Circular Symmetry in Topological Quantum Field Theory
and the Topology of the Index Bundle

by
Radu Constantinescu
M.S. in Mathematics, University of Bucharest, 1991

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mathematics
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1998

©1998, Radu Constantinescu.
All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly

paper and electronic copies of this thesis document in whole or in part.

Department of Mathematics

---------------------------------------------------------------------------

January 8, 1997

Certified by ...........cooviiia.L. e

Accepted by

[.M. Singer

Professor of Mathematics and Institute Professor

Thesis Supervisor

L I R I R e B D I I R R I R I R I R R R R R N R R N R N S B S

Richard B. Melrose

Chairman, Departmental Graduate Committee
oo UCETTS NS
OF FECHNOLOGY

JUN 011998 aRCHIVES

LIBRARIES






Circular Symmetry in Topological Quantum Field Theory and the
Topology of the Index Bundle
by

Radu Constantinescu

Submitted to the Department of Mathematics
on January 8, 1997, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Mathematics

Abstract

We extend the Mathai-Quillen construction for the Euler form to the equivariant case and use it to
generalize the Atiyah-Jeffrey interpretation of Donaldson-Witten theory (DWT) in an equivariant
situation. This allows us to interpret topological non-abelian Seiberg-Witten theory (TNSW) and
its massive version (MTNSW) geometrically.

We state the infinite-dimensional analogue of the localization theorem for an S!-action and
explore the consequences of the assumption that our infinite-dimensional version is true, for example
that the correlation functions of MTNSW can be expressed as integrals over the moduli spaces for
DWT and (topological) abelian Seiberg-Witten theory (TASW).

Under further assumptions we conclude that the integrals over the DWT moduli space are in-
tegrals of certain Segre classes of the index bundle, which we can express in terms of the usual
p-classes. For the TASW moduli space integrals, if we restrict to four-manifolds of simple type, we
get a linear combination of Seiberg-Witten invariants.

Since the semiclassical approximation is supposed to be exact for a topological quantum field
theory, we are lead to a conjecture relating a ratio of determinants to the total Segre class of the
index bundle.
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Chapter 1

Introduction

In [33), Witten introduced the first example of a topological quantum field theory (TQFT). By
twisting N = 2 supersymmetric Yang-Mills theory, he found a Lagrangian and quantum field theory
in which Donaldson invariants are described as correlation functions of some natural observables.
This quantum field theory s frequently called Donaldson-Witten theory (DWT).

The Donaldson-Witten Lagrangian can be obtained in different ways. On the physics side,
Baulieu and Singer (4] started with a purely topological action, the Pontrjagin form, and derived the
Donaldson-Witten Lagrangian and the observables via the standard gauge-fixing BRST formalism.
On the mathematical side, Atiyah and Jeffrey [1] interpreted the Lagrangian as the Euler form of an
infinite-dimensional bundle (the bundle of self-dual two-forms over the space of connections modulo
gauge transformations, on a four-dimensional base manifold). This interpretation relies on a finite-
dimensional construction of Mathai and Quillen [19] which, given an oriented vector bundle endowed
with a section, produces a differential-form representative of the Euler form which decays rapidly
away from the zero-locus of the section. Atiyah and Jeffrey formally apply the Mathai-Quillen
method to the above-mentioned infinite-dimensional bundle, choosing the (Fredholm) section which
associates to any connection the self-dual part of its curvature. Expectation values of the observ-
ables are obtained in this way: since the ‘functional-integral measure’ (i.e. the exponential of the
Lagrangian) is supposed to be an Euler form, the integrals of products of observables against it
are expressible, by ‘Poincaré duality’, as integrals on the zero-set of the section, which in this case
is Donaldson’s moduli space Mp of anti-self-dual connections (instantons). As proved previously
in (8], the integrals over Mp admit a rigorous definition as intersection numbers on the Uhlenbeck
compactification Mp, leading to the Donaldson invariants. For DWT, this implies that the corre-
lation functions in [4] and [33] are path-integral representations of diffeomorphism invariants of the
base manifold.

Of course all the statements in the previous paragraph have to be read with extreme caution,
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largely because the passage from finite dimensions to infinite dimensions presents many problems.
First, the group of gauge transformations doesn’t act freely on reducible connections~so that the
quotient space is not really smooth; secondly, it is not clear how the Mathai-Quillen formalism
(originally devised for a compact, finite-dimensional manifold) applies to a non-compact, infinite-
dimensional situation. When it does, how does it take into account the compactification of Mp
required in the definition of Donaldson invariants? A striking example of the limitations of the
above model is this: formally, DWT predicts that the correlation functions are independent of the
metric on the base X, whereas Donaldson invariants are metric independent only if b7 (X) > 2. The

discrepancy arises because DWT assumes no boundary effects (see the first section of [33] and [22]).

The original aim of DWT was to study Donaldson’s four-manifold invariants using ideas from
quantum field theory. The case of Kahler surfaces with bf > 3 was understood by Witten [37),
by using cluster decomposition in the large scaling limit. Finally, Seiberg and Witten [29, 30)
succeeded in the general case by using renormalization group techniques, far deeper than formal path-
integral arguments. Their work applies more generally to the physical counterpart of DWT, N = 2
supersymmetric Yang-Mills; its consequence for the topological theory was the introduction of a new
set of topological invariants which turned out to be much simpler than Donaldson invariants. The
mathematical implications of their work, as well as the conjectured relationship between Donaldson
invariants and those of Seiberg-Witten can be found in {36). It is worth pointing out that only recently

has the case of b =1 been explained from the physics viewpoint; see Moore and Witten [22).

Mathematicians have had high hopes that the geometric/topological interpretation of DWT in 1]
would, via mathematically traditional methods like localization and equivariant cohomology, explain
the relationship between Donaldson and Seiberg-Witten invariants. The origin of these hopes lies
in a mathematical idea of Pidstrigach and Tyurin: in (24] they construct a cobordism between
Donaldson and Seiberg-Witten moduli spaces via the space of solutions of a non-abelian version
of the Seiberg-Witten equations. Getting explicit information out of this cobordism is however
very hard mathematically, so one can ask whether there exists instead a quantum field theoretic

reformulation of the Pidstrigach-Tyurin idea which leads to concrete, albeit non-rigorous, results.

There does exist a TQFT, non-abelian Seiberyg- Witten theory (TNSW), which leads, in the Atiyah-
Jeffrey picture, to the non-abelian Seiberg-Witten equations. The field content of TNSW suggests
that the quantum field theoretic analog, of the Pidstrigach-Tyurin cobordism is to regard TNSW as
an interpolation between DWT and topological abelian Seiberg-Witten theory (TASW).

TNSW is equally important because of its relationship to N = 4 supersymmetric Yang-Mills
theory. It turns out [15] that TNSW is a topologically twisted version of N = 4 supersymmetric
Yang-Mills. In addition to TNSW, N = 4 super-Yang-Mills admits two other topological twists; one
of them, considered by Vafa and Witten in [32] provided the first tests of the S-duality conjecture.
It is therefore interesting to compare TNSW to the Vafa-Witten twist and study whether it gives
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any information on S-duality.

Besides its topological invariance, TNSW admits an additional S!-symmetry and leads to an S*-
equivariant version of the theory via an equivariant extension of the Mathai-Quillen construction. We
will call S!'-equivariant TNSW massive topological non-abelian Seiberg-Witten theory (MTNSW)
because of the physical meaning of the additional terms in the Lagrangian.

The key properties of MTNSW result from the interplay between its topological character and
the S'-symmetry. The path-integrals defining the partition function and correlation functions of
MTNSW are formal, infinite-dimensional integrals of equivariantly closed differential forms. In fi-
nite dimensions, such integrals localize to the fixed-point set of the S!-action, and one can explore
whether a similar result is true in the infinite dimensional setting of TQFT’s. At least the localization
statement can be generalized to infinite dimensions, and sometimes a formal path-integral justifica-
tion can be made. This justification follows one of the proofs of the finite-dimensional localization
theorem, which relies only on semiclassical approximation and Gaussian integrals.

In the case of MTNSW, the fixed points of the S!-action correspond precisely to Donaldson-
Witten and abelian Seiberg-Witten configurations. Assuming that the localization property holds
for MTNSW, it follows that its correlation functions can be expressed as combinations of correlation
functions in DWT and TASW, i.e Donaldson and Seiberg-Witten invariants.

We now summarize the contents of this thesis. In Chapter 2 we review the Mathai-Quillen
construction of a representative of the Euler form by a rapidly decaying form (Section 2.2). We
then extend the construction to equivariant vector bundles with equivariant section to obtain an
equivariant Euler form (Section 2.3). In Sections 2.4 and 2.5 we generalize the Atiyah-Jeffrey strategy
to the equivariant case, which we will need later in order to interpret some quantum field theories.

We begin Chapter 3 with a review of DWT as interpreted in [1]. In Section 3.2 we extend
this interpretation to the case of abelian Seiberg-Witten (TASW) theory, the quantum field theory
which gives the Seiberg-Witten invariants. We present a similar interpretation of the twisted N = 4
supersymmetric Yang-Mills theory (Vafa-Witten [32]) in Section 3.3. For special manifolds, the
partition function of the twisted theory reduces to integrals over the moduli space of instantons
Mp. In 3.4 we state two mathematical conjectures which are a consequence of this fact and the
S-duality conjecture for N = 4 supersymmetric Yang-Mills.

One application of the equivariant extensions in Chapter 2 is the geometric interpretation of
topological non-abelian Seiberg-Witten theory, which we begin to study in Section 3.5. The addi-
tional symmetry that we exploit is very simple: TNSW contains a complex matter field with its
scalar S'-action. We study two versions of the theory, according to whether we use the original
Mathai-Quillen construction or its equivariant extension. Plain TNSW (which uses the standard
Mathai-Quillen form) turns out to be a topologically twisted version of NV = 4 supersymmetric Yang-

Mills theory in four dimensions (albeit a different twist than the Vafa-Witten one, as can be seen
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by comparing with Section 3.3). As for S'-equivariant TNSW (which involves the S*-equivariant
Mathai-Quillen form) we call it massive topological non-abelian Seiberg-Witten theory (MTNSW)
because the difference between its Lagrangian and the Lagrangian of TNSW (i.e. the extra terms
which make the Lagrangian S'-equivariant) turns out to be a supersymmetric mass term {12, 16).

The reason for studying the additional symmetry and the massive version of TNSW lies in the
possibility of localizing the path-integral. In finite dimensions, if S! acts on a compact oriented
manifold, integrals of equivariantly closed differential forms can be expressed in terms of integrals
over the fixed-point set of the action. We investigate to what extent a similar result holds in infinite
dimensions in Chapter 4.

We review the finite-dimensional case for an S'-action in Section 4.1. We formally apply the
localization theorem from Section 4.1 to the case of MTNSW in Section 4.2. We find that, under
the assumption that the localization theorem remains true in this infinite-dimensional setting, the
correlation functions of MTNSW are expressible as integrals over the moduli space of instantons
Mp and the moduli space of abelian Seiberg-Witten monopoles.

Now we want to evaluate these integrals by relating the integrands to the standard cohomology
classes (the u-classes) used in gauge theory. We will discuss two different approaches to this question,
one wkich uses the topological content of the Mathai-Quillen construction, the other based on the
semiclassical approximation.

We present the topological approach in Sections 4.3 and 4.4. According to the Mathai-Quillen
interpretation, the partition function of MTNSW is the integral of an equivariantly closed differential
(actually the S'-equivariant Euler class of an infinite-dimensional bundle). In finite dimensions, the
abelian localization theorem states that such an integral reduces to an integral over the fixed-point
set. The integrand over the fixed points is in general the original integrand divided by the S'-
equivariant Euler class of the normal bundle; in our case this is a quotient of equivariant Euler
classes.

Unfortunately we are in infinite dimensions and the two Euler classes in question are only formal
objects, they are not well-defined mathematically. ‘The key point is that there erists nevertheless a
well-defined candidate for their quotient. For the component of the fixed point set corresponding to
Donaldson-Witten configurations, the quotient we are investigating is the product of the Euler class
of Donaldson-Witten theory and the equivariant Euler class of the bundle of sections of negative
spinors, divided by the equivariant Euler class of the bundle of sections of positive spinors. The
presence of the Donaldson-Witten Euler class in the integral over Donaldson-Witten configuration
space shows (by Poincaré duality) that the integral reduces to an integral over Mp.

As for the quotient of the (formal) Euler classes of the bundles of spinors, we again resort to the
comparison with a finite-dimensional analog. If the two bundles involved were finite-dimensional, the

quotient of equivariant Euler classes would equal the equivariant Euler class of the difference bundle,
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In infinite dimensions, the natural interpretation of the difference bundle is the index bundle. With
this interpretation, we show in Section 4.3 that a natural candidate for the quotient of Euler classes
is the total Segre class of the index bundle.

We restate the new conjecture: the quotient of two infinite-dimensional Euler classes (which
are formal objects) equals a characteristic class of the index bundle (a well-defined mathematical
object). Assuming the conjecture to be true, we conclude that the contribution from Donaldson-
Witten configurations to the partition function of MTNSW consists of integrals over Donaldson
moduli spaces of certain Segre classes of the index bundle.

In Section 4.4 we carry out the similar analysis for abelian Seiberg-Witten configurations (the
other component of the fixed-point set). The quotient of Euler classes appearing in the localization
formula is a product of two Segre classes times the Euler class appearing in abelian Seiberg-Witten
theory.

At this point it is useful to restrict to four-manifolds which satisfy the Seiberg-Witten simple
type condition. This condition requires that the only non-zero Seiberg-Witten invariants arise from
moduli spaces of virtual dimension zero. It is in fact conjectured that all simply-connected four-
manifolds with b7 > 2 satisfy it. All manifolds with b > 2 for which the Seiberg-Witten invariants
are known are of simple type (these include Kihler surfaces, blow-ups and rational blow-downs)-so
the simple type condition is a rather mild restriction.

The simple type condition simplifies the contrit:ution from abelian Seiberg-Witten configurations
to the partition function of MTNSW: only the degree zero part in the Segre classes is now relevant,
and we show that it it in fact a constant. We conclude that, under the simple type hypothesis, the
contribution from abelian Seiberg-Witten configurations is simply a linear combination of Seiberg-
Witten invariants.

Let us summarize the implications of these results for the partition function of MTNSW, We
are making two assumptions: the first is that the abelian localization theorem holds in our infinite-
dimensional framework; the second is that the quotient of formal Euler classes equals the Segre
class of the index bundle. We also restrict to simple type four-manifolds. Assuming that all these
conditions are fulfilled, the results of Sections 4.3 and 4.4 provide a concrete expression for the
partition function of MTNSW as a sum of Seiberg-Witten invariants and characteristic numbers of
Donaldson moduli spaces (integrals of the Segre classes of the index bundle).

We study the integrals over Mp of the Segre classes of the index bundle in Chapter 5. This
chapter is completely rigorous and relatively independent of the part preceding it. The first step,
which we carry out in Sections 5.1 and 5.2, is to relate the Segre classes to the u-classes used in
gauge theory to describe the cohomology of the space of connections modulo gauge transformations
(over a simply connected four-manifold). In Section 5.1, we apply the families index theorem in

the spirit of [2] to find differential-form representatives for the Chern character forms of the index
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bundle. We achieve the similar goal for the total Segre class in Section 5.2, by using Section 5.1 and
a simple exercise in characteristic classes. The result provides explicit formulae for the total Segre
class in terms of the u-classes,

The second step is to use these formulae to calculate the integrals of the Segre classes on Don-
aldson moduli spaces. The simplest way to organize the calculation is to restrict to four-manifolds
of simple type, and use the Kronheimer-Mrowka structure theorem for Donaldson invariants. The
result is an expression of the integrals of the Segre classes as suitable coefficients in a generating
function, involving only elementary functions and Seiberg-Witten invariants. (Section 5.3.)

In Chapter 6 we return to the study of localization. In Chapter 4, we had used a formal extension
of the abelian localization theorem to reduce the partition function of MTNSW to contributions from
DWT and TASW. Besides the topological argument that we used in Sections 4.3 and 4.4, another
approach is possible, based on the semiclassical approximation. Instead of identifying the various
terms in the Lagrangian as formal characteristic classes, we can evaluate the path-integral expression
of the partition function by the rules of quantum field theory.

Since we are dealing with a topological theory, the semiclassical approximation is exact. As a
consequence, we show that the path-integral localizes to the moduli spaces of instantons and abelian
Seiberg-Witten pairs. As usual, the quadratic integrals in the normal directions to these moduli
spaces lead to quotients of determinants of elliptic operators, which we identify in Sections 6.1 and
6.2.

In the case of abelian Seiberg-Witten solutions, if we assume again that the base manifold has
simple type (so that the abelian Seiberg-Witten moduli space is of virtual dimension zero) then the
operators in the numerator and denominator differ only by a factor of i, and so the quotient of
determinants reduces to 1. We check easily that the result of the semiclassical computation agrees
in this case with the formal geometric result of section 4.4.

The integral in the normal directions to Donaldson moduli space, however, is more delicate. In
this case, the quotient of determinants turns out to be non-trivial (to be precise, it is a differential
form on Donaldson moduli space). By comparing with Section 4.3, we see that the quotient of
determinants accounts for the same terms in the path-integral as the quotient of formal equivariant
Euler classes occurring in that section.

This provides an alternative way of regularizing the quotient of formal equivariant Euler classes
(recall that we had previously interpreted the quotient of Euler classes as the total Segre class of the
index bundle). Contrasting this new regularization with our geometric argument in Section 4.3 leads
to a conjecture relating two well-defined mathematical objects: the total Segre class of the index

" bundle and a certain quotient of determinants. The fact that both arise as possibilities of defining a
quotient of formal Euler classes rigorously suggests that they might be equal. Notice that we are now

faced with a purely mathematical conjecture, which we state independently of any path-integrals
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in Section 7.1. We explain how our conjecture generalizes in fact similar results relating the first
Chern class of the determinant line bundle to determinants of elliptic operators, see for instance [26]
and (6).

The rest of Chapter 7 investigates the status of the conjecture in some particular cases. We
explain why this conjecture should be understood as an equality at the level of cohomology classes
rather than differential form representatives, a point which is particularly important in the infinite-
dimensional setting of our problem. In fact, a locality argument shows that, if we work on a fized
Riemannian base X, the conjecture cannot hold at the level of differential forms, basically because
the quotient of determinants involves some non-local quantities (Section 7.1).

However, if we rescale the metric on X, say by a constant factor u, two interesting things happen
in the adiabatic limit (i.e. as 4 — 00): the quotient of determinants admits an asymptotic expansion
in powers of u, and the coefficients of the expansion are local expressions (see Section 7.3). This
means that the conjecture might hold at the level of differential forms in the adiabatic limit. In fact,
we study this form of the conjecture in the case of line bundles over a Riemann surface in Section
7.4.

We extend the reasoning of Section 7.4 to any vector bundle over a two-dimensional base in
Section 7.5. Although we currently don’t have a complete proof, we present some of the necessary
steps and a heuristic argument which suggests that the conjecture does hold in this case. Sections
7.4 and 7.5 also explain the major simplification which occurs in two dimensions: the asymptotic
expansion of the ratio of determinants has a finite limit as u — oo.

This is no longer true in four dimensions (the case which is relevant to topological non-abelian
Seiberg-Witten theory): indeed, an O(u) term is present and one should reformulate the conjecture
in order to get a sensible result (for instance, we should find a consistent way of removing the
divergent part of the asymptotic expansion).

We conclude by an Appendix in which we describe our approach to the two problems mentioned
earlier, the S-duality conjecture and the relationship between Donaldson ai.d Seiberg-Witten invari-
ants. The techniques explored in this thesis are unfortunately not sufficient for the solution of either
of them.

According to Chapter 4, the partition function of MTNSW localizes to integrals over Donaldson
and Seiberg-Witten moduli spaces. These are completely well-defined in the Seiberg-Witten case,
since the moduli space is compact. In the Donaldson-Witten case we have to integrate over Don-
aldson moduli space, which is non-compact, hence we have to explain what the integrals mean, We
follow the approach used in Donaldson-Witten theory, which works at least when b3 > 1: we in-
terpret the relevant integrals as integrals over the Uhlenbeck compactification of Donaldson moduli
space.

With this assumption, we use the explicit results of Chapter 5 to obtain an expression for the
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partition functions of TNSW and MTNSW in the case of a K3 surface. The resulting formula leads
to conclusions which are in disagreement with both the S-duality conjecture and the relationship
between the Donaldson and Seiberg-Witten invariants for this particular case, Therefore the integrals
over Donaldson moduli space in topological non-abelian Seiberg-Witten theory have to be analyzed
further.
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Chapter 2

Equivariant Cohomology and the

Mathai-Quillen Construction

In this chapter we review the Mathai-Quillen construction of differential form representatives of the
Euler class of an oriented vector bundle [19] (Section 2.2), In section 2.3 we extend the Mathai-
Quillen technique to the case of equivariant vector bundles in order to construct differential form

representatives of the equivariant Euler class,

We work in the following framework: let G be a compact Lie group, M a compact oriented
manifold, and P a principal G-bundle over M. Let V be an oriented vector space of dimension 2v
with inner product and let py : G — SO(V') be a representation of G. Let E be the vector bundle
Px,,V.

In Sections 2.4-2.6 we use the Mathai-Quillen forms to generate integral formulae for certain
characteristic numbers of the vector bundle. If the rank of E equals the dimension of the base
manifold M, we obtain an integral formula for the Euler number (Section 2.4). In the case of a
vector bundle whose rank is less than that of the base manifold, integrating the exterior product
of the Euler form with suitable DeRham classes on the base manifold leads to integral formulae for

intersection numbers on the zero set of a generic section (Section 2.5).

A priori, such formulae involve integration over the base manifold; we translate the integrals over
M into equivalent integrals over the total space P of the principal bundle and the Lie algebra g of G.
In Section 2.6 we discuss similar integral formulae (and their formulations as integrals over P x g)

for the case of equivariant bundles.

The importance of the formulae expressing characteristic numbers as integrals over P x g stems

from their applications to topological quantum field theory, which will be discussed in Chapter 3.
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2.1 Equivariant cohomology and the Chern-Weil theory

This section reviews the definition of (the Cartan model of) the equivariant cohomology of a manifold
N endowed with the action of a connected compact Lie group G with Lie algebra g.

Given such an action, one is mainly interested in the orbit space N/G: for instance, this could
be the configuration space of a physical system with symmetry group G. If the G-action is free
then N/G is also a manifold, so if the main interest lies in its cohomology one can use the usual
machinery of differential forms and DeRham cohomology. However, if the action has fixed points, the
quotient space is usually no longer a manifold and H*(IN/G) becomes harder to study by differential
geometric means. This problem can be circumvented by the use of equivariant cohomology. It
is known that, even in the topological category, equivariant cohomology is a substitute for the
cohomology of the quotient space: in the case of a free action, the two coincide, but in general the
equivariant cohomology contains more information. What is important for us is that in the smooth
category there is a nice realization of equivariant cohomology as the cohiomology of a complex of
differential forms.

