r3 ) C(r2 - r4 ) + C(r1 - r4 ) C(r 2 - r3 ) (6.3)

where C(r. - r. is the two point correlation function for
SJ

the random medium. Note that the first term of (6.3) when

substituted into (6.2) gives the square of the second order

mean field which can be neglected in our calculation of

depolarization effects. We thus have

(2) 2 (2) 1 dardar2 3r 3  4[ 0 1  9< I - LW 4 V 1 2 d 3 r 4G0 r

= - - - () - =- - = - --G11 (r1 , r2) 1 Er2) y~V - [G01(r, r3) - G11(r3, r4)
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(0)- - - - -
E (r4)] (C(r1 - r 3 ) C(r 2 - r ) + C(r1 - r )

C(r2 3)]. (6.4)

The unperturbed incident field may be cast in the following

form

1 ( ) (0) (z) el li
(6.5)

-(0) ik z
E (z) = E [f - A . e
ii 0 1

-ik lziz
B * i e. l I

and f, A. and B. have been defined in Chapter 3. Intro-

ducing the expressions for the dyadic Green's functions and

the correlation functions of Chapters 2 and 3, we first

perform the integration over transverse spatial variables

which yield delta functions useful in the evaluation of

transverse wave vector variables. We obtain

<|9(2) 2>(2) = f d k({k J d 2 f.00

0 yv V 4 1 4 f. _00
dS da

z z

where

(6.6)
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- , -z ) D L i

0

.', af -d
dz dz 2dz 3dz

= -z = - -(0)
- [gol (k , , z ) - 11 (k-L ' z 2) -E (z 2

[eiz (z - z3 ) e iaz(z2 - z4 )

- g0 1 (k , z, z3 )

- g1 1 (k ' z3 , z) (z

e z(z - z ) iaz(z 2 - z3 =>e g01 (k , z, z3

=< (k - - (0) (-1 gL~ + kL , z3, Yg - i E ()]IV. (6.7)

The integrand of (6.7) is related to the bistatic scattering

coefficients (Fung and Fung 61). In the baskcattered direction,

we set k = - .01

y (2)
pv oi oi

and obtain

4r(2k 1 ')862k 2 cos i f

L 4 0 4 E |0 12 f id j -00

' K..+ R~., a ) c?(Rji - RKL' r

dS da
Z Z



- {2 (I,

+ 1* (- ,
Uv 4.

-k i , F az yv J. J i' az

-k.L, az, a )]}

0 z

dz f 1 dz 2 ( 01 (-k , z, z )

(0) (z9)
Ei (2 Pv

-iaz 2 - iS z1

+

zy

e

= > - =< - -
E(0) (

dz2 01(-k , Iz, z 1) g11 (k , z1 , z2) - -( 2

-iazz2 azz -I (6.9)

Carefully carrying out the integrations over az' SZ and the

spatial coordinates, we obtain, after considerable manipula-

tions (Appendix B],

2) ()- h oi - o co th (i tv ( i
hv oi oi Yh oi oi K 2 E cos 2Q. IF 2 i 2 ID 2 i 2

a 1 1 2i i
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where

(6.8)

I (k. , -k , r0 az' az) =

- g1(k-L ,1 Z 2) -
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f 7r/2 de
0

+ fr/2 d6
0

sin 6 sec 8

(sec e. + sec 6

sin 8 sec e

(sec2 e. - sec2

M2 (8, 8 ) +

W2 2(e, 6 ) m3(,

2 W 1(e, 6 W32(6, a ) m (, 9i)

) W 1(6 , W2 (6, 6.) W3 (6 6 )

sin e sec 8
(sec e. - sec e)2 VY%

141

8i) (6.10)

k 2~, 2

' 2- 12 (sin2 e + sin 28.)

W , ) = e 2
2

W2(, e 8) =

W3 (6, 8 ) =

Z2.
0
2

(6.l1b)
47r2 [1 + k 2 2 (cos e - cos o.)2

Z2
p

4 7 2 [(1 + k'j2Z2 (COS 8 + COSe 2

M (, 8) = - cos26 IR12i2S2i2 e
4

(6.11c)

-4k'1  d R S COS 2 e 2
izi1 D12 + 12

D 2 F 2

where

(6.11a)

d



Sl cos2O
+ 10

F
2

I -2 (ki
(e - e

+ k") d
lz 1) 2

cos e S 1i2 10 12
S12i

+ R12i + S 1 2 i  10S121
F21 2

cos20

S10S1 2 cos2 e 2

F
2

sin 2 0 sin2 i]

[2d1 (kit
-4k" d

+ kz(e lz 1
-4k" d

)e lzi 1

-2 (kI
-e 1Zi

+ k )d1  -2kIid1
) (e -2kd d- e z1)

-2k" d
e

(6.12a)

M2 (e, o )
(IS 1 2 il 2 lR1 2 i 2

-4k" d
e lzi 1 + 1)

1I COS

L- os2 9

cos2 e sin26 sin 2e i [
+ 2 12 [(k .

+ (k" + k")lzi z

-4k" d
e lzi 1 - 2k".

lzi

-2 (k" .
e lzi
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D
2

1

2

Cos2 2

F
2

- ki)
12

+ k" )d
lz 1

i I R12i



+ cos. R 10 12

4 D2

- S1 0 S1 2 cos2 e
F
2

2

S10S. 2 1

F2 2

cos 2G sin2e sin2. [k".
i lzi

- k" )
1z

-4 (k"
e lzi

+ k"o )dlz 1

+ (k" . + k"1 )12i lz

-4k" d
e lz 1 - 2k"lzi

-2(k" . + k" )d
e lzi lz 1

- Sl2if2 L cos 2e
4 r S cos 2G

+ 12

F 

T2
+ 10 cos

2 G

F
2

cos 2 6 sin 2e sin2e ]
-2 (k". + k" ) d

e lzi lz 1

-2k" d
[e izil

-2k" d
-e 1

= -cos2e. |S | R |24 I 12i 12i

-2k" d
e izi 1 (6.12b)

-4k" d
e lzi l S cos 2Q 2

+ 10

F
2
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1

2
IR1 2i

I

R10

D 2

2

2]

-0

s10 2+
+ Is12 12

I F2 1 2

3 ( , " e.)



S2 cos
2 G

+ 12
F
2

2]
-2k I d

(e izi1
-2k" d

-e z 1

Cos2 6 IR12i - s12 i.2 1
D2

+ IR 12 + s 1 2 I2
cos2 6 sin2G sin2e.'

F J
F

2-

-2k" .d
e zi l

[2(k" . - k" )d
lzi 1z 1

-2k" d
e izi l

-2k" d
izi 1 -2k" d

_e 1 z

S1 2
R10 12

D 2

cos 2 6 sin2 6 sin 2e.

F2 12

S S10s12 cos2e 2

F
2

i 1 0 s 1 2

-4k" d
e 1zi 1 -2k d d [2(ki - k" )dlzi lz1 -2k" 

d

-2k" d
-e lz 1

-2k" .d
+ e izi (6 12c

ill

+ -
D2

1

2

2

co s2

F
2

1

2
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R12i
4

+ IR12i 12i 1 2
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k 2

ty ( ) = 0

k1
2

I X10 i 2Oli 2

k 12

k0

Ix 1~ 2lII~~ 12 (6.13)

where Ka = 2k"

area, (2) (2)
area, ]I=Vy

The backscattering cross-section per unit

cos 6 readily follows from (6.10) .

th (8 )
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6.2 Half-Space Limit and Comparison with Backscattering Cross

Sections of Radiative Transfer Theory

The backscattering coefficient (6.10) reduces to that for

a half-space when we let d1 +. 0. We find

(6.14)Y ( ,) =y (, - = (2) + y (2)

where

(2) 4 7r20 cos 6 t ) /2
Y+ = 2tv(6 ) th ) j

K cosO. 0
de sin 6 seC e

sec 0 + sec a

W 1(e, ) W3 (e, e ){W2(o, 6 sin2e I cos 20 sin 2e

+ cos 2 0 sin2 + W(a e sec.
3 i 4(sec e. + sec 8)

+ S10 cos 2 e 2cos 2 e jS1 0 12 cos 2 6 sin26 sin2 6])

The first term y (2) is also obtained from the radiati

(6.15)

ve trans-

[IR
1 0
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fer theory derived with the nonlinear approximation to the

Dyson equation and with the ladder approximation to the Bethe-

59 (2)
Salpeter equation. The second term y is an additional

contribution not accounted for by the ladder approximation nor

by the radiative transfer theory. The physical significance

of the additional contribution especially in the context of

renormalization methods will be discussed in Chapter 10.
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6.4 Appendices

Appendix A

The Cross Terms of Equation (6.1)

According to Equation (6.1) the cross terms are

. E 3 *-) -(0) - .< ()
2Re{<E (r) - E (r) (r) (4)*r)>}. (A.1)

0 0 0 0

The first cross term, <E (r) - E( 3)*()> does not contri-

bute to the depolarized backscattering according to the

following argument. It is well known that the first order

field El has no depolarized component in the backscattering
0

direction. Therefore, even though ( r) may have depolar-

-(1) - -()ized components the product <E0  (r) - E0  (r)> is easily

seen to produce no depolarization effect in the backscattering

direction.

The fourth order scattered mean field is given by equa-

tion (3.11):

< E (4 ) ( 13r '
<E r W 4 11 4 f 1 2 4 01 r1) 1 2
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= - -- (0) -G (r2 , r3 ll(r3 , r ) - E1 (r4 )

<Q(rQ1 2) 3 Q(r4)>. (A.2)

Substituting Equation (6.3) as well as Equations (2.5), (2.26)

and (3.14) of the preceding chapters into (A.2), we obtain

-(4) - 1 f
< (r)> = d3rydar2dar3 d3r dak dak 'd2 k "d2k '

- 901 (k , z, z1 ) 1 1 (k ', z1 , z2  9 F z2 , z3

- "11 (k I, z3, z ) f dcd3 -()

e(r - r 2) - a - (r3 - r 4 )

-la - (r2 - r4 )

iE) - (r -
(0i (z4 e (r_1. 12.)

e (r2

S(r - r3

* (r r - r e) -ia - (r2 r 3

i -(r,. - 22L

3z e( 3L - r41) Li

(A.3)
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It is understood here that gll(k , z., z.) actually consists

of two parts corresponding to z. > z.. Performing the trans-
1 J

verse spatial integrations first we then may carry out the

integrations over c , , R " and kJ'". The result takes

the form:

E ( ) = 4 ( . e a r + ik oziz

0 0 ..Li
(A.4)

where

(k ({'2) (2)3  d2k d2k dazd8f dz dz2dz3dz40 W 411 04 f . _Lf z f 12 3

-ik ziz _>
(k - k ,z) e Z. 901 (k , z, z )

- ,k 1 Z2 , A z g Li, z2, z3

Sg1 1 (k , z 3 1

+ k - '

-i z(z - z 2) -iaz(zc 3 - )
z4) e z 1 2-z)

az) - g1 (kL, z2, z3 )

-i, z (z1 - z3-11 (k I- k ' k L, z 3, z ) e
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-iaz (Z2 - z 4)
e + 0 (k -ikL', az)ll , 

(k z2' z3

-iS(z1 - z ) -iaz(z 2 - z3
91 1 ( k', z3, z) e e

- (z ). (A.5)li 4

-ik .z

It is to be noted that the term e iz jo>(k j, z, zl)

in (A.5) is independent of z. It is clear from (A.4) that

the fourth order scattered mean field is specular and can only

contribute to backscattering at normal incidence. However,

even for normal incidence it is important to recognize that

the zeroth order reflected field E has no depolarized
0

()- -.(4)* -
component. Therefore the cross term 2Re[EO (r) - <E* (r)>]

00

does not contribute to depolarization in the backscattering

direction.
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Appendix B

Derivation of Equation (6.10)

The integrand of Equations

5',5 prpI
(A< ($)) S

pp

(6.9) may be cast into

i (pk lzie

i(sk . + s'k )zizi lz 3
ik .z

ozie(Bl

where we have used Equations (2.6), (2.22), and (2.25) of

Chapter 2. The indices s, s', p and

of +1 and -l and the amplitudes (A<
y-

p' take the values

($)) , , are listed
V ssp

in Appendix C. Substituting (B.1) into (6.9) we form the

following expression:

z Z yv L'

= E E
s,s' p,p' , p

{(> (I))
Pv ss'pp'

(A V )) --l.v ssp

form:

=g 0>

the

+ p'klz)z

I V(k i' -k z ' z

1" Z3 -(0)(z )IP'z, z )1 g 11(k , I

(B. 1)

pp



(13

(i,,'s I

I Tz)
1d "d)a

1zp Z z

0 0

dd, ss((

z

*1
(x rt0 ,dda ss

Iz p

0\I

((') t

Z OZ s
(51731

z liz:o Izz

Iddiss((4')t V\)1ddiss m\T

(z

2 ~ ,z
I S.1 sd'd. z) az p

0 0

dd, ss
( (4) >Y)

(z

d z70 JZZ ",z)
s dS s Id d)aEZ

-dd ss ( rt

(1,s s% idd)

zz

+

I Tz)
dl d)

z 'Z)
It d'fd) ~

zz

a

0
zzp

0
Izp

0'f.

+

'fzz

I p- Tzpr

.1 0

+

z
i9f

0

Zu j t, E z z
Iidld)*

I



F* (p, p, s
(z , z , (B.2)z )

,s')

az'

i (sk .
e :z

i(pklzi + p'k lz - az)z1

z

+ s'k - c )z2
- (B. 3)

Similarly,

(k ,

we obtain,

-R L L a 1 (-k , -k *L I a
liv kL 4, Z, aZ

~ E
s fs'I P ' ss' p,E- 11 v ($k)) - (A (>ss'Ipp' Iv + ss Ipp

z 3 dz F(p, ',
4 (zi, z

s,s')

2' az Jz

F* (pp,
(z3, z4

+ (A> (w))
1v s

z

s pp,

az)

+
($+7 )) --

'-v s 'p
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,Is')

z

where:

F(PP', s
(ziI z 2,

0

-di

z
dz 1 dz 2

1 .

0
dz 3

*

-

'

-

-

--d



dz1  dz 2
f-d 

2

, ss')
8 r

< s p)'1iV s p Sv($ + iT)),

0
dz 2 lid

1d

dz r 3 dz F 'p', Ss')

3 1-d 4 (z 1 , Z2' a . zJ d1 2z

az)

(v +

0
dz 2

1 d

, s')
z 4 , az

0
dz 3 dz F(Pz , ss')

4 (z , z 2' a SZ Z

az) -

Substituting Equations (B.2) and (B.4) into (6.8), we then

perform the a Z, 8z integrations before carrying out the z

integrations. The only contributions must come from the poles

0

-d1
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0

-d
dz

F (pI
(z 3 , az)

0

f-d
dz 1 J:

z 1

F* (P, p( z 3 z4 ,
OS',

azF

+ (A< (ss 
11V p

0

l-d

0
dz 1

1

F* (pp'
( z 3 (B. 4)

F 'Pp s "s'I)
(z , z 2' Cz' azl
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of the spectral densities. However, in order to determine the

direction in which to close the contours in the complex az

and Sz planes, it is necessary to subdivide the domain of

z integrations further. In Equation (B.2) we must break

the integrations into regions in which z2 < z and z < z3'

In Equation (B.4) we break the integrations into regions in

which z < z4 and z2 < z 3. For example, consider the first

term of Equation (B.2) when substituted into (6.8)

Y (2) .- k '.)

1IV oi' 01
first term
of (B.2)

dz1 fzl dz 2-d -d 1-d

, - - , - - j d 2 k g
ss p,p s,s r p,p

dz3 f3 dz4 daz d8z
-d1

+ k, (k - k , (), ) zF' sIs')

(z3 ' z4, a' ) ss - (A< ( ) , ,.
11V ss pp

(B.5)

We then break up the integrations over z, as
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dz1 1 z 1 dz2 f dz 3 f 3 dz = dz1 f-l dz 2-d 1d -d -d -d d 1

Z2 dz 3  z 3 dz4 + dz Z dz 2 fZ dz3 Z2 dz4
d d -d1  d z2 d1

+ 0 dz1  Z dz2 f dz 3  z2 dz 4-d d z -d

Sdz 1  dz 2 J dz 3  dz 4-d -d1  z2 z2

o Z 0 rZ
+ dz dz 2 dz3 3 dz4  (B.6)

-d d z z2

when (B.6) is substituted into (B.5) the direction in which

to close the contours in the complex a Sz planes is well

defined. We denote the poles of D as m = 1, 2,

where the superscripts + and - signify the location of the

pole in the upper or lower half complex plane, accordingly.

Therefore, upon performing the az and z integrations,

Equation (B.5) becomes



(2) - -y (k .,-k .)
lJV 01 01
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of (B.2)

E
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E p E p ss pEp1
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(2ri) 2
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(P,p', s~ r -', r, ' SI~ )

w ( , Sn1,iiv m n

+ Res (k + k., Sm) Res (k

w (S -, S )2, jv m n

- Res 5(m + ,m + Res c(k.