We will adopt this realization (usually called the Cartan model) as the definition of equivariant
cohomology in the smooth category. Let N be the manifold on which the Lie group acts and consider

the graded algebra of equivariant differential forms
Q6(N) =[S(s") @ AN)|°®C

whose elements are regarded as Q(NN)-valued invariant polynomials on g. The grading is the usual
one on (N) and twice the usual grading on S(g*). The superscript G denotes the subalgebra
of G-invariant elements, where the action of G on differential forms is obtained from its action as
diffeomorphisms of IV and the action on S(g*) comes from the symmetric powers of the coadjoint

action. The equivariant DeRham differential dg; on 2g(N) is defined by
dea (X) = dla(X)] - tpx)[a(X)], a€Qg(N),

where d is the usual DeRham differential, ¢ denotes interior product, and p : g — T'N is the
infinitesimal action of g, so that p(X) is a vector field on N. We have
Lemma 2.1. d4 = 0.

Proof. Since dga (X) = [(d — ¢p(x))a] (X),
[(d = e x)) ) (X)
[(—dep(x) = to(xyd)a] (X)
—C,,(x)a (X) =0

dg (X)

because « is G-invariant. We have used the Cartan formula for the Lie derivative of differential

forms Ly = diy + tyd.
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Actually dg is a graded differential of degree +1: if a € Si(g*) ® Q/(N) then da € Si(g*) ®
QTY(N) and ¢y a € S*(g") ® RI"}(N). The first statement is obvious as is the fact that the
form degree of ¢,(.)a is j — 1; the easiest way to see that ¢,(.a is a polynomial of degree i + 1 is by

looking at its scaling degree under X — tX: indeed,
L,(,x)a(tX) = tl.p(x)a(tX) = tH'le(x)a(X).

Let us look at the particular case when G = S!. The coadjoint action is trivial, so Q5 (N) =
C[m] ® Q(N)S', where m is a generator of (s!)" and

QN = {we QN)| Lxw=0},

where X is the vector field on N corresponding to the generator of Lie(S') dual tom. If w € Qg1 (N)
and k € N then

dsi(m*w) = mFdw — m* ! xw.

Deflnition 2.1. The G-equivariant cohomology of N (with complex coefficients) , H3(N), is the

cohomology of the above complex:
Hg(N) := H*(Qc(N),dg).

We will now review the basic results of Chern-Weil theory. Assume that the G-action on N is
free, so that the projection map 7 : N — N/G is a principal G-fibration. Choose any G-invariant
connection form on N, 6 € 2(N) ® g. Let Q = dw + 1[0, 6] € Q%(N) ® g be its curvature.

Definition 2.2. The Chern- Weil map
CWy:S(g") — QUN)
is the algebra homomorphism given on X* € g* by CWp(X*) := X*(Q) € Q(N).

In other words, given any polynomial P on the Lie algebra g, CWj applies it to the Lie algebra
part of the curvature 2, the result being a (scalar) differential form on N,

There are several important subalgebras of Q(NN): the horizontal forms are those satisfying
to(x)w = 0 for any X € g and the invariant forms are characterized by £,(x)w = 0 for any X € g.
The basic subalgebra Qpq,(N) consists of differential forms that are both horizontal and invariant.
It is easy to see that a form w € Q(N) is basic if and only if it is the pullback of a differential form
on N/G. In fact, the pullback map n* gives an isomorphism Q(N/G) — Qpq,(N).

Notice that, since the curvature {2 is a horizontal form, the image of the Chern-Weil map lies in
the subalgebra of horizontal forms. If we restrict CWj to the G-invariant polynomials on g then the

image is contained in the subalgebra of basic forms. Therefore, after identifying basic forms on N
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with forms on N/G, the Chern-Weil map determines an algebra homomorphism (also denoted by
CWp)
CW, : S(g°)¢ — Q(N/G).

The key properties of the Chern-Weil map are
Proposition 2.1. For any P € S(g°)¢, CWs(P) is a closed form on N/G.
and

Proposition 2.2. The cohomology class of CWy(P) is independent of the choice of a G-invariant

connection 6.

These properties lead to the differential-geometric construction of characteristic classes of the
principal G-bundle N: namely, any G-invariant polynomial P as above determines a cohomology
class in H*(N/G). For instance, if G = SU (2) then the second Chern form equals

1
CW(—Tr0%).
Wiz )
This example illustrates an integrality issue which is quite general: in order to obtain integral
cohomology classes, one should normalize the elements of S(g*) appropriately.

The Chern-Weil map admits an extension to the algebra of equivariant differential forms, whose

image lies in the invariant subalgebra, i.e. there exists a map
CW, : Qg(N) — Q(N)C.

The connection 8 determines a horizontal projection operator Hor : (N) — Qpor(N) so that the

composition Hor o CW, can be regarded as a map
Hor o CWjy : Qg(N) — Qpas(N) = Q(N/G).
Propositions 2.1 and 2.2 have some close cousins in this extended situation; namely,

Proposition 2.3. The homomorphism Hor o CWy is a chain map with respect to the differentials
dg on QG(N) and d on Q(N/G); therefore HoroCW, descends to a map from H3(N) to H*(N/G).

Proposition 2.4. The map
HoroCW, : H;(N) — H*(N/G)
is independent of the connection 8.
The relationship between the Chern-Weil construction and equivariant cohomology is explained
by
Theorem 2.1. If the G-action is free then N/G is a manifold and we have an isomorphism

Hg(N) 22, go(N/G),

The inverse of Hor o CW is the pullback map ©*.
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2.2 The Mathai-Quillen construction of an Euler form

In this section we review the construction of differential form representatives of the Thom class of
an oriented vector bundle F, following Mathai and Quillen [19]. Our goal is in fact to obtain explicit
representatives for the Euler class: such representatives are obtained immediately from the Thom
forms by pulling them back via suitable sections of E.

Recall the significance of the Thom class: given an oriented vector bundle E of rank r over a

compact oriented manifold M, there is an isomorphism
H*(M) = H;J"(E),

where the subscript cv denotes compact support in the vertical directions. Explicitly, given a coho-
mology class # in H*(M), its image is obtained by pulling 3 bacx to E and taking its wedge product
with the Thom class, Th(E), (which is an element of H,(E)). The inverse of the Thom isomorphism
is given by integrating differential forms on E with compact vertical supports along the fibres. It is
also a well-known result that, given a section s : M — E, the pullback e(E) = s*Th(E) € H*(M)
is the Euler class of the bundle E. Usually the section s is taken to be the zero section, but we will
need other choices when extending this construction to an infinite-dimensional case.

There is also an equivariant extension of the above construction: assume E is a G-equivariant
bundle over M, endowed with a G-orientation (i.e. an orientation preserved by the action of G as

linear maps between suitable fibres of E). The G-equivariant Thom isomorphism
Hg(M) — HG'(E)

is also obtained by pulling back and wedging with the G-equivariant Thom class Thg(E) € Qg(E).
Similarly, eg(E) = 8*Thg(E) equals the equivariant Euler class of E for any equivariant section
8:M — E.

The Mathai-Quillen construction uses a slight variation of the Thom isomorphism. Differential
forms with compact support in each fibre are replaced by forms which are rapidly decreasing in the
fibre directions. It is easy to check that the groups H;, and H;, (i.e. the cohomology of the complex
of rapidly decaying forms) are isomorphic. The differential form representatives of the Thom class
provided by the Mathai-Quillen construction are rapidly decaying, but are not compactly supported.

As stated in the introduction to this chapter, let G be a compact Lie group, M a compact oriented
manifold, and P a principal G bundle over M. Let V be an oriented vector space of dimension 2v
with inner product and let py : G — SO(V') be a representation of G. Let E = Px,,V. We later
consider the equivariant situation, i.e. P will be an H-equivariant principal bundle, with H another
Lie group.

We start by constructing a family of universal Thom forms U, € Q¢(V), where t € R. To express

it most conveniently for our purposes, we first recall the definition of the Berezin integral.
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Definition 2.3. Let A be a commutative superalgebra and let A ® A(V) be the graded tensor
product of A with the exterior algebra of a vector space V. Choose a volume element vol on V, i.e.

a non-zero element of A*P(V). The Berezin integral is the map
ARAV)D A

which assigns to every element a € A @ A(V) the coefficient B(a) of its component a‘°? € A ®
AtP(V) ~ A® R - vol; B(a).

Note that if x1,--- , x2v is an oriented orthonormal basis of V, so that A(V) ~ A[x1,- -, x2v),
Berezin integration amounts to taking the coefficient of x)x2 ' - X2u-

Let now A be the commutative superalgebra Q(V) ® S(g*).

Definition 2.4. For each ¢t € Ry, the universal Thom form U, € S(g*) ® (V) is given by

U := (%ﬂ) By (GXP% (‘||-"=||2 -2v-1 2“31' “Xi + ;jxi-qﬁvm)) ) (2.1)

where z; are coordinates on V (dual to the x;’s) and ¢y € S'(g°) ® so(V) is obtained through the
representation p from the universal Weil element ¢ € S'(g*) ® g ~ g* ® g ~ End(g) corresponding
to the identity endomorphism. The dot in x; - ¢y x; denotes exterior product in A(V), whereas
>.;dz; - x; is a shorthand for }_;dz; ® 1® xi € S(g°) ® V) ® A(V).

In the sequel we will use a more compact notation; for instance, U, will be written as

U = (%) e“'iszexp% (-—2\/—1de + X¢X) )

where z, dz, and x are to be thought of as vectors and ¢ as a matrix (so that, for instance,
dz x = ), dz; x; etc.). We will also suppress the representation p from the notation: the operators
tp(x) and L, x) acting on differential forms will be denoted by tx and Lx.

The factor e~*="/2 guarantees the rapid decay of U, as differential forms on V. As for the other

terms in the exponent,

By (exp (-V-1dzx)) = (——1)2;2(”#8,‘ ((2v)!dzy x1 dz2 x2 - - - dT2y X20)

= ((;3: By ((—1)20’—.,(20)!(13:1 v dToy Xyt X2u)

= dz,---dza,

which shows that B, (exp (vV-1dz x)) is just a fancy way of writing the volume form dz, - - - dz3,.
Being a top degree form, this is obviously closed. As will be explained below, we are in fact more
interested in constructing equivariantly closed forms - the role of the term tx¢x is precisely to
provide an equivariant extension of the volume form.

The properties of the U,’s are summarized in the following
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Proposition 2.5. (i) U; € Qg(V) i.e. U is G-invariant;

(i) doU, = 0;

(iii) [, Ur =1 (remember that only the top part of U, as a differential form on 'V is integrated).
These properties express the fact that, for any real ¢, U, € HE 4(V) is a G-equivariant Thom

form for the vector space V (viewed as a G-equivariant bundle over a point). Notice that the

proposgition also implies that the differential forms U,(s) for various sections s and real numbers ¢

represent the same cohomology class in HZ’,4(V), namely the class corresponding to 1 € Hg(point).
Before proving the proposition we warm up with a special case, namely v = 1 and G = SO(2)

acting by rotations on R?. Let X be the element

( 0 -m )
€ s50(2).
m 0

The universal Thom form is a (V)-valued polynomial on 80(2) whose value at X is, according
to ((2.4)),

1 t 0 -m
U(x) = me (exP'2' (—(zf+z§) —2V/-1(dz, x1 +dz2 x2) + (x1 X2) ( ) ( Xt
m 0 X2
t t 1
= 17 &P (—5(3? + 13)) B, ((-1) (dzy x1 + dz2 x2)* - TMmX1 x-z)
t t m
= Lo (-plat+ D) (ande: - ).
Hence

t t m
U= 1 &P (—5(1‘% +3§)) (2dz,dz, — T)

as an element of N(R?)5°(?) @ C[m)].

Let us now check the statements of Proposition 2.5 in this special case. 50(2)-invariance is
equivalent to LxU, = 0, where X is the vector field (-mz2, mz,) on R%. Since the group is
abelian, £x(m) = 0 and both the exponential factor exp((~t/2)(z? + z3)) and the volume form
dz,dz, are SO(2)-invariant. Property (iii) follows from the normalization of the Gaussian integral.

Showing that U, is equivariantly closed is an easy computation. We have
dso@zi (X) = dzi—ix(z:) = dzi

dso(2)(dz1) (X)

dso(z)(dz2) (X)

dso)(m) = 0,

d(dz,) — tx(dz1) = mz2

d(dz2) — tx(dz2) = —mz,

so that

t t
dso)Ue (X) = - exp (—5(1:? + zg)
X (—t(ﬂ.'] dxl + I2 dIz)(2dI|d$2 - tm) -2m (I] d.‘tl + I d.‘tg)) =0.
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Proof of Proposition 2.5. In order to establish the G-invariance of U: we will extend the action
of g on S(g°) ® (V) to the algebra S(g*) ® Q(V) ® A(V). For X € g, the operator

Lx:5(8")@UV) — S(g°) @Q(V)
is the (ungraded) derivation given by
Lx =ady @id+id® Ly.

The operator ady is the coadjoint action of X;if X* € g and Y € g then adg(X*)(Y) =
X*([X,Y]). The Lx in id ® Lx stands for the Lie derivative on (V). The exterior powers of
the representation p : g — so(V') determine, for any X € g, an operator Ax : A(V) = A(V). The

desired extension of Lx is
Lx:S(g")@0(V)® A(V) — S(g") @ V)@ A(V)
Lx =Lx®id+id® Ax.
Lemma 2.2. (i) ByAx = 0; (i) CxBy = B, Lx.

Proof. (i) Since Ax preserves the degree in A(V), it is enough to show that By Ax(x1x2 -+ X2v) =
0. We have
2v
Ax(X1X2++ X20) = 3 X1 Xi=t (XX0)Xi41 *** Xav-

i=1

Since X is a skew-symmetric transformation of V we have (Xxi)  xi =0; s0

XXi € SP“"(XI,"‘ y Xi=1y Xi+1y" " * ,sz)-

This shows that Ax(x1x2 - x20) = 0.
(ii) If e € S(g*) ® (V) ® A(V) then a can be written as a = GiopX1X2*** X2v+ lower order in y;
hence

L:xBxa = Cxatop.

But

BxCXa = Bx (£Xalole X2 X2v + GropAx(X1X2° " * X2v) + lower order in x)

Exalopi

because of (i).
We can now prove the G-invariance of U,, i.e. LxU; = 0 for any X € g. From the previous

lemma,

@mt)’LxU, = B, (éx (exp% (-z? -2v~=1dzx + x¢x)))

B, (exp% (-2 - 2v~Tdzx + x#x) Lx %(—:t:2 -2V-ldzx + x¢x)) .
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Now Lx (tz2/2) = Lx(dz - x) = 0 because X is a skew-symmetric transformation. This can be seen
as follows:
Lx(dz-x)=CLx(dz) -x+dz-Xx=X(dz) - x +dz-Xx =0.

As for Lx (x¢x), recall that ¢y is actually a linear map on g with values in A(V): if Y € g then
x¢x(Y)=x-Yx.

(As explained before, the symbol x denotes a vector whose components are the basis elements

X1,"°* ,X2e- The - is just the dot product of such vectors.) Therefore

[(Xx)ex](Y) + xo([X,Y])x + [x&(X x)] (Y)
= (Xx) - (YX)+x- (XY -YX)x+x-Y(Xx)
= (Xx) (Yx)+x (XYx) =0,

[lfx (x¢x)] (Y)

because X is skew-symmetric. Hence
[:x (—:l:2 -2v-ldzx + x¢x) =0,

and LxU; = 0, as claimed.
In order to prove part (ii) we introduce some interior product operators as follows. We first
define
i AMV) — A(V)

as the graded derivation satisfying ¢y, (x;) = 6i;.
Lemma 2.3. B, ¢y, =0 for any i.
Proof. Since ¢, lowers the degree by 1, there is no top part left.

Definition 2.5. Let
I:5(g")@UV)@A(V) — S(g°)22(V)®A(V)
be the operator Z = id @ id ® z¢,, where
Tyt A() = C¥(V)QAV), 2ty =) Zit,.
The previous lemma shows that B, Z = 0. This enables us to prove that dgU; = 0:
@mt)dols = dgBy (exp 2 (-2~ 2V Tdzx + x¢x))
= Bydg (exp % (-2® -2v-ldzx + x¢x))
= By (exp% (-z* -2v-Tdzx + x¢x) dc % (-z% - 2v-Tdzx + x¢x))

= B, (exp% (-z® - 2v-1dz x + x¢x) (—tzdz + t\/——1(¢z)x)) .
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For the last equality we have used the properties of dg
dgz =dz dg(dz) = —¢z dgo = 0.
The key remark is that

I(-2*-2V-1dzx+ x¢x) = -2V-lzdz+z-¢x— x ¢z
= -2y-1zdz - 2(¢z)x,

since ¢ is skew-syminetric. This shows that
—trdz +tvV-1(¢z)x = 2‘/_ 2 ( z? - 2V/=ldz x + x¥x)
and so

(2nt)’dcU, = #—— By (expE (-2* —~2v/-Tdzx + x¢x) 1% (-2* -2v-Tdzx + x¢x))

= 2\/—Bx'~’exp (-2® - 2v/-1dz x + x¢x)

= 0.

Part (iii) is easy: indeed, only the term —/—1dz x in Definition 2.4 contributes to the top degree
part of U, as a differential form on V, and we have already seen that

By (~V=Tdzx) = dz, - - - dza,.

Together with the chosen normalization, this proves (iii).
The elements U, can be used to construct Thom forms for E. Recall that 2(E) = Q(P xg V) ~
Qbes(P x V), and the homomorphism

(V) % P x V)% 225 (P x V)pas ~ Q(E)

is a chain map with respect to the differentials dg and d on 2¢(V') and Q(E), respectively. Therefore
Thy = Hor o CW(U,) is a Thom form for the vector bundle E; that is

Proposition 2.68. (i) Th, is a differential form of degree 2v on E;
(ii)) dTh, = 0;
(iii) flibru Th = 1.
Proof. The image of ¢ by the Chern-Weil homomorphism is the curvature 2, a 2-form. After
substituting 2 for ¢ in (2.4), each term in the exponent has the same degree as a differential form

as its degree in x. The Berezin integral picks the term of degree 2v in x and so Th, also has degree

2v as a differential form. (ii) follows from Proposition 2.3 and (iii) from Proposition 2.5 part (iii).

28



Differential form representatives e;(E, s) for the Euler class are obtained by pulling back Th,(E)
via a section 8 : M — E (which can be viewed alternatively as an equivariant map s : P — V).

In fact, the situation is summarized by the following commutative diagram:

U € Ng(V) €W, Q(E) 5 Thy(E)

|~ |- (2.2)

Wi(s) € Qc(P) 222%, (M) 5 e/(E, 5).

Therefore the image W,(s) of e,(E,s) in the equivariant cohomology H¢Z (P) is expressed as the
pullback of U; through s:

Wi(s) = By ((%ﬂ)vexp% (—"8"2 -2y/-1dsx + x¢x)) . (2.3)

As an application, the above construction can be used to give an analytic proof of the Poincaré-
Hopf theorem. If dim V = dim M then the Mathai-Quillen construction provides an integral formula
for the Euler number e4(E) = [,, e(E); note that any of the forms e, can be used, For t =+ 00, (2.3)
shows that the integral localizes to the zeroes of the section s; if s is transversal to the zero section,
ex(E) can thus be reduced to a sum of contributions from the finitely many zeroes of s. These
contributions turn out, after a more careful analysis, to be just +1's, corresponding to a certain

orientation.

2.3 The case of equivariant vector bundles

We now extend the Mathai-Quillen construction to the case of equivariant vector bundles. Let P
be an H-equivariant principal G-bundle over M, where G and H are compact Lie groups and M
is compact oriented manifold. The H-equivariance means that H acts on both P and M and its
action on P commutes with that of G. Let V be (as before) an oriented vector space of dimension
2v endowed with an inner product and representations p : G — SO(V) and A : H — SO(V). The
H-action on P induces an action of H on the associated bundle E = P x5V, 8o that E is naturally
an H-equivariant bundle over M. Also assume that H is connected, which implies that its action on
E preserves the given orientation (so that the equivariant Thom isomorphism holds without further
restrictions).

One change needed in the construction carried out in the previous section is the replacement
of the Chern-Weil homomorphism by its equivariant analogue. Choose an H-invariant connection
on the principal bundle P. Denote by 8 € Q!(P) ® g the corresponding connection form and by
€ Q?(P) ® g the curvature form.

Definition 2.68. (i) The moment J of the connection 8 is the element of h* ® C*(P) @ g given by
J(Y) = 1y@ for any y € h. The symbol Y in the right-hand side of the equality denotes the vector
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field on P determined by the element Y € h through the infinitesimal action of h on P.
(ii) The H-equivariant curvature 1y of the connection 6, is the element of S(g*) ® (P) ® g given
by Qp:=0-J.

We now summarize the properties of the equivariant curvature.
Proposition 2.7. (i) For any X € g,
Lx () = —adx o Qp;

(ii) Since 0 is an H-invariant connection form, i.e. Ly8 =0 for any Y € b, the I-form 8 can be
regarded as an element of Q) (P) ® g. In this context,

Uy = dnb + 306,0)

(the equivariant Maurer-Cartan equation).
(iii) If D denotes the covariant derivative operator associaled with the connection 8, and we define

the equivariant covariant derivative Dy on Qg (P) by
Dyw(Y):=Dw(Y) —y[w(Y)] for Y €,

then
DyQuy =0

(the equivariant Bianchi identity).

Proof. (i) It is well-known that LxQ = —adx v Q. It remains to check that J has the same
property, namely Lx J = —adx J for any X € g. Indeed, if X € gand Y € }) then

Lx(y 0) =Ly 6+ ty(—adx 9) = —adx(l.y 0).
(CLxY = 0 because the actions of G and H commute.) Therefore
Lx (J(Y)) =adx (I(Y))

for any Y € b, as stated.
(i) dy0 (Y) = df — 1y8 = df — J(Y) or, as elements of R} (P) ® g,

dnb + 5(6,6] = db - 7 + 2106 = .
(iii) We know that

DuQu(Y) = D(Q-J(Y)) - (2-JT(Y))
~D(J(Y)) - tyQ
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because 7(Y) is a zero-form so 1y J(Y) = 0, and § satisfies the usual Bianchi identity DS} = 0.
But

d(T(Y)) = diyd=Lx0—iydd = —1y (n - v%[ﬂ,ﬂ])
—iy Q2+ [1v6,0).

The first term is obviously horizontal whereas the second is vertical because ty# is a zero-form and

6 is a vertical 1-form, hence
D(7(Y)) = d[(T(Y))lpor = —tv R,
and so DyQg (Y) = 0.
Definition 2.7. The H-equivariant Chern- Weil map
CWhyp:S(s") — Qu(P)

is the algebra homomorphism given on X* € g* by CWg(X") := X* () € Qu(P). This map
extends to a map from the algebra of G x H-equivariant forms to the algebra of G-invariant, H-

equivariant forms on P,
CWhy : Qexu(P) — Qu(P)°.

By composing this map with the horizontal projection operator determined by the connection 8 we

get the H-equivariant Chern- Weil homomorphism
Hor o CWH'o : anH(P) - QH,bal(P) = QH(M)'
The following propositions extend the properties of the usual Chern-Weil homomorphism.

Proposition 2.8. The homomorphism Hor o CWjy is a chain map with respect to the differentials
dgxy on Q1g(P) and dy on Qy(M), therefore Hor o CWy descends to a map from HG, 4 (P) to
Hy(M).

Proposition 2.9. The map
HoroCWyg : HGyg(P) — Hy(M)
is independent of the connection 0.
Proposition 2.10. The map Hor o CWy is an isomorphism between Hg, ,(P) and Hp(M).

We can now extend the Mathai-Quillen construction to equivariant vector bundles. Start with

the universal Thom forms U; € g x (V') constructed in Section 2. Let
Thyo(E) := Hor o CWx(U,) € Qu(E).
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The above map is the composition
CWy G Hor
QGxH(V) — Q”(P X V) D QH(P X V),m, =~ QH(E).

We claim that Thy,(E) is an H-equivariant Thom form for the vector bundle E. The proof of the

following assertion is identical to that of Proposition 2.6,

Proposition 2.11. (i) The degree of Thy, as an H-equivariant form on E is 2u;
(ii) dyThy, = 0;
(55) [pipres Thie = 1.

The analogue of diagram (2.2) in the equivariant context is

Ui e Qaxn(V) H2r2Wu, u(E) 5> Thy(E)

1-- l.- (2.4)

Wi ,e(s) € Qaxn(P) 2221, 04 (M) 3 eny(E, s),

where s : M — E is an H-equivariant section. Explicitly,

Waato) =B, ((5r;) esp 3 (<ol -2 Tdox + xt0a +owx)) . (29

The elements ¢ and ¢y are the universal Weil elements for the actions of G and H, respectively.

Notice that Wy (8) itself is an equivariant Euler form: namely, it is a representative for the
G x H-equivariant Euler class of the bundle P x V — P (which, although topologically trivial, is
not trivial as a G x H-equivariant bundle). Note however a subtlety about this statement which will
become very important in Chapter 4. Assume for simplicity that H is abelian (in our applications
it will be S'); when regarding the bundle P x V as an H-equivariant bundle, the action of H on
V is really the opposite of the chosen representation A : H = SO (V). This is due to the definition
of the associated bundle-recall that P xg V is the quotient of P x V by the G-action given by
g(p,v) = (pg,g~'v). The same fact can be seen by looking at the differential form W,(s) introduced
in diagram (2.2). W,(s) represents the G-equivariant Euler class of the trivial bundle P x V — P,
but it can be also interpreted as the result of applying (2.5) to the case of the trivial structure group

G and changing the name of H to G.

2.4 Integration over P versus integration over M

In the application to the proof of the Poincaré-Hopf theorem, we the expression of the Euler number
as an integral over M. For later purposes, we will have to express the Euler number of the vector
bundle £ when rk E = dim M as an integral over the total space of the bundle P, This section

shows how to compare integrals over P and M.

32



The easiest way of relating integrals over the manifold M and the total space of the bundle P is
to introduce a vertical volume element v (i.e. a volume element along the fibres of 7 : P — M),

normalized so that its integral over each fibre is equal to one. For 8 € Q'°P(M) we would then have

/P1r'ﬂ/\v=/Mﬂ.

We now turn to the G-equivariant extension of this property.

Definition 2.8. The equivariant vertical volume element g is the element of Q(P) ® S(g) con-
structed as follows: let Aj,- -+, Adim g be an orthonormal basis of g with respect to the Killing form,

normalized so that vol(G) = 1. Choose a G-iavariant connection & on P with curvature 2, Then
yg 1= eZafla®la g (ez:.o.en..)) notation Q@A g (g9 (2.6)
where B, denotes Berezin integration with respect to the Lie algebra variable 7.

We explain more carefully the notation in the above formula: the differential forms 8 and §? take
values in the Lie algebra g. Their components in the chosen basis of g are denoted by 8, and Q,,
respectively. The exponential eXa @2®a ig to0 be computed in the algebra Q(P) ® S(g), whereas
the Berezin integrand is in Q(P) ® A(g). Actually ny,- -+ ,7dim g are just a different notation for the
elements of the same basis of g chosen before. Note that the Berezin integral in the above formula
is just a fancy way of writing a vertical volume element.

The role of the first exponential factor is explained by the next proposition.

Proposition 2.12. (i) The linear functional on Qc(P) defined by

C!H/ <aAvye >,
P

where < aAy¢ > denotes the contraction of the polynomial parts of a and g, vanishes on dg-ezact
forms, hence it descends to HG(P).

(ii) Let a* represent a cohomology class in HE(P) and a® be its image in H*(M) by the isomorphism
Hor oCW. Then

/ <a“A v >=/ a’. (2.7)
P M
Recall that a* € Q(P) ® S(g°) and 7¢ € Q(P) ® S(g). The (, ) symbol denotes the natural

pairing between S(g*) and S(g). To better understand the proposition, note that when a* is just
the pullback of a top form on M, the only part of vy which matters is the usual vertical volume
element (look at the degrees of the forms involved). However, the proposition wouldn't be true for
all a* € H3(P) if we used the usual vertical volume form instead of vg. It is in this sense that yg
provides the suitable equivariant generalization.

The proposition is proved by Austin and Braam in [3]. The authors further explore the signifi-

cance of yg from the (co-)homological viewpoint. They first define equivariant homology and show
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that it can be computed by a complex of differential forms very similar to the Cartan model. It
then turns out that y¢ is a cycle in this complex, and hence represents an equivariant homology
class. The functional defined in the proposition is interpreted as a pairing between homology and
cohomology.

The geometric content of the proposition (homology and cohomology set aside) is very easy to
explain: the pairing of a and yg amounts to substituting the curvature in the polynomial part of
a; the result is then multiplied by the vertical volume form. This actually proves (ii) if a is the
pull-back of a form on M, since then 2.7 reduces to the usual property of the vertical volumne element.
According to Proposition 2.1 it is therefore enough to prove part (i). We will do this in the proof of
Proposition 2.13.

With the physical applications in mind we reformulate (2.12) in such a way that the pairing of
the polynomial parts of equivariant forms is also expressed as an integral. This is achieved by means

of the Fourier transform (normalized so that 1 = ). If P and Q are polynomial functions on g then

< P(I)v Q(I) >polun =< F“\), Q("i:) >distributions

forgally 1 i(z,£) —i
s /m / ¢ COPOQ(-i),

A more accurate way of writing the last equality is to insert an exponential convergence factor

(2.8)

(i.e. a rapidly decaying test function):

: 1 z,£)z— (€, 4
< P(z),Qx) > = lim e | e /me“ 92= <O P(£)Q(~iz). (2:9)

Notice that in (2.12) the pairing was between an element in S(g*) and one in S(g), but this can be
identified with the inner product in S(g*) via our choice of a nondegenerate bilinear form on g.
We can now obtain a formula expressing the Euler number as an integral over P by using the

Mathai-Quillen construction in conjunction with (2.12) and (2.8):

1 1 2 . . )
= =5 llall 6®n (0N g-i00A g [o—itdox+ixex)
“#(£) (2m)dime (2mt)dim V/2 /; ¢ B (") /,\eo /¢€9 o > (e (2)10)

The variable £ from (2.8) is in our previous notations ¢ whereas z corresponds to A. As remarked
before, to make this totally rigorous we should include the convergence factor as in (2.9) and then
take the limit as e —+ 0. Note here an additional strength of Proposition 2.12: instead of using the
actual Euler form, we can use the simpler form W,(s) defined by the equation (2.3), since we know
that the Euler form is obtained by applying Hor o CW to it; this makes it unnecessary to apply the

Chern-Weil homomorphism explicitly. We now summarize the discussion above.

Theorem 2.2. Let E be a vector bundle as discussed above. Its Euler number can then be computed
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by the formula

. 1 1 —3lsl* R (.0n / / i(8.0)— €(6,6) ,— RO —itds x+§xéx
e#(E) = 1} Gayams Groyam V72 /,."" Ba(e®N) | ], e, N C )
(2.11)

This formula can be made even more explicit: the choice of a G-invariant Riemannian metric on
P determines a particular connection (with connection form @ and curvature ) whose horizontal
distribution is given by the orthogonal complements to the tangent spaces to the orbits of the G-
action. If C : g — TP denotes the infinitesimal action of g and C* € Q'(P) ® g is its adjoint with

respect to the inner products on g and TP, then
6= (CcC)"'c Q4or = Hor(d0 + %[0.0]) =(C*C)"'dC". (2.12)

In the integral formula for the Euler number we can use ,, instead of ) since y¢ is a top degree
vertical form. If we also make the change of variable A\ — (C*C)A we can incorporate the Jacobian
factor in the fermionic integral over n to write det(C*C) B,(e?®") = By(e!*°™). The exponent
(-,Cn) is a one-form on P whose value at the vector field ¥ is the inner product of ¥ with Cn
(which is also a vector field on P). Borrowing the notation used in the physics literature, we could
write this form as (i, Cn); but the simplest notation comes from the fact that (y,Cn) = (C*¥, ),
so (-,Cn) = (C*,n). We obtain

= 1 1 -4lal? cr, i(¢,C°CA) —idC* —itds
ey(E) = (2m)@m s (2n)dim V/2 /;'e flei’ g, (e‘ ”)) /[\oeae (#.C7CNg-idC @A g (e td x+&x¢x)
' (2.13)

The last formula is particularly nice for the applications to quantum field theory since it involves
no non-local operators (for instance inverses of differential operators, which appear in the a priori
expression of the connection 1-form). Apparently the expression (2.13) doesn't involve any connec-
tion on P, relying instead on the G-invariant Riemannian metric. But it is not hard to see that the

connection defined in (2.12) is actually involved. Namely, if

Ic := B, (e(C'.n)) £l (#.C°CA)-idC" @A (2.14)

then the A integration yields a é-function in ¢ centered at ¢ = (C°C)~'dC", i.e. ¢ is to be replaced
by the curvature, as in the comment following Proposition 2.12.
There is one more cosmetic treatment which can be applied to (2.13) to make it look closer to

standard formulae in quantum field theory. Namely ' can be replaced by
g = By (£071)) g (67 CN-wacer, (2.15)

and the formula for the Euler number by

1 1 t
#E) = s G J, | A.¢e93"8* g (Tl
+{(C*\ ) +i($,C°CA) —idC* ® A — 2idsx + x¢x), (2.16)

35



in which the appearance of the ‘coupling constant’ ¢ is exactly as in formula 3.1 of [33]. To see the
equivalence of (2.13) and (2.16) it is enough to perform the change of variables A = tA/2, n - tn/2
and notice that the resulting determinants cancel out since the A integral is bosonic and the 7 one
is fermionic,

Finally, in order to eliminate the overall constant (2mt)~9™V/2 we can introduce an auxiliary

bosonic variable H € V and use the fact that

[, exp (=itto, ) = SUEIE) = (amyam 2 exp (=517
HeV

which enables us to rewrite (2.16) as

N S b oite BY - HI2
#B) = o [, [, [ [, BiBsexs (~2ita, 1) - A
+(C",n) +i(p,CCA) —idC" ® A — 2idsx + x¢x) (2.17)

Later on, when carrying out localization arguments similar to the remarks concluding Section
2.2, the form (2.13) will be easier to use, but we will also keep in mind its equivalence to (2.16)
and (2.17).

Of course (2.13) should be understood in the distributional sense; if we want the integrand to

only include smooth functions and differential forms we should write the analog of (2.11).

Theorem 2.3. Let G = P — M be a principal bundle, where G is a compact Lie group and M
i3 an oriented compact manifold. Choose a G-invariant Riemannian metric on P and a normalized
metric on g. Denote by C : g — TP the infinitesimal action of g and by C* its adjoint. Consider
the vector bundle E = P xg V associated to a special orthogonal representation of G on the vector

space V of even dimension dim V= dim M. The Euler number of I¥ is then given by

1 1 . - 2 C*
e#(E) = Gryams grgamvzz im [ e B, (e m)
// ei (¢,C’CA)—¢(¢,¢)e—idC-@o\ Bx (e—itdlx+§x¢x) . (2.18)
A @€p

2.5 Intersection numbers

We have dealt so far with the case dim V = dim M. In this case, for a generic choice of the section
8 (i.e. transversal to the zero section), the Euler number of the bundle equals the signed number of
points in the zero set Z(s), the sign being determined by a certain orientation, The previous sections
provided integral formulas for computing this number, The Mathai-Quillen formalism is also useful
in the case dimV < dim M; the Euler class can be multiplied by closed forms on M and the result
integrated over M. For a section s that is transversal to the zero section, so that Z(s) is an oriented

submanifold of M, and p,,-:-,ux € H*(M) such that degyu, + --- + degpux = dimM - dimV,

36



Poincaré duality yields

(#1#2"'#k)==/ FIA"'AI‘I:':/ e(E)Ap1 A+ A pg. (2.19)
Z(s) M

Therefore (u)p2 ---ux), which is by definition the intersection number of the cohomology classes
i1, , bk restricted to Z(s), can be expressed as an integral over M.

Let us assume we are in the 'good’ situation when G acts freely on P and E is obtained as an
associated bundle over M = P/G. Denote by f,--- , i the images in H;(P) of the given coho-
mology classes via the isomorphism H*(M) ~ H§(P). By using the Mathai-Quillen construction

and Proposition 2.12 we get

Theorem 2.4.

1 l P - _ 2 c*
(“1#2 .. 'l‘k> = (21r)dinlg (21|-t)dlm iz '/Ppl A--AigAe sl B’l (8( .n))

/ / O CN g-idC A g (e—ud- x+§x¢x) _ (2.20)
Ao€p

2.6 Integration over P versus integration over M: an Sl-
equivariant extension

For later purposes we will need an extension of Proposition 2.12 to the case when P is endowed with
an action of G x S! such that the action of G is free. As stated in Proposition 2.10, there is an

isomorphism between H(, ., (P) and Hg, (M).
Definition 2.9. The G, S!-equivariant vertical volume element vg 51 € Q(P) ® S(g) @ C[[m]] is

YG,st = (- J)® ’\Bn (eOQT)) )

Recall that 6 denotes an S'-invariant G-connection on P and Qg = ) — J is its S'-equivariant
curvature, where .7 = mé@(X) (as usual, X is the vector field corresponding to a generator of s').

The rest of the notation is explained before Proposition 2.12,

Proposition 2.13. (i) The linear functional on Qg g1 (P) (with values in C[m]) defined by

ao—)/ <alAvyg,s >,
P

where < a A g s1 > denotes the contraction of the parts of a and yg sv which are polynomials on
g, vanishes on dg 1 -ezact forms, hence it descends to H(, (P).
(ii) Let a® represent a cohomology class in Hy, ¢ (P) and ot be its image in Hg (M) by the

isomorphism Hor o CWy. Then

/ <a" A g s >=/ at. (2.21)
P M
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Proof. (i)Note that although vg: is a power series in m, after pairing it with a we are left with a
polynomial in m. This is due to the pairing of the polynomials on g-if a has degree a as a polynomial
on g then only the powers < a of J in the expansion of exp(2 — 7) contribute. Let Y},...,Yymg
be the basis of g* dual to A,...,Adimg. Let X be, as usual, the vector field corresponding to a

generator of s'. It is enough to show that
/; <dgxsiBArgs >=0
for a ‘monomial’ 8 = Bom* [[ V¥ with By € Q(P). We have
daxs'B = (4o ~ D (1r.Bo)Yi = (ex fo)m) m* T vi#.
We need some results about 7o g1 as well; to do explicit computations we write
Yoxst =01 A+ Aaimg Aexp (3 (0 — mex) ® A;) .
We know that

dg; = Q- %[0. 6}
aQ;, = -[0,9);
dix8i = —uxSh+(tx8,0);,

the last formula being derived in the proof of Proposition 2.7. This leads to

dYgxs: = I (1) A AdB; A+ Abaimg Aexp(Ry ® A)
H=1)""90, A -+ ABaimg A (Y (d% — mdx8) @ i) A exp(Qu ® A).

Hence

dygxst = Z(—l)‘“'(h A AN ABdimg N exp(Ry @ A)
+(=1)4m80, A ... AByimg Am (Z xS ® ,\;) Aexp(Qy ® A)

because any product of at least dim g + 1 forms 6; vanishes. We also have
1G5 = D (1) T O A ABLy Ay Ao AbBaimg Aexp(Qp @A)
because the 2;’s are horizontal and ¢ x 8, are zero-forms; similarly,

Lx Yg,s' = Z(—l)i—lal A AxOiA--- Aodlmg /\exp(QH ® /\)
+(=1)4m00, A+ ABimg A (Z(‘XQ‘) ® )q) Aexp(y ® N).

It is now easy to check the above assertion by using Stokes' theorem and the fact that

[m0r=[utr=0
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We have
/P < (dPo — (¢xPo)m)m* HY.-'" AvG,st >
= /Pﬂom"AZ(-l)‘-‘o, Ao A (R = ex0) A ABaimg A [[ (R — ex6))™
whereas

[ < Z¥insm [I¥8 Avas >
= [ < T Visom* TTYA A A Abiot ABigs A+ ABamg Aexp(@n ©1) >
P

/ Bom* A S (=118, A+ Aot ABigr A+ Aaimg A (s — ex8) [T (05 — 1x05)4,
P

which completes the proof of part (i).
(ii) This can be easily deduced form part (ii) of Proposition 2.12. Namely, if a € HamM+2k(pr)

then a = m* a*°P+lower degree forms, with a'°? € H!*P(M) and so

/ a=m"/ at’r.
M M

Similar facts are true for the pull-back 7*a € Hj, ¢ (P), namely n*a‘°? € H5(P) and

/<1r‘al\'m,s| >=/ <matP Ayg > .
P P

The explanation is that 7*a and 7°a!°P are constant as polynomials on g and so they only pair to
the zeroth order terms in the expansions of v s1 and 7g, which coincide.
Remark. It is natural to ask what happens if m is regarded as a real number rather than an

element of (s')*. One can then define an operator dg,m on QG(P)Sl by
dg,m(w) := dw — mixw

whose square is 0 and the corresponding cohomology group Hg,m(P). The element ¢ m is then
defined similarly to yg s1-except that now m is is real number, so that vg , € Q(P) ® S(g). The
proposition proved above has an obvious analogue (with the same proof)-the values of the functional
are now polynomial functions in m and for m = 0 we are back to (2.12). This will be used later in

our quantum-field theoretic application.
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Chapter 3

The Mathai-Quillen Construction
in Topological Quantum Field

Theory

The Mathai-Quillen construction can be used to give a (formal) geometric interpretation of the par-
tition functions of certain topological quantum field theories. The general idea is that the partition
function of these theories is in fact a path-integral representation of the equivariant Euler number
of a certain infinite-dimensional bundle. More generally, the path-integrals describing correlation
functions can be understood as representing intersection numbers of equivariant cohomology classes.
Historically, these ideas were first used in the context of Donaldson-Witten theory, introduced in [33]
as an example of a quantum field theory whose correlation functions are topological invariants of
the base 4-manifold (the Donaldson invariants). The topological structure of the Donaldson-Witten
Lagrangian leading to the above properties of the partition function and correlation functions were
discovered by Baulieu and Singer [4] and Atiyah and Jeffrey [1).

In this chapter, we will present the analog of the Atiyah-Jeffrey viewpoint for a number of four-
dimensional topological gauge theories. We will start with the cases of Donaldson-Witten theory
and topological Seiberg-Witten theory-merely by rewriting of the Atiyah-Jeffrey argument in the
light of the results of Chapter 2. Our strategy will be to exhibit a Riemannian manifold P with an
isometric G-action, a vector space V on which G acts linearly, and a G-equivariant maps: P — V
so that the integral formula (2.10) applied to the G-equivariant bundle P x V — P endowed with
the section s coincides with the partition function of the quantum field theory.

A slightly more interesting case is that of the topologically twisted version of N = 4 super-
symmetric Yang-Mills in four dimensions studied by Vafa and Witten in {32]. The corresponding
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Lagrangian can be understood in terms of a variant of the Mathai-Quillen construction which makes
use of the particular structure of the Vafa-Witten theory. We describe geometrically this version
of the Mathai-Quillen construction and we apply it formally to the Vafa-Witten theory, in order
to recover the result of [32], which asserts that the partition function is (under certain assump-
tions on the base four-manifold), a generating function for the Euler characteristics of the moduli
spaces of instantons. Even under more general assumptions, the partition function has a topological

significance, although it is not so easy to describe it in general.

There is a remarkable conjecture, called the S-duality conjecture, about the physical counterpart
of Vafa-Witten theory, untwisted N = 4 supersymmetric Yang-Mills. The conjecture predicts that
the partition function has specific modular properties under an action of SL(2,Z). Vafa and Witten
prove that in some cases this property remains true for the topologically twisted version of the
theory. The latter is therefore important because the topological meaning of its partition function
makes it possible to check the S-duality conjecture by a purely mathematical argument.

The main point of this chapter is the study of a different topological twist of N = 4 supersymmet-
ric Yang-Mills, which we call topological non-abelian Seiberg-Witten theory. The choice of this name
is motivated by the fact that the minimum energy classical configurations of the theory turn out to be
exactly the solutions of a non-abelian version of the Seiberg-Witten equations. The key property of
topological non-abelian Seiberg-Witten theory is the presence of an additional S'-symmetry, which
is explored by means of the equivariant extension of the Mathai-Quillen construction introduced in
in the previous chapter.

The S!-symmetry of topological non-abelian Seiberg-Witten theory produces significant simpli-
fications in the topological structure of its partition function, therefore making it a good candidate
for the test of the S-duality conjecture. We will in fact make the point that topological non-abelian
Seiberg-Witten theory is in general a better candidate than the Vafa-Witten theory because of
the current knowledge of the topological quantities which are involved-we will discuss all this in a
separate chapter.