- k J-P a )

- k Sn)

(P,P', S,s', p',, ;,O '
w 3,lv($M + .a-)

- Res D(k +jE., k ) Res (. - k +.1 .1i m .L1 J' n

w (S, g )
4,Iv m n

129



130

+ Res D(k + .Li 8 +) Res 0(k ..i. Al m

(P,P', Ss',

W 5,1yV m ' I n )+ I

k ' n

(B.7)

where the summations over m and n extend over the poles of

(D and

(p,p', s,s', p0p')

W (aZ' az) dz1  dz 2  dz 3 (3 dz 4
1 1 2. 1

(A ss) )p, ,ss(( ) - p- F (Pzp , s t )
1,V ss pp, PV ss'pl'p(z ,2' a z'p az

(B.8a)
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(p,p'II sts' , , , z, ; '
W5,uv (aZ' az) dz 1 dz 2 J.d d z

z
dz3 f3 dzz2

{(A> ($)) , 0, (AlV ()) - -- FIP'P ', ss')
PV ss pp y ss'pp' (zi, z 2' az' Jq Z

(z3, z4, az' z ) -J (B.8e)

The next step is to perform the z integrations retaining only

those terms which are dominant in the low conductivity regime.

The result is:

Y(2) K4V oi oi
first terrh
of (B.2)

6 - 6 ,-, 6 - 6 - II(> (4)) 2ss ss pp pp l v ss'pp

4K"
ss'

Res c( .K - k , n )

(K* , - a ) (K* , - 8 )ss n pp m

z E -z- -z-
S's, p"p, sts' Prp

Res (D(k + k ~)x



Res (k + 8 ) Res 0

( ,- 8 ) *ss npp

Res ( + kL, m

(*,- 8+
ss n

am+
Res D(k + k, S

(K* - +
ss n

Res (

pp

pp

(kL k

(k - , . +

-+

m

(k-k 8)

+Li n
M -

where M( P is defined below in (B.lla). Following
p

steps analogous to those which led to (B.9), we include the

remainder of the terms in (B.2) as well as all of (B.4) when

evaluating (6.8). The result is:

(2) (k -k .) 41 (27T) (.k' 4.) 2 k 2 cos e 2k-" (2
IV oi, 0 4 14 ''-'2 k

0 0

m ( + )) ss
m,n s,s' pfp' I 11 ss'ppy pp ss

+ (R< (c)) I ,1* N (S', p,p') + (K> ))
yIv ss pp (k ) +(V ss'PP'p tv spp
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+

+

+

(k )

(B.9)



* [(A< (t:~+

1Jv

x M(s,s'
(k )

p

pp ss
+ (W (4)) I*

U v ss'pp

p,p') Imn

4 K" ,I

pp') 1 - e
2 (K" , + K" ,)dpp ss. 1 2 K" ,d

e ss 1(1

(K" , + K" ,)pp ss K"PP'

(B.lla)

+ Kt ,)d1s-S l1N(SSPP')
(k )

p

- e

(K" , + K" ,)ss pp

2K"I d

K"
pp

Res D (k + , m ) Res 0 (k - k , n

(K* - (K*s n pp m

Res D (k +., 6) Res P (k . - I $n +. J.. m 4~ .' n

(K - + )(K * -(ss n pp m

Res D (k + ., k +) Res (k. -k _ )Ll m J.i J' n
a I* - +

ss n N pp I -p I
m
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where

(B.10)

M(s,s,
(k )

p

(B.llb)

Jmn

+

+

2K"I Id
ep PP
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Res D(k + , +) Res (. - k , .+
+ m +i n

(K*s np m -
(B.llc)

The term Z JMn may be simplified by utilizing the following
m,n

argument. Let

00 ( , ca )
da L Z

z (z - a)
p z

(B.12)

where ( ., az) vanishes everywhere on the circle at infinity

and has an equal distribution of poles {a m} and {a } inm n

the upper and lower half complex planes. z is a complex

number which lies anywhere in the complex plane. To evaluate

(B.12) we may close the contour either up or down. Closing up

and assuming Im z > 0 we find:
p

(27ri) - (k., Zp) +
m

Res ( (k, a +]

(zp - am +

and closing down, we find

I = - 27ri E
n

Res (kL, an)

(z -an

(B.13)

(B.14)
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Therefore, it follows that

Res ( (k a +

m (zp - am +) n

Res ( ,. )
_n

(z9 - an
(B.15)

Multiplying (B.15) by k(D ' , z ) yields

~Res t(K., am +) Re.s. ( 'c, . +)
(IfmZs)kL (z -a (+ +

p m s n

Res ( (k, a ) Res $(D ', a

(z - a +)(z - ct)
p m s n

Res 4(k , a ) Res N(k ', a +

(z -a)(z - a )
p m s n

Res ( kL, a ) Res (k ', an

(zp - a ) (z - a

(B.16)

This result would not change if we had assumed Im(z p) < 0

rather than Im(z p) > 0 as we did. Therefore, utilizing the

result (B.16) we may sum equation (B.llc) as:



z J
m,n

= (k + , ) .L - k., K ,).

Substituting (B.17), Equation (3.29) of Chapter 3, and the

values of (A ) from Appendix C, into (B.10) we obtain

after some algebra; Equation (6.10)

(2) - (2) -, - 0. cos 6 01
Yhv (Koi, -K oi vh k , -1) = E Cos 6

th(6) tv(6i) sec 6 j1r/ 2

-D 2 i 2 F 2 i2 a2 0
de sin 6 sec 6

(sec 6 + sec 6) 2

de sin 6 sec 9

(sec 6 - sec 6)

J7 r/2
W3 (6, ) M2 (6, e) + 0

d6 sin 6 sec e

(sec 6 - sec 6) 2

W1 (e, 2) W 2
2 (6, ) M 3 (6, e )
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(B.17)

+ 7/2
0

W 1(e, e ) W 3;1(e, ei ). M (0, e )

W 1(o, e ) W 2(O, 6 )

(6.10)
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APPENDIX C

The Coefficients.
liv ss

= Fv ei2klzd1 (R1 2i S 12 i ei4klzid

- klzi R12 klz S 12
os2 sin2 k 12

i2k dlz 1 (R1 2i e
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D2 D 2k 2 7

> e i4k lid1

hv 11,11-1 v 12i 12i

i2klzd klzi 10R12 klz 10 S12

D2 F_2k2 k-.

- lzi CO sin + klz
D 2 Fk2 -

, - ehv FV
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i2k lzid
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where

( (k k . cos $ k k .) sin $
- z izi op

0"2P-

y 1i xOli

F 2D k k k .
2i 2i Lo 1zz

h (k ozi)
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TE waves

The coefficients
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CHAPTER 7

Renormalization Methods in the Active Remote

Sensing of Random Media

In the preceeding chapters the problem of electromagnetic

scattering by a two-layer random medium is solved with an

iterative approach. However, if multiple scattering effects

are to be included renormalization methods are necessary in

which the Neumann series for the mean and covariance of the

electromagnetic field are resunmmed. Tatarskii64 employed a

Feynman diagrammatic technique to develop the Dyson equation

for the mean field and the Bethe-Salpeter equation for the

covariance of the field. He also considered the bilocal and

ladder approximations to the Dyson and Bethe-Salpeter equations,

respectively. Rosenbaum65 also investigated the coherent wave

motion by applying a non-linear approximation to the Dyson

equation.

In this chapter we review the development of the Dyson

and Bethe-Salpeter equations and.discuss the various approxima-

tions made in the solution of these equations.
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7.1 The Dyson and Bethe-Salpeter Equations

In Chapter 3, we obtained the integral equation which

governs the scattering of electromagnetic waves by a random

medium. In the case of a point source, we have:

== -- = (0 ) - -G (r, r 0) =G (r, r ) + fV
(0) -" - '- = - -d3r' G (r r' Qr' G Gr', r )

(7.1)

where Q(r) = wps (r). Iterating (7.1) leads to the in-

finite Neumann series given by:

= --= 0) -- (0) ---= 0
G(r, r 0) G (r, r ) + d3r' G r, r') Q(r') - G (r r0 )0 0

+ d3r' f d3r" G( Cr, , * () r , r)

S- - =(0) - -Q(r') Q(r") G (r", r) +.

Ensemble averaging (7.2) yields

= - -=( 0) - -  r<G(r, r 0)> = G (r, r ) + fVd r' f

(7.2)

dr" G.O (r, r')
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(7.3)(0) ( ) C ) +

where it should be noted that all odd order moments of Q(r)

vanish and all even moments of Q(r) are cluster expanded

in terms of the two-point correlation function, C(r - r').

A convenient method of handling cumbersome equations of the

type (7.3) is through the use of Feynman diagrams. The fol-

lowing symbols are used in constructing the Feynman diagrams

<G (r, r 0)>

(0) -G (r, r 0

C(r - r')

0 Evertex over which integration is implied.

Thus (7.3) may be expressed as

4 1A++

+ 4T~+

411*

1/00000 _
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(7.4)

where, for example:

-4 1Th~-- = -s -=*- -

= dar'ddr" G(r, r' ) - G(r' , r")

(r r ) C(r' - (7.5)

We now define diagrams (minus end connectors) as strongly

connected if it is impossible to bisect the diagram without

breaking the correlation connections. All other diagrams are

called weakly connected. The sum of all strongly connected

diagrams defines the mass operator, given by

+ + .

(7.6)

We note that with (7.6), Equation (7.4) may be written in

the form

_____+ - - + - - - -

+ j--- --- + (7.7)
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- + -- E[---------+-

(7.8)

_ + -_(7.9)

where (7.9) is the diagrammatical representation of the Dyson

equation for the mean Dyadic Green's function. In analytic-

form (7.9) reads:.

<G(r, r -)> =G (, ( r + f d3r'd3r"G (r, r')

-Q(r' r" G(r", r 0)> (7.10)

Here Q is used to denote the mass operator.

In a similar fashion we introduce the symbol for the

field covariance:

]IL E G(,r0 P0 0 -<FQC,0 0 >

(7.11)
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The Neumann series for the field covariance has the following

diagrammatical representation:

-2Z~22 +Ix
(7.12)

where for example

= dIr d r ' [" 3 () , Fl) - =G ( ) , F )IB1 Vl '' I' 1'0

= (0) r', *') = (0) , I C - r '). IG ( 1,,r 1 ) 0 (r . r (r1 - 1, (7.13)

The sum of all strongly connected diagrams is defined as the

intensity operator:

++ (7.14)

This allows the infinite Neumann series (7.12) to be written

as:

ILL

::I-

:, 00 0 0x = +
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(7.15)

+ 6 '' 9 (7.16)

X + X

Equation (7.17) is the diagrammatic

Bethe-Salpeter equation, which will

section in analytical form.

(7.17)

representation of the

be given in the next

K * X

L

X

X +
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7.2 Approximations to the Mass and Intensity Operators

In (7.10), Q(', r") denotes the mass operator, which

must be approximated if Dyson's equation is to be solved

analytically. The most popular approximation to the mass

operator is the bi-local approximation, which consists of

retaining only the first term in the series for Q, that is,

Q(r', ") (0) (r r") C(r' - r"). (7.18)

Physically the bilocal approximation corresponds to a single

scattering of the mean field as can be seen by substituting

(7.18) into (7.10). The validity of the bilocal approximation

has been discussed by Tatarskii,64 and Rosenbaum65 has shown

that the bilocally approximated Dyson equation together with

the ladder approximated Bethe-Salpeter equation do not lead

to an energy conserving formalism.

Another approximation to the mass operator which circum-

vents these difficulties is the non-linear approximation, in

which an infinite sequence of terms in (7.6) is summed.

S~+ + ... (7.19)

Substituting (7.19) into (7.10), we obtain a non-linear integral
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equation for the mean dyadic Green's function

<G(r, r ) (r, r) + d r' d r" G (r -

- <G(r', r")> - <G(r", r )> C(r' - r") (7.20)

Physically, the non-linear approximation accounts for multiple

scattering of the mean field and in this regard is superior

to the bi-local approximation.

The usual approximation made for the intensity operator

is the so called ladder approximation in which only the first

term of the series (7.14) is retained. That is,

(7.21)

In which case the Bethe-Salpeter equation reduces to:

1E

or:

(7.22)
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<( ) *(r', i)> = V d'rld3 rl' C(r - >') < , i9>
0 0\ 0

0 1 r 0

(7.23)

where P(r, r ) 2 (r, r ) - <G(r, r0 )>, is the incoherent
o on.

mean dyadic Green's function.
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CHAPTER 8

Mean Dyadic Green's Function of a

Two Layer Random Medium

The study of the mean dyadic Green's function for a two

layer random medium is of special importance in the fields of

scattering, radiation, and diffraction of electromagnetic

waves as applied to optical communications in the atmosphere,

radar backscattering from earth terrain, and active remote

sensing of the terrestrial environment. It is well known

that the coherent wave motion in a random medium can be de-

scribed by Dyson's equation, which is an exact equation for

the mean field. Dyson's equation expresses the coherent

field in terms of a mass operator Q which is in the form

of an infinite series and must be approximated. The most

commonly used approximation to Q is the so called bilocal

approximation which follows by retaining only the first term

in the infinite series representation for Q. Solutions to

the bilocally approximated Dyson's equation have been the

subject of extensive investigation in the literature.
6 4 ,6 5

However, as pointed out by Rosenbaum,65 the bilocal approxi-

mation not only leads to solutions with potentially severe

range restrictions; due to the omission of higher order terms
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in the mass operator, it also leads to solutions which are

energetically inconsistent with the Bethe-Salpeter equation

under the ladder approximation. An approximation to the

mass operator, which circumvents these difficulties is the

65non-linear approximation in which an infinite sequence of

higher order terms in the series for Q is summed. This

approximation to the mass operator results in an intractable

non-linear integral-differential equation for the coherent

field. Rosenbaum6 5 ,75 found approximate solutions to the

non-linearly approximated scalar Dyson's equation, for un-

bounded random media in the limit of large and small scale

fluctuations. Tsang and Kong58,59 using a two variable ex-

pansion technique have solved the scalar Dyson's equation in

the non-linear approximation for the cases of a one-dimensional

two-layer laminar structure and a three dimensional half-space

random medium. In the limit of a laminar structure they found

the coherent wave motion to possess two effective propagation

constants. More recently, Tan and Fung60 also employed the

two-variable expansion technique and solved the non-linear

Dyson's equation for the zeroth order mean dyadic Green's

function in the case of a half space random medium. Their

vector solution contains only a single propagation constant

for all components in the Green's dyadic.

In this paper we employ the two variable expansion tech-
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nique to obtain the complete zeroth order solutions for the

mean dyadic Green's functions of a two layer random medium

with arbitrary three dimensional correlation functions. It

is found that the coherent vector field in general propagates

in the random layer as if in an anisotropic medium with dif-

ferent propagation constants for the characteristic TE and

TM polarizations. Moreover, in the limit of a laminar struc-

ture two propagation constants for each polarization state

are found to exist.
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8.1 Zeroth Order Mean Dyadic Green's Function Using the

Two Variable Expansion Technique

Consider a two-layer random medium with boundaries at

z = 0 and z = -d1  [Fig. 3.1]. The random medium has a

permittivity consisting of the sum of a mean part el,

<E1 ()> and a random part e (r) whose ensemble average

vanishes. The media in the regions z > 0 and z < -d are

nonrandom having permittivities e0 and E , respectively.

All regions are characterized by permeability y9. The random

fluctuations E (r) will be assumed to be statistically

homogeneous so that the two-point correlation function of the

fluctuations is a function only of the difference in the two

points. The coherent dyadic Green's function of a point source

imbedded in the random medium satisfies Dyson's equation which

under the nonlinear approximation takes the form

11m o ) mllm o o

+ fr d 'r2  m r2 1 i 2P' ) C(i - 2) (8.1)

where k2  = E2o1m and the spatial integration extends over

the layer of the random medium. The first subscript of the
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dyadic Green's function indicates the region containing the

observation point, the second subscript indicates the region

containing the source point, and the third subscript indicates

that the dyadic Green's function is the mean dyadic Green's

function. We introduce the Fourier transforms of the mean

dyadic Green's function and of the correlation function:

i~c * (r -r

____ 49 OJ.G (r, r ) = 1 d2 k Lg (k , z, z ) e
1rn 0 (27r) 2 J . urn . 0

(8.2)

-ia -(r - r2)
C(r- r2) = d3c D(a) e (8.3)

A A

where k x k + y k and d2k = dk dk . Substituting
.1. X y IJ - x Y-

(8.2) and (8.3) into (8.1) and performing the transverse

spatial integrations, we obtain

+ k{ il (k , z, z - ik + z i + z

-11M lLk , z, ) = -I S(z - z) - (2r) 2

T d r 00 r 0 _-iaZ (z - z2
d k d da dz2 (k -k , )
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(8.4)
glm (kL ',z, z2  * 91 1 M (k, z2 , z)

where

k = [k 2 - k 2 1/2.lmZ im L
(8.5)

To solve equation (8.4) we make use of the two variable ex-

pansion technique, which has been used to solve for the long

distance behavior of the wave propagation in a random medium

with laminar structure. 58 Following the procedure as in

Tsang and Kong5 8 ,5 9 and defining a bookeeping parameter, s,

0
we find that to zeroth order of s

+ km] (k ; z, , , - i + z ik + z
3Z2 lmz 1llmo .0 0 3 z . '3

(8.6)- gllmo (k , z, r ; , ) = -I 6(z - z)

and to order, s for z > Z ,

32  2  2

--- + klmz g1 m ( J. ; z, ; , f = -2



160

0

f dzz2-d1 -00
da dZk ' < (k ' - k, z 2 )

* gllmo (k L', z, Ef

(8.7)

where E = sz, E = sz, 2 = sz 2 are long distance scales

and the subscripts o and 1 which follow the subscript m

on the mean dyadic Green's function denote, respectively, the

zeroth and the first order solution. In deriving (8.7) we

have used the divergence relation for the mean dyadic Green's

function in Fourier transform space, which for z > z0  and

z < z0 is given by

iki + z {-+ s

+ sgilml -i.' Z

* gllmo (k ; z, (; z 0 , E

E; Z 0 , O) + .. = 0.

From which it follows that:

(8.8)

ll1MO , ( ; 0o &0)

z2' 2) 9lmo ( .V Z2' E2; Zo, (9)
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Zeroth Order: ii + z - - llmo (, z, (; z, y = 0

(8.9a)

First Order: ik + z - -lml (,, z, z., ,

^ 9 llmo (k,, z, E; zo, E )
= -- (8.9b)

The zeroth order Fourier transform mean dyadic Green's

function satisfies an equation identical to that satisfied by

the Fourier transformed dyadic Green's function of the non-

random problem. This is not surprising since in the limit of

vanishing random fluctuations the zeroth order solution ob-

tained from (8.6) must reduce to the dyadic Green's function

of the corresponding homogeneous problem. Moreover, the two

variable expansion technique carried to zeroth order, accounts

for the random fluctuations essentially by introducing correc-

tions to the phase of the unperturbed dyadic Green's function.

Therefore the zero order solution takes the form

6(z - z )
g1mo (k t , z, E; zo, E) = zz

lm



911mo (k.1 z, ; z0 , ) f

ilmo k, Lz, ; , 0O

911mo ,k , z ; z ,f

(z > z )

(z < z )

0 )

() e(klmz)
ik z -ik z
elmz + A ) e(-k ) e mz

2 -L lmz

k ik1  z -ik z
[B 1 (k , ) e(-klmz) e + B2 (k' ) e(klmz) e I

+

ik z -ik z
[C (kL, L ) h(k lmz) e + c2(k , () h(-klmz lmz

ik ,z -ik z
[D 1 h(-k lmz e + D 2(k o h(klmz e

(z > z0) (8.10b)
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where

(8. 10a)

I [A1 (k

911mo kL' Z, Z; of, EO)
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ik z -ik z
[B (k , ) (k ) e lmz + B2(k , ) e(-k lmz lmZ

ik z -ik z
[A1 (k , O) e (-klm lmz + A 2 (k. , E ) e (klz lmz 

+

ik mz z -ik z
[D 1 (k ,) h (k lmz e + D2 (k , ) h (-klmz e mz

ik1  z -ik z
[C 1 (k , EO) h(-klmz) e + C2 (k , g) h(klmz) e lmz

(z < z0) (8.1Oc)

The unit vectors e(ky ) and h (klmz) point in the

directions of the electric field for the TE and TM polarized

waves, respectively, we next substitute (8.10a)-(8.10c) into

(8.7) and eliminate secular terms independently for each

polarization. This yields four differential equations per

polarization in the variable, , for A1 , A , B1 , B and

for C1 , C2 ' D1 ' D2. After careful manipulations, the differ-

ential equations may be cast into the following compact form:

0 = -2ipklmz p (k , a) + (2iri) , d2k
m s T f

Rak ( , E)[ [ (k ', )
i[-sk' + pk +n s (

lmz lmz n
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T (Res D(k ' - _
p ( L + d m, +

i[-sk' + pklmz

a +
'n

+ an

Tl(-k , A ) -, . T~i ,g
s -s L p

+ f d2 k ' Res 0(k ' - i , a +) z T (k )
k 2mn nlm

(8. 11a)

0 = -2ipk T C- , p) + (2Tri) ZEE f d 2k '
mz~ p n s T'

Res ( ' - K a.-)

i[-sk' + pk + a ~]lmz lmz n

-T (-k, ( )] + d 2 k'
p L. 0 _

s . -s 

Res $(k ' -k. a+
4 -L n

i [-sk i + pklmz + an

S (-R ', ()fc -T ', T) S (-k , m)
S L -s K. p

+ E f d 2 k,' Res t(k ' - k , a + ^
2 z * 5 nk

lm

(8. l1b)
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where

A (k ,

C (k ,

A 2 (k,

a (k, () = -

C2 (k,

B (k ,

D (k,

() e(klmz)

) h (k lmz)

() e

E) h

() e

() h

(-klmz)

(-klmz)

(-k lmz)

(-k lmz)

SB2 (ks,
(=

D2 (k,

() e(klmz)

() h(klmz)

T= TE (8.15a)

T = TM (8.15b)

ct~ (k~,

T = TE

T = TM

(8.12a)

(8.12b)

(8.13a)

(8.13b)

(8.14a)

(8.14b)

1 T .

T = TE

T = TM

T = TE

T = TM

SZ_ ( ,
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In (8.lla) and (8.llb) the indices p and s take the values

of +1 or -1, whereas the superscripts T and T' stand

for either TE or TM. Moreover we have performed the az

integration using residue calculus, with an+ and a

denoting, respectively, the n-th poles of N (, a) in

the upper and lower halves of the complex az plane. In the

case of laminar structures, for which klm P -+ C, equations

(8.lla) and (8.11b) are different. Treatment of this case is

deferred to Section 8.5.

Solutions to (8.lla) and (8.llb) have the form:

T-
-T -- T - ipx (k )L

a(k , ) = a (k ) e (8.16a)

P T -

- T - - T - ipX (k )(
T (k , T) = b (k ) e (8.16b)

p p J-

where

a e(k ) T = TE (8.17a)

a (k d)

h (klMz ) T = TM (8.17b)

A2 (k I) e(-klmz) T = TE (8.18a)

a (k(

C2 (k ) h (-klmz) T = TM (8.18b)
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B 1(k ) (-klmZ) T = TE (8.19a)

D(k I) h(-klmz) T = TM (8.19b)

B2(k ) e(k lmz) T = TE (8.20a)

b1 (k ) {

D (k ) h(k ) T = TM (8.20b)

In (8.17a) through (8.20b), we have redefined the coefficients

in the right hand side of (8.12a)-(8.15b). First note that the

i-dependence of Al, A2 , B1 , B2, C1 , C 2 , D, and D2is

exponential in behavior and thus may be combined with their
ik z

multiplying exponentials, e ilmz which appear in the mean

dyadic Green's function (8.10a). We then factor out the am-

plitudes of A and C1 which depend only on km, and

combine these with the other amplitudes in (8.10a). This

defines a new set of coefficients which are given in (8.17a)-

(8.20b) and are determined through the boundary conditions on

the zeroth order mean dyadic Green's function. Substituting

(8.16a) and (8.16b) into (8.lla) and (8.11b), we obtain

0 = 2X Tk ) klmz ap (k ) + (2Tri) E d 2kL'
.a.~~~ sm pT '{
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Res (k ' - k M )

i[-sk'
lmz

+ pk1  + a n1mz n

a (k ')[b (k ')s L -s I

-T Res.(k ' -k ,
+a (k)] + d 2 k' n

p i[-ski + pk + a n
lmz lmz n

b (-k ') [a (- ') a Ts -s J p

+ ! - d k ' Res (k ' -k, +)
k2 a z za
lm

-Ta (k , )

T - - T0 = 2X (-k) k b (-k ) + (27ri) E Elmz pns

Res 0(K ' - i ,

i[-sk'
lmz

+ pk

{ I d2 k '

n -T'I -j -T' I -(a (k ')[b (k ')
+ ca ~] s i -s iL

n

- T (
-b (-kc )] +;d2k',

Res (k '- k. , an)

i[-sk'
lmz + pk + ntlmz n

(8.21a)



169

bT (-k ' [a (-k ') -b (-T )
s J. -s . p .

+ 2k' Res - ,a zz (-
k 2 n' p 1
1m

(8.21b)

It is to be noted that equations (8.21a) and (8.21b) are con-

sistent, yielding-the same result for X (K ). This may be

seen as follows. In (8.21a) let p + -p and s + -s then

dot with the vector p(k ). In (8.21b), let k+ -k.,

then change integration variables as -' -k ', and finally,

-T
dot with the vector a-, (Y ). We also make use of the fol-

lowing properties of the spectral density, which are valid for

a large class of physically interesting correlation functions:

(a , )= a(-a ,a ) (8.22a)

Res @((a, c ) = - Res D(a , a ) (8.22b)

a = -a + (8.22c)
n n

Upon performing the described operations on (8.21a) and (8.21b),
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we find the consistent result:

Res

-T[a_

-T - -r T - Z Z I d2 k '
k lmz [ap( k L) -p (k ) n s T'

( ' -T' ,
( k) -a (k)] [b (-k1 ') - b ( )]

(sk mz pklmz + n+

-T -TI - -Tv--Ts-T

[a (k ) - b ( ')][a ( ') - b)
s .L S .L S-sL p L

(sk - pklmz -an

- k d2k' Res (k '-k , an

lmz im

-T T
[z * ap (k L)][z - b T(k ]

+ ..L

(sk - pklmz - an

Utilizing (8.17a)-(8.20b), we evaluate (8.23) for the cases

(8.23)

T=TE and T=TM.

T ( = -

The results are:
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TE 2r) -dk Res 0 (k ' - I a +
k lzn j Ai l
imz

B2 (k ') Cos' - ') (k kmz + an+

B+a(k + +)2 - kzlmz n lmz

A 2 (k ') B (k lmz

(k - an+)2 - k 2

imz ni lmz

+

k2

D2 (k ') lmz sin 2( - (k2 k 2  lmz
lm

- an

+ a +
n

(k + a+2 k2
imz n lmz

k'2
C 2 (k ') D (k ') mz 2 ( - (k

lm

(k - an )zz - k2

- n

(8.24a)

xTM k27 E d 2k' Res +( - , a
lmz

k 2
B2 (k ' ) (k

km -lm

(k{im + a

+ an +) sin2Gp -

+)2 - k2
n lmz

k2
A2 (k') B (k lz(kl 

km

- +) sin2-

(k' - a +) 2 - k2imz n lmz



2  (k'2 k2

lm

cos 2( - ') + k 2k, 2 )

(k + a +)2 k2
lmz n lmz

2D2 (k) k2  k' k k ' cos($ -
I I lmz lmz .. .

- (k' j + a +) +
n

C2 (kL)D (k')
k* 4 1 (k'mz

lm

(k' + a +) 2
lmz n

- 2
lMz

- +(k2 k2  cos2 ( ')+ kkLZ)
- mz lMz -~

(kj - a +) 2 - k 2(k{n lmz

k2

2C2 (k D1 (k ') 'mz k k k ' cos(4 -
k 4  lMzL

+ 1M+

(kjmz - a n+ -lk

7 k 2 +
- d 2kL' Res c4 k ' - k , an+). (8.24b)

k k 4L f1 flL
lmz lm

Here, # and $' are the azimuthal angles subtended by k

and K ' respectively. The coefficients, A 2 , B1 , B2, C2,

D 1and D2 must now be determined by imposing the boundary

conditions on the zeroth order mean dyadic Green's function.
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The Zeroth Order Mean Dyadic Green's Function

Combining Equations (8.16a)-(8.20b), together with (8.10b)

and (8.10c), the zeroth order mean dyadic Green's function may

be written in the form:

12r i(k + AtE )z
G (r,r) J d 2 k {[e(k ) e IZlimo o (2r) 2 lmz

+ A 2 (k ) e(-klmz) e

[B 1 (k ) e(-klmz)

-i(k l + A )z

i(k1 + A ) 0

+ B2 (k) e(klmz)
-i (k
elmz

+xTE)+ A ) z
0o

+

i (k l + x TM ) z
[h (k lmz e

-i (k
+ C2 (k) h(-k 1 ) e

+ TM)
I

i(k + ATM)z
[DI(kl) h(-km) e lmz 0
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(k + )zTM ik ( - r
+ D2 (k ) h (k lmz) e lmz 0 11 04.

(z > z0) (8.25a)

1 ^(k i (k + x TE) z
Gllmo (r, ro (27) d2k { [B1 (k e (klmz e

+ B2 (k ) e(-klmz) e

i (k]
[e (-k ) e

lmz

+ A2 (k ) e (klmz)

[D 1 (k) h (k)lmz

+ D2 (k ) h (-klmz)

mz + xTE)z 0

e-i (kmz + TE) z

+ m

i (k
e lmz

+ TM)

-i (k lm+ TM )z
e

i (k lz+ x TM)z 0
[h (-k ) eilmz +lmz

-i(k l + ATE )z
I

I
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+ C2 (k ) h(k mz e

e 
0.- (.L i.l

-i(kimz + x TM)z

(z < z 0 ). (8.25b)

The boundary conditions which the zeroth order mean dyadic

Green's function must satisfy are:

At z = 0:

z x G (r, r ) = z x G (r,O lmo o limo r 0

z x V x G (r, r) = z x V x G (r, r ).Olmo o imo o

At z = -d1 :

z xG (r,Pr) = zx G (,r)
2imo 0 llmo o

z x V x G (r, r 0) z x V x G (r, r ).21mo a limo o

From (8.6) it follows that

(8.26a)

(8.26b)

(8.27a)

(8 .27b)



lamo - k - ik z

-11. + 911lmo

A ag
e (k ) - lim +

LZ-)ZO1mz +

- lin _ gllmo -k=l

0 -

limo - lim

3z z*z0
0

(8.28a)

allmo

3z

e (klmz ) = -1 (8.28b)

where k E k /k . In region 0, the Fourier transformed mean

dyadic Green's function assumes the following form in order

to match the boundary conditions at z = 0:

ik z

g oz, z) = e(k ) e O Z

i(k + xTE )z -i(k
e lmz o + B2 (k ) e(klmz) e

+ xTE )

+

ik z i (k
r2 h (k ) e OZ [D 1 (k) h (-k ) e2 oz 1linz

+ TM )+Xo

k, -w 1im +k-1
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az Z-)*Z
0

(B 1 (k )- e (-k lmz)



+ D 2 (k ) h(k)lmz) e- i(klmz
+ X )TM )

(8.29)

Similarly, in Region 2, the mean dyadic Green' s function

taken to be:

, z, z )

i(k +
lmz

= 3 e (-k2z)

TE
0 + A2 (k )

-ik z
e 2z

A
fe

e (k)lmz

(-k lmz)

-i (k
e lmz

+

r4 h(-k 2 )
-ik z

e 2z [h(-k )

+ C 2 (k ) h (klmz)

+ TM-i(k
e lmz

z
0 . (8.30)

Applying boundary conditions (8.26a)-(8.28b) to (8.25a),

(8.29) and (8.30), results in the following equations for the

unknown coefficients contained in (8.25a), (8.25b) (8.29)

and (8.30) :
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is

921mo (k

e
+ xTE) z 0

i(k
e lmz

+ TM )+Xo

(8.25b),



= 1 + A2

k

2 = 0
klm

r = klmz
k

oz

(-1 + C2 )
k

(z

(1 - A 2 )

ki0r 2 = km(i + c2)

ik 2zd
F3 e =

-iK d iK d
By e m+ B2 e im

ik zd
e 2z 1

e ik2zd 1

ik d
e2z 1

klmz k2
- - [D e
k2z kim1

TM d
lm 1

k - iK TEd
lmz [Bm e

1 - [1e

iK d
D e lm 1

iK d
B e m 1

-iK TMd iK TMd
=k[De lm 1 + D e lm 1lmi 2

B2 - A2B = -

lmz

D 2 - D - 1 (8.40)
2iklmz

r 1

178

(8.31)

(8.32)

(8.33)

(8.34)

(8.35)

IE4

1E3

k2F 4

(8.36)

(8.37)

(8.38)

(8.39)
2ikx

(8.40)
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where K T k
1M lmZ

+ . Equations (8.31)-(8.40) are easily

solved for the unknown coefficients. The resulting zeroth

order mean dyadic Green's functions are:

S(r, r d 2 kL e
limo 0 (27r) 2

1

2 ik, m

+ xTE)z

D2 (k )

[e (klmz) e

+ R10 (k ) e (-klmz)
-i (k
em

+ A )z

I

[ R1 2 (k )

+ e (k)lmZ

i2K d
e m 1 e (-k lmZ e

-i(k + X T) 0e mz

i(k + A ) 0lmzo

+

1[h (k ) e
F2 (k ) lmz

+ S1 0 (k ) h (-k ) e

(k + A )z

-i(k l + ATM )z
I



[S 1 2 (k )
i2K TM d

e I h (-klmz
i (k + X TM) z

e mz

e-i (klmz + X TM) Z 0

I. d 2 k

I
ij

e
(r r

.1- 0

[R1 2 (k4 )

-i (k
e lmz

i2K d
e im 1 e (k lmz)

+ TE)
+A )]z A

] [e

+ R1 0 (k ) e (k)lmz
-i (k
elmz

+

F2 (k )
S12 (k )

i2K Td
e im

+ h (-k)lmz)
-i(k + A zTM)z

e lmz ]

.+ S1 0 (k) h (klmz10m e i (klmz

[h (-klmz

+ TM)Z]I

180

(k l )

Gllmo (r, r

(z > z0)

(27r) 2

(8.41)

1

2ik1

D2 (k)

A

e(klmz)

i (k
e lmz

+ XTE )z

-klmz )
i (k

e lmz
+ xTE) z 0

+ TE ) zO

h (k)lmz)
i (k
elmz

+ x TM)

ei (k lmz
+ x TM)z 0

(8.42)(z < z0)

0
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G0mo (r, (r d2k e -L -

X ( TE
X10.( _) i2K imdi

e(koz )R 12 (k ) e e(-klmz e
D2 (k ) O m

+ e (k ) e
imz

(S1 2 (k ) e

+ h-
+ h(kimz) e

1 eik z
e z

2ik1

i(lmz +A)z

+ )TE)z k Y 10 (k) A

I m + h(k o)
k9 F2 (k ) z

i2K TMd i (klm 1 h(-kz) e lmz
h(klmze

i (k1mz
+ ATM )z

G (r,r)=- 1 f d2 k e21nmo 0 (2W) 2 L

X1 (k) i (k
e (-k2z) [e (-klmz

D 2 (k )

-i(k + AT
+ R (k ) e (kz) e lmz10 lmz

+xTM)+ A )

'(8.43)

-ik z
(r -r ) 2z.L o. e

2ik1

mz + X ) 0

Ezz0

k Y 1 2 (k A) Ai(k

+ -- F2 (k h(-k 2z)[h(-k )e 1mz

k2 F2 (k) 2ziz

A -i (k
+ S10 (k ) h (k lmz) e lmz

+ xTM) z

If
(8.44)

+ ATM)z
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where:

ik n
imz

f1d 2 k ' Res D(k ' -k,

cos 2 (, - 0 ')

k' D (k')
lmz2.