We work in the following context: Let X% be a simply-connected oriented compact smooth
four-manifold and E a rank 2 complex vector bundle over X with structure group SU (2); we will
sometimes write Ey instead of E if co(E) = k. We will denote by A the space of unitary connections
on E, G the group of unitary gauge transformations of E, and su(E) the bundle of traceless skew-
hermitian endomorphisms of E, so that I'(su(E)) = Lie(G). We assume that a Riemannian metric
on X has been chosen and that the spaces of sections of the various bundles involved are endowed
with the appropriate L2-metrics. We will also be interested in the Spin°-structures on X. Let L
be a hermitian line bundle over the simply-connected oriented Riemannian four-manifold X, with
c1(L) = c¢. Denote by W¥* the corresponding Spin‘-bundles (i.e. A?W?* ~ L). They can he

constructed as follows: the oriented frame bundle of X* is an SO (4)-bundle; it can be shown that
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its structure group can always be reduced to Spin°(4) (recall that Spin®(4) = Spin(4) x4, U(1)
projects onto SO (4)). Associated to any such reduction there is a U(1)-bundle obtained through the
homomorphism Spin(4) x4, U(1) ﬂ) U(1) acting on the second factor. It turns out that there is
a unique reduction of the frame bundle to Spin®(4) such that the first Chern class of the associated
U(1) -bundle is ¢. The bundles W* are associated to the + spin representations on C?. It is a
standard result that, for a simply-connected manifold X, its Spin®-structures are in bijection with

classes c € H?(X,Z) (see, for instance, [18]).

3.1 The Donaldson-Witten theory

The so-called Donaldson-Witten theory was introduced in [33] as an example of a quantum field
theory whose correlation functions are topological invariants of the base 4-manifold (the Donaldson
invariants). It turned out that the Lagrangian of the theory has a geometric significance which was
explained by Baulieu and Singer [4] and Atiyah and Jeffrey [1].

The latter paper related the partition function of the Donaldson-Witten theory to the Mathai-
Quillen formalism. We will now present their argument in the light of the results of Chapter 1. The
scheme developed there, in particular formula (2.13) expressing the G-equivariant Euler number

eg(P, V, s) as a functional integral, will be applied to the following data:

e P:=Ag
o V=02 (su(E))
o G:=¢Gg

e s:P—V, s(A):=F} (the self-dual part of the curvature of A).

Recall that the infinitesimal action C : Lie(G) —+ T4 A is given by Lie(G) ~ Q°su(E)) > A —
—Da) € Q' (su(E)), where D, is the covariant derivative operator defined by the connection A.
If D} denotes its formal adjoint with respect to the L2-inner products then the adjoint operator
C* : TaA - Lie(G) satisfies C*y = —D jy for any ¥ € Q' (su(E)) ~ T4 A.

We also need to work out the expression of the 2-form dC*. Let ¢, ¢n € 2} (su(E)) be two
tangent vectors. Since Ag is an affine space modeled on Q! (su(E)) we can regard 1, v, as defining

constant vector fields on .A. We then have
dC* (Y1, ¥2) = ¥1(C"(¥2)) — ¥2(C~(¥1)) = C*([¥h1, ¥2]) = ¥1(C* (¥2)) — ¥2(C* (1))
since [1,12) = 0. The notation C* () stands for the function A — C(t,). Since
Dasto A = Dadv + t{r, A = Da) + thy, A,
where by, : 9(su(E)) - 0! (su(E)), we have

C/;+HP| ('/’2) = -Dr;% —t (bl/ll ). ¥2.
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We claim that (by,)" 2 = — * [1)1, %2). Indeed

([91, Al ) =/X'Tr([¢1,f\]*¢z) =—/x'1'r([r\.¢n]*¢z) = -/x’ﬁ (Alhr, #th2]) = (A, —#[th1, #9h2]).

We have used the invariance of Tr and the property that #x = 1 on 4-forms. Hence

Catey, (W2) = —=Djtha + t * [y, %1h2)

and so, by taking the derivative at t = 0, 1;(C*(2)) = *[41, *32]. Notice that this can be rewritten
by using the contraction operator ; ® ; — §p induced by the Riemannian metric on X. Namely,
if [, Jo denotes the composition of the contraction operator on 1-forms with the Lie algebra bracket

on their values then #[1y, *1p2] = (11, v2])o. We finally get

dC”* (¥1,v2) = 2(th, ¥2)o-

In the sequel we will write the formula above as

dc* = ["‘bv ¢]0

with the understanding that 1 is used as a notation for both tangent and cotangent vectors on A
(identified through the Riemannian metric).

We will also use a standard notation from physics papers which expresses integrals of differential
forms on a manifold as supersymmetric integrals. Namely, let P be a real oriented vector space
endowed with an inner product and z; be a basis of P*. We regard the z,; as coordinates on P
and ¥; = dz; as constant differential forms on P. The inner product determines a volume element
volp, a constant top form on P which can be used to integrate functions with appropriate decay
properties at infinity. The volume form volp can also be used to define Berezin integration in the
algebra A1, -+, ¥aim p]- If w is a (suitably decaying) differential form on P written in terms of z;
and dz; we then have

[ ot dz) = [ Byota, v
On the right-hand side, the result of the Berezin integration is a function whose integral on P is
defined as above, by using the volume element.

The differential of the section s is given by ds(y) = (Day)* and the action of Lie(G) on V is
determined by the adjoint action on su(E), so x¢x = x[#, x]- The conclusion of the above discussion

is the following functional-integral formula:

eS(PV,s) ~ const/e‘%llF:"'B,, (e'“’”"")// ' (9:DiDa)
A Ad€p

Le~ivwlorg, (e—il((Dw)+.x)+hl¢.xl)

~ const/’DADt/fDn’D,\'qu'Dx e~ JxTr Low (3.1)
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where

Low = %F;:"’ + 9 AsDAn—isdD5D4N+i [, Plod + itDap A x — %x/\w,x].
(3.2)

We use the ~ sign in (3.1) to denote a formal equality, i.e. the fact that the path-integral on
the right-hand side represents the Euler number on the left-hand side. The notation 'const’ in the

formula denotes the (infinite) constant

1 1
(27)dim A (eu(E))/2 (2r2)8m Q2 (su(E)) /2

(3.3)

As explained in Section 2.4 (equation (2.17), we could get rid of this infinite constant at the expense
of introducing the auxiliary variable H. We assume that formula (3.1) is correct for any ¢t > 0, as
would be the case if the objects involved were finite-dimensional. Since the argument leading to (3.1)

is a formal one, it is important to relate it to the physical interpretation of its right-hand side.

Lemma 3.1. The ezpression Lpw defined in (3.2) is the Lagrangian of a quantum field theory
called topologically twisted N = 2 supersymmetric Yang-Mills theory. Accordingly, the right-hand
side of (3.1) is the partition function Zpw of the theory.

The statement is a consequence of the discussion in Sections 2 and 3 of [33]. A more detailed
exposition can be found in Chapter 15 of [7]. Another viewpoint, found in [4], explains how Lpw

can be obtained by gauge-fixing the Lagrangian
LA):= / Tr (Fa A Fp)
X

which is obviously topological since the result of the integral is just a multiple of the second Chern
class of the connection A.

We have seen in Chapter 1 that the formula for the Euler number is meaningful only if rk E =
dim M; this implies, for a generic section s, that dimZ(s) = dimM — rkE = 0. In the case
dim Z(s) > 0 the Mathai-Quillen construction yields an integral formula for intersection numbers
on Z(8). To understand the analogues of these cases in our infinite-dimensional problem we first cite
some results of Donaldson theory. The first fact refers to the space of instantons, i.e. connections

whose self-dual part of the curvature vanishes, modulo gauge equivalence.

Proposition 3.1. If b, > 0 then, for a generic metric on X, there are no reducible anti-self-dual
connections and the space My of instantons on the bundle E, is a finite-dimensional manifold of
dimension 8k — 3(1 + b3) (recall that b,(X) = 0).

Donaldson invariants are obtained as intersection numbers on a compactification of M;. Instead
of giving a rigorous definition we are going to content ourselves with a heuristic one which is the

starting point for a quantum field theoretic description. Let us first define the so-called u-classes.
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Definition 3.1. (i) Given X € H2(X,Z) represented by the embedded oriented surface X, we define
A(E) = g*°(Z) + 4% (2) € N*(A) © N°(A4) ® S* (Lie(9)") by
B ) = gz [T Av) for 41,4z € TA
WS (A, ¢) = 21% /z Tr (F) for ¢ € Lie(G) and A € A,
(i) 4(T) € S? (Lie(G)*) is determined by

AT = # /2 Tr(?)  for ¢ € Lie(Q).

Proposition 3.2. (i) The differential forms (X) and ji(IT) are G-invariant, hence they define equiv-
ariant differential forms in QZ(A) and Q4(A), respectively.
(ii) The forms above are equivariantly closed, i.e. dgi(X) = 0 and dgi(Il) = 0, therefore they

determine equivariant cohomology classes in Hg(A).

Proof. Part (i) is obvious, since the action of the group of gauge transformations is given pointwise
by the adjoint action of SU(2) which preserves Tr. As for part (ii), it is clear for 2(II) which is just
a quadratic polynomial on Lie(G). For ji(c) we have di?°(X) = 0 because 3*%(X) is a constant

differential form on an affine space, and

;20 = L —_
(i EN0) = g7z [ Tr(-DasAw)
for ¢ € Lie(G) and 1 € T A (recall that the vector field on A corresponding to ¢ is A = —D4g).
Since dg = d — 14 we have dga?°(X) € Q!(A) ® Lie(G)* and
~2,0 _ 1
(o4, 8) = 725 [ Tr(DadAw).

We now turn to dg®!(X); 4%'(X) is killed by ¢4 since it is a 0-form and

(doi® (D)5, 4) = R (BN, 9) = 725 [ Tr(8A Dav)

because (d/dt);=oFa+ty = Dav. The fact that A is a unitary connection and the properties of the

covariant derivative operator D4 on Q*(su(FE)) yield
Tr(Dagp Ay + ¢ A Day) = dTx (A y)

and so, by Stokes’ theorem,

(doA(®N,8) = 1z [ dTr@Av) =0,

as claimed.

By restriction to the subset A* of irreducible connections the forms i(X) and (1) determine
equivariant cohomology classes in Hj(A"). Since the action of G on A* is free, we can apply the
Chern-Weil homomorphism

Hg(A") =5 H*(A"/9)
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to 4(X) and (1) to obtain u(X) € H2(A*/G) and u(IT) € H*(A*/G). The cohomology classes u(X)
and u(IT) are actually related to the characteristic classes of the universal bundle U over X x A/G:
in fact u(IT) is the second Chern class of U restricted to .A/G whereas u(X) is the slant product of
[£] € H?3(X) and the second Chern class of /. A complete treatment can be found in (4] and (9].

Definition 3.2. The k-th Donaldsen polynomial is the functional
Dk : R[El,--- ,2,,,,1'[](” 4 IR.,

(where the subscript (k) denotes the polynomials of total degree d(k) = 8k — 3(1+b7) if £y, -+, Ts,
are assigned the degree 2 and II the degree 4) given by

De (5257 - EpellP) o= /M (S - (S, ) (TP, (34)

To make this heuristic definition complete one has to compactify My, choose suitable represen-
tatives of the u-classes which extend to the compactification and then prove independence of the
choices-including independence of the representatives o; in their cohomology classes. Appropriate
forms of the above properties are proved in [9].

Dy is a polynomial of degree d(k) on H2(X,Z)® H°(X,Z) (with the above grading). We can
assemble the polynomials D) into a single object by defining the total Donaldson polynomial D

D(£ 37 - 5,7 1F) = ?:z /M. (S0 ()% (TP, (3.5)
€

Alternatively one can regard I as a generating series; introduce formal variables ¢, - q,,p and

rewrite the above definition as

D ((91Z1)° (9252)°% - - (g, Tp, )2 117) := )~ g ---Qf,"p"/ p(E1)™ - p(Tp,) 02 p(T)P.
kez Mo (3.6)

This notation explains the meaning of the left-hand side D(ezp (3", gaXa)) of Witten's conjecture
stated in the Introduction.

According to the above heuristic definition we can think intuitively about Donaldson invariants as
intersection numbers on the moduli spaces M, and therefore represent them as functional integrals

by using (2.4) and (3.1). By analogy with (3.1) we can write

D(O) ~ const 3 / / T, AW (Ax, Ve, 85) A O, (3.7)
keZ Au JLie(Gx)
where O is a product of fi-classes. More concretely, the result of this procedure looks as follows:
D(E'E5? - 5,2 11%) ~ const Z/ D(fields)
kEZ .A..,Lie(Q..)

AED™ A AR AR e ST Eow (3g)
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where Lpw is defined in (3.2). We can get a nicer formula if we rewrite both sides as generating

series

D(exp(gZ + pI1)) ~ const Z/ D(fields)
kez A..Lle(O.,)

exp(—/:"TrCDw+$/xTr¢2+#/!‘:Tl‘('/’/\'ﬁ*'mﬁFA)) (3.9)

3.2 Topological Seiberg-Witten theory

We now give a concise description of the Seiberg-Witten invariants and their path-integral realization,

in analogy with the one for Donaldson invariants from the previous section.

Definition 3.3. The Seiberg- Witten equations for a unitary connection A € A and a section
Sel(W*) are

PsS=0
(3.10)

Ff +i(S®8S) =0,

where ), represents the twisted Dirac operator ), : (W+) — I'(W ~) (since Spin°(4) = Spin(4) x +,
U(1), a connection on W is obtained by combining the Levi-Civita connection on the frame bundle
with a connection A on L). If S € T(W*) then the endomorphism iS(S, ‘) is skew-hermitian so,
if we denote by i(S ® S) its traceless part, we have i(S ® §)o € I'(su(W)). To understand the
second equation, recall that Clifford multiplication yields an isomorphism A% (X) ~su(WT).

The relevant results about the Seiberg-Witten equations can be summarized as follows. The space
of equivalence classes of solutions (also called the moduli space of solutions) is a finite-dimensional
oriented compact smooth manifold. Compactness is the main difference from the Donaldson moduli
spaces (see [33])-it is precisely this property which makes Seiberg-Witten theory simpler. Strictly
speaking, the other properties can only be obtained after using some standard maneuvers in gauge
theory (i.e. by perturbing the equations and the Riemannian metric). Seiberg-Witten invariants are
defined as a signed count of the points in the moduli space if this is zero-dimensional (or as certain
characteristic numbers if its dimension is positive). The virtual dimension of the moduli space turns
out to be (c? — 2x — 30)/4, where x and o are the Euler characteristic and signature of the manifold
X, respectively (so, if by =0, 2x + 30 =4 + 5bF - b;).

For each ¢ € H?(X,Z) such that ¢ = 2x + 30 we denote by SW(c) the Seiberg-Witten invariant
defined by the Spin°-structure corresponding to c. We obtain a functional-integral realization of
SW(c) by applying the Mathai-Quillen construction to:

o P:=AL x(WT)
o Vi=2oI(W")
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e G :=Map(X,U(1))

o 5:P—V, 3(A,5):=(F}+i(S®5),D,S).

We emphasize that although e’ € G acts as the usual multiplication by e? in the fibres of W,
its action on Az is through the gauge transformation e?* since L ~ A?W*. This choice of actions
is necessary for the Seiberg-Witten equations to be gauge-invariant. The quantities involved in
the second equation are obviously invariant under scalar gauge transformations, As for the first

equation, if g = e acts as e**? on L then

I),,_m(e“’S)

= P,(e®S)-cl(ids) S

= cloDyca(e?S)~cl(idd) S

= clo(Idfe®S+eDyc8)—cl(idd)S
= e‘alDAS.

D,A (9S)

This shows that the sertion s is indeed G-equivariant (recall that by scalar multiplication on I'(W 7)).
In the above cumputation the key point is the relationship between ), and ) ,_,, , (acting on
[(W™)). The claim is that they differ by the operator icl (df): the factor of 2 disappears when
using the connection A together with the Levi-Civita connection LC to produce a connection on
W . This can be seen if we look at the projection Spin(4) x 4+, U(1) — SO (4) x U(1), which squares
the second factor.

Let us work out explicitly the various quantities in (2.13). The infinitesimal action C : g —
Tias)P = Q' (X)@ (W) is given by

C(N) = (=2D 4\, AS).

The operator D, on Q*(X) ~ Q°(End (L)) is just the DeRham derivative d and so, if ¥ € Q!(X)
and 0 € (W),

C*(y,0)=-2d"y + Cyo
where (Cg'0,A) = (0,AS) for any A € g. The 1-form (C*,n) evaluated on the vector (1,0) at (4, S)
thus equals

[ =26 Asdn+ +(,n3),

X4

where the last (-,-) denoted the pointwise inner product on W*. There is no Tr in the above formula

since we are working on the line bundle L.

For ¢, A € g we have, at (A,S) € P,
i(6,C"CA) = / di s pdd) +i = (AS, $S).
X1

In order to calculate dC* ® A, first notice that it is enough to evaluate it on vectors of the form

(0,0) € TP since C*(y,0) = —2d"y is a constant differential form on the affine space A.. Denoting,
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for short, the vectors (0,0,) and (0,0,) by o, and g,, we have:

dC*(01,02)(a,5) ® A 01 ((C*(a2),A)) — 02 ((C*(01), N)
o1 ({02, AS)) — 02 ({01, AS))

(0’2,/\01) bl (0’1,/\02) = —2(0’1,/\02)

because A is skew-hermitian. Notice that [0),02] = 0 because the two vector fields are constant.

Hence
_idC @A =i / (9, Ad).
X4

We can now write a concrete expression for the differential form I'q, the Fourier transform of

the equivariant volume element.
Proposition 3.3.
SW) o /DnDAexp (/ =29 A xdn + %(0,nS) + 4i * pd”dA + i + (AS, ¢S) + i(o, Aa)) .
X4

Let’s now turn to the universal Euler form W(s). If we denote the elements of V = Q2 ¢ I'(W ™)
by (x,T) then the terms x¢x, x¢T, and T¢x vanish since ¢ acts by the (trivial) adjoint action
ofU(1). The term denoted in the general case by x¢x therefore reduces in this case to (T, ¢T),
where ¢ = ¢* acts by scalar multiplication on T € I'(W~). We also have

ol = [ F3*+2Ff(S @ 5)o + S ® ol + 1,5

and
ds(a,5)(¥,0) = (d"’1/1 +i(S®a+0® 5')0,&10 + %cl (1/))3) .

Proposition 3.4. The universal Euler form for the Seiberg- Witten theory is represented by the

following functional integral:
wisw) const./DxDTexpt (/ —%F;‘"z - FIAi(S®S) - %Hi(S ® S)o||*> - *%||¢AS|I2)
X4
~ 1 1
—i(dY —i(S®5 + 0 8 S)o) x — i{Pa0 + 5cl ($)S,T) + (T, ¢T),

for any t > 0. The (infinite) constant in the above formula is

(2,,.)dilm Qq°/2 (27rt)(dim n}ﬁr(w—))/z' (3.11)
We conclude with the functional-integral representation of the Seiberg-Witten invat:iants.
Proposition 3.5. With I'%) and W(SW) 43 above,
SW(c) = const / DADSDG [(SW) p WSW), (3.12)
Ap xT(W+) xMap(X,u(1))
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3.3 The geometric interpretation of the Vafa-Witten Lagrangian

In their paper [32], Vafa and Witten introduced a topologically twisted version of N = 4 supersym-
metric Yang-Mills theory on an arbitrary compact smooth four-manifold. Their construction relies
on a variant of the Mathai-Quillen construction, whose particular geometric structure we explain in
this section.

Recall that X* denotes an oriented compact smooth four-manifold, E a rank 2 complex vector
bundle with structure group SU(2), A the space of unitary connections on E, G the group of gauge
transformations, and su(E) the bundle of traceless skew-hermitian endomorphisms of E.

The result of Vafa and Witten can be summarized as follows:

Proposition 3.8. The partition function of (the Vafa- Witten version of) topologically twisted N =
4 Yang-Mills theory is an integral representation of an (infinite-dimensional) Euler number. The
ezponential of the Lagrangian is the Mathai-Quillen Euler form corresponding to the following data:
o P:=Ax0N%(su(E)) x N°(su(E)) 3 (4,B,C)

V := 02 (su(E)) ® Q' (su(E))

e G:=6G

e 5:P—V, s(AB,C)=(F+1[C,B|+}B,B|,*DaB + D4sC),

where [B, B) denotes a partial contraction (using a metric g, this is [B, B}i; = [Bix, Bilg*').

The bundle and the section involved in the Mathai-Quillen formulation of the Vafa-Witten theory
possess an additional structure that we now describe.

We will start with a finite-dimensional analogue. Let E — M be an oriented Euclidian vector
bundle with a fixed section s and let the Mathai-Quillen forms MQ,(E, M, s) represent the Euler
class. If rk E = dim M and the section is non-degenerate then

e4(E) = ll_ir’nm/M MQUE M5 = T 21
zeroes of s
If the section s is only assumed to be Bott-nondegenerate, i.e. its differential has constant corank
on each component of its zero set, then a simple argument shows that
ex(E) = ‘Er.nw/ MQ(E,M,s) = Z *ey(cokerDsz ),
M Zn component of Z(s)
where Ds is really the vertical differential Ds : TM — T\,.E ~ n°E.

Let us now repeat the Mathai-Quillen construction for the bundle £ — M with the section S

obtained as follows:

e M := E (total space of the bundle E considered before)

o £:=mE@n*(T"M)

o S(v):=(5(v), < Ds|x(v),v>), wherev € E, S: E — #°E is a section extending s : M — E,

M being included in E as the zero section, and <, > denotes the fibre inner product.
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We decompose the zero locus of S, Z(S), as Z,(S) U Z,(S), where Z,(S) = Z(S)N M and
23(S) = Z(S) \ Z2(S). We have Z,(S) = Z(s) because Sjpr = 5. Notice that rk€ = dim M so that

we can write (at least formally since M is not compact):
ex(E) = contributions fromZ,(S) + contributions fromZ,(S).

We can be more explicit about the contributions from Z,(S) = Z(s) if the section s : M — E is
non-degenerate; it turns out that, on the connected component Z,, of Z(s), coker(DS),z,, = T*Zpn,
80 ex((cokerDS)|z,.) = x(2m) (the Euler characteristic). Notice that the + sign is actually +
because DS, z(,) always has positive determinant. The bottom line is that:

ex(E) = Z x(Zm) + contributions from Z,(S). (3.13)

Z, component of Z(s)

Assume now that Z(S) C M. Then
ex(E) = x(2(s)). (3.14)

Notice that the above assumption is very peculiar; we only expect it to be true under quite restrictive
hypotheses. However, the assumption turns out to be true in a few cases relevant to the analysis
in [32]-in fact, as we shall soon explain, this is one of the key points in [32).

In order to understand the finite-dimensional analog of Proposition 3.6. we need a slight general-
ization of the above discussion for equivariant vector bundles. If E — P is a G-equivariant vector
bundle and G acts freely on P then we apply the Mathai-Quillen scheme to
o P=Exg
o £=n"E®n°T*P
e S(v,9) = (S, < Ds,v > —p(g)), where p : g —» TP represents the infinitesimal action and
g € g. Similar arguments to the ones above show that if Z(S) C P x {0} C E x g then

e§(£,P,8) = X°(2(s) = x(2(s)/G) (3.15)

To see the implications for the Vafa-Witten theory we formally apply the last construction to:
e P = A sothat T°P = A x Q!(su(E))
o E=PxV =Ax0(su(E))
e G=¢G
e 3s=(A— F}).
We thus have
o P=Ax0%(su(E)) x N°(su(E))
o £=P x (R (su(E)) & N (su(E)))
o S(A,B,C)=(S(A,B,C), *DaB + D4C), where

S(4,B,C) = F} + 3(C, B] + §[B, B}
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Notice that S is indeed an extension of s.