R 10(k ') R1 2 (k ')

(k'lmz

i 2 K , TEd
e lm 1

(k + an

k F (k')lm 2 -L

S10 (k,') S 2(k ')

) (k'- M:

e

(k'imz

+ a + 2n

i2K' d
im 1(k

imz

n
- k 2

lmz

Res +( ' - k,

sin2 ( -

k' D (k ')mz2 1

R 1 0 (k ') R 1 (k')

(k + an

(k mz

i2K'E d
e . m 1

(k - an+)2imz n

+0(C+ n

(k'
lmz

- k2
lmz

TE ( L a

(k' + an
n

(k'- mz + a +)2n - k 2

lmz

(k jm
+ F

a )2 - k 2
n lmz

kjm
+

sin2 (

- k 2
lmz

- an)]

xTM (

}
iT

ik lmz
f*

(8.45)

d 2 k
1

a +)
n

z
k lmz

k 2.
lm

)
-kalmz

- a + -

- U n+

n

'

+



1

k' k 4  F (k 'lmz lm 2 a-

(k4Lkgcos 2 ( - 4') + k2kv 2 ) (k

(I, + an+i n

++
+n) + 2k'k] k k'cos(o - ')

2 2

S 1 0 (k ') S 1 2 (k .
1 ) e

TMi2Ki, dT1im
+

kmz km F2

- k2kIjI k! c' cos(4-~)-(j

(kI - a
lmz

-) (k: kl= Cos2( ' k -k)
+ )z - k

n ltnz

.~ k 2L
- - E d 2k' Res <D (k'

k k4 n .lmz um
-k , n )

k. - k.
lz kz

k. + k.
LZ ]z

S (k) E

(8 .47a)

(8 .47b)
.k. - e.k.

3 lz 1 3z

.ki. + c kj3Jlz :Ljz

X. (k ) = 1 + R (k . )
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+

1~

L

and

(8.46)

(8.48a)



Y i(k ) = 1 + S.. (kj)

i2KTEd

D2(k 1 + R01 12 e lm 1

i2KTd
F2 (k ) 1 + S0 1 S1 2 e lm 1

K' k1m lm
+ X k ') T = TE, TM.

In (8.47a)-(8.49b) i and j take the values 0, 1 and 2,

where klz and E1 are to be interpreted as klmz and Elml

respectively. Equations (8.41)-(8.49b) represent the complete

zeroth order solution for the mean dyadic Green's function of

a two layer random medium in the non-linear approximation to

Dyson's equation.
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(8.48b)

(8.49a)

(8.49b)

(8.50)
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8.2 Effective Propagation Constants for TE and TM Modes

The two variable expansion technique has been applied to

Dyson's equation in the non-linear approximation to obtain

the zeroth order mean dyadic Green's function for a two layer

random medium. The results as given by (8.41)-(8.49b) indi-

cate the anisotropic effect of the random medium to vector

fields resulting in effective propagation constants which in

general are different for the characteristic TE and TM

modes. Physically, this is not surprising if we consider wave

propagation within a random medium with distinctive vertical

and lateral correlation lengths. Waves with vertical polari-

zation will experience an effective decay differing from that

of waves with horizontal polarization. However, for correla-

tion functions with azimuthal symmetry, and for wave propaga-

tion along the. z-direction, we -expect idential propagation

characteristics for both the TE and TM modes. This ob-

servation is substantiated by the results given in (8.45) and

TM TE
(8.46) by letting k -+ 0 in which case X X T

To illustrate the results given by (8.45) and (8.46), we

take the spectral density to be

6k4 Z 2z 2 /4
( z 4=m P e2P (8.51a)

4 z T 4,(1 + 2 t2 )
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which corresponds to a correlation function of the form:

-~r1  - I- 2/Z 2 - -Z z2
C (ry - r2 = kl4 e

where Z and k denote the lateral and vertical correlation
p

lengths, respectively and 6 is the variance of the fluctua-

tions. Taking the residue of (8.51a) at the pole an+ = 6n,l

(i/Z), where 6n,l is the Kronecker delta symbol, we find

(8.52)
Sk 4 z 2  Zz 2 /4

Res i)= m P e P.

8 7r2

Substituting (8.52) into (8.45) and (8.46) yields

TE - 26 k m 
x (k = -m d2k e

8 7Tklmz

-k 22. 2/4 - k' 2 z. 2 /4

k k '2 2

P cos( - ')
2 cos2  

- M (k ')

{ mz 2 (

+ kmz sin2 ( ) M (k'
k2 F (k ') 2lm 2 J_

(8.53a)
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and,

-k' 2Z 2/4 - k 22 2 /4
e L p

k k 'p 2

2 9 cos ( -

e 2
') lmz

k2
lm

k' k4 F (k ')
lmzlm 2

lmz

(M 3 ( ') + m4 ))

i~pJ

- k 2lmz

R 12(k ')

i2k' d
e lmz1

( lmz

lmz

- lmz

- S1 0 (k ') S12 (k ')
2

+
k lmz

TM-
X (kQ)

2, Zk 4

= p lm

8 7k lmz
.1*d2k'

sin 2 (p

k' z

+

D 2 K.I
M 1 (ks')

where

(8 .53b)

m (k

M 2 (k

(8.54a)

- k2lmz

- of)

lk

') 3kjmz
- R10 (k ' )

-2

+
k mz
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i2k'Mzd klmz- i
e 1z __ Z' (8.54b)

kimz - -k

i2k' d
M3 (k 10 (k') S12 (k') e lmz 1

4

2k.k k k cos- (kv2 k2  cos2 ( - +') + k k'2) k

k' k2
lmz lmz

(8.54c)

In (8.53a) and (8.53b), $ - $' is the angle between k

and k'. If we make the transformation k ' = k sin e'
x lm

cos $', k ' = k lm sin e' sin $' and neglect the evanescent

portion of k-space, we obtain d2 k = k2  cos e' sin e' dQ'd$ ',

where the angular integrations extend over the hemisphere de-

fined by 0 < 4' < 2w and 0 < 6'< r/2. The *' integration

may be performed directly. However, the e' integration can

only be carried out numerically. The numerical results are

illustrated in Figs. 8.1, 8.2 and 8.3 where we have plotted

FT = 21m[XT (k )]/k" versus angle and frequency for T = TE-L lz
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and TM waves.

In Fig. 8.1 we have plotted r at 10 GHz as a function

of propagation angle, 6, with Z = .01 m, Z = .1 m and

6 = .1 for a 40 cm thick random layer. Note that at nadir

rTE =.rTM. This follows froni the azimuthal symmetry of the

correlation function used. At large angles, r becomes

greater than r , indicating a grater scattering loss for

the TM wave than for the TE wave. This is because Z > ,

which presents a greater scattering cross section for TM

waves than for TE waves. To illustrate the case of Z > Z,
TP

we have plotted in Fig. 8.2 FT at 10 GHz as a function of

angle, with Z = .009 m, t = .0004 m and 6 = .1 for a

40 cm thick random layer. It is interesting to note that in

this case, both rF and r decrease with angle with

r > r TM indicating a greater scattering loss for the TE

wave than for the TM wave. In Fig. 8.3 we have plotted

T at 20* as a function of frequency for a 40 cm thick

random layer. We have taken 2 = .95 m, 2 = .002 m and
p

5 = .0005. Both r and P are seen to exhibit a broad

maximum around 27 GHz, and a slow decay at higher frequencies.

This behavior is due to the effect of resonant scattering, upon

TE - TM -
the propagation constant corrections, X (k ) , and X (k ) .
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8.3 Comparison with Scattering Coefficients of Radiative

Transfer Theory

It is of interest to compare in the half space limit the

imaginary parts of the effective propagation constants XTM

and XTE as obtained from the zeroth order solution to Dyson's

equation with the scattering coefficients Kh(e) and K ve)
63

as given by the radiative transfer theory. Taking the half

space limit of (8.53a) and (8.53b), we obtain

TE 6k~ 42. 2 z
Im[BTE ] im p f do'

87 cos a

k 2 g 2
- lm (sin2e + sin2 e' - 2 sin e sin e' cos($ -

2
e

[l + k 2 2 (cos 2 e + cos 2 ')]

(1 + k2 Z 2 (cos e + cos e')2 [1 + k2 Z2 (cos e - cos 6')2im im

{cos2 (4 - c') + cos 2e' sin2 (c - 4')} (8.55a)

Im[X T = kim2 do'
87 cos e
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k 2 z 2
-lm p

e
4

[1 + k2 Z2 (coslm

(sin2e + sin 2 e'

e + cos

- 2 sin e sin e' C()

e ) 2 ][1 + km 9 2 (cosha e - cos

{[1 + k{ Z2 (cos2 e + cos 2 e')][sin2e

+ cos 2 e cos2e' cos 2 (0 - $') + cos 2G

+ 4k2 z2, cos 2 6 cos 2 6' sin e sin O' cos( -

The scattering coefficients as defined in radiative transfer

theory are given by Tsang and Kong: 6 3

Sk4 Tr
Kh(6) lm

2 I.dO' [D(', $ '; e, 4) + $(D - o', $'; 8, ))]

[(v' 2

6k4 T
K (8) - im

2

+ (h' h h)2]

I. (h' v)2e, + (v * V) 2]

+ c(7 - 8', 4'; 8, $)[(h' V)* + (v' - v) 2

sin2 eI

sin 2 (0) - 41))

(8.55b)

(8.56a)

7r - e'

(8.56b)

- 4'))

dW' {t(D', O';
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where

@(D'e , $' ,; e, $

k 2, 2
- p (sin2 e'

e 4
+ sin26 - 2 sin e' sin e cos(O - $'))

47 2 [1 + k2 Z2 (cosim

sin 2 e + cos 2e cos 2 6' cos 2 ( - ,)

+ 2 sin e sin e' cos e cos e' cos(, - $')

= cos 2 e

= cos26'

sin2 ($ - 4,')

sin2 (4,- $')

- h) 2 = cos 2 (4 - 0').

Combining (8.56a)-(8.58d),

22,
2,

6 - cos 6')21

(v' V) = sin26

(8.57)

(h' - 2

(v' *h)2

(h'

(8.58a)

(8.58b)

(8.58c)

(8.58d)

we obtain



6k4 2 22
- lm p

4T

k 2, 2

e 4
(sin2 e + sin2e' - 2 sin 6' sin e cos($ -0))

[1 + k Z2 (cos2 e

ha
+ cos 2 6')]

[1 + k2 92 (cosim 6 - cos e')2][1 +
kim 2 (cos

[cos2e' sin2 () - 4') + cos 2 (4) - $'1)] (8.59a)

6k4 z 2z

= 7r f

(sin2 e + sin26' - 2 sin 6' sin e cos($ - 4'))

[1 + k im 2 (cos e - cos 6')2][1 + k2 k2 (cos
un

{[1 + k2 z 2 (cos26 + cos 2 6')][sin 26lm

+ cos 26 cos 2O' cos 2 ($ - $') + cosz e

cos 2 e' sin 6 sin 6' cos($ - $')}.+ 4k2 Z2 COS2e

196

Kh ( 1*

e + cos e')21

K (6) d'

k 2, 2

e 4

6 + cos e')23

sin2 6,

sin2 (4 - V))]

(8. 59b)
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Comparing (8.59a), (8.59b) with (8.55a), (8.55b), we find that

2 Im[k TE cos e = Kh(e) (8.60a)

2 Im[X TM cos e = K V(6). (8.60b)

It is clear from (8.60a) and (8.60b) that the scattering

coefficients as defined in the radiative transfer theory are

related to the imaginary parts of the effective TE and TM

propagation constants obtained in the zeroth order solution

to the non-linear Dyson's equation for a half space (or un-

bounded) random medium. In the case of a two (or more) layer

random medium the terms in (8.53a) and (8.53b) which contain

Fresnel reflection coefficients, are present in the effective

propagation constant and represent coherent effects due to

the presence of the bottom boundary.
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8.4 Half-Space Limit-Comparison with the Result of Tan and

Fungy

As another interesting case, we consider the limit of

small scale fluctuations for a half space random medium,

characterized by a correlation function of the form:

- - i 1 e _L ./ - 2Iz1 -z211( )C(r - r2) 6k ime . (8.61)

where k = Re(k The spectral density of this correla-

tion function is:

O(D , L a ) =
4.. z

6k iAZ 2Z
lm P

27r 2 (1 + 2 9 2)3/2 (1 + 2 2)
p z

Substituting (8.62) into (8.45) and (8.46), and retaining terms

through first order in the vertical correlation length we ob-

tain, the leading corrections to the propagation constant,

k 1 .

A TE i lm

3k1
(8.63a)

(8.62)
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k'4  6k3 Z 2 ,
TM 6Z S 2k2 + im P (k 2 + k2

4k k k 4  P im 6k lm lmz
imZm lmz

(8.63b)

We again observe that in the limit of small scale fluctuations

the propagation constant corrections as given by (8.63a) and

(8.63b) are distinct, but reduce to an identical result for

propagation in the z-direction. The results (8.63a) and

(8.63b) should be compared to those of Tan and Fung,60 who

for the same correlation function, (8.61) obtained a single

propagation constant correction for all components in the mean

dyadic Green's function. They found the zeroth order mean

dyadic Green's function to be:

g. .(u, v, z, z') = [C. .(u, v) e (z -
1J 13

+ r. .(u, v) e-iy'[Z + Z'] (8.64a)

with,

k 4

y ' (u, v) = y 1 - - (u2  + v 2 ) _ a.2 (k ' )2 (8.64b)

L- 4y2 k a

y= (ka2 - u2 2)V21/ 2 (8.64c)
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where ka is the mean wavenumber, a2 is the variance of

fluctuations and the transverse Fourier transform variables

are denoted by u and v. Comparing the second term in the

square bracket of (8.64b) with the first term of (8.63b), it

is clear that Tan and Fung's res'ult represents the lowest

order correction to the real part of the TM propagation

constant. The terms of order k3 2. 2Z in (8.63a) and (8.63b)
lm p

correct the imaginary parts of the propagation constants and

account for the decay of the coherent field as it propagates

in the random medium.