If we pretend that the action of the group of gauge transformations on the space of anti-self-dual
connections is free (i.e. we ignore the problems caused by reducible instantons) then the upshot of the
discussion is that, under favorable circumstances, the partition function of the Vafa-Witten theory
computes the Euler characteristic of the moduli space of instantons. ‘Favorable circumstances’ means
the fulfillment of the condition Z(S) C P x {0} C P x g, i.e. all the zeroes of S are instantons. Vafa
and Witten give one case in which the condition holds, namely Kéhler surfaces with nonnegative

scalar curvature This leads to

Statement 3.1. If X* is a Kdhler surface with nonnegative scalar curvature then Z(S) C A x {0},
hence the partition function of the Vafa- Witten theory computes the Euler characteristic of the moduli

space of instantons on the bundle E.

3.4 The modularity of the partition function of N = 4 super-
symmetric Yang-Mills theory

The motivation for the work of Vafa and Witten comes from the Montonen-Olive conjecture about
the S-duality of N = 4 supersymmetric Yang-Mills in four dimensions. This conjecture cannot be
checked by the standard techniques of perturbation theory because it really involves the behavior
of the theory in the strong coupling regime, and this is why the study of a topological twist can
be particularly powerful. For instance, the physical theory and its twist coincide on a hyperkdhler
manifold, (e.g. a four-torus or a K3 surface); on such a manifold, the computation of the partition
function of the physical theory reduces, according to the discussion in the previous section, to
topological quantities (Euler characteristics).

The viewpoint of Vafa and Witten is that the S-duality property is preserved by the twist, so
they test the S-duality conjecture through the following topological conjecture:

Conjecture 1. Let Ex be the SU(2)-bundle over X with c2(E) = k € Z and Zj; be the partition
Junction of the topologically twisted N = 4 super- Yang-Mills theory corresponding to the fized vector
bundle Eyx. Define the partition function

Z(r) := Z e T 2y,
kEZ

where 7 is a complez number. Then Z(7) is a modular form of weight —x(X)/2 for the usual action
of SL(2,Z) on 7.

Using the Propositions from the previous section, this can be reformulated in a particular case
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Conjecture 2. If X4 is a Kdhler manifold with nonnegative scalar curvature then

Z e2wier(l-k)

kez

is a modular form of weight —x(X)/2, where I denotes the moduli space of k-instantons.

The last conjecture is checked in [32] in the case when X* is a K3 surface or CP? (in the latter
case, the conjecture needs to be slightly reformulated) by using existing mathematical results.

There are a few problems with the applicability of the Vafa-Witten topological twist. First, there
could be other solutions to the equations of motion besides instantons, and it is not clear in general
what they represent topologically. Secondly, even if the appropriate ‘vanishing’ theorem holds, i.e.
the only zeroes of the section S are instantons, the computation of the partition function requires
the knowledge of the Euler characteristics of the spaces of instantons-presently, the only results
available are for CP? and K3 surfaces.

In the next section we switch to a different topological twist of V = 4 supersymmetric Yang-Mills
theory, which offers solutions to both problems mentioned above. We will find that the partition
function localizes to moduli spaces of instantons and solutions to the (abelian) Seiberg-Witten
equations, which makes it possible to express the partition function in terms of Donaldson and
Seiberg-Witten invariants.

Remark. It would be interesting to study the explicit relationship between the two different
topological twists of N = 4 Yang-Mills-a potential source of new mathematical results, as suggested
by the analogy with the case of mirror symmetry (which is a consequence of the equivalence of two

topological twistings of a supersymmetric sigma-model).

3.5 Topological non-abelian Seiberg-Witten theory

In this section we study the partition function of topological non-abelian Seiberg-Witten theory
(TNSW). This is a non-abelian extension of the Seiberg-Witten theory described in Section 3.2
obtained by replacing the line bundle L by a vector bundle E (actually we will be mostly interested
in the case when the rank of E is two).

The interesting new feature is the presence of an additional S'-symmetry; we can use this
symmetry to construct a perturbation of topological non-abelian Seiberg-Witten theory, essentially
by replacing all G-equivariant objects by their G x S! extensions. The main ingredients will be the
S!'-equivariant Mathai-Quillen construction from Section 2.3 and the S!'-equivariant volume element
from Section 2.6. In physical terms, the change in the Lagrangian amounts to the addition of a mass
term, therefore the perturbed theory will be called massive topological non-abelian Seiberg-Witten
theory (MTNSW).
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The objects entering our construction will be as follows. Let W* denote a Spin°-structure on
the four-manifold X, E an SU (2) complex vector bundle on X endowed with a hermitian metric,
and sl(E) the bundle of traceless endomorphisms of E. We will denote by Ag the space of unitary
connections on E and by Gg the group of unitary gauge transformations of E of unit determinant.
Let
e P:=Ap x'(W* @sl(E));

e G:=Gg/{xl};

e V:=V,®V;, where V; := % (su(E)) and V; := T(W~ ®sl(E));

o 3:P—YV, 5= (a),5) where 3,(A,8) := F} +i[S, SJo and 52(A4,S) := D,S.

In the definition of s, the bracket [ , ] denotes the Lie algebra bracket in sl(E), the bar in 8 denotes
complex conjugation when sl(E) is regarded as the complexification of su(E), and , denotes the
coupled Dirac operator. The subscript 0 in [, Jo denotes the projection onto the traceless part as
an endomorphism of the Spin®-bundle: since S € I'(W+ ®sl(E)), the complex conjugate S belongs
to (W~ ®sl(E)) and i[S, S] belongs to ['(u(W+) @ su(E)); the term i[S, 8]y denotes its component
in su(W+) ® su(E). To make sense of the definition of s, we use the isomorphism 22 ~ su(W+).

The definition of G chosen above is motivated by the fact that the constant gauge transformations
+1 act trivially on connections as well as sections of sl( E). We will pretend that the action of Gg on
Ag xT(W* @sl(E)) is free, i.e. we will ignore the subset A,.4x0 = {(A,0) | A reducible}. Therefore
we can regard E; = P x V; and E; = P x V; as G-equivariant bundles over (Ag x N(W* @ E)) \
Area x 0.

A straightforward application of the Mathai-Quillen formalism gives

Proposition 3.7. The Euler number eg(P, V, 8) corresponding to the abvve data is given by
G(P.V,5) ~ const [ [ To(P) A Wo(Er, 1) A We(Ex, sa), (3.16)
P J)0.n€Lie(9)

where Wg(E,,8,) and Wg(Ez, 87) are the universal Euler forms as in (2.4) (note that we are sup-
pressing the dependence on t > 0 in the notation), and [g(P) is the G-equivariant vertical volume
element. Specifically,

Wg(E,81) = Bxexpt/x’h' [--;—(F} +1[S,8)0)? —iDay A X
~i(ila, 8Jo +i18,510) A x + 3xI9.X] (3.17)
Wo(Eror) = Brexpt [ +|-3IPuSE - ic(0)S + ooy T)

+ -;—(T, (4, 'r])] . (3.18)
and

ro(P) = [ Byewp [ +[-TeDjuAn+ (o [1,S) +iTreD;DAN
{051, [8,S]) = iTe 9, BloA + i(a, [A, o). (3.19)
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The value of the infinite constant preceding the functional integral is
(2")—dim n"(.uu-:))/z(%t)—;(dim 03 (su(E))+dim (W~ @sI(E)))
It is natural to ask whether the formal equality (3.16) admits a physical interpretation siinilar

to that of (3.1). The relevant result is proved (in the physical sense of the word) in Section 2.2 (2)
of [15]:

Proposition 3.8. If X is a spin manifold and W* are its + Spin-bundles then the ezpression
Cusw(®) = ¢ [ T [JOFE 44088 4Dt Ax + i, Slo+l5,510) A x = 3x(6.x]
+t /X . EupAsF +ilcl()S + Pyo, T) — %(T, [¢,T])]
+/x +[Tr D% An = (0,[n,S)) — iTr gD DA
(A, S1 16,81 + ¢Tr 9, ¥lod + e o) (3.20)

is the Lograngian of a quantum field theory obtained by a suitable topological twisting of N =4
supersymmetric Yang-Mills theory. Therefore, (3.16) can be regarded as a formula for the partition

function
ZNsw ~ const / DADYDSDoDnyDADIDxDT exp(—Lnsw). (3.21)

There is a corresponding statement for the correlation functions of the theory; the interesting

observables are products of the fji-classes defined in (3.1). For such an observable O we have

Proposition 3.9.
{(O)Nsw ~ const /'DA'D!IJ'DS'DG'DUDXD(}YDX'DT exp(—Lnsw)ANO. (3.22)

It is important to point out that TNSW results from a different topological twisting of N =4
super-Yang-Mills than the Vafa-Witten theory described before; the two twists coincide only in the
case of a hyperkahler four-manifold.

Notice that we have suppressed the parameter ¢ from the notation: we wrote Zysw and (O)nsw

instead of Zysw(t) and (O)nsw(t). This is based on the following
Statement 3.2. The quantities Zysw(t) and (O)nsw(t) are independent of t > 0.

The justification of the statement is the same as the one used for Donaldson-Witten theory in
Section 3.1. In finite dimensions, independence of t follows from the properties of the Mathai-Quillen
construction. The argument for the infinite-dimensional case is given in [33], equation (3.10): the
key point is to show that the variation of the path-integral with respect to the coupling constant t

vanishes since the Lagrangian is a BRST commutator.
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If we look back at the data P,G,V,s introduced on Page 55, we notice the existence of an
additional circular symmetry. Namely, if S! acts by scalar multiplication on the sections of W+ and
trivially on all other spaces involved, the bundles and sections under consideration are S!-equivariant.
We will now study the analogues of (3.21) and (3.22) obtained by replacing the G-equivariant Euler
classes and vertical volume element by their G x S'-extensions.

Let t,r > 0 and m be real. We introduce Zysw(t,r, m) and (O)nswl(t, r,m) through the

following path-integrals:

Definition 3.4.

Znsw(t,r,m) ~ CODS‘?// Lgm(P)A
P Jx6.n€Lie(g)

Wa(Er,31) A Wo,m (B, 2) A exp(3 dg,m); (3.23)
(O)wsw(t,r,m) ~ const / / Tg.m(P) A
P J )\ ¢,neLie(G)
Wo(E1, 1) A Wg m(Ea, 82) A exp(gdg,mw) AO, (3.24)

where w is the differential 1-form on P whose value on the vector
(¥,0) € Q'(su(E)) eI'(Wte sl(E))
at a point (A,S) € Pis

w(y,a) =/ *{a, imS) (3.25)
b &
(where (, ) is a euclidian inner product, for instance the real part of the standard hermitian one).

The constant preceding the path-integral is the same as the one appearing in (3.16), in particular
it is independent of r and m. The differential form Wg m(E», 35) is the G, m-equivariant Euler form
defined in (2.5) (note that the G, m-equivariant Euler form Wg.m(Eh, s1) coincides with Wg(E\, s)
because the S'-action on this bundle is trivial). The operator dg,m is the G x $'-equivariant DeRham
derivative.

An easy computation leads to
Proposition 3.10.
dg mw = — / * [(o,ima) + m?|IS|12 + ([, ), imS)] . (3.26)
X4

The above definition is motivated by physical results obtained in (16] and Section 3 of {12] which

can be summarized in the following

Proposition 3.11. If X is a spin four-manifold and the Spin®-bundles W* are its + Spin-bundles
then Zysw(t,t/m,m) and (O)nsw(t,t/m,m) are, respectively, the partition function and the cor-
relation function corresponding to the observable O in topologically twisted of N = 4 supersymmetric

Yang-Mills theory after adding the mass term of the N = 2 matter hypermultiplet,
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Remark. ‘Topological twisting’ is used here in the sense of [33), Section 2.1. A generalized twisting
procedure is used in the papers [12], [16], and [17) to find analogues of the previous two Statements

in the case when the manifold X is no longer assumed to be spin (and so a Spin°-structure is used
instead).

Remark. Our path-integral definition involves the three parameters ¢, r, and m. In contrast, the
above physical statement involves only two parameters, i.e. it only applies to the case r = t/m. We
will keep all three parameters in the notation in order to clarify the geometric origin of the various
terms in the Lagrangian.

We want to examine more closely the difference between the Lagrangians £ ~sw(t) and Lysw(t,r,m)

appearing in (3.21) and Definition 3.4. Using the results of Chapter 2, we find by explicit computa-

tion that

Proposition 3.12,

Fgm(P) = [\B,, exp/;{ *[~TrDiyY An+(o,[n,S)) +iTr¢D ;D4\
+i(imS, A, 8]) +i([A, 8], [4,S]) — iTr [y, ¥Jor +i(o, [A,0])];  (3.27)
Wg,m(E2,82) = Br expt/x * [—%|$A8|2 —i{cl(¥)S + P o, T)

+ (T, [6,T] + imT)] . (3.28)
By substituting the result of the proposition in (3.16) and Definition 3.4 we get

Proposition 3.13. The Lagrangians Lysw(t) and Lysw(t,r,m) are related by

Lasw(t,rm) = Lasw(t) + /x o[i(imS, A, S)) + %(T, imT) - % ((0,ima) + m*|IS|1* + (8, 5], imS))).

(3.29)
As an immediate consequence,
Proposition 3.14. We have Lnsw(t,7,0) = Lysw(t) and so
Znsw(t,r,0) = Znsw(t) (3.30)
and
(O)nsw(t,1,0) = (O)nsw(t) (3.31)

for any t,r > 0.

We have explained before that Zysw (t) and (O) ysw (t) are actually independent of ¢. A similar

property holds for the dependence of Zysw (t,r,m) and (O)nsw(t,r,m) on t and r:

Statement 3.3. The partition function Zy sy (t,r,m) and the correlation functions (O)nsw(t,r,m)

are independent of t and r.
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This statement involves quantities which are formally defined through path-integrals. We will
present the proof of the corresponding finite-dimensional result along with the physical argument for
the infinite-dimensional case. In finite dimensions, independence of ¢ follows from Proposition 2.13,
part (i), since the universal Euler forms W(t) for t > 0 are cohomologous. In infinite dimensions,
this can be restated as an argument in BRST cohomology, the relevant fact being the vanishing of
the vacuum expectation value of a Q-exact operator.

Independence of r in finite dimensions is also a consequence of Proposition 2.13 since the terms
involving r in the integrand of Definition 3.4 are equivariantly exact. In infinite dimensions, indepen-
dence of r follows from independence under a BRST-trivial perturbation {for more details, see [35],
beginning of Section 3.2). Notice that the additional subtleties involved in the infinite-dimensional
case (i.e. non-degeneracy of the kinetic terms) could generate a difference between the results ob-
tained for r = 0 on one hand and any r > 0 on the other, and consequently the Statement doesn't

make any claim about how these two situations compare.
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Chapter 4

Localization of Topological
Non-abelian Seiberg-Witten
Theory

4.1 Localization of integrals of equivariantly closed forms

We have described in the previous section the partition function and correlation functions of massive
topological non-abelian Seiberg-Witten theory as integrals of G x S'-equivariantly closed differential
forms on a certain configuration space. In finite dimensions integrals of equivariantly closed forms
can be reduced to integrals over the components of the fixed-point set of the action. In this chapter
we adapt such localization results for use in our infinite-dimensional setting and apply them to
massive topological non-abelian Seiberg-Witten theory.

We begin by reviewing one version of the localization theorem for integrals of S!-equivariantly

closed differential forms. A proof can be found in [5).

Proposition 4.1. (the abelian localization theorem) Let N be a compact oriented manifold endowed
with an S!'-action; let a € Qg1 (N) be equivariantly closed. Denote by m a generator of s* ~ (s')*
and by X the corresponding vector field on N. If Ny denotes the zero set of X (this coincides with
the fized point set of the S'-action) then

1) Ny is a (not necessarily connected) submanifold of N whose normal bundle N is orientable;

2)
= (2m)kN/2 [ _GiNe
/N" (2m) /N (M)’

where egi (N) is the equivariant Euler form of N.
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We should make a few comments about this result. The integrand on the left-hand side of the
formula is an element of C[m] ® Q(N )", hence the result of the integration is a polynomial in m,

To understand the right-hand side, recall that eg: (V) € H_'.-,.'fN/ %(No) can be written as

esi(N) = mHN/2e0) .tk N/2=1,(2) | .. 4 o(rkN)

with e() € Hi(Np). The key fact is that e(® is a non-zero constant on each component of Ny (equal,

modulo a power of 2r, to the product of the weights of the S!'-action on N). This implies that

k
1 1
-1 _ “1,(2) 4.y Tk N2 (kN
esi(N) = — WO 1+k§> (e(") (m e® 4. mTRN 20 )))
m >1

is a well-defined element of Qg1 (No)m := C[m,m~'] ® (No)?*-actually a homogeneous element of
degree —rk N'/2 (recall that degm = 2).

Let us look more closely at the right-hand side of the localization formula: the integrand is
homogeneous of degree (deg a — rk V')/2 and the integral over Ny picks up those terms whose usual
degree as a form is dim Np. The result is therefore a multiple of m(de8a-dimN)/2 (55t that the
power of m turns out to be independent of the dimension of the various connected components of
No ).

The significance of the localization theorem depends on whether dega — dim N is negative or
not: if dega — dim /N > 0 then the theorem provides a formula for the integral of a in terms of
integrals over the fixed-point set, whereas if dega — dim N < 0 the integral of a over N is zero so
the localization result can be thought of as a relationship between some integrals on the components
of the fixed-point set. To understand this statement, note that although the only component of «
relevant to the integral over Y is a{dim N)yp(dega—rkN)/2 other components of a are involved in the
integrals over the fixed-point set, so each of the terms on the right-hand side can be non-zero.

The main idea of the proof of the localization theorem is the following. Consider an S!-invariant
metric g on N and the differential form w € Q! (P) defined by w(v) := g(v, X) for v € TP. It is easy

to see that w is G-invariant and so w € 94,(P). Since a is equivariantly closed we have, for any

/a____/ aerdsu.J:/ ae—rllelzerdu'
N N N

This shows that, as r — oo, the above integral is localized near the points where X = 0, i.e. at the

r >0,

fixed point set of the action (note that the factor e"““ has only polynomial growth in r since dw is

nilpotent). The theorem follows by analyzing the integrand near the fixed point set.

Remark. The last paragraph explains the geometric meaning of the 1-form w appearing in Defini-

tion 3.4. If S! acts on Ag x [(W* ®sl(E)) by scalar multiplication on the spinors, the vector field

X calculated at a point (A, S) has the value (0,imS) so w is its dual with respect to the metric.
We will adapt the localization argument to a G = Gg-equivariant situation so that it can be

applied (formally) to the action of Gg x S! on Ag x (W™ ® E).
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Theorem 4.1. Assume G and S' act on the manifold P so that the two actions commute and the
G-action is free. Let a be a G x S*-equivariantly closed differential form and vg ,, be the equivariant
vertical volume element defined on page 37, namely

Y6.m = By (em") e(ﬂ—mﬂ(X))@O”

where 0 is the S'-invariant G-connection determined by a G x S'-invariant Riemannian metric on
P and 2 is its curvature. The integral

P
can be written as a sum of integrals on the components of the union of all the S*-invariant G-orbits.

Notice that the union of the S*-invariant G-orbits is indeed a submanifold of P: it is the inverse
image through the projection P — P/G of the set of S*-fixed points on P/G.

As stated, the result is rather trivial: it can be obtained immediately from the usual S*-
localization theorem if we use the isomorphism from Proposition 2.10 and the results preceding it
as well as Proposition 2.13. It is however interesting to analyze the beginning of a direct proof that
would mimic the proof of the abelian localization theorem. Consider again the 1-form w € Qg (P)

defined on the vector field v by w(v) := (v, mX). We have
dg mw = dw — ||mX||* - (C¢, mX).

Recall that C denotes the infinitesimal action of Lie (G) and so the term —(C¢, mX) is a linear
functional on Lie (G). We have explained before that the pairing with the equivariant vertical volume

element amounts to the substitution ¢ = 2 — m8(X) so
/ <aAygm >= / <aAedoxstY Aqg >
P P
- / B, (°87) expr (=[ImX|[? + (C(C"C)~'C" (mX), mX) — (C, mX) +d2) |
P
Let us look at the 0-form part of the exponent:
—ImX|*+(C(C C)'C*(mX), mX) = —||mX|*+(mXyere, mX) = —=m*(Xnor, X) = =m?|| Xnorll,

where X,.r¢ and Xj,, are respectively the vertical and horizontal parts of the vector field X with
respect to the G-connection. The above function is always non-positive, and equals zero on the
subset of P on which Xj,, is zero, i.e. the vector field X is vertical. This condition is equivalent
to requiring that the G-orbit through the given point of P be S'-invariant, and so we conclude that

the integral localizes to the union of all such orbits (see the discussion after Proposition 4.1).

4.2 Localization in the framework of quantum field theory

Topological massive non-abelian Seiberg-Witten theory admits a substantial simplification due to its

geometric structure described in Definition 3.4. If we assume that Theorem 4.1 extends to infinite
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dimensions, applying it to the Gg x S'-equivariant objects appearing in the MTNSW path-integral
implies that correlation functions can be expressed as integrals on the S'-invariant orbits of the

group of gauge transformations. Such orbits are described by

Theorem 4.2. The union F of the S*-invariant gauge orbits in Ag x [(W* @sl(E)) (where 6 € S!
acts as 0(A,S) := (A,eS)) consists of two types of points:

1) S = 0 and arbitrary A.

2) Reducible connections A preserving a decomposition E = L& L™" and sections S € [(W* @ L?).

Proof. Any point with S = 0 is obviously invariant under S'. If (A, S) belongs to an S!-invariant

gauge orbit then there exist gauge transformations gy so that
(A,€”8) = (904,95 'S);

ge cannot be the equal to the constant gauge transformations +1 for 8 # 0, which implies that

Stab g A is non-trivial and so A is a reducible connection. If A preserves a decomposition £ = L& L~!

i0’ 0
StabgA=~{ [ © )ieer
0 e—lﬂ
So S
S = 0 1
S2 -So
with respect to the decomposition sl(E) ~ C & L? @ L~?, the condition

e.'o SO Sl _ el'ﬂ' 0 So Sl
S, =5 0 e'w' ' S, -5

forces Sp = 0 and either S; = 0 or S = 0. If, for instance, S; = 0, then we have S € ['(W* & L?),

then

and so, if we write

as claimed.

In the next two sections we will investigate the fixed-point contributions to MTNSW by using
the abelian localization theorem (under the assumption that it extends to our infinite-dimensional
framework). In the remainder of this section we present an alternative approach, in which S!-
localization combines with a semiclassical approximation.

As explained in the remarks following Theorem 4.1, the localization of Zysw(t,r,m) and
(O)nsw(t,r,m) to the union of the G-invariant gauge orbits can be carried out by considering
the r — oo limit of the path-integrals. Actually Statement 3.3 allows us to localize further by taking
the t — oo limit as well: the properties of the Mathai-Quillen universal Euler forms show that, in the
large ¢ limit, the path-integrals involved in Definition 3.4 localize to the common zero set Mysw
of the sections s; and s3, and therefore we conclude that the path-integrals eventually localize to

Mnysw NF.
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The zero set Muysw consists of pairs (A4, S) satisfying (the following version of) the non-abelian
Seiberg-Witten equations:
{ PaS=0 (4.1)
FX +1i[S,S]lo = 0.
There are two types of solutions belonging to F. First, there are solutions with S = 0, which implies
F} = 0, so these are pairs consisting of an instanton and the zero spinor. Secondly, solutions
with S # 0 turn out to be solutions of an abelian Seiberg-Witten equation. To understand the last
statement, suppose that A is a reducible connection preserving the decomposition E = L & L~! and
that S = S, is an element of [(W* ® L?). The decomposition E = L& L~! enables the identification
W+ @sl(E) ~ W ® (C® L? & L™2); with respect to this identification,

i[S,§) =i 51851 0 )
0 -5, ®5
and so
I'[S,glo _ i(S1 ® S1)o 0 ] ‘
0 —i(S1 ® S1)o

Since S € T(W* ® L?), we can regard it as a spinor for a new Spin°-structure, WL, = W* ® L?,
with
ci(Lpew) = CI(W,:,’:,W) =c+4c¢ (L)

The connection A € Ay, gives rise to a connection Apew € Adet(w)oL4, 50 that
Fa,,. =4F7 + 2F,,.
The equation F} + i[S ® S]o = 0 becomes
F} —2F; +4i(S® S) =0,

which is a perturbed Seiberg-Witten equation for the Spin®-structure c + 4¢;(L). Notice that in the
Spin case, i.e. when det(W*) are trivial, the above equation reduces to the original (unperturbed)
Seiberg-Witten equation.

In conclusion, the correlation functions of topological massive non-abelian Seiberg-Witten theory
can be computed in terms of integrals over the moduli spaces of instantons and abelian Seiberg-

Witten monopoles.

4.3 Contributions from Donaldson-Witten configurations: a
formal geometric approach

In this section we study the Donaldson-Witten contributions to the partition function and correlation

functions of MTNSW by using the abelian localization theorem. Let us focus on (O)nsw(m), the
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partition function Zysw(m) being the particular case O = 1. We have suppressed the parameters
t and r from the notation because the partition function and correlation functions of MTNSW are
independent of them, as shown by Statement 3.3. The integrals introduced in Definition 3.4 are
formally pairings between a G x S!-cohomology class and an equivariant volume element; assuming
that the action of G = G is free (that is, ignoring the pairs consisting of a reducible connection and

the zero spinor), we find, according to Proposition 2.13,

(O)nsw(m)

/ esi(Ey,81) ANesi(E2,82) AO Aexp Idgz_su.u/\m__‘;n
Ag xT(W*@sl(E)) 2

/ eg (El ,81) A es1(E,, 82) A O Aexp rCWslng'Slw,(4.2)
AgxggT(W+®sI(E)) 2

where CWsidg, 1w is obtained from dg,,w by applying the equivariant version of the Chern-Weil
homomorphism. Recall that this amounts to ¢ — Q4,, — 7, where Q4or is the universal curvature
and J is its S'-equivariant moment. Assuming that the abelian localization theorem applies to
this infinite-dimensional context, (O)ysw (m) can be computed in terms of the contributions from
the fixed point set of the S!'-action. Recall the result of Proposition 4.2 which implies that there
are two types of fixed points, corresponding to configurations with vanishing spinor and reducible
configurations.

By a formal application of the abelian localization theorem we obtain

Statement 4.1. The contribution (O)N'5}**"5°(m) from the set (Ag/GE) x 0 to the correlation

function (O)ysw(m) equals

/ esi(Er,81)Aesi(Ea,82) AO (4.3)
Ae/Ge es'UvAe/szO) ' '

In the above equation, N4, g, denotes the normal bundle of Ag/Gg in Ag xg, T(W+ @ sl(E)).
Note that the differential form dg, 51w does not occur anymore in (4.3); this is due to the fact that
the pullback of its Chern-Weil image to the fixed-point set vanishes, as shown by the following two
lemmas (we include the appropriate facts for reducible configurations, which we will use in Section

44).

Lemma 4.1. The S'-equivariant moment J has the following properties:

(i) !7|AB x0 = Ol
. im 0
(i) Jja xriw+en = .
0 -—-im
The proof of (i) is straightforward: since the vector field .X generated by the S!-action vanishes
on Ag x 0 we have J = (C°C)~'C*(mX) = 0 on that subset. For the second part, note that
mX(4,S) = (0,imS) satisfies
; im 0
mAlA,,r(ume!, = C( i ), (4.4)
0 -im
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where the matrix notation for the element of Lie(G) comes from the splitting £ = ® (™!, Hence

im 0 im 0
Jiaixr(w+eien) = (C‘C)-IC‘C[ ; ] ) [ ; ] .
0 -—-im 0 -—-im
We can now prove

Lemma 4.2. (i) 3, «cCW dg,mw = 0;
('.l') L'A‘xr(w+e‘°3)cw dg.mw = 0-

Proof. The form CW dg mw is an inhomogeneous differential form, it consists of a 0-form and
a 2-form. That its O-form part vanishes on the fixed point set was explained in the outline of the
localization procedure; as for its 2-form part, it equals dw — (CQy,,, mX), which is obviously zero

on Ag x 0 (see Proposition 3.10). On A; x I'(W* ® [®2?) we know that

im 0
(CQHor, X) = (C*CQHor, [ . ])
0 -im
and the pullback of the expression C*CQy,, to the set R; of reducible configurations has already

been computed in the section on the abelian Seiberg-Witten theory. The result was that
(C*Ctory A) = — / +(a, Aa)
X4

where 0 € T(W* ® [®2), Using this fact in the expression of (CQpor, X) and comparing with
Proposition 3.10 complete the proof of the lemma.

Let us now identify the various parts of the integrand in (4.3). We refer to Section 3.5, page 55
for the notation. Since E} = Ag xg, I‘(Q?,,), the S!'-action is trivial on this bundle and therefore the
equivariant Euler class e (Ey, 81)|4g /g, coincides with the usual Euler class e(Ey, 81)4./g:- The
latter is precisely the Euler class of Donaldson-Witten theory. Recall from page 55 that s2(A,S) =
P,S, which vanishes on Ag/Gg x 0. This implies that the quotient

= es‘(E2'32)
T oes (NABIGBvO)

reduces to

_esi(Ag xge (W~ ®3l(E)),0)

C = oAz xg. T(WT ®3I(E)), 0)"

(4.5)

With these remarks, and by using the properties of the Donaldson-Witten theory, (4.3) transforms
into
(OYRsw "8 (m) = / e(E;,81))ACAO = CAO, (4.6)
Ae/0e Mp

where M p denotes the moduli space of instantons.
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The major problem is to understand the quotient C. Our goal is in fact to express C as a
cohomology class on Ag/GE, so that we can relate it to the observables of Donaldson-Witten theory.
This would enable us to turn (4.6) into a correlation function of DWT, i.e. a Donaldson invariant.

To achieve this goal, we again take our cue from a finite-dimensional analog of the problem. Let
Y be a smooth manifold and F be a complex vector bundles over Y. This bundle can be regarded
as an S'-equivariant bundle with respect to the scalar action on the fibres and the trivial action on

the base. Denote by cio\(F)(T) the generating function for the total Chern class of F, i.e.
co(F)T) := co(F) + Ter(F) + - + T™ e o (F)
We then have

Proposition 4.2. The S'-equivariant Euler class of F is related to the total Chern class by
m\rkF 2r
esi(F) = (5)"" eanth) (£). (47)

Proof. According to the splitting principle, it is enough to prove the proposition for a line bundle.
An expression for the equivariant Euler class can be obtained from formula (2.5) for the universal
Euler class Wy, (s) by applying the H-equivariant Chern-Weil homomorphism. For a complex line
bundle L and s = 0, (2.5) yields

1
2nt

esi(L) B, (3x(2- 7 + 6s1x)

1 .
= ‘2?(9-.7+lm),

where 0 is the curvature of L, J is the S'-equivariant moment (see Section 2.3), and ¢ is the
universal Weil element. In our case, ¢51 = m is the generator of the Lie algebra 0f S, and 7 =0

because the S'-action is trivial on the base. Hence

esi(L) = %(Q +im) =¢ (L) + % = %C.O.(L) (%”) ‘

as claimed.

Assume now that we have two complex bundles F* and a bundle homomorphism u : Ft = F~.
Let C denote the (a priori formal) quotient of equivariant Euler classes egi(F~)/es:(F*). Using
the previous proposition we see that esi(F*) is an invertible element of the ring of formal power

series with coefficients in H*(Y’), and so C does make sense as an element of this ring. Moreover

Proposition 4.3. The power series C defined above is the generating series for the total Chern
class of the difference element F~ — F* € K(Y), i.e.

(F~ (rk F~ —tk F¥ 2
el (1) e (5)
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Proof. This follows immediately from the previous proposition and the fact that ¢, (F~ - F*) =
Ctot(F—)/ctot(F+)-

There is one other way of interpreting the proposition, which will be the key to our infinite-
dimensional application. Although the kernel and the cokernel of the bundle homomorphism u are
not necessarily bundles, their formal difference Ker u — Coker u, which we will denote by Ind u, can

be defined as the difference element F* — F~ in K-theory. This follows from the exact sequence
0 — Keru — F* — F~ — Cokeru — 0.

With this definition, the proposition can be reformulated as

Proposition 4.4.

=) et (7). ws)

Therefore the quotient of equivariant Euler classes equals the (generating series for) the total
Segre class of the ‘index bundle’ (i.e. the difference element in this finite-dimensional case). Recall
that the total Segre class is the inverse of the total Chern class, so the total Segre class of an element
in K-theory equals the total Chern class of minus the element.

We can now return to the quotient of infinite-dimensional of Euler classes from (4.5). The
bundles F* are both associated to the principal bundle Az — Ag/Gg, with fibres (W% @ sl(E))
respectively. The family of coupled Dirac operators (P4)4ca, provides a bundle homomorphism
between F*+ and F~. Of course the equivariant Euler classes egi(F*) are only formal objects.
However their quotient has a well-defined mathematical meaning if we assume that Proposition 4.4

extends to infinite dimensions:

Statement 4.2. Assuming that Proposition 4.4 holds in our infinite-dimensional framework, the
quotient of equivariant Euler classes introduced in (4.5) is given by

C= (%)""d(p@"w)’ cror(~Ind ) (%”) . (4.10)
Alternatively, we can interpret Statement 4.2 as a definition: although C is not a priori well-
defined, it admits an indirect mathematical definition through (4.2).
We conclude with the implications of Statement 4.2 for the Donaldson-Witten contributions
to (O)nsw(m). We have seen in (4.6) that these contributions can be written as integrals over
Donaldson moduli spaces; in fact, as is usual in quantum field theory, one is supposed to sum over

all instanton numbers, so (4.6) becomes

(O)Rsw e (m) =) /M OACy, (4.11)

where M, denotes the moduli space of instantons with instanton number k. The notation Cj stands

for the component of C of the appropriate degree: if the degree of O as a differential form is a and
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gk := (dim My — a)/2 then O has to be integrated against a differential form of degree 2¢; in order

to get a non-zero result. Hence

Statement 4.3.
m )—lnd(PGul(E))—'n

(O)%-lgtVBauxe(rn) = Z (_7|- /M‘ OA Sy, (Ind D R

{kldim My >a} 2 (4.12)
where s, denotes the q-th Segre class.

The right-hand side of (4.12) involves only finite-dimensional integrals; however, in order to
make (4.12) rigorous we still have to compactify the integration spaces. The same problem appears
in the definition of Donaldson invariants, and the solution used in Donaldson theory is to replace
M, by its Uhlenbeck compactification. We adopt the same approach: we will interpret the integrals

on the right-hand side of (4.12) as integrals over the compactification My:
Statement 4.4.

(O)wlgivxauge(m) — Z m ) —Ind (P@si(E))-qu

2

/_ OAsg(Ind ) (4.13)
My

{k|dim My >a}

‘There are two possible interpretations of Statement 4.4: it can either be regarded as a calcu-
lation of the correlation functions of MTNSW through a formal geometric argument or it can be
considered a definition of the correlation functions. Either way, more work is needed in order to get
explicit results out of (4.13). We will carry out the necessary steps in Chapter 5, where we relate
the characteristic classes of the index bundle to the u-classes and we use the Kronheimer-Mrowka

structure theorem for Donaldson invariants to compute (O)%/5},5*"8°(m) concretely.

4.4 Contributions from reducible configurations

We now turn to the contribution of reducible configurations to the correlation functions and partition
function of MTNSW.

We begin by setting up the notation. Inside the configuration space P := Ag x (Wt & sl(E))
(recall that we actually delete from P the configurations consisting of a reducible connection and
the zero spinor in order make the action of the group of gauge transformations free) we consider the

set R of configurations (A4,S) with A reducible and S as in Section 4.3, i.e. S € (Wt ®1?). We

have
R = U A xT(WHol?)
{E=lal-"}
= U Rz, where R, = U A x (T(W* @)\ 0).
re HZ(X,Z) c(l)=z
{ 2 = -k }
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The union on the first line is over all line subbundles ! of E such that E = [&®!~}; on the second
line we have partitioned the set of such line subbundles into topological types.

Let us denote by Mz, the normal bundle of R; in the configuration space Ag x (W' @sl(E)).
At a point (A4,S) € A; x (W @ [2) the fibre of N, can be identified with

{a€Q'(®) | Dja=0}@T(W*® (Ca@l2)).

(Equivalently, the vector space {a € Q'(1?) | D }a = 0} can be regarded as the quotient 2! (12)/D 40Q°(12).)
To see this, we use the fact that the normal space of A, in Ag is isomorphic to Q' (I?) (as a con-
sequence of the isomorphism su(E) ~ R & [2). Since any two subbundles [, and /; of E with the
same c; can be mapped into one another by a gauge transformation, the normal space of the set of
all reducible connections in Ag is the subspace of 02! (I2) orthogonal to the gauge orbits, as claimed
above,

The submanifolds R; are Gg-invariant; if we choose one line bundle [, for each z, we see that

R: contains as a submanifold the space
Ri, = A, x (Wt ®12)\0),

which is invariant under the action of the subgroup G;, ~ Map(X,U(1)) of Gg preserving the
decomposition E = {@!~!. Note that the inclusion map descends to a diffcomorphism ¢ : R, /G;, =
R:/GE.

As we have already mentioned, if we ignore the elements of P consisting of a reducible connection

and the zero spinor, the correlation functions of are given by (4.2)

(OYnsw(m) = / es1(E1,81) Aesi(E;,32) AO Aexp Edga|slw A g s
Ag xT(W+@sl(E)) 2

/ es1(Ey,81) Aesi(Ea,32) AO Aexp ECngdgE'slw. (4.14)
AexggT(W+@sl(E)) 2

In Section 4.3 we applied abelian localization formally to (4.14) and discussed the contribu-
tion from Donaldson-Witten configurations. We now carry out the similar argument for reducible

configurations.

Statement 4.5. The contribution < O >644cibles (m) from the set R/GE of reducible configurations

to the correlation function < O >yNsw (m) is given by

/ esl(El,Sl)/\esl(Ez,sg)AO/\GXP%CWsldgE"glw
R/Ge

esl(N'R,O) ! (4'15)

where Nr denotes the normal bundle of R in P/GE.

The integral (4.15) is in fact a sum of integrals over the R;/Gg for various classes z; it is useful

to express the latter as integrals over R,, /G, by using the diffeomorphism ¢+ described above. We
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get

e (esl(E|,8|) A esl(Ez,Sz) A O Aexp ';'CWSIngISIU

<O >ll.$gwbl“ (m) = / eg1 (N’R 0)

R‘a/g‘a
(4.16)

The structure group of the bundles E,, E,, and N is Gg (since they are associated to the principal
fibration P — Ag xg. (W @sl(E))). When pulled back to R;_ /G, their structure group reduces

to G; and their reductions decompose as follows (we drop the subscript z from the notation):

CE = Ry xg % (su(E)) = R xg, (2% @ 0% ® 1) =: E! ® E};
CE, = Rixg T(W~@sI(E)) =R xg, (T(W-@)@T(W~ ®(Cal™?)) =: E; ® E} @ Ey;
C'Nr = Np,={a€Q'(®)|Dja=0}eT(W®(CHI?) =N, ® Nog® Na.

Substituting back in (4.16) and using Lemma 4.2, part (ii), we get

< (@ >feducibles (m) = / €si (E{) A eS'(Er) Aeg: (Eé) Aesi (EF) A eS'(Eg) ANO
Nsw Ri/Gi esl(Nl)/\esl(No)/\esl(Nz) )

(4.17)

Equation (4.17) contains a (formal) quotient of equivariant Euler classes similar to the one we
encountered in the previous section. We will use the method of Section 4.3 and apply Statement 4.2
to (4.17) in order to transform it into a finite-dimensional integral. To this end, we need to obtain
more information about the topology of the integration space C := R;/G, the bundles E!, E}, E},
Ef, E}, Ny, No, and N, and about the S'-action on them.

Consider the subgroup G of G; consisting of gauge transformations equal to the identity at a

given point of X. The quotient is a copy of U(1):
1—G) —G-—UQ1l)—1.

The integration space C = A; xg, ([(W* ® [*) - 0) can be alternatively thought of as (A;/G]) x P,
where P := ([(W* ® (%) — 0) /U(1) is diffeomorphic to R} x CP*®. Let us denote by O(1) the Serre
bundle over P and define the following bundles over 4, /G{:
&= A X go 2 & = A xgp (02 ®12)
£} = A xgoe (W™ ®1%) £5 i= A xgo T(W™) £5 1= A xgoe (W™ ®17?)
No = A xgo T(W™*) Ny = Ap xgo Q1) /DaQ(I?) N i= A xgo T(WF @17%).
If 7 denotes the projection C — A4;/GP then
Proposition 4.5. The following isomorphisms hold:
El ~7n'€l EP~nEl®0O(1)
E\ ~ 7€} Ef ~n*&f E} =73 ® O(-1)
No=m"NMy Ni=n"M®0O(1) Naz=7n"No®O(-1).
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The proof is immediate, the only information needed being the residual action of U(1) on the
fibre of each of the bundles involved.
As for the S'-action (this is the original action on W*, the one producing the equivariant Euler

classes in (4.17)), recall that it is trivial on C; for the various bundles involved in (4.17) we have

Proposition 4.6, S! acts by scalar multiplication on the fibres. The S'-action is trivial on E} and
E!, has weight 1 on E} and N, weight —1 on E} and N,, and weight 2 on E} and N,

Proof. We will just present the proof for two of the bundles, say E} and N,, since all cases are

proved similarly. The bundle E} is given by the projection
AL xg, (T(W* @ )eT(W™-® 12)) — AL xg, (T(WT 6912)) .

The action of S! is given by e*(a, s,t) = (a,e'’s,e*®t) and apparently this is non-trivial on the fibre
(W~ ®12). However, we know that the action is trivial on the base. To make this explicit, we

=i8/2 o (a,e*s,e't), which shows that the action on

need to act with the gauge transformation e
the fibre is in fact trivial.

For the bundle N,, given by the projection
AL xg, (TWrP)o (Wt @17?)) — AL xg, (Wt @ 13)),

the action of S! is given by e'%(a,s,t) = (a,e'%s,et) = (a,e"s,e’t)e%/2 = (a,s,e?t). The
element e~"/2 acting on the right represents a gauge transformation, so its effect on t € T(W* ®1~?)
is scalar multiplication by et*.

Returning now to (4.17), we see that the equivariant Euler classes es: (E!) and eg: (E}) coincide
with the usual Euler classes e(E}) and e(E}) (since the S'-action is trivial on these bundles). Fur-
thermore, the product e(E})e(E}) equals the Euler class for abelian Seiberg-Witten theory (compare
with Section 3.2) and so, if we assume that Poincaré duality holds in this infinite-dimensional case,

(4.17) yields

: E") CSI(E") esl(E")
<0 s reducibles - / es ( 1) A 0/ A 2
WS (m) Msw(ctac, (1)) €s1(N1)  esi(No)  esi(Na)

where Msw(c+4c,(l)) denotes the abelian Seiberg-Witten moduli space corresponding to the (new)

AO, (4.18)

Spin‘-structure c + 4c¢; (!) (see the discussion in Section 4.2).
We can now apply Statement 4.2 to (4.18); some care is required since, strictly speaking, (4.10)
only applies for a weight one action. For a weight k action, m has to be changed to km and so,

using proposition 4.6 we get

esi(ED) 3 m -Ind (DX +i(58©8)+D3) ' ) . on
e (Ny) " (-3) cior ((~Ind (D} +i(S ® 5)o + D3)) (‘E)m.lg)
egn(E(’,‘) _ m —-Indp B 2_,",'

esi(No) (2;;) Cot (~IndB) (m) (4.20)
esi(Ef) _  (2m) ImPe” o

eg1(N2) - (_2;) Crot (—IndD ®l ) (%) . (4.21)
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These equalities, substituted into (4.18), provide an expression for < O >%dusibles (m) as an

integral of a cohomology class over the finite-dimensional manifold Mgy .
Remark. It is known that, for a generic metric on X, Mgsw is a compact orientable smooth manifold
(see [36]). Unlike Statement 4.3, (4.18) equates the contributions from reducible configurations to
the correlation functions of MTNSW to rigorously defined objects (cohomology pairings). There is
no need in this case to compactify the moduli space, as we had to do in (4.12).

The right-hand side of (4.18) involves a cohomology pairing on Mgsw. We now describe the
cohomology of Msw. Recall that Msy C C, where C = A; xg, T(W* @ %) ~ A;/G? x P. For a
simply-connected four-manifold X, the space A;/G? is contractible, and so C is homotopy-equivalent
to CP>. Hence H*(C) ~ C[y], where v := ¢;O(1) has degree two.

At this point it is useful to recall the definition of the Seiberg-Witten invariants: given a Spin°-
structure ¢ with corresponding Spin°-bundles W* and det(W?*) =~ [, the Seiberg-Witten invariant
SW(c) is given by

SW(c) := / ydim Msw(c)/2 (4.22)
Msw(c)

(if the dimension of the moduli space is odd, the invariant is defined to be zero).
Note that that integrand on the right-hand side of (4.18) must be a multiple, say 3 of y4im Msw (c)/2
(since it is the pull-back of a cohomology class on C) and, moreover, that the integral is a multiple

of a Seiberg-Witten invariant:

< O >N (m) =Y Ble+4z) - SW(c + 4z). (4.23)

The sum in the above formula is over all z € H?(X,Z) such that £? = ~k = —c;(E). The values of
the constants 3(c + 4z) (which are determined by the cohomology class of the integrand of (4.18))
can be determined in principle by applying the families index theorem to the various index bundles
involved.

We will discuss the families index theorem in the next chapter; in the remainder of this section,
we restrict ourselves to a case in which we can obtain explicit results in a much easier way. Namely,
we restrict to simply-connected four-manifolds X which are of Seiberg- Witten simple type. By
definition, the simple type condition requires that the only non-zero Seiberg-Witten invariants arise
from Seiberg-Witten moduli spaces of virtual dimension zero. Since v.dim Mgw = (¢? — 2x — 30)/4
(as explained in Section 3.2), the simple type condition amounts to SW(c) = 0 if ¢* # 2x + 30.
In other words, comparing with (4.22), this is equivalent to requiring that the cycle Mgy be
homologically trivial inside C if ¢* # 2x + 30. We therefore conclude that the simple type condition
guarantees that the contribution to < O >ygw (m) vanishes for all reductions E = [ & [~ with
ei(l) = z and (c + 4z)? # 2x + 30.

It is in fact conjectured that all simply-connected four-manifolds with 67 > 1 are of simple

type. The conjecture is verified in all cases in which the Seiberg-Witten invariants are explicitly
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known, including K3 surfaces, eiliptic surfaces, and minimal surfaces of general type. Simple type
is also stable under various topological operations such as blow-ups, connected sums, and rational
blow-downs-which shows that the class of manifolds having this property is very rich and so, for our
purposes, it is therefore a rather mild assumption.

Let us now work < O >nsw (m) under the simple type assumption. The contributions to
< O >feducibles (1) from moduli spaces of virtual dimension zero, are considerably simpler, since
only the degree zero components in the integrand matter. We will denote by Og(c) the restriction of
O to Msw(c). Concretely, if O is a S'-equivariant differential form of degree 2d, Oo{(c) is a multiple
of m4.

The degree zero part of the total Chern forms in (4.19)- (4.21) is equal to one, so we only have

to compute the values of the indices in the exponents; by applying the index theorem we obtain

Ind(D% +i(S® S) + Dj) 4k - %(x +0)
Indp) = %(c-c—a)

Ind(D ®17?)

%(c-c—a)—c-z—-%,

where k = ca(E) is the instanton number and ¢, (l) = z (so that z-z = —k). Substituting into (4.18)

yields

Statement 4.6. For a simply-connected four-manifold of simple type, the contributions from re-

ducibles to the correlation functions of MTNSW are given by

<0 >|I-\e,¢§|.;§,ibles (m) = (_l)4k—(x+0)/2 24k+(2a—c-c)/4

( m ) -3(c-c—2x—-30)/8

o Z Oo(c + 4z)SW (c + 4z), (4.24)

where the sum is over all £ € H*(X,Z) such that z -z = —k and (c + 4z) - (c + 4z) = 2x + 3o (s0
that v.dim Mgsw(c + 4z) = 0).

The results of Sections 4.3 and 4.4 (Statements 4.4 and 4.6) provide an expression of the partition
function and correlation functions of MTNSW in terms of well-defined finite-dimensional integrals.
Statement 4.6 is more precise, since we have succeeded in this section in computing the relevant
finite-dimensional integrals in terms of Seiberg-Witten invariants. In the next chapter, we turn to
the similar problem for (4.13); we will first express the integrals over My in terms of Donaldson
invariants, and then, using the Kronheimer-Mrowka structure theorem for simple type manifolds,

we will eventually calculate (4.13) in terms of Seiberg-Witten invariants.
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Chapter 5

Characteristic Classes of the Index
Bundle and Instanton

Contributions

We have seen in the previous chapter that, in order to calculate the partition function of MTNSW
explicitly, we need to express the Chern (or Segre) classes of the index bundle in terms of so-called
p-classes, i.e. the set of generators of the cohomology ring of the space of connections modulo gauge
transformations, and then evaluate the corresponding Donaldson invariants. We will achieve this
goal by using techniques similar in spirit to those of [2]. Throughout the chapter we work on a

simply-connected four-manifold X; in Section 5.3, we also assume that X is of simple type.

5.1 A review of the index bundle and its Chern character

Let X% be a simply-connected compact oriented Riemannian four-manifold and E be an Su (2)
complex vector bundle over X* endowed with a fixed hermitian metric. Fixca Spin®-structure on
X with corresponding Spin°-bundles W2 such that A2°W* =~ L and ¢;(L) = ¢

Recall that, since X is simply-connect‘ed, the space of all Spin®-structures on X is a torsor for
H?*(X,Z) or, in more down-to-earth terms, given one Spin°-structure any other one can be obtained

by tensoring the Spin°-bundles with a line bundle {:
wt, =wEel.

Since A2(WE,) = A2W* ® (2, we see that Cnew = € + 2¢,(1); the general statement is that the
get of Spin‘-structures ou X coincides with the classes in H*(X,Z) which are congruent to wa(X)

modulo 2.
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Let us also fix a unitary connection A on L and, for a unitary connection A on E, let us consider

the coupled Dirac operator
Py CO(WT @sl(E)) — C°(W™ ®sl(E)).

The above definition makes use, of course, of the Levi-Civita connection on the spinor bundles, For
varying A we get a family of elliptic operators over the space A of unitary connections on E. The
corresponding index bundle turns out to be equivariant with respect to the action of the group G* of
unitary gauge transformations of unit determinant. If we restrict to the subspace A* of irreducible
connections, on which the group of gauge transformations acts freely, we therefore obtain an element
Ind ) € K(A*/G). The above framework is described in detail in [2].

It is also explained in [2] how to compute a differential form representative for the Chern character
of Ind I) by using the families index theorem. Over X x A*/G there exists a universal SO (3) ~
PU (2)-bundle endowed with a universal connection; let us denote by U its complexification (this
is an sl(3)-bundle whose restriction to X x {A} is isomorphic to sl(E) and the restriction of the

universal connection is precisely the connection induced by A. The families index theorem gives
ch(Ind ) = / A.(TX) ch (U) € H(A"[G),
X
where A4, is the Spin®-A-class given in this case by

= vy 1 1 1 _ 1 1 1
A(TX)=(1+ 2c+ 8c/\c)(l - 24Ipl()()) =1+ 2c+ 8(c/\.c 3p.).

The Chern character of the universal bundle can be obtained from the formulae for the universal

curvature given in [2]. Notice that, since ¥ is an sl(3)-bundle, ¢,(/) = 0 and ¢,(U) =0 forn > 3

and so
[~e2))"
ch(U) = 1+2z>: ?; ),] .
n20
Since ¢; (U) = 0 we have
c(U) = ——Tr]-'/\]-'

F being the curvature of the universal connection. The 4-form 2 := TrFAF on X x A" /G has a

decomposition

}-2=.7'—:‘2'0+}'§'|+-7::22|2+]:¥'3+fg'4

in which the subscripts denote the degree as a differential form on X and A*/G respectively. Recall

that
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Proposition 5.1. With the same notations as in (2],

Fio = TX(FaAFa); (5.1)
Fii = Te(2YAFa) (5.2)
Fiz = TQOAFA+YAY) (5.3)
Fis = Te(2pA¥); (5.4)
Foa = T (4). (5.5)

Trace in the above expressions means trace in the adjoint representation since we are computing
the curvature of the associated bundle U.

Since X is simply-connected, H!(X) = 0 and H3(X) = 0 and so
HY(X x A°/G) ~ HY(X)® H°(A"/G) ® H}(X) ® H*(A"/G) & HO(X) ® H*(A"/G).

It is therefore easy to compute the cohomology class £ := c2(U) by integrating the differential form
c2(U) over cycles in X (of dimension 4, 2,0, respectively). If £ = 4,0 + §2.2 + £o,4 With respect to
the above decomposition, X is a 2-cycle in X, and II is a O-cycle then

1
8n2
6a®) = g [ Fla=4i®)

foalll) = g3 F3uy =4I

&0(X) = /x Fiy = ca(sl(E)) = 4k

The factors of 4 arise because Tr denotes the trace in the adjoint representation, which is four

times the trace in the fundamental representation of SU (2) (used in the definition of the u-classes).

If vol € H*(X,Z) is the positive generator, £,,---,X;, is a basis of Hy(X,Z) with dual basis
1o, I;, in H¥(X,Z), and I € H°(X,Z) the class of a point then we find that

by
£=14 (kvol ®l+) I @a(L)+ p(n)) . (5.6)

i=1
Let us denote by ch], the characteristic class n! ch,, The last equation implies the following formulae

for the components of the Chern character:

cho ) = (=4)"a(M"
b2
chyanall) = (=4)™n (Z&f@ﬁ(&)) A (n> 1),
i=1
chy on-s(U) = (=4)"nk vol G(I)"" + (- _gynnn= D) I)szz;p(n)"-? (n > 2).

The application of the families index theorem yields

chind) = /[l-i- —c+ (cAc—-Px)]A[l+2Z((;E):‘]- (5.7)

n).
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Expanding the right-hand side according to the previous formulae gives
Proposition 5.2.

cho(Ind ) = g(c -c—2x — 30) — 4k; (5.8)
chyy(IndP) = 2(-4)na(m)-* [(§<c-c —o)—d(n+ l)k) a(m)

_4"(";’ 1 Y55 [t(zi)ﬁ(zj)] ; (5.9)

ilj

ini(IndP) = F(—4) A" (5 0) (5 (5.10)

5.2 Chern and Segre classes of the index bundle

The above proposition contains explicit expressions for the components of the Chern character in
terms of ji-classes. To do the same for the Chern and classes, we now have to use the ‘Newton
formula’ (see [20]):
chl, —cich,,_, + -+ (-1)""'ep_1ch) + (=1)"nc, =0, (5.11)
where ¢, are the Chern classes. Finally, the Segre classes s,, are related to the Chern classes by
Sp+ 8p-101 + -+ S1Cq—1 + ¢, = 0. (5.12)

Let us first reformulate Proposition 5.2 slightly so that the problem reduces to pure algebra.

Consider the following cohomology classes:
X:=—4p(Tl) € HE(A);
Yi=4d 5T ACOME;) € HY(A)

W
Z:=2) (Ti-op(Z) € H(A).
i
The results of Proposition 5.2 can be rewritten in this new notation as
chy,(IndP) = [a+b(n+1)X" +4n(n+1)X""'Y; (5.13)
chypi (IndDP) = -ZX", (5.14)
with a = (¢ ¢ — 0)/4 and b = —8k. Therefore we can work in the subring generated by X, Y, and
Z in H;(A) or, equivalently, in the polynomial ring Q(X, Y, Z].
The easiest approach is through the use of the following generating series (in a formal variable
T)
e(T) := 14+ T+eT*+---;

ch(T) ch\T + chaT* + - -+ ;

s(T) = 1+8,T+8T>+---.
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The recurrence relations (5.11) and (5.12) become

d
(T)ch(-T) = E —-nc,T" = —=T—¢(T
c(T)c ) 2 nc ch( )
c(T)s(T) = 1.

The key point is that the first one leads to the differential equation

¢, ch(-T)
~(T)= -—7— (5.15)
and so
Ine(T) = - / c"(;T) +C, (5.16)

where C is independent of T (in our case C will be a function of X, Y, Z). Notice that the generating
function for the Segre classes can be computed immediately since In 8(T') = —Inc(T'). As a general
remark, also notice that (5.15) is valid for any K-theory element over any manifold, so it can be used
in general to relate the corresponding characteristic classes. As an immediate implication of (5.16),

we have

Theorem 5.1. For any element in K-theory, the total Segre class is related to the Chern character
by

(=1)* k
8(T)=ewnp ( —k—chkT ) (5.17)
k21

In our problem, the formulae for the Chern character given above imply that

ch(T) = Y chaa(Ind P)T*" + 3" chopsi(Ind )T+
n>1 n>0
= a) (XT)"+b) (n+ )Y(XTH)"+4) n(n+1)X"'yY + Y -zx T+
n>1 n>1 n>1 n>0

aXT?_ 1], 4vr* 2T
1-x12 "7 |1 - XT?)2 (1-XT?  1-XT?

We therefore have to sulve (5.15) for this particular ch(T). Notice that the recurrence relations (5.11)

and (5.12) admit unique solutions, and hence (5.15) must have a unique solution which is a power
series in T'-this remark will be important when integrating ch(-T)/T.
Direct integration shows that

a+b

> C.

(5.18)

Ins(T) = -

b Y 1 VA 1-VXT
— 2 ————— e—
(1 = XTI + s —xm) T X=X T ayx e var

The constant C is determined by the requirement that the right-hand side of (5.18) have a well-
defined power series exponential: for instance, exp(1/(1 — XT?)) is not well-defined since the expo-

nent is not divisible by T, but exp(—1+ 1/(1 ~ XT?)) is. We conclude that



and so

Z
bXT? ) exp (2YT2 - xw‘) (1 - \/YT) X

—atb
s(T)=(1- XT’) 2 exp (m (1-XT?)? 1+ VXT

(5.19)

Equation (5.19) can be read as a formula for the total Segre class if we substitute T = 1 and we

regard the resulting expression as an inhomogeneous cohomolc gy class:

st = (1= X)~ 5 exp (L) exp (w-xy) (1_\/;?)5%' (5.20)

21 -X) (1-X)2/\1+vX

5.3 Contributions from instantons revisited

Our task now is to use the results of Sections 5.1 and 5.2 in order to compute the right-hand side
of (4.13) explicitly. In (5.20) we have expressed the Segre classes of the index bundle in terms of the
cohomology classes X,Y, Z, which are in turn defined in terms of u-classes. In principle, this reduces
the integrals in (4.13) to integrals involving only products of p-classes, i.e. Donaldson invariants.
This section is joint work with Alexandru Zaharescu.
To get concrete results, we have to compute integrals of the form
Xmynzr,
M

where M, is the Donaldson moduli space corresponding to c2(E) = k and 2m + 2n + r = 4k —
(3/2)(1 + bf). As usual, bf is the number of positive eigenvalues of the intersection form of X.

We will achieve this goal under the assumption that the manifold X* is of Donaldson simple
type This condition (defined below) is not the same as Seiberg-Witten simple type (the condition
introduced in Section 4.3), but it is very closely related to it. All simply-connected four-manifolds
with b > 2 for which the Donaldson invariants are known satisfy the Donaldson simple type
condition; moreover, Donaldson simple type is stable under all the usual topological constructions
(blow-up, rational blow-down)-similarly to Seiberg-Witten simple type. Under the Donaldson simple
type assumption, Kronheimer and Mrowka [14] proved a structure theorem for Donaldson invariants,
which will be very useful for our computations.

We now review the definition of Donaldson simple type and the Kronheimer-Mrowka result.
Recall that £,,---,%,, denotes a basis of H,(X* Z) and X}, -- , X3, denotes the dual basis in
H?*(X* Z). The class of a point in H°(X* Z) is denoted by [I. We shall denote the Donaldson
polynomials by the notation < ... >, where < I1® Sigmaf e Zf,__" > denotes the integral of the
corresponding product of u-classes over My, as in Donaldson theory.

Donaldson simple type is the following statement about the generating function of Donaldson
invariants:

(ﬁ, - 4) < exp(pll + ¢¥) >=0.
dp®
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Theorem 5.2. (Kronheimer-Mrowka) Let X4 be a simply-connected manifold of simple type. Then
there exist finitely many classes \y,---Ap € H*(X*%,Z) (called basic classes) and non-zero integers
SW,,.-- ,SWpg such that

< exp(pIl +¢Z) >=

B 1
= {ZSW;exp (2P +q(Z-N) + 5‘12(2 ' )3)) } ) (5.21)

i=1 r mod4

where r = —(3/2)(1+ b]) and (5.21) is to be interpreted as an equality between formal power series.
The notation { }, mod 4« means that, in the right-hand side, only the terms p®q® of degree 2c+ =

mod 4 are to be considered.

Actually, in (5.21) ¢X is just a short-hand for 3 ; q;T; and qP really means [ j qf /. Let us explain
the significance of the condition 2a + 8 = r mod 4: the left-hand side vanishes if the condition is
not satisfied because of the mismatch between the degree of the integrand and the dimensions of
the various M, 's. Alternatively we could have suppressed this condition and written the right-hand
side as the combination of four exponentials.

This type of equality between power series will appear repeatedly in the sequel and we will use
the notation { }n or { };m mod n to denote the terms of degree m and (m mod n) respectively.
Similarly, for a formal power series in the variable T the notation { }r= will stand for the coefficient
of T™,

The link between the two simple type conditions is provided by the conjecture that in fact the
cohomology classes \,,...,Ap correspond exactly to the Spin®-structures for which the 3eiberg-
Witten invariants are non-zero, and SW; are equal to the corresponding Seiberg-Witten invariants.
From now on, we will restrict to simply-connected four-manifolds which satisfy both simple type
conditions, i.e. Donaldson and Seiberg-Witten, and we will use simple type to mean simple type in
both definitions.

We begin our computations by evaluating
< - 7] >,
4l+r

with r as above, from (5.21). For this purpose we can substitute p = 0 in (5.21) to get
< exp(gL) >= SWexp { (lqz(S' -E%) +q(E° - A)) } ,
2 U+r

where the various summation notations have been omitted. For instance, we have written the right-
hand side as if there was only one basic class-something we may do until just before the final answers

since the right-hand side is additive.
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We have

{exp (()9(22_}3) +4(X- A)) }“H

(4’-}-1‘)!{ Z nl! [q (- 2)] ! 12' [q(z',\)]nz}

m—O ’IJ_O

dl=r

(E , 2)"(2 , /\)4"""— 2n
]
@Went Y e = (5.22)
0<n<2+(3§)
Notice that the Kronheimer-Mrowka formula is an invariant statement, i.e. it is obviously inde-
pendent of the chosen basis for H2(X*,Z). For later purposes, it would be very convenient if we

could choose this basis so that it diagonalizes the intersection form
H*(X,Z)x HY(X,2) 5 HA(X,2) ~ Z. (5.23)

This can’t be done over Z, but, since intersection kills the torsion anyway, we can work instead in a
basis wy, -~ wp, of Ha(X* R) in which the intersection matrix has the form £ = diag(4;, - - ,04,)
with §; € {1, -1} (actually bJ of the s are equal to 1 and b; = by — b equal to —1).

With respect to the new basis and its dual wy,--- W, We can write g¥ = Zq,-w; and A =
> diw]. (As explained before, we keep writing the formulae as if there existed only one basic class).

With these notations,

n U+r-2n
o (40 +7)! 9
<L Be=SW ) e ;"f‘” ' ;‘“’\151

Al+r 0<n<2i+(3]

(4l +r)! n!
SW Z n!27(4l + r - 2n)! y ( z m (5.24)

0<n<2i+(5] Bi+-+Bsy=n

qu-"’&?”) | ( I ol (R ”’)

T+ e, =4l+r-2n
b

4 ! 1 -
= Sw Z ( 2-: 2 Z H ﬂv"/'quﬂ’ﬂl ’\J'“Jj’ﬁb,
o<n<al j=0
srsatss) B
X Bi=n
Z"‘/j =4+r-2n
b2
— 1 28547, \ 1 s+,
= (4l +r)!SW Y qu, A e
1=1
0<85,v;
2y Bi+YXvi=4+r
On the other hand, since £ = )" q;w;, we have
_ L+ 17 n |
<X .. -E>= Z __m!---nb-!qu <ij >, (5.25)
U+r X ony=al+r ) J
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which leads to explicit formulae for < Hw_;-" > if we use (5.24). The result is that if Y} n; =4l +r
J
then

<Hw"’> Hn, {<2 Z‘>}
Mo’

Al+r

H "j! SW Z H 26’ ﬂJ —_ )Y 6;7) +8,

i 'vyl J
0< ﬂ]t’YJ
2Bj+7; =n;
AYigliths
— i3
= Hn,l SWH Z 2953, 1]
J
0 < ﬂ)i7}
2Bj +7vj =n;j
! 2k cnj—k n;!
_ n;—2kenj— n;.
= SW Hg,\' 877 T, — 2B (5.26)
J =l

The notation on the first line stands for the coefficient of the Hq;"' term in the expansion of the
right-hand side as a power series. On the second line we haverermuted the summation and the
product, whereas on the last line k is a new notation for ;.

Recall that our present goal is the computation of < X™Y"Z" > for any m,n,r. With the
information we have so far we can already compute < Y™ >, in the case when r = —(3/2)(1 + b7)
is even and n = 2l + r/2. (If n doesn’t satisfy this condition, < Y™ >= 0 by definition).

The original expression for Y, given in Section 3, was
Yi=4) T 55 A(T)A(T;).
..lj
An easy computation shows that, in terms of the new basis {w;},

v = 436,08, ),
=
where 6; are the eigenvalues of the intersection matrix £. We infer that

n
ba
YY" = 4" (425,.0,?;1(%-)2)

j=1

n! i n2mM; - 2m;
= 2 m....mb.H‘s}"’% ’ f(w;)™™
Smj=n LA

and this implies, in conjunction with (5.26) in which n; is replaced by 2m;, that

n! L 2m;
n — n mjném;
<Y"> = 4 N —_—ml!---mb,!na" 0]
2

Y mj=n
SW 3 A2 =2k gami =k 2m;! 5.27
' sz%’ i 2kEI(2m, — 2k)! (5.27)
_' i
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The equality (5.27) can be reorganized if we introduce the notations

8;0703
Sj = 28;M3; (5.28)

<.
I

with these notations,

<Y"> = 4"SW n! Z HT;"’

Em,-:n j

mj . om.!
. - £
1:[ é‘)s, P EI(2m; — 2R)!” (5.29)

This is best understood in the language of generating functions; namely, let G(S,T) be the formal

power series in variables S and T given by

— m - -k (2m)!
G(8,T) = "?;OT (kgos Fiml(2m —2)1 2k)!) . (5.30)
It is then easy to see that
<Y">=4"SWn! Y J[{C(S;TiT)}m, (5.31)
X mi=n j

(recall our convention that the braces followed by a monomial subscript mean the coefficient of that
monomial in the power series). The last formula simplifies even more after permuting the sum and

the product, leaving us with

ba
<Y" >=4"SW n! {1’[ G(S,-,T,-T)} : (5.32)
Tu

Jj=1
In order to complete the computation of < Y"” > we have to have a closer look at the power
series G(S,T).
We consider now

(2m)!
(2k)!m!(m — k)!