In the case of laminar structures, with k MP - co, it

is found (Section 8.5) that additional secular terms arise

in the first order equation and that elimination of the sec-

ularities results in two propagation constants per mode of

polarization. The existence of two propagation constants also

has been found in the case of scalar wave propagation in a

59
half-space random medium when the limit of a laminar struc-

ture is taken. However, in the limit of an unbounded, laminar

random medium, we recover one propagation constant per polari-

zation in the mean dyadic Green's function.
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8.5 Special Case of a Laminar Structure

In the limit of a laminar structure, we have

(D (a , ) = (27) 2 5(a ) Z) (8.65)

Substituting (8.65) into (8.7) and eliminating secular terms

results in four coupled differential equations per polariza-

tion to be solved for the dependence of the coefficients:

0 =-2ipk 1 -- (kR, k) - (27r)2 (27ri) Z Res D(an+
n,s 

- T -T- - T
a s (k , () Ss k ,_ U) - L( )

i[(p - s)k 1mZ + a n

-T - _-T -- T -
Ss (- ) a- k , _ ) - (k , ()

i[(p - s)k1  + a, I
+ (2Tr) 2 (27ri) Z Res D(an

n



p T 
,

()[a (-k

Ian

- T - - T-
a (k , P (k ,

ian

n
Res (a +n

zz

0 = - 2ip k mz
a E) - (2.) 2 (2Tri)T -

p ( .
Res (D (aE

n.s

- T( ,T (K , ) - -

i[(p -s)klmz + an

- T -T -TT(RL EC-k_ ( -k T (-k
s -s L P

i[(p - s)klmz + an

(2n) 2  (27ri) Z Res (a )
n

-T - -T - -T (-k)[a -k ) -

lan
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a (k

-_ (k
-P 4-

+ i(2)
k 2

lm

T (
p oo2- (8.66a)

+

) I

+y
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-T - -- T T

ian

+ i(2) E Res ( + T zz
k2

lm

(8.66b)

-T
where a and -T are given by (8.12a)-(8.15b). For

example with T = TM, and after careful manipulations, the

coupled differential equations to be solved take the form:

0 = -kmz 31 + Cy Z Res D(an C
4Lr 3 3 1 n ian i(2klmz + an)+

I -3_+2D1 + +
in

1

i (2k l + )} +

kL 2-

(2w7) 2k 2 (k 2 - k 2
lm j lmz-

(8.67a)

0 = k1  $ + D2 Z Res (an) FD2C47 3 2 Ln n

1

i (2klmz + an+}

+ C D -3_ +
21 + +

n
i (2k + a n)

k 2 -
+ I-

(27r ) 2 k 2  (k 2 - k 2
lm . lmz-

(8 .67b)

n
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k aCr
0 = lmz 2 + C ZRes (D(a n) D C

4ir 3  3t 2 n 21

+ CD D ---- +}
2 1 ia n i(2k + a )n lmz n

-3 1

{in+ i (2klMz + an

k 2
.L+

(27r) 2k 2 (k 2 - k2
lm I lmzj

(8.67c)

0 = k lmz + D E Res (a ) D C
47r 3 3E 1n n 2 1

1 +1 ct)+ C 2 D1 -+
ian i (2klmz + Cn

+

-3{ i2klmz + an

k 2 -

(27) 2kim (k 2 - kI2.1.L lmz

(8.67d)

Solutions to (8.67a)-(8.67c) have the form

E gn(MTM + M)
,TM, e n in 2C = C1 e

T n(N TM+ N TM
TM = n in 2nc 2 c 2 e

(8.68a)

(8.68b)
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LTM
D, =

1 TM
2

L TM
D 1

D2  TM
C.,

E
ne

g(N + N )
m in 2n'

(8.69a)

(M TM + M )M
n I~n 2n

(8.69b)

MTM = TM
in 1

1

i 2lmz + n+)

MTM = TM -3 +
2n 2 . +

NTM = TM
in 1

-3 _ 2+

1ian+ i (2k lmz + an+)

1

. (2klmz
-1 (8.70b)

+ an

k 2

(2r) 2 k 2 (k 2
(8.71a)

-k

N TM L 1TM +
2n 2 ian i (2k

g - Res (an).

1

lmz
+ an

(8.72b)

(8.73)

Here TM CD TM
= D2 2 = C2D. A similar set of equations

where

+
(27r) 2 k{ (k 2 - k2)

(8 .70a)

-n

Here, L T
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and corresponding solutions follow from (8.66a) and (8.66b)

for T = TE. Substituting these results as well as (8.68a)-

(8.73) into (8.10a) and (8.10b) and applying boundary condi-

tions (8.26a)-(8.28b), yields the zeroth order mean dyadic

Green's functions for a laminar structure:

= (- - ) 1 i(r -r )
G lmo(r, r ) d2k 4e

llmo o(27r) 2

1

2ik1

i(k
1 [e(k ) (e lmz

D2 (k )

+ xTE
U + R 10(k ) e(-klmz

-i(k + xTE
e 1mz D

i 2 kTEd i(k
1m 1 lmz

+ xTE)
D 0

-i (k1
+ e (k )m e imz

+ TE)
U 0

i(k + TM )z
+ [h(k ) e lmz u

F2 (k) lmz

-i (k
+ S10 (k h(-k ) e e

+ x TM
D I 1 2 (k ) h(-klMz

([R 12(k ) e (-k )m e



i2K TMd i (k
e rn im mz

+ ADT )z A -i (k+ 0 + h(k ) e lmz
lmz

(z > z0 )

f.* (r. - rGllmo (r, r0) = (- d2 kg e
limo 0(2wr) 2

i2KTEd i(kz
( R (k )e (k )e lm1e l

D (k ) 12 J.. lmz

+ TM )+ A0)

(8.74)

1

2ik1

+ xTE)
D

-i (k + xTE)z Ai (k
+ e (-k ) e lmz u ] [e (-k ) e lmz

lmz lmz

-i (k
+ R1 (k )e (klm e m

+ x TE )
u 0

+ xTE)
D 0

i2KTMd (k
+ [S 12 (k ) h (k ) e K1 1 I 1 mz

F2 (k) lmz

-i (k1
+h(-k ) e lmz

lmz

+A TMz A i (ku ] [h(-k ) e lmz
+ A TM)z

u 0

207

+ A TM)z
D



+ S1 0 (k ) h(k)lmz)
-i (k + xTM)

e lmz D

(z < z 0 )

G Ol (r,Olmo

X1 0 (k) ^
e

D2 (k )

+ e (klmz)

[S 12 (k )

(ko ) [R (k )
oz12 .L

-i(k
e lmz

h(-k )lmz

e (-k )lmz

+ TE
u 0]

i2 KTMd
e lmi

i2K d
e lm 1

i(k + xTE z
e lmz D o

k Y (k )
+ -i 10 (k- h(k z

ko F2(k) )

e
i(k + XTM)zlmz D

-i(k + XTM)z
+ h(k )mze lmz u 0 (8.76)

r) 1

(27r)2 f d2k eG2lmo (r,

x12(k )X1 2 ( e(-k 2 ) [e(-k )
D 2 (k) lmz

-ik z(r - r ) ei2z

2ik1

i(k + ATE) z
e lmz u 0

208

z
0

r )
0

1

(27r) a .1*d2k
.1

(8.75)

ik z

2ik m

0



-i(k
+ R10 (k. lmz) e imz

k Y 1 2 (k ) ^ i(k

k+ F (k h(-k 2  )[h(-k ) e

k0 F2( ) L

-i(k
+ S 0 (k .) h(k 1 ) e imz

+ xTM)
u 0

+ xT)z
D 0]

T T g(MT
U n lnn

T g(NT
D n nln

T
2n

T+ N
2n

(8.78a)

(8.78b)

(8.79)

(8.80)

1

2iklm F2(k)

i2K d
S1 0S 12 e lmi

2ik F2(k)
imz 2 -i.

(8.81)
2iklmz D2(k )

209

+ xTE)
D )

where

(8.77)

TM
L1

TM
2

TEL
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L TE 10 R12 e
101

i2KTE dlmi1

Klmz Jj2U L)

(8.82)

The two effective propagation constants per polarization of

a laminar structure follow from (8.78a) and (8.78b).

(8.83a)S ) = klmz

T+ X D (8. 8 3b)T2 (KL) = k
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CHAPTER 9

Modified Radiative Transfer Theory for a

Two-Layer Random Medium

Modified radiative transfer (MRT) equations appropriate

for electromagnetic wave propagation in bounded random media

are derived from the Bethe-Salpeter equation in the ladder

approximation together with the solution to the non-linearly

approximated Dyson equation. The MRT equations are solved in

the first order renormalization approximation to obtain analy-

tical results for the backscattering cross-sections, of a

two-layer random medium with arbitrary three-dimensional

correlation functions. The coherent effects of MRT theory

are illustrated and comparisons are made with backscattering

cross sections obtained in the first order Born approximation

to the wave equation.
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9.1 Derivation of MRT Equations from Bethe-Salpeter Equation

The Bethe-Salpeter equation for the dyadic field covariance,

under the ladder approximation may be written as

<1() E 1 *(r')> =f d3 rl f d3 r2 C(r 1  2 ){ 1 1 r ' 1

- E (r, r * ( r2

+ <Gllm( r ( ) 1 1(r , r2 (9.1)

where 1 (r) E1 (r) - E lm(r) and Elm.= <E > is the mean

electric field in Region 1 (Fig. 3.1) and is a solution to

Dyson's equation. The zeroth order mean field propagating

within the random layer, due to an incident plane wave E ,

takes the general form:

ienhiz + d
E lm(r) =[E .u e e(k .)z + E .d e

ik~inhiz 1inie(-k .)]i e

+

in vi
[E . e h(k .) + E . e

vuii lmzi vdi
viz h(-k .)]i e

iki - rs

(9.2)

E1 * r2
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where the subscript i denotes that a quantity is to be

evaluated at the incident wave vector angles. The unknown

amplitudes which appear in (9.2) are determined by matching

boundary conditions on the mean fields to zeroth order, and

are listed in Appendix B. The effective propagation constants

'n and nh are defined in (8.50).

We first decompose the incoherent field into a spectrum

of upward and downward propagating plane waves:

s1 (r) = d 2 e. E (z, e lmz

-i5' z
+ Ed(z, 5 ) e m (9.3)

where

Eu (z, )= hu (z, ) e( imz) + E(z, L ) h( S ) .

d d d

(9.4)

In (9.3) and (9.4), = Re($ ). The z-dependence re-lmz lmz

tained in E (z, $_) and Ed (z, S ) is a long distance scale

characterized by the quantities kv =Im) ()} and Zh

{Im(lh) }-. Therefore-, two points can be close together on
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the Z v Zh scale and yet far apart on a scale characterized

by lm or (Z being the vertical correlation length).
lm z z

We will assume that for points z and z' close together on

the Z ' h scale:

<Ej (z, a)k = ( - ) Jjku(z, z', ) '(9.5a)

<jd (z, ) ))Jkd (z, z', c) (9.5b)

<s. (z, c ) E*(z', )> = 6( - ) J.(z, z', c) (9.5c)
ju kd .. i jkcl (

<jd (z, a ) E (z9,- )> = ( - 9 Jjkc2(Z, z', ) (9.5d)

where j, k = h or v for horizontal or vertical polarizations.

Thus incoherent fields with different transverse directions of

propagation are uncorrelated. However, for a given transverse

direction there exist correlations between upward and downward

propagating incoherent fields due to the presence of reflecting

dielectric interfaces at z -= 0 and z = -d . These correla-

tions are represented by Jjkcl and Jjkc2 in (9.5c) and

(9.5d).

Combining Equations (9.3) and (9.5a)-(9.5d), the left hand

side of the Bethe-Salpeter equation (9.1) may be written as
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<sr s*(r')> = f d2 Q$ e

iimz(z - z')
e

{'f u (z, z', )

-i+ e mz (z - z')

+ rd(z, z ,' e

i6 Iz(z + z')
+ r (z, z', e mz

-iS' (z + z')
e mz }

+ Pc2(z, z', a )

(9.6)

where

U(z, z', ) = Jhhu(z, z ) e(5mz) e(lmz)

z', ) h(Smz) h (amz) + Jhvu(z,

e( jmz) h( mz + J vhu(z, z', ) h(almz) e(Simz)

(9.7a)

Fd(z, z', = Jhhd(z-, z', S.)

+ J vvd(z, z', ) h(-a mz)5

+ J (z, z', )

e (- lmz) e mz)

h -a mz)
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The right hand side (RHS) of the Bethe-Salpeter equation (9.1)

may be expanded as:

R.H.S. = d2r f d 2r2 1 "f z dz 1
V -d -d Illm (r, 1

*E ()G* (r'r) ** (r)lm n ' 2) im 2

+ <G (r, r) G (r', r) - s*(r )>]C(r - r)(lm s1 r) 1 (r' 2 12 1 2

z ,

-d dz '

E*m (r2) + <Gllm(r, r )

dz G (r, r1 m lm (' 2

E 1 (r) G *(r, r2

E 1 (r 2 )>] C(r1 - r2 )

+

dzz'

Sdz 1f-d1

- n (r 2 ) + <G (r, r) ( ) G ( ' r 2im 2 ll 1 lurn

dz 2G llm 'r 1 Elm (r 1
=> 

- I -G * (r r r
lim 2
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1 2*(r)>1 C(r1 - r2

dz dz 2 (G (r, r) (r G (r', r) * (r
dz fl 2 1 1  Elmri 1 r 'i 2 im2z z

+ 11m 1 1 1 llm 2

1 *(r 2)>] C(r1 - r2) (9.8) -

where G11m and 11m are defined by (8.25a) and (8.25b)

respectively. In the limit z - z' it can be shown by sub-

stituting (8.25a), (8.25b) and (9.2) together with (9.3) and a

typical correlation function into (9.8) that the second and

third terms in (9.8) do not contribute as significantly as the

first and fourth terms. The same conclusion may be reached by

the following argument. The correlation functions which appear

in (9.8) restrict the integration variables z and z2 to be

separated by not more than the order of a vertical correlation

length, Z . Therefore, in the limit z -+ z', it is clear that

in (9.8) the first and fourth terms contribute over the entire

range of the z, z2 integration whereas the second and third
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terms can contribute only over a narrow range on the order of

a correlation length which straddle the point z = z'. Thus,

we approximate (9.8) by retaining only the first and fourth

terms.

Introducing the Fourier transform of the correlation func-

tion

C(r1 - r2 ) = d3c @(a) e
-i(a - (r - 29.a (9.9)

We substitute (8.25a), (8.25b), (9.2), (9.3) and (9.9) into the

approximated form of (9.8) and make use of (9.7a)-(9.7d).

Equating this result to (9.6), we next balance terms of similar

phase and polarization. This yields:

Phase Factor e l1mz(z -
z')

iaimz (z - z')
i hhu (z, ', a) elm

inhz - inh*z

S (z, z', 5 ) + B I (z, z', 84)

+ 15 (z,z', )+ I5 (z, z', ) (9.10a)

[ I A 1 (a L )12



220

iS' (z - z')

Jvu~z z', Sf e m

1 2 (z, z', )

in z - in *z
V V

+ ID 1  12 Cz, z ', 

+ 1 6< (z. z', -aI)

S iS' (z - z')

hvu(z, z', 8.) e
in hz - in *z'
h V y

[IC 1( ) |2

(9 .10b)

[A 1( ) C 1 * ( )

3 ( z', ) + B 1(S) D*(L 13< (z, z', i )

+ 1 7 >(z, z', ) + 1 7<(z, z', )]

is' (z - z')

Jvhu (z, z', .) e lmz
in Z - in h*z

V h

4 Z , 8 ) + D 1(L) B1*(5L) I 4<(z, Z, 8)

+ 8> (z, z', 89 + 8 <(z, z', 89].

(9 .10c)

[C ( )

(9.10d)
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-i$' (z - z')
Phase Factor e m

-i8im(z - z')
hhd(z z 6.) e -inhz + infhZ

[A2 ( 12 1 1 >(z, z', ) + I (z, z',

+ I (z, Z', z ) + I <(z, z', )]9 9 (9.lla)

-i5I (z - z')

Jvd(z Z, ) e lmz
-invz + inv z'

[|C 2 (9 1 2 12 >(z, z', + I2 <(z, z', )

+ I 0 (z, z', 5) + I< 0 (z, z', )]

-iS' (z - z')

Jhvd(z, Z , e lmz
-inhz - inV*z'

[A2(A Z2*(S3) I+ (z, z', <)+

+ I> (z, z',I ) + I< (z, z',i f (9.llc)

(9. llb)



222

-iS' (z - z') -i) + ih *z'

Jvhd (z, z', 89 e =e

[C 2 ( ) A 2 *( 1 4 >(z, z', ) + 14< (z, z', )

+ I>2(z, z', 5 ) + I<2(z, z', )] (9.lld)
12 +2. I12( z .

where the coefficients A1 , B1, C1 , D1 , A 2, C2 and the terms

I. < (j = 1, 2, ... , 12) are listed in Appendices A and C
J

respectively. A similar set of equations may be obtained for

the cross correlation terms, J hhcl' hhc2 ... by balancing

phase factors of the type

e amz(z + z') and e -smz(z + z')

The resultant set of equations, however, is not required in the

development of MRT equations for three dimensional random media.

In the case of a one dimensional laminar structure in which

k 1M + co the set of equations for the cross correlation terms
lm p

is required in the derivation of MRT equations. In order to

see this point more clearly and moreover to illustrate the

evaluation and reduction of the I . terms in Appendix C, we
J

will consider I5> (z, z' , 51) in detail.
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The Term 15 (z, z', S )

The term I5 takes the form:

5 (z, ', ) = (27rr) 4 daz f d2 k @(D - T.c a)

-icc (z
dz2 e z 1

ik' (z
k L) elm

+ rd(zi, z2' kj) e

+ Tcl(z1 , z2 '

+ rc 2 (z1 , z2 '

R L)

k.)
A.

-ik' (z
lmz 1

ik'jm (z1
e

-ikjm (z,
e m 1

- z2) -
F(zi,

- z2 )

- z2)

+ z2 )

+ z2) *(z 2

where k' = Re(klmz ) and

inh z1  -i h z
F(zi ) = A 1( )[B () e e(-Slmz) + e e(Slmz)I.

(9.13)

z z'dz

-d1 -d

-{u Zf , z2'

(9.12)
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We note from Equations (9.7a)-(9.7d) that l , rd' cl and

rc2 vary on the long distance zI and z2 scales. There-

fore, in (9.12) due to the extremely sharp peak in the corre-

lation function relative to the long distance scale, we may

replace z2 by z1 in the arguments of ru' d' cl and

Tc2. Next we take the limit z -+ z' and break up the z2

integration into the intervals -d1 < z2 z1  zI < z2 < Z.

The az integration then is performed using residue calculus

followed by the z 2-integration. In performing the z2

integration we retain only constructive interference terms

of the form e or e , where n - Im(n ).

Destructive interference terms of the form

i(2n' + an )z1en

or

i21'z1
e

(where n' E Re(nh or Re(n v) and an is explained below)

will contribute a small fraction n"/(2n' + an ) or n"/n'

of the constructive interference terms when integrated over

z 1. Upon performing the operations discussed above, the ex-
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pression for 15 becomes:

15 (z, z, ) = i(27)5  E d 2k -d
n -d

- 1 R+
dzi Res c4(k - 6,a

-2n hz1
i(an

+ M2n L

2 nhz
k )e ]

+

-2nh toz 12 Th ifz1
e + M4 , k) e I

-2hz 1 2 h" z 1e + Mn , k ) ee6n -

J vhu(zi, zi, k )[M7n iL, k ) e + M8n , k. ) e 2 nh1z

+

Jhhd(zi, zi, k)[Nln ' I

-2T z _ 2 h" z
e + N2n (, K ) e ]

kj)

+

kL)

+

-~~ - -) ( l f Z )[ IK )e
- n hhuz, L , L [ln . J

,F

Jvvu(z , zi, k1. )[M3n sJ

Jhvu (zi, z, k M )[5n ( I
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+

ivvd (zi, zj, L) [N3n K ) e-2h1z + N4n k 2nhzI

+

hvd(z , zl , E) [Nn (.L' S) -2e hZ + N6 n , k. e

+

Jvhd (z1, zL k4 ) [N 7 n ( Lf .) e + N8n (.L' h )

+

i(nh + nh* + 2k ' )zh h mz :1
Shhcl (z ,I

-i(h + qh* - 2k' )z1k )e I m

+

Jhhc2 (z1,
zLr , )[w3 n(. k) e

IL 3n

(- + fl* - 2k' ) zh h lmz 1

+ W4nL.' (9.14)
-i( + h * + 2k' )zk ~heh mz 1]

+ W
2 n

zl , L)[Wln(T_..' A.. e
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where an+ and an represent the n-th poles of (c.,ct z)

in the upper and lower half complex-a plane. The functions

M in N. and W. (i = 1, 2, ... , 8 j = 1, 2, 3, 4) arein in jn

listed in Appendix D, for reference. In deriving (9.14), we

have made use of the following properties of the spectral den-

sity which are valid for a large class of physically interesting

correlation functions:

n + - (9.15a)

Res =-cta =.RsDaLa(91b

n n

Res #(ct., ct ) = - Res Nc(a , n ). (9.15b)

It is important to note in (9.14) that the terms nh and nh

which appear in the phases are function of 8 . However, for

laminar structures the spectral density attains a delta function

dependence 6(k - 8 ) so that in (9.14) k + 8 . In this.L . lmz lmzo

case a typical cross correlation term in (9.14) takes the form:

- -n -( + nh*(,) - 21 Jz]

Jhhcl(z1, z1 , 8) W2n8, a) e h -

(9.16)

A typical equation obtained by balancing phases and pol-



228

arization terms (as was done in (9.10a)-(9.lld)) and then letting

z + z' is:

hhcl(z, z, ) e h 2.) + nh*(a ) - 2ajm )z

= A (a.) A *(a )I (z, z, .) + B (< ) I (z, z, S.)
1 .. 2 . 1 1 .. 1

+ I> (z, z,S )+ I <(z, z, .). (9.17)
13 13

It is clear that equation (9.17) may be used to express (9.16)

in terms of IS , I , I and 13 each of which contains

2nv 1Z
constructive interference terms of the form e or

e 2 h''z1. However, for general non-laminar structures, the

cross correlation terms of (9.14) do not have the form (9.16)

and therefore cannot be expressed in terms of contructive in-

terference terms by means of equations like (9.17). Therefore,

as discussed above, the equations obtained by balancing phases

and polarizations for cross-correlations are not required in

the development of MRT equations for three dimensional random

media. Finally, the residue of the spectral density which

appears in (9.14), may be reduced by the method described in

Appendix E, and the final form of I5> is:



d2k

1

B 1 () I2

IA 1 ( ) 12 F- (.hu -L'

2 n hlz

- I (z , k )j + [A 1(a) B 1 ( ) 2

+ JA (S9) 2 hdY K )

2nh"z 
1

k )~hd~L 1

I(Z,

where, P hu and Phd are row matrices, defined as:

- , S ) [{e (TS m) - e(k mz2

{e (~lmz)

- (A

e k mz e ;lmz)

~(k a+. lmz)

h (k lmz)}, 01

e(-k lmz '
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15 (z, z, ) = (2r) s

(hu ,
k)

-2n h"z
e

1+

-2nh" zI

(9.18)

h( K , k ) =

{e (Talmz)

hd '

(9.19a)

dz 1{[ A 1( L)

k -L.



{e( 61m) - h(-k )}2'lmz h (-klmz

{e( 6 lmz) h h(-k lm)}e( 1 )m e e(-k mz) 01

where E kmz +1mz

by:

U and Id are column matrices given

I (z, k ) =

d

jhhu (z, z,

d
Jvvu(z, z,

d

2Re{J vhu(z,

d

21m{Jvhu(z,

d

k)

z, R ) I

z, K )}

The other terms I. listed in Appendix C, may be reduced and
J

cast into a form similar to that of the 15 term (9.18).

We illustrate the development of MRT equations by con-

sidering equations (9.10a)-(9.10d) in the limit z' -+ z.

Equation (9.10a) may be written as

2 fnh"z
J hhu(z, Z, " e = 1A 1 (S)1 2 1 1 >(z, z, 6 )

+ IB 1 (L)12 1 1<(z, z, ) + [I5 (z, z, i )
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(9.19b)

(9.20)
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+ I (z, z, )

Operating on both sides of (9.21) with d/dz, we obtain

dJ hhu(z, z,

dz
= - 2 nh hhu(z, z, )

-2nhIz
+ e [fAl(8L)| 2

dI >(z, Z, )

dz

+ |B )| 2 d_ I1< (z, z, ) + --- (I> (z, z,
dz dz

+ 15 < (z, z (9.22)

The transport equation for J (z, z, a ) is similar to that

for Jhhu(z, z, ) and can be obtained from (9.22) by making

the replacements h -+ v , 11< 16 'I A + C and B + D 1 ..

Equations (9.10c) and (9.10d) may be cast into the following

forms:

d 2 Re{Jhu(z, z, )} = - 21m[KVh vhu(z, z, )
dz vhu vh vh

(9.21)
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+riKVhz dI3 z, z, 5,)dI3

+ eA 1C1 * + B D * d 3 (,zdz 11 dz

iKvhz dI (z, z, * dI <(z, z, ) L
+ e v C A * + D B 1*

dz dz

-i*zvh d > - -
+ dz- (17 (z, z, 5 ) + (,, )

iKvhz d >+ e --- (I8>(z, z, ) +8 (z, z, (9.23)
dz

- 21m{J vhu(z, z, S = 2Re[Kvh vhu(z, z, )
dzvh.Lv vh

-i*z
+ i e vhA C I3>(z, z, ) + B * I (z, z

dz dz
i*h z d

- e C A *- (z, z, ) + 17 (z, z, ))

dz dz7

- e vh (I 8 (z, z, I (z, z, S)) (9.24)
r 8 *d8

where Kv Tfl - Reducing the terms I.< listed inh v ~hJ
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Appendix C, according to the method outlined above for the I5

term and then substituting into (9.21)-(9.24), we may cast the

MRT equations governing the upward propagating intensity into

matrix form:

ISlmzt2  u (z, ) = - |Slmz I 9z, (Z )
dz

+ Q (a k I . (z, k .) + .,k ) (z, k .)
UU L 11 mu -Li ud L -Li md LI

+ 1 Qcl .L j, k)Li mcl (z

- U (z, k ) + Pud a kj

k + dzk[F (3 , )

Id(z, k )]. (9.25a)

Similarly, equations (9.lla)-(9.lld) may be reduced to matrix

form governing the downward propagating intensity:

d -a -~ = - -~mI -d~
dz

+ Q dd( k) Imd (z, k .) + d ( ,k .) - Imu (z, k .)
dd i l md a du a ii . s
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- 1 Qc ( r ,.1) - c (z, k . ) + d 2k [F (S , I )~Lcl 6. 1imc2 ..1.1 + 4dd ...

- d (z, E ) + Pdu ,, ) - I (z, k )] (9.25b)

where in (9.25a) and (9.25b), A = 1 if = i and is

zero otherwise. Mathematically this arises in the reduction of

I. (j = 1, 2, 3, 4), where terms of the form
J

e [fh - h (. ..i)Izl

occur. It is clear that these terms are of the constructive

interference type only for +. = . and otherwise are of the

destructive interference type. Discussion of the physical sig-

nificance of this result is deferred to Section 9.5.

The Q and P matrices in (9.25a) and (9.25b) are scat-

tering matrices for the mean and incoherent field intensities

respectively and are defined in Appendix F, together with the

other matrices in (9.25a) and (9.25b). In order to complete

the derivation of MRT equations we must obtain boundary condi-

tions satisfied by the intensity matrices, Iu and Ido
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9.2 Boundary Conditions for MRT Equations

The boundary conditions appropriate for the modified

radiative transfer equations are obtained from Equations (9.10a)

-(9.lld), by first taking the limit z' -+ z and then setting

z = 0 and -d1 . To illustrate the technique, consider (9.10a)

and (9.lla) at z = 0. We have

hhu (0, 0, A )A = A2Il> (0, , ) + I5 (0, 0,

(9.26a)

Jhhd 0, 0, ) A 2 (S ) 2 1 >(0, 0, ) + 1 9(0, 0,

(9.26b)

Upon evaluating I5 and I according to the method de-5 ,

scribed above for 1 5 > it is easily shown that

(9.27)
> -A|A2- >

1 5 (0 0 ) = I (0, 0,
A2 ( 2 9

From Appendix A, we obtain JA2 2 = |R 10 (8121A1 2 , which
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upon combining with (9.27), (9.26a) and (9.26b) yields

(9.28)Jhhd(0, o, ) = R10 . hhu (0, 0,

A similar procedure may be applied to the other equations in

(9.10a)-(9.lld), so that the complete set of boundary conditions

satisfied by I and Id takes the form:

Id (0' 10 . U '0 1 (9.29a)

Iu(-d 
, )

= R1 2 1 d(-di, )

R..(S ) =

0R. .12
3-J

0

0

0

0 0

0

0 Re (R*S. .)
1J iJ

0 Im(R*".S..)
1] ii

0 ~

0

-Im(R*.S.)
R J IJ

Re(R*.S. .)
iJ ij-

where i = 1 and j = 0 or 2.

The incoherent intensity transmitted from region 1 into

where:

(9.29b)

(9.30)
is .|12



region 0, is given by

Iou ( a = T1 0 (.L u (f 0 a)

where:

0

TI 2
--Yb0

0

0

0

0

0

0

R- - IM-
Re 1- Y 1 0 -Im -- Y10 10

Im Y 1 0 10 ReL 10 1Oki

-1 -( -.32 -

(9.32)

I (0, =
ou

ohu(0,?

<S (0,

8i ) oh(O,

. ) s* (0,
.j. ovu S.)>

2Re<E (0, ) E* (0,

ovu L ohu
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X10 2

0

1 0

(9.31)

1

0

0

and

(9.33)
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Boundary condition (9.31) is obtained by noting that the plane

wave components of the incoherent fields in regions 1 and 0

satisfy the boundary conditions

E (0, -o Y (a.) E (U, ( ) (9.34a)
ovu 10 ._. lvu .J.

Ell

Eh(O, K) = x1  .L E lhu(, ). (9.34b)

Upon forming the appropriate ensemble averages, boundary con-

dition (9.31) results.
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9.3 Comparison of MRT and RT Equations and Solutions in the

First Order Renormalization Approximation

It is of interest to compare the MRT equations (9.25a)

and (9.25b) with the conventional RT equations in current use.

For example the RT scattering phase matrix coupling the four

Stokes parameters of the scattered wave in direction Q to

the four Stokes parameters of the incident wave in direction

0' is given in Ref. 63 and may be cast into the notation of

this thesis as:

uu .. k.' 2..' Z lmz
2

- klmz

(e - e')

(h * e')

2(h - e') (e - e')

0

(e - h')

(h- h') 2

2(h - h') (e - h')

0

(e - e') (e - h')

(h - e') (h h')

(h - h') (e - e')

+(e - h') (h e')

0

0

0

0

(e - e') (h - h')

-(e h') (h - e')

(9.35)

where e = e ($ lmz h h (,lmz e' E e(k lmz) and h' 2 h(k )mz'
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Comparing (9.35) with (F.16)-(F.20),, we note that the MRT

scattering phase matrix has additional terms not present in the

RT scattering phase matrix. These additional terms represent

wave like corrections due to the bottom interface at z = -d .

This can be seen by removing the effects of the bottom boundary

(i.e. by letting R12 ' S1 2 -* 0) in which case a h, av' acl

ac2 - 0 and the MRT scattering phase matrix (F.16) reduces

identically to the RT result (9.35).

We now consider the MRT scattering coefficient matrix as

given by (F.1) and (G.13). The RT scattering coefficient

matrix is given in Reference 63, and in the notation of this

thesis is given by

Kh(e) 0 0 0

0 Kv(6) 0 0

0 0 (K v(6) + Kh()) 0
2

(K (6) +K()
0 0 0 v ) h+GK

2

(9.36)

In Chapter 8 it was shown that,



2Im[X TE cos e = Kh(e)

21m[X TM cos 6 = Kv (e)

;TE-(X (K

( )

= nh (KL)

= n (.)

Therefore, it is clear that (G.13)

Kh(e) 0

K v(6)

reduces to the form

0

0

0

0

0

0

(Kv (e) + Kh(e)

2

(Kv(.e) + Kh(e))

2
-(nv h

(9.39)

Comparing (9.39) and (9.36) it is apparent that the MRT result

(9.39) exhibits additional wave-like correction terms of the

241

where

(9.37a)

(9.37b)

(9.38a)

(9.38b)

K (0)=

0

0

- kImz
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form (n - h' Physically these terms arise from the

fact that TE and TM polarized waves in general propagates in

the random medium with distinct phase velocities, thereby

affecting their cross correlation. However, should the random

medium be such that TE and TM polarized waves have identical

phase velocities, then the MRT result (9.39) reduces to the

standard RT result (9.36).

As an application of the MRT equations (9.25a), (9.25b)

and to illustrate the significance of the Q matrix terms

(particularly the term with factor A1 ) we compute the back-

scattering cross section for a two-layer random medium by ap-

plying the first order renormalization approximation.61 In

the first order renormalization method, the scattering of

the incoherent intensity is neglected in the Bethe-Salpeter

equation. In this approximation the MRT equations reduce to

d - - = - - = --- y (Z, ' ( Iu (Z, f ) + 1 {Qu (6 , k .)
dz uIlmz

I (z, k .) + k ( , k .) I I (z, k .)
mu .u1 Ud .i .2 md ..

+ A 1 cl (.L. I kmcl (z, k i)} (9.40a)
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dlmz

-md (z, k .) + d (u , k .) I m (z, k .)md .1 d L 1 mu iL1

(9.40b)
- i Ocl QL' .Li 1mc2(z 1 .L)}

Since the z-dependence of the terms within the curly brackets

of (9.40a) and (9.40b) is known, we can readily solve for u

and Id in conjunction with boundary conditions (9 .29a),

(9.29b). Moreover we consider the backscattering direction,

= -k in which case =1. The results are

Jk .i2 Iu( 0 , -1 . = f7r I 2F( 2 , 2k .)
lmz i uh 2 I e .i lmzi

(1 - e

4

-4T11 d

) (1 + |R 1 i e

thi

+ 4d1 (2K , 0) IR12i 2 e hi 1 (9.4la)

- . k 0
2  2  2 (2 . , 2k .)