G(S.T) := f; ™S

= Z _ﬂ ™ _(2m')

< (2k)! =t m!(m - k)!

k>
5 oy i
= H(T), (5.33)
>0 (2k)!
where
(2m!)
= m__ \&M:)
Hy(T) = "?;T lm = B (5.34)
Finally let us introduce the formal power series
2m)!
F(T):= Z TmSnTn)_! (5.35)

m2>0
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and make the crucial observation that the k-th derivative of F' is

i m!m! (m — k)!
and so
Hy(T) = T"F""(T). (5.36)
This shows that
(k)
G(S,T) = g{‘) (2k)' F (T). (5.37)

The point of this approach is that F(T') is in fact the MacLaurin expansion of an elementary function,

namely

Theorem 5.3. For |T| < },
S (2'") — 4T)"1/2, (5.38)
m2>0
We won't give the proof of the theorem since a posteriori it only involves elementary calculus-the
hard part is to find the elementary function on the right-hand side!

Once F(T) is known in closed form, we can work out G(S,T) explicitly. Since

F(k)(T) - (—4)"(1 _ 4T)—i—k(_1)kL”2(k2k__l)

2k (2k — 1)II(1 — 4T)~ 4%,

we get
= 2k Gk T
GS,T) = Y oo (1-4aT)"4*
k>0 (2k)"
= E %(1 4T)" 4+
k>0 ’
_ a4 ST
(1 -4T) " 2exp (1 — 4T) . (5.39)
We obtain for G(S,T):
o T T\ % T
G(S,T) = G(S, 3‘) = (l - 4§) exp (mg) . (5.40)
This implies that
bz ba _ 8:02\2T
HG(S,,T,.T) = H(l - 262T)~ Y exp (1—’_’—20%,_’-,)
J=1 j=1 J
8;6°N3T
= det(Id - 262T) % exp Rche M iy I (5.41)
; 1-26iT
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If we substitute (5.41) in (5.32) we finally obtain

<Y">

4™t {det(ld - 2g21)-4

8,62\, T
ESW exp (Z 1=28°T
i=l j J Tn

= al{K(T)}pn, (5.42)

where A;; = (A - wj) and

K(T) = det(ld - 26°T)" 4 ; SW, UL 5.43
(T) = det(Id ~ 2£°T) ; iexp Zl 27T (5.43)

The next goal is to carry out a similar argument in order to compute < X™Y" > form +n =
—(r/2) mod 2 (the result being automatically zero if m + n # —(r/2) mod 2). Due to the simple

type property we have
< Xmtiyn 5= 08 < xMYn > (5.44)

(recall that X is minus four times the u class of a point; two extra insertions of y(point) introduce a
factor of 4, whereas two extra insertions of X introduce a factor of 64). This reduces the computation
of < X™Y" > to that of either < Y™ > or < XY™ >

We have done the work for < Y >. The argument for < XY™ > is identical, except that now

we must start from

<XY...X¥>.
Al+r-2
We claim that
< XY" >= (-8)4"n! {K(T )}y , (5.45)

with K(T) as in (5.43). The proof is entirely analogous to the one for < Y™ > so we won't present
it here.
The nicest way of formulating the results we have obtained so far is through the use of generating

serics. Assuming that r is even (otherwise all the < X™Y" > vanish), we have

Theorem 5.4. The following two formal power series coincide in all degrees T™U™ for which m +

n = (r/2) mod 2:
{< exp(YT) >} - {K <4T>} _ (5.46)
1-XU (r/2) mod 2 1+8U (r/2) mod?2

with K(T) as in (5.43). Equivalently, since the left-hand side vanishes anyway in degrees not = (r/2)

mod 2, this can be rewritten as

exp(YT) 1 (K@4T) N 4T))
- XU _2(1+8U e v (5.47)
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The proof of the theorem is immediate, since (5.44) and (5.45) can be restated as
< X™TY" >=(-8)"4"n! {K(T)}ypn . (5.48)

We now address the (slightly) more complicated case of < X™Y"Z? > for u > 0. Recall that we
are now working in the basis {w;} for H. If the components of the Spin‘-class ¢ € H? in the dual

basis are c;, i.e. c= ) cjwj, then

Z= Z(w C)#(“’J)—ZJ cjfi(w;).

J_
If we denote by cj := §;c; then the above formula reads Z = }° cjfi(w;).
As before, we will discuss in detail the argument leading to an expression for < Y"Z? > and
explain briefly the changes needed to include X™ for m > 0. We begin with
zP= Y le”iw;)®
Pit o pea=p J
which implies that
yrze= > ™Y iw;)®
Pit o Pey=pP J
and so
<vyrze>= Y e <Y iw)P > . (5.49)
PitPoy=p j
Let us analyze separately the invariant appearing in the right-hand side of (5.49). We will assume

that 2n + Y p; = 4k + r for some integer k (the usual dimension compatibility).

< YPa(w;)P >

= < 3 o L8 A > (5.50)

Y mj=n !

B S, P
... | J ;)
Y m,=n e Ty Jj

m;+[%]
i 2'm,+p,' —2k62'm,'+p,' -k (2m1 + pJ)! 51
sw]:[ 2N ) PRI(2m; + p; — 2R (5.51)

The formula (5.51) was obtained by applying (5.26) for n; = 2m; + p;. It can be rearranged if we

use the notations T; and S; introduced in (5.28):

b
< Yhi(w)P >=4mn! SW ] (6;2)”
Jj=1
i gusl 2m; + p;
T"': S— J J
Z H Z 7 k'm;!(2m; + p;)!

Em,-nj-

= 4"n! SW 1'[(5 iAj)Pi {1‘[ G(S;,T;T,p;)} =, (5.52)

j=1 j=1
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where the formal power series in S, T (and depending on the parameter p) G(S, T, p) is defined by

m,+[§]
_ " —k (2m + p)!
G(S,T.p) = mZ>:OT ; S k'm!(2m + p — 2k)!’ (5.53)

Notice that for p = 0 the series G(S, T, p) reduces to the (now familiar) series G(S,T). We will
therefore try to express G(S, T, p) in closed form similarly to the ideas used for G(S,T). We change
the summation index in (5.53) by substituting m + [p/2] — k with k and we consider

G(S,T,p) := G(S, ST, p)sl8] (5.54)

instead of G. If we denote by ¢, the binary rest of p, i.e. ¢, := p — 2[p/2], we have the following
expression of G(S, T, p):

m,*+[§]

i 2m + p)!
G5, T.p) = ng:on kg(:) §* m! (m + EE] - k’;)!(% + €p)!
Sk 2m + p)!
= ,;, wra > T (r(n ¥ [g’]))— B!
- m 2 k- [§]
m2>0
R S ) (5.55)
Z Tk + o)

The line before (5.55) was obtained by interchanging the order of the two summations.

We will now study the formal power series

m (2m + p)!
m! (m + [!_,3] - k)

H(T,p):= ) (5.56)

m >k~ [§]

m2>0

Notice that Ho(T,p = 0) coincides with F(T) defined in (5.35), which admits the nice closed form
expression given in Theorem 5.3. Our hope is that the same is true for H(T,p), so we will try to
relate the latter to F(T). Let us introduce the more general power serics H(T,a,p) depending on

the (non-negative integer) parameters a and p

(2m + p)!
T = m— 5
H(T,a,p) Z T m!(m + a)! (5:57)
m2>0
m2 —a

Since, for @ > 0,

m@m)!(2m+1)(2m +2)---(2m + p)
m!m! (m+1)---(m+a)

H(T,a,p)=) T

m2>0
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and, for p > 2a,

(2m ““('L)(f';')"z()m Jr(i')" B _ (2m + 1)(2m + 3)-(m+2a=1)(2 -2+1)-(2m+p)

odd integers all integers

we see that, for p > 2a, H(T,a, p) is an iterated derivative of F(T'). Specifically, the previous result

implies that, for p > 2a (and a > 0), we have
T**H(T,a,p) = (T°H(T?,a,2a))* ¥ (5.58)
As for H(T?,a,2a),

H(T,a,2) = MZEOT“f—i%’!’zz"(m tme ) mea-)
yields, after multiplication by T—!/2,
T'*H(T,a,?a) = mZ):oT"‘-i %22"("; + %)(m + g)"'("' +a- %)_
This fact, in conjunction with
22aTa-§F(T) — z 5712:_:1):22¢:Tm+a-§
o mim!

implies that
H(T,a,2a) = 2°T*# (T"-iF(T))‘"’ . (5.59)

The last formula can be improved if we use the analytic properties of F(T), i.e. the fact that it

represents the MacLaurin expansion of 1/v/1 — 4T. Using the Leibniz formula we deduce that

e = 5 )

k=0

.. (:)4* (%g(a - %)) T4 (1 - 4T) "4+

Il
™

k=0
13 1. 1< fa 4T \*
= 33 @=3)T H(1-4T) *Eo(k) (ﬁ)
13 1
= 22 a-yr-41 - o
= 35 (@-)T7H1-4T) .

Substituting the result back in (5.59) we find that
H(T,a,2a) = 2°(2a — 1)!)(1 — 4T)~4-°

But H(T,a,2a) = Hy(T,2p) as can be seen from (5.56) and so we have the following result for
HO(TI 2p)

Ho(T,2p) = 2P(2p - 1)!(1 — 4T)" %>, (5.60)
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To get the corresponding formula for Ho(T,2p — 1) let us remark a recurrence formula which follows
from (5.56):

_(2m + 2p)!

Ho(T,2p) = ZT m

m2>0
_ Z:Tm 2m+2p-1) 2m+2p
w0 mi(m+ [22L])t m+p

= 2Ho(T,2p - 1).

It follows that

Ho(T,2p— 1) = 2P~} (2p — 1)I)(1 — 4T)~4-P; (5.61)
the last formula and (5.60) can be compressed into

Hy(T,p) = 28] (p - 1 + ¢,)(1 — aT)~ 5[], (5.62)

We now move on to the more complicated series H (T, p) using the same strategy as hefore: we

will try to express Hy as an iterated derivative of Hy. Recall that

_ " (2m + p)!
Hk(Tup) - z r m! (m + [g] - ’C)!

m Cm+p)t  (m+[E])

- z , m! (m + [E])! (m + [B] - k)

The first line is just (5.56) and the second is an attempt at describing Hy as an iterated derivative,
in the spirit of the derivation of (5.59). We easily see, after multiplication by TIP/21=% that

r q (k)

Tl8-*H, (T, p)

m  (2m + p)!
a ZT m! (m + [B])! '

m20

(5.63)

where (5.63) is obtained by using the familiar fact that the k-th derivative of T* vanishes if k' < k
(therefore, when changing the range of the summation index m to include the values 1,- -+, k — [p/2]

in case the latter is positive, all the new terms in the sum are equal to zero). Relation (5.63) is
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crucial because the range of the summation would have otherwise made it quite difficult to handle
Hy.

If we also notice that the quantity whose derivative is taken on the right-hand side of (5.63) is
just T'l»/ 21H0(T, P) (compare with (5.56)) then we can conclude that

Hy(T,p) = T*-[§] [TI‘HHO(T, p)]m . (5.64)

The last result enables us to go back to 6’(5, T, p) (see (5.55)). If we use the from of H; obtained
above in (5.55), we find

G(s,T,p) = 7-18] 3 (2:\?:;)7 [rl8] ey, n]". (5.65)
k>0 :

To understand the general pattern of (5.65) we first discuss a few Special cases, namely p = 1 an(d
P=2(p=0is already known, since we have obtained G(5,7T) in closed form. For p = 1, (5.62)
gives Ho(T,1) = (1 - 4T)=3/2; using this in (5.65) we infer that

e Ska _ (k)
GsTY = gm[(l—m i
StT* s
= L@yt =33 (=2 k)

25T
(1—ar)=35~ 97 5 47) (2% + 1)
g (2k + 1)

(1~47)-3 Zk_l' (%)k

k>0 "'

(1-47)-% exp (1 fTL;T) .

We can argue similarly for p = 2. Since Ho(T,2) = 2Ho(T, 1) = 2(1 - 4T)=3/2 the formula for
G’(S, T, 2) reads

N

kpk—
3 S -]
k>0

1 SkT#-1 (k)
= 32. T (=413 _ (1 4y
2?; o [1-am)- _ 47)"4]

G(5,T,2)

kpk -}
= %Z STt [2*(1 —4T) 3 -kop 4 1)!!] ~
k>0

G(S,T,0)
(2k)!

1
2° T
= (-4 F 2kq1y 57 \E
N 2T D k- \1=3r) ~ 7G5S T,0)
k>0
(1-4T)-3e ST . 25T (1—4T)-3e ST
o7 P\T=ar) Y17 o7 P\1—a7
1 -4 ST
—ﬁ(l-—tﬂ") exp(l_4T)

4T_8T2+Sex ( ST )
(1 -4mf P\1T=47 /-
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A general pattern emerges: for any p, the power series G(S, T, p) is the MacLaurin expansion of
a rational function in S, T times exp(ST/1 — 4T'). To convince ourselves of this fact, we only have
to use (5.62) and (5.64) in the formula (5.55). The latter is a little bit subtle, due to the difference
between the cases p odd and p even, 5o, in oder to fix the ideas, we will deal with the even case first,

assuming p = 2{. The application of the Leibniz formula yields

i _ (=1 ety (1) (21— 4T)
2'(2t - YG(S, T, 2l) = (1 -47) ir 'Z(s) (25 — D)

=0

k! 4T

k
3 (Tfi) (2k-+1)- (25 + 2k - 1), (5.66)
k>0

which shows that G(S, T,2!) has indeed the stated form (a similar argument holds for odd p).

However, this is not entirely satisfactory since we would want to have G(S, T, p) in closed form-
the miracle is that this goal can be achieved despite the complications suggested by (5.66)! To see

this, we undertake a more detailed analysis of the power series appearing on line (5.66). Let

L,(V) := Z%V"(2k+l)---(2s+2k—l)
k>0 '
= rv*-Zl,v"-%(k+1)---(k+s—l).
kzok' 2 2
From the identity

_ yktea—4

| % *expV=z P

k>0

we obtain, by differentiating s times,

(V"*expV)“) = z (k+ %) ...(k+8— %) V::;%,

k>0

which proves that
_ (s)
L(V) = 2°v} (v' #expv) .

It is actually more useful to put this identity in a different form by applying the Leibniz rule and

carrying out the differentiations, to the effect that
Py = (Vs - Dso d)e s Ly
L,(V)=2%expV ; (t)(s )8 =3t )V (5.67)
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Going back to (5.66), we get

2l(21 - 1)1G(S, T, 2) / ﬂ(l —4T) 4T exp (1 fir)

(-1 1) _ (-1)*(1 —4T)™* _, (8 1 3 1
= 1-47)"47! 223 ) (s =)= 5) - (t+ SV
—( )" Z() :=o() 7 ) (t+3)

s=0 (2s - 1)1 t
i
= (-1)*(1 - 4T)~*,
) ZVL.Z-‘:()(B) (25 — 1) 2(25-1)(25-3)--- (2t +1)
d ]
- @vy o 1 It .
- ; (2t — 1) (1 — t)le! (4T — 1)¢ g (, _ t) (4T - 1)+

Loevyr 1 1

-t
B ;o (2t — 1)1l (I - t)itl (4T — 1)’ (1 s 1)

t

- Satm() (75) (@5)

= Kilgp) (e 1)'.

where K is defined by

d 1 !
K(V) = ——( )v'. (5.68)
; (2t - 1) \¢
Therefore we obtain for G
‘ . = et (AT ST S
22t - YNG(s, 1,2 = T (1-4T)"3T T = l) exp 1=ar —4T) K, 2—(1 >y

(1 -4T)"*exp (%) K (5(-1—1—”) (5.69)

The next task we are faced with is to write K in closed form. The following remark will be very

useful: if c2,,(X) denotes the coefficient of R?™ in exp(RX 2+ R) then, as an immediate consequence

of the binomial formula,

_ 2 - ,
cam(X) = {exp(X R* + R)} gam = Z;} H@m 2 (5.70)
Notice that K; can be rewritten as follows:
t
vy = Z ()" E o erlad
and so we can conclude, after a slight change of notations, that
R2
K(V)=2V)!'{exp| — + R . (5.71)
2v R2

We can summarize the results obtained so far (recall that V = §/2(1—-4T')) as follows (see (5.69)):
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Theorem 5.5.

(20)!\G(S.T,2l) =
{(l —4T)~ 425l exp (1 sz) exp (R + Rz(lg 4T)) }Rz: ) (5.72)

Finally, the closed form expression we have obtained for G(S, T, 2l) enables us to complete the

computation of G(S,T,2l). The definition (5.54) of G implies that

G(S,T,2l) = G(S, g,zz)s-'

1 T\ 4% T R*(1-4%)
= m{(1—4§) exp(l_4§)GXP(R+ 5 )}m’-

We have dealt so far with the case p even (p = 2l). The arguments for odd p are entirely similar

(one has to got through exactly the same computational steps) and we will only write down the

result.
Theorem 5.6. For any non-negative integer p,
G(S,T,p) =

1 T\ %-* T R%(1-41)
E{(l—4§) exp(l_"%)exp (R+ Ts)}ﬂp. (5.73)

We are now in a position to return to the computation of the invariants < Y"ZP >. Combin-

ing (5.49) and (5.52) we have

b2 ba ba
<yrzP>=amntsw 3 [[e™ [T {T] G, T pj)} e

P1+: Py =p j=1 Jj=1 j=l1

In the last expression we now want to substitute the formula (5.73) for G. Notice that the factors
V; :=¢j6é;A; can be absorbed in the exponentials after rescaling R; explicitly, if we introduce formal

variables R, - Ry, then

b2 ba 2
[I5™ [T T1 66, 1T =
J=1 =1 =t

ba —! ’2 X
4T; ,T v ViISi s
H(l S,-T) exp(l—%T)exp(l—ﬂ}-TRrFl—%;iTRj .

Jj=1

Therefore we conclude that

<Y"ZP >=4"nlp! SW. (5.74)
b2 -4 2/¢.
AT, T,T v, V2/S;
1- —’T) exp | —2=— | exp| —:—R, + —_——R? .
{H( 3 "(I_gf:r) "(l_ggr’ -2



The last identity can be put in a nicer generating series form. Recall that n and p are supposed
to satisfy the condition 2n + p = r mod 4 and that we actually have to sum over basic classes, i.e.

introduce the numbers SW; for i = 1,--. , B. Also recall that

Ty = 6050

Sy = 25\
Ty/Sy = 65/2
Vi = 6

With all these preparations, the result is that

B

1

{< exp(=YT + ZR) >} =) SwW: (5.75)
4 2deg T+deg R=r mod 4 i=1

w ! @\ (g s,
{H (l B -2iT) exp ( Tuoq; ) exp ( V:ﬂ. R+ - /9:.1 Rj '
j=1 1-4T 1-3T 1-4T 2deg T-+deg R=r mod 4

Finally we have to discuss the insertion of X™; this is very easy to do (see the comments preceding

Theorem 4.3). The final result is summarized below.

Theorem 5.7. There is an equality between the corresponding terms in the following two power

series in all degrees satisfying

2degT + 2deglU +degR=r mod 4:

1 ZR S
{< exp(;YT + ZR) } = Z SW;- (5.76)
(1 - XU) 2deg T+2deg U+deg R=r mod 4 i=1

b3 g2 \} y . V2/S;
! 1--1T1 exp T.,oi; exp Vz, R; + Lﬂ,J-Rg .
148U ke 2 1- 4T 1- 4T 1- 4T 2 deg T+2 deg U+

deg R=r mod 4

The series on the left-hand side vanishes in all degrees which don’t fulfill this condition and so we
could rewrite (5.76) as an equality between the full series on the left-hand side and a combination of

four series of the type appearing on the right-hand side.

97



98



Chapter 6

Semiclassical MTNSW

In chapter 4 we studied the localization properties of massive topological non-abelian Seiberg-Witten
theory by using a formal infinite-dimensional generalization of the abelian localization theorem. A
different approach is possible: the path integrals defining the partition function and correlation
functions of MTNSW (see Definition 3.4) are independent of the parameters ¢ and r. Therefore,
one can compute them (exactly) in the t,r — oo limit, i.e. in the semiclassical approximation. As
explained in Section 4.2, in the semiclassical approximation the path-integrals localize to the fixed
points of the S'-action on the moduli space Mysw, i.e. the moduli spaces of Donaldson instantons
and abelian Seiberg-Witten pairs. Some quadratic integrals have to be performed in the normal
directions, followed by integrals over these moduli spaces. We will find in this chapter the (quotients
of) determinants which result from the normal integrals and use them to express the contributions
from instantons and abelian Seiberg-Witten pairs to the partition function of MTNSW as integrals

over the moduli spaces.

6.1 Contributions from instantons

In this section we study the instanton contributions to the partition function Zysw(t,r,m* by ap-
plying a quadratic approximation argument to the ¢,r — oo limit of their path-integral expressions.
According to Statement 3.11, from a physical viewpoint it is natural to restrict to the case r = t/m
and so we will restrict to considering the double limit in this sense. Let m denote the space of
anti-self-dual connections on E and Mp the corresponding maduli space of instantons, i.e. the
quotient of m by the group of unitary gauge transformations of unit determinant.

In the path-integral expression (3.24) for the correlation functions, the part of the integrand
coming from g, (P) is independent of ¢ and r, therefore, to leading order in ¢ and r, all we have to
do regarding these terms is to restrict them to the space of instantons )\%. The parameter t appears
in the universal Euler forms Wg(E,,s,) and Wg ,(E2,82) and the parameter r in the ‘localizing
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form’ dg,mw, therefore we have to find the quadratic part in their expansion normal to m. We
will use the following coordinates for the normal directiors: since the localization is at S = 0, we
can just use S and o as normal coordinates for the spinor fields; as for the connections, recall that

the normal space to the set of anti-self dual connections at a connection A is
NaMp(A) = {a € Q' (su(E)) | Dja = 0}
80 we can work with a (bosonic) and v (fermionic) so that D%a = D3y =0,

Proposition 8.1. IN the ‘physical’ case r = t/rn, the quadratic expansions in the normal directions

to the space of instantons at a fized point (A,S) are

Quadr Wg(E,,s,) = Bxexpt/ Tr [—%|D4a|2—iD4an ; (6.1)
X
Quads Wo.n(Br,2z) = Brexpt | *[-%llpASP-ion+cl<¢)s,T>+§<T.(ad¢+imm]za
Quadr exp -;-dg,mw = exp] / + [~(0,ic) - mlIS|® - (4, 8],iS)] . (6.3)
x‘

Remark. The notation (ad ¢)S replaces [¢, S] and similarly for (ad ¢)T. To understand correctly
the meaning of the proposition, there is something we have to explain about the field ¢. In the above
formulae the field ¢ is fized. Its value is the restriction of the field ¢ to the space of instantons-its
components in the normal directions give lower order contributions in ¢, since they only occur in
cubic terms. This value will be used later on when doing the integral over ¢. In the language of
equivariant differential forms, we have seen that the ¢ integral in (3.24) amounts to substituting ¢
by the equivariant curvature