I mzi uv .i 2 k I F 14 m L i 2k lmzi
lm 2i-

-4n". d
hi 1y
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-4n" d
e vi 1 1e- 4n".id1(1 - e ) a + s 1) + 4d1 1 (2K . , 0)

vi

(k2  - k2  .) -4n".d~
is 2 Lik 2 lmzi e vi 1 (9.41b)

lm -

where I and Iuv signify respectively the first and second

elements of I . The intensity transmitted into region 0, is
U

found by applying boundary condition (9.31) to (9.41a) and

(9.41b).

I = jIX10i 2 I (0, -K L) (9.42a)

I = -IY . (0, -T ). (9.42b)ouv 10i uv .Li

The backscattering cross sections per unit area follow from

the relation

Chh ouh
= 4r k 2 cos 2 6 . (9.43)

avvi1 ouv

with f = 1 in I and f = 1 in I .
e ouh m ouv

We now consider a spectral density of the form



Sktk4 2 Zkm p z

47r 2 (l + $ iz z

-_ 22, 2/4
e ip

which corresponds to a correlation function which is Gaussian

laterally and exponential vertically. Combining equations

(9.41a)-(9.43), we obtain the backscattering cross sections per

unit area for a two-layer random medium in the first order

renormalization:

Sk{k 2Z IX1 Q.iI jkozi|1 -k 2Z 2 sin2 e
=_4 _ _ZD 2iOI klzi 1 0 p 0)

-4T1" dhil1

2n" (1 + 4k' 2  2)
hi lmzi z

- 4 n"1 d
(1+ R 12 i1 4 e hil)

-4+ng Rd
+ 8d, |R 12il I e hi it

6ka4 2z 4IF iI4  k ozi 4 -kk 2 sin2e0

CrvV= m P z F2i 14 1k31l4e

-4n d1
(1 - 4T )s v1

2 ". (1 + 4k' 2  z 2)vi lmzi z

-4'i" d k 2  12

(1 + Is l e ) lmzi + sin2e6
k 02 1

- 4n".td k 2 
2

+ 8d 1 S1 2i 1 2 e vi l kmzi - sin 2 o

0
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z) = (9.44)

(9 .45a)

(9.45b)
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9.4 Illustration of Backscattering Cross-Sections

In order to illustrate the backscattering cross sections

(9.45a) and (9.45b) obtained from MRT theory, we plot in Fig.

9.1 ahh " a v = a at nadir, as a function of frequency for

a 20 cm thick random layer. The coherent effects of MRT

theory are apparent in the oscillatory behavior exhibited by

the spectral dependence of a. In Fig. 9.2 we plot a as

a function of frequency for the same parameters as Fig. 9.1

but with increased 6. We see that increased scattering

dampens the interference pattern by shielding the bottom

boundary to a greater extent.

A particularly significant coherent effect arises from

the A1  terms in (9.25a) and (9.25b). As discussed in Sec-

tion 9.2 these terms constructively interfere only for i =

k (i.e. forward or backward scattering). Physically,

this is illustrated in Fig. 9.3 where we have sketched the

path lengths traversed by the single scattered mean field

and its conjugate in the two cases of forward and backscat-

tering. Constructive interference terms of this type are

not included in phenomenological radiative transport theories.

In order to gauge the error produced by omitting these con-

structive interference terms, we set A = 0 in (9.25a) and

(9.25b) and rederive badkscattering cross sections, ahh and
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aV . The results are similar to (9.45a) and (9.45b) except

that the second terms within the curly brackets are reduced

by a factor of 2. In the case of thin layers with low ex-

tinction the contribution of the A1 terms can be significant.

However, for thick lossy layer the error produced by omitting

the A terms is minimal.
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9.5 Comparison with First Order Born Approximation Cross

Sections

As another case of interest, we compare the backscattering

cross sections of MRT theory, (9.45a) and (9.45b) with those

obtained in the first Born approximation to the wave equation.

In Chapter 3, the Born approximated cross sections for a two-

layer random medium with spectral density (9.44) are given in

(3.30a) and (3.30b). Comparing (3.30) with (9.45), the MRT

results are seen to have the same form as the Born-wave results

but with renormalized decay constants a and n"* in place

of the decay constant k Mzi. In the limit of small permittivity

fluctuations (small scattering) 6 -+ 0 and ni, " v+ k lmzi

and the MRT backscattering cross sections reduce to the first

order Born results. This is illustrated in Fig. 9.4 where for

fixed incident angle 6 ., frequency, f, and decay constant

kim, we plot backscattering cross sections, av (in db) as

a function of the variance, 6, in both the wave-Born and

MRT-first order renormalization approximations.

For large permittivity fluctuations the MRT result is

bounded by the asymptote avv = constant. Physically, this

is due to a balance between the increased backscattering and

increased shielding of the medium produced by large permittivity

fluctuations. Alternatively, the Born result is unbounded as
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6 increases. This follows from the absence of multiple

scattering and the associated shielding effect in the first

Born approximation.
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9.6 Appendices

APPENDIX A

A (k ) a
D 2(k

R1 0 (k )
A 2 (k) = a

2 D2(k)

B (k ) =R12 (k) e

C1 (kl ) =
F2 ( .i)

S1 0 (k )
C2 (k = a

F2(k)

D (k ) = S2 (k ) e i21vd

where:

a = -
(2-7r) 2 2ik1m

(A.1)

(A. 2)

(A.3)

(A.4)

(A.5)

(A. 7)

(A.8)
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D 2 (k) = 1 + R 0 1 (k R 1 2 (k ) e

F 2 (k 1 + S 0 1 (k ) S 1 2 (k ) E

i2n hd1
(A. 9)

i2Iv d
(A.10)

k. - k.
R. .= Z jz

k. + Ek.

iz JZ

E s.k. + s.k.
3 iz i Jz

(A.l1)

(A. 12)

where i, j = 0, 1, 2 and klz as well as E are to be

interpreted as klmz and Elm' respectively.
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APPENDIX B

Here we list the amplitudes in Equation (9.2) for the zeroth

order mean field in the two-layer random medium. Assuming a

unit amplitude incident plane wave, we have:

Ehu = X .h i2nh.d
E . = f exO R .2 e iihi d1

e 2i

x
E .= f O
hdi e D .

D2i

k Y. i2n .d
E . = f m-E -0 -- S .2 e v1
vui mk F . 12

lm 2i

(B.1)

(B.2)

(B.3)

(B.4)
k Y

E =f -c Oli
vdi m k F.

lm 2i

X 1 + R
Oli Oli

Y . = 1 + S .i

(B.5)

(B.6)

where f and f denote the fraction of TE and TM com-
e m

ponents in the incident wave.
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APPENDIX C

The terms I. (z, z', i)
J

(j = 1, 2, ... , 12) which

appear in Equations (13a)-(14d) are listed. For j = 1, 2, 3,

4, I. has the generic form:
J

(z, z', ) = (2 )' f da (k i

ei (z1 - z2 ) > (z1, 31) 0 E lm(zi , )}

{5*(z , ) E*(z k.)}j 2 E. lm'2' 1l
(C.1)

where

inhiz -ihiz E lm(z,k .) =Ehui e e(k lmzi) + Ehdi e e(-k lmzi)

i-n .z ^
+ E . e h(k .) + E . eviii 1mzi vdi

-in .z ,
i h(-k .mi)

The coefficients in (C.2) are given in Appendix B. I. (z, z',
J

-) has the same form as (C.1) except the integration ranges

become z < z < 0, z' < z < 0 and 1 , Q. are replaced1 2

fz'-d
dz

2

dz
1

- i z
-d

(C.2)
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by P <, Q.<.

> inh(S)Z
P (z, B )e l2 e -i nh )z

+ e(lmz

a1> (z, ) = I

Seinh()zP (z, ) = A 1(S9) e (-S m) e + A ( ) e(almz)

e )z

S1 <(z, 52) = <(z, I )

> z ) h in (5 )z
52 z, )= D 1 (%L) h(-5lm) e V 4

A -in ( )z
+ h(S lmz e

(C.7)

2 >(z, " ) = 2 >(z, k )S (C.8)

2 < - Ain () )z
P2 (z, S9) = C 1(59) h(-51 ) e V .1 + C2 ( ) h(a mz

(C.3)

(C.4)

(C.5)

(C.6)



-in (8 )z

Q2 <(z, 8) 2(Z

P3 >(z, = > (z,

3 >(z, ) = (z,

3 (z, ) = .(Z,

3 >(z, ) = 2 (z

p4 (z, ) = P (z,

4 (z,

P 4 (z,

89) = (Z,

) 

= <P (z,

= P2<(z, I ).
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(C.9)

S)

S)

S)

(C. 10)

(C. 11)

(C. 12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

5 4 <(z, L ) (C. 18)
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For j = 5, 6, ... , 12 the I.< terms which appear in
3

(9.l0a)-(9.lld) have the generic form:

I.> (z, z', I ) = (27r) 4  da C
f 00. J0Z

f z z 'dz
-id dz -d
1

dz
2

- {(z1 , z 2, k

+ rd(zl, z2 e

+ rcl(z
1 , z2 '

k )

d2k +(D - i , ct
j Z

-ict (z - z2
e z 1 2 >( , )

ik' (z - z
e mz 1

-ik' (z -lmz 1

ikjmz (z1 +
e

z2)

z2)

+ c2 (Z, z 2 , R ) e-ik{(z 1 + z 2 ) >* (z ,

where the dyads r are defined in (9.7a)-(9.7d). The expres-

sion for I . (j = 1, 2, ... , 12) is identical to (C.19)
J

except the ranges of the z1 , z2 integrations become z < z

< 0, z' < z < 0, and F.> and H.> are replaced by F.
2 3 3 J

and R.>.
3

(C.19)
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5 > (AI B1 inh(SZ emz)
F5 >(z, 5 ) = H (z, B) = A1 (BQ) B1 (5.L) e A(Sz

+ A 1(a.) e
-in h(I)z

e (almz )

<z < )inh (a Z
F (z, S 5 (z, a) = , A (aL) B, (a. ) e e (-Sy )

+ B1 ( ) A2 (a.L)

eh (i )zm
e $mz)

in (S )z h

6 >(z, R6 )> (z, = , c (a_) D, (a. ) e v L h (-a lmz

-i+) ) z (
+ C 1( e h .1.. h(

< -- inv ) (5 z
F6 <'z, ) = H6 (z = C ) D 1(L) e h (- lmz

+ D1 (L) C2 (L) e
-in ( 

) z
V i h(..L)

( , ) = 55( ,i )

7( ) = 6 (z, 5 )
7 > (z > (z

(C.20)

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)
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p7 (z,
,) = F5<(Z,

7<(z, 5 ) =

8 ( ,5) = 6 (Z,

8 >(z, 59 = 5 (z,

8 <(z, 6) = 6<(z,

R< (z, ;) = P *(z,

5 ) (C.26)

S) (C.27)

S) (C.28)

S) (C.29)

S) (C.30)

(C.31)
-I

9>(z, 5 ) = H9 (z, 5 ) = A2n h e (Slmz)

in (5 ) z
+ B 1  ) A 2(5) e e(-Simz)

F< (z, 59 = H9<(z, = A2(5) e ei(hlz

+ B2 (5) A 1() e h( e (-a3mz)3

(C.32)

(C. 33)
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F z ) = H z ) = C2 e
1010 2L

+ C2 (a) D1 ( ) e

-inv (8)z
v h(8mz)

in (8 )z A

h (-.lmz) (C.34)

- -< -in (8 )z
F<(z, e )=10(z )= V h( 8) 1 (z' ) C8 lmz

in (Z h )z A

+ C 1(8) e h(-81z)

(z, SQ = (z,

Hj(z, ) = (z, 8)

(C.35)

(C.36)

(C.37)

(C.38)

(C.39)

(C.40)

(z,8 = g< (z,

((z, ) =z,

12(z, = (z, 8)

2 F9>(z, .. ) (C. 41)
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1~2 (z L F, 0(z, f (C.42)

<2(z, F~ < F9(z, Q (C. 43)
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APPENDIX D

mln )L i.
f *{e mz)

m2n 
0 {e(lmz)

3n .1

M4n

f {e lmz)

- f {e(almz)

* e (klmz) }2

h (k lmz

A

h (k )}2

5n (T ,
{e

lmz e (klmz lmz h (klmz

(D.5)

6n {e(lmz) Se (klmz )}{e( lmz) h (k ) }

7n 4. -LR
f -{e ( mz) h h(klmz)}{e( -mz) Se (klmz

(D. 7)

(D. 1)

(D. 2)

(D. 3)

(D. 4)

(D. 6)

- e (k lmz ) 12

III
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N8n (L, k ) S-{e ( lmz)
A

e(-kimz

(D.16)

where:

(an kimz lmz n+ - klmz mz

C+

imz lmz''c k mz - lmzimz

Wln ($. k L) {e (-lmz) e(kimz) }{e(lmz) e(-klmzb 
+

(D.21)

( -
)=b* Ic- {e (a mz) e (klmz lmz) - e(-k lmz)

(D.22)

+

(D.17)

C+ =lAL) B 1 2

C_ A (A )12

Also,

(D.18)

(D.19)

(D.20)

W2 n -LF

(an
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- e (-k)lmz}{e(mz) Se (klmz)

(D.23)

= b* -J{e ( lmz) e (-klmz e(lmz - e (klmz)

(D. 24)

where:

b = A(I ) 1 2

W3n L k ) b {e (-a lmz

W4n aj-
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APPENDIX E

In this appendix, we illustrate the technique used to sum

the residue terms which appear in (9.14). Referring to equation

(9.14) and Appendix D, a typical sum over residues has the form:

Res (k - , c )
E -. L ..L + n (E.1)

n (a n- z ) (a - z )

where the complex variable z represents (k + 6 ) or
p lmz lmz

(ki - 6*z) or -(k' + a* ) or -(k' - a* ), ac-
I-mz lmz imz lmz lmz imz

cording to the specific term in (9.14) we are trying to sum.

Let Im(z ) > 0 and consider the following integral, along

the real az axis:

1 (k - , a. )
I 0 da J (E.2)

27r i - (ct - z
z p

The spectral density cD has an equal distribution of poles

{an } and {a } in the upper and lower half complex-an n

plane and vanishes everywhere on the circle at infinity. In

this case we evaluate (E.2) by closing the contour both up
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and down in the complex az plane:

I = (k -8Z, z) + Eup (k _L _ p

Res #( - , +

an -p

Res (N - L ,

down n a -z
n p

Equating I and Idown, we obtain

D k -z Z Res ND k -S .
n

(n n+

(a n ~zp)an~ -z)

(E.5)

where we have made use of Equations (9.15). Result (E.5) is

unchanged if the initial assumption Im(z p) > 0 is replaced

by Im(z ) < 0. Therefore, (E.5) may be used to sum the re-

sidue terms of the form (E.1) which appear in (9.14).

(E.3)

(E.4)
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APPENDIX F

Here we list the matrices of the MRT equations (9.25a)

and (9.25b) .

2 h )

0

0

0

0

0

0

0

0

(n " + -h ")

-(nI h

0

0

-Th( TI I

v + h

(F.1)

where n =h"

v

Quu .J

Im ( h)
v

2 Ii

and 
Tht

v

-5.'

A

Lh {elmz) - e (klmzi 12

av{h (Slmz ) - e (klmzi) }2

0

0

Re (TIh

V

5lmz
- klmzi

ah {e1mz)

av{h lmz

0

0

~1~

h (klmz i 0 0

0 0

0 0

0 0

(F. 2)



Qud L j)

Qdd Jk. .Li)

= same as

= same as

QU

QUU

except let kmzi

except let Slmz

+ -k .

lmz

and k . + -k .
lmzi .lmzi-

= same as QUU except let almz + lmz

, ,a .)cl AL .1.

Fealmz)

{e(- lmz

= ( .
2

-*e(k .}lmzi

- e(-k .)}lmz i

A

{h(6 )lmz)

(h (-a lmz)

-h(k .)}lmzi

0

0
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(F.3)

(F.4)

(F.5)

0)

0

0 0

0 0

0

0

0 0

00

0 0

(F.6)

Qdu ..L' J.. i)



mu (z,
d

IE hui 2 e

d

Evui 12

d

e

; 2 n".(5 )zhi .

T2-n".(l )

0

0

(z, k .)
mcl J.1

2 Re{Ehui hdi

2Re{E E*

Y

- 2 n" z'

hi

-2"zvi
y~~ I)

V.L VU. vi
e

0

0

I2Re{E hui

2Re{E v

(z, k )mc2 JL i

Ehdi hi'

E*vdi Yvi

0

0

-4nh t()d1

ID 2 ( L.) 12
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(F.7)

(F.8)

2-n z
e hi

e2n viz

(F.9)

where:

(F.10)
1 - IR 10( ) 12 IR 12(a ) 12

ah =



a =
v

1 - iS 10 -(.) 12 1S12 .L.) 12

F2C 2

y .=R* .hi 12i

y . = S*.vi 12i

e -4nv It(a.L) 1

-i2n *d
e hi

-i2n*.d
e vii1

(1. + ROliR 2i
i2 nhidi

D 2 i

i2ri. d
(i + S .S . e )

Oli i2i

F2 ij

D*

R10i I D 2

F*
= - s .i 2i

IF2~I

We also have:

k ) = (k
.L 2 LO lmz -kimz

C D

274

(F. 11)

(F. 12)

(F.13)

Yhi

Y.vi

(F.14)

(F.15)

uu

where:

(F. 16)



h {e lmz)

"v h(lmz)

e (k lmz

(klmz ) 2

ah {e( lmz

a v{h (a lmz )
* h (klmz)12

e
h lmz

a v h(almz ) e (klmz (h(almz)

(k lmz)2

(klmz )2 0

2acl {h(lmz

{e(a lmz)

-2ac2 {h(almz)

{e(a lmz)

e (klmz)}

e (kz ) }

e (k lmz)}

2acl lmz

{e(a lmz)

-2a c2{h (lmz

c2 lmz)

Sh (klmz

Sh (klmz

Sh (klmz

Sh (klmz
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B

(F .17)

(F. 18)

-e

(k lmz e amz)
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cl h(Mz)

ci lmz)

+ {e(almz)

lmz)

-ac2 {h(mz)

lmz)

+ {e( lmz)

{h(klmz)

h (k lmz}

- e (klmz)
A

- h (k)lmz

- e (klmz)

- h (k)lmz}

-e (k lmz

- h (klmz)

- e (k lmz)

ac2{e(lmz)

lmz)

- c lmz)

lmz)

{h(a mz

lmz)

lmz)

e (k lmz

h (k lmz

h h(klmz)

e klmz

- e (k lmz)

h ( lmz

- h (klmz)

- e (k lmz)

(F.20 )

Sud .. k' ..k.) = same as Puu k) except let klmz -klmz

(F.21)

(du .L ,k) = same as Puu k. .) except let Slmz * -almz

(F.22)



dd a..' kL) = same as P ,(I k )

and klmz

except let lmz -a1mz

-klmz

FlR R S* S* e
SReL 01 12 01 12

D2F2

F- e

2 = - 01R 1 2  01 12

2 2 

i2(nh - n d

i2(n - nv *)d

h v I

where Appendices A, B and C should be referenced for the de-

finition of the variables in (F.1)-(F.25).
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(F.23)

(F.24)

(F.25)
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APPENDIX G

In this appendix we convert the MRT equations (9.25a)

and (9.25b) to standard form by using solid angles and specific

intensities. To illustrate we consider the angular decomposi-

tion of the upward Poynting flux associated with the vertical

polarization:

S = /7-lm/i d25 <E (z, ) E* (z, >

(G.1)/Elm/7 r d2S Jvvu(z z, ).

Let

a 
=S sin e cos4x lm

y= sine sin

then the integral operator d 2Q

(G.2)

(G.3)

becomes

lmd4S cos l 
d m2{ cos 0

s n/2 f2r
d2 = J sin ed6 0 (G. 4)
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where we have neglected the evanescent portion of 3 space.

Therefore (G.1) becomes:

Sd = 7d [vM COS (z, z, )] . (G.5)vu 1m i o

We define the quantity within the square brackets of (G.5) as

the upward specific intensity, (z, 0) of the vertical

polarization. Therefore we define upward and downward specific

intensity matrices 4u(z, Q) as:

d

a.2

u(z, ) = cos I (z, ) (G.6)

d 1l d

where = - lm and I U(z, ) is given by (9.20). Using

(G.2), (G.3), and (G.4) d together with (G.6) the MRT equa-

tions (9.25a) and (9.25b) may be cast into the form:

cos -- ju(Z, G) = - K (z, C) - K(0) -vu(z, Q)
dz auz'0

+ Qud (' )i \.md(z, SI ) + A1 Qcl(Q ' 0i 'h? mcl (z, 2 .)



d -
-Co s e dd(z,

+ Qdu ' 0

dM'[fuu ' u(z, Q') + Nud '

0)

Qi )

:a d (z,

5mu (z, Q. )

2) - ( )(z,

+ Qdd '

0)

2i) ~a'*md(z,

- Q (Q OF

' u u(z,

0i ) m mc3 (Z'

2') + Pdd ('

(v, ' ) = 1 (8

U ( 2Ocl'

2.)

1

2')

I)

I ( , i )

82 cos eim1

OCl L.' k.Li
2 COS
lm s
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+ Q ')]

(G.7)

. )

+i)
du ' 2')

(z, ')] (G. 8)

(G. 9)

(G.10)

(G.11)

2 ) -, Cd(z ,



K =2s" 21=
a = m -

2Im(8lm)

K((Q) = cos 8 rj(a ) - K I

where I is the identity matrix

is to be expressed in terms

(G.2) and (G.3). The subscripts

spectively u or d. Combining

the boundary conditions relating

rived.

and it is understood that

of e and p by means of

U and v signify, re-

(G.6) with (9.29a) and (9.29b)

and 4d are easily de-

4d (00, = R1 0(M 1) Olu( Gy)

4u (-dl , = R12(Q 1) d (-dl, ).)

(G.14)

(G.15)

Conversion of boundary condition (9.31) to standard form may

be accomplished by first multiplying both sides of (9.31) by

d2$_ and then making use of the transformation implied by

(G.4):

d2 L Iou (0, y )= 0 ($1 ) - u ( ) d2$
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(G.12)

(G.13)

(G. 16)
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d2 cos 60  (0, ) = 1 (S) - I (0, ) 2 COS 6 d% S0 0 ou .. 10 u lm 1 1

(G. 17)

E - cos 60
u(0 ) 0 L T 10 (21 ,&(, l).

E m -SOS 1, no

(G. 18)

In going from (G.17) to (G.18) we have used (G.6) and the

result:

d 'm cos elm 'no
d~l Cos e0 Fos n

(G.19)
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CHAPTER 10

Renormalization of the Bethe-Salpeter Equation

In Chapter 6, it was found that the cross-polarized

backscattering cross-section computed in the second order

Born approximation does not agree with the cross-polarized

backscattering cross section obtained from radiative transfer

theory. In this chapter we examine the reason for the dis-

crepancy between the wave and radiative transfer results. It

is found that an infinite sequence of terms in the intensity

operator may be summed resulting in a renormalized Bethe-

Salpeter equation which contain coherent effects not accounted

for by the ladder approximated Bethe-Salpeter equation nor by

the radiative transfer theory.
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10.1 Physical Significance of Cross Terms

The additional contribution to the depolarized backscat-

tering as shown in (6.14) originates from the last term of

the cluster expansion (6.3) which correlates r1  with r4 and

r2 with r 3 To see this more clearly, consider the last

term of (6.4) in the limit of very strong correlations. It

becomes

{daridsr2 [G%1 (r, r%) -G 11 (r1 , r2) -. (2y

[01 '2 G11 2' 1 1 ( V

The backscattering path of the field represented by the first

of the square brackets is depicted in Fig. 10.1 by a solid

line. The backscattering path of the field contained in the

second set of square brackets is depicted in Fig. 10.1 by a

dashed line. We may consider each represents the wave vector

of a plane wave. Thus in the backscattering direction the

two path lengths are equal and the two waves interfere con-

structively. In the radiative transfer theory only the ladder

terms are included and the constructive interference is con-
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z

A

0

z = 0

'E 1 + lf
r2 ' r3

r 1 , r4

z = -d

I, 2

Constructive interference path lengths for second

order backscattering

-Figure 10.1
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sidered due to coincidental ray paths rather than phase fronts.

Thus only the first term of (6.14) is accounted for in the

radiative transfer theory.

(0) -Mathematically we see that the phases of E1 (r2) and

01(r, r, E(0) (r and (r, r) as well as G (r01 2 E1  1(~ 01' 1' 111'

r2 ) and G*1 (r22 r) combine in such a way that when integrated

over the respective z-coordinates, a contribution of second

order in albedo is produced. This argument may be applied to

higher order intensities with the result that additional signi-

ficant contributions besides the ladder terms in the radiative

transfer theory may be identified. Therefore in the limit of

low loss and high scattering these additional contributions

may be included in a renormalization of the Neumann series

for the covariance of the field. We then obtain a Bethe-

Salpeter equation with a renormalized intensity operator in

which the infinite sequence of cross type terms are summed.
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10.2 Resummation of Cross Terms in the Intensity Operator

The dyadic Green's function for a random medium satisfies

an integral equation similar to that of the field r ().

G. (r, r)

+

+

(0) . -
= G (r, r )

TV.

(0) - -d3 r G (r, r)1 ikC,

TVl
d3 r d3 r G ( , r1 )1 2 Gik

Q(r ) Q(r2) G j (r2, r) +. (10.1)

To simplify the analysis we associate Feynman diagrams with

the various terms in (10.1) according to the following rules

<G i (r, r2 ) =

GP) -r -
G ] (r 2)=

C(r1 - r2) = or

(10.2a)

(10.2b)

(10.2c)

G ()r , r2)

-(0) - -
Q(r 1) G kj (r , r )

or
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<G..(F, ) G*(9', r')> = I (lO.2d)ij o lk o

The correlation of the dyadic field in (10.1) is given by

Th + 1
+IxH- -1--

(10.3)

Integration is performed over the coordinates of all internal

vertices and convolution is carried out over all indices of

internal vertices. The second order ladder and cross terms

which lead to an equally significant contribution are readily

recognized in (10.3).

We consider the sum of the strongly connected diagrams

and identify the "kernel" of the this expression as the intensity

operator:
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0 x + 9 0

+

-I--
(10.4)

The approximation usually made is to retain only the first term

of (10.4) resulting in the so-called ladder approximation. The

ladder approximation reproduces, for example, the second and

fourth terms on the right hand side of (10.3) as well as higher

order ladder terms.

In order to reproduce the cross terms of (10.4) which con-

tribute significantly to the backscattering cross sections, we

renormalize (10.4) by considering the following expression

-H

+ *..

(10.5)

Al AM

>I<
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Equation (10.5) resums an infinite sequence of cross terms in

the intensity operator. We may proceed with the usual develop-

ment of the Bethe-Salpeter equation to obtain

+lll I

(10.6)

and approximate the intensity operator by

0+
(10.7)

Equations (10.6) and (10.7) lead to a nonlinear integral equation

from the correlation of the dyadic Green's function. In analytic

form, (10.6) and (10.7) may be written as
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<G..(r, r) G* (r', 3r ')> = <G..(r, )><G*(i' i I)>13 0 Zk 03 o k' o

+ f d'r d 3 r d3 r'd3r '<G.(i, rj)><G* ('i )>
S l 2 2 ip 1 zq

[C(r -r ') 6(S - j) 6( ' - j') 6 61 1 1 2 1 2 PS qr

+ C(r - 2') C(r )<G Cr, r) G* (l ' r1 2 1 2 ps 2 qr 1 2

(10.8)

Consequently the covariance of the scattering field takes the

form

<s.(r) E.*(r')> =f d r d 3 r d3 r 'd'r '<G. (i, il)><G* (i', i')>i 2 1 2 ip 1 jq 1

C 1 - r2  1 - 2)

+ C(r -r2' C(i ' - 2 )

[<Es (?2 )><Er 2)> + <E

( ' - ') 6 6
2 ps rq

<G (' 2) G*r ' 2
ps qr 1

(r2) E r 0 21> 109

Gsj~2' 0) Grk 2, ' 0



292

where C. = E. -<E
:1.
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10.3 Renormalized Bethe-Salpeter Equation and Discussion

Continuing with the renormalization we write (10.8) in

diagrammatic form:

Th

--

I

zz~>< (10.10)

Using the first two-terms on the right hand side of (10.10)

as the zeroth order iteration, and iterating with respect to

the correlation which appears on the right side of the third

term in (10.10), we obtain:

+

+

AsWt7T 1

+

(10.11)

jmcj
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We regroup the terms of (10.11) as follows:

Th
+A

r+ ____ I _

__________________________ I -
S..] + [

+7-

In (10.12) we define the sum of all the terms which appear in

the square brackets by the symbol . It is easily

proven that
U x

satisfies the following integral equa-

tion:

+ ZAhcCQo

(10.12)

I C)I (10.13)
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in which case (10.12) takes the form:

-U (10 .14)

Equations (10.13) and (10.14) are a pair of coupled integral

equations for the correlation of the dyadic Green's function

which analytically takes the form:

Uijk ' Ir' r ') = <G. (i, P )><Gk ' >ijrk 00 1J 0 9k0

+ d3 r dar1 'd 3r2dr2 ' C( - r2') C(r1 ' - r2 )

<G (i Fj)><Gq(', P ')><G (pi, F2 ) G*F, ') >

Usj,rk 12 2 ' o') (10.15)

<G (E, E ) G* (E' E ')> = U.. ( ' j ' E )aj 1 k 0 1)1,zk' aI! o
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+ f drd 3r1 ' U ip rs ' 1j ' r') Cr1 - r13 )

(10.16)

where we have defined Uij,2k as . It is interesting

to note that the renormalized equation (10.16) has a structure

similar to the ladder approximated Bethe-Salpeter equation.

In fact, if Uijrlk is approximated by the first term on the

right hand side of (10.15), then (10.16) reduces identically

to the Bethe-Salpeter equation in the ladder approximation.

In order to determine which terms have been picked up in the

resummation of (10.1) (or equivalently, (10.6), (10.7)), we

may solve equations (10.15) and (10.16) by successive itera-

tions. The result is:

+- . 0W

+ 0~0

+

+

+

=

<G G (ry, r Gs ' )>

gd ARL

<

4W
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-H

+--

xx +4---

(10.17)

It is clear from (10.17) that the renormalization includes

ladder terms, strongly and weakly connected cross terms as

well as weakly connected ladder-cross terms.

Ank

x



298

CHAPTER 11

Conclusions and Suggestions for Further Study

In this thesis, theoretical models have been developed

for electromagnetic wave scattering from layered random

media with applications to microwave remote sensing. Applying

Born approximations which are valid for small albedo, back-

scattering cross-sections have been derived with a wave approach

for a two-layer random medium with arbitrary three-dimensional

correlation functions. Carrying to first order the backscat-

tering cross sections illustrate the possibility of ahh >vv

due to the Brewster angle effect at the bottom boundary.

Previous models of a half-space random medium do not reproduce

the effect of a hh > avv which is observed in certain back-

scattering data.

The first order Born approximation also has been applied

to the case of backscattering by a stratified random medium

with arbitrary three-dimensional correlation functions. It

has been found that multiple resonances occur which may explain

the spectral dependence observed in active remote sensing data.

The multiple resonances are due to resonant scattering in each

random layer and to illustrate this important effect the

special case of a three-layer random medium has been used.
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In addition the three-layer model also has been found useful

in interpreting the diurnal change of snow-ice field due to

solar illumination.

Cross polarized backscattering cross sections for a two-

layer random medium have been derived by applying the second

order Born approximation to the integral equations of scattering

theory. In the half-space limit the cross-polarized backscat-

tering cross sections do not reduce to previous results63

obtained using radiative transfer theory. The discrepancy is

due to cross terms not accounted for by radiative transfer

theory nor by the Bethe-Salpeter equation under the ladder

approximation. In order to account for these additional cross

terms the Bethe-Salpeter equation has been renormalized by

summing an infinite sequence of terms in the intensity operator.

The result takes the form of coupled integral equations for the

covariance of the electromagnetic field. It is found that the

renormalization accounts not only for cross terms but many

other terms in the infinite series representation for the

intensity operator.

In this thesis we have applied renormalization methods to

study the multiple scattering of electromagnetic waves by a

two-layer random medium. Due to the presence of a bottom

boundary there exist significant coherent effects in a two-

layer random medium.
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We have solved Dyson's equation in the non-linear appro-

ximation for the zeroth order mean dyadic Green's function.

The coherent field is found to propagate within the random

medium as if in an anistropic medium with characteristic TE

and TM polarizations. The zeroth order solution to Dyson's

equation in conjunction with the ladder approximated Bethe-

Salpeter equation have been used to derive modified radiative

transfer (MRT) equations appropriate for electromagnetic

scattering within a two-layer random medium. The MRT equations

have been solved in the first order renormalization approxima-

tion and significant coherent effects not accounted for by

phenomenological radiative transport theories are found.

The task of developing theoretical models is by no means

complete. We have considered primarily the case of a two-layer

random medium with three dimensional correlation functions.

Although the first order Born approximation has been applied

to a stratified random medium, the second order Born approxima-

tion as well as the renormalization approach should be extended

to multi-layer random media. The coupled-integral equations

of the renormalized Bethe-Salpeter equation need to be developed

into a wave radiative transfer (WRT) theory which accounts for

the cross terms discussed in Chapter 10.

Finally, scattering by a composite medium including rough

surface and random permittivity fluctuations is an important
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and challenging problem to be solved especially when we consider

the inability of volume scattering to account for backscattering

data near normal incidence.
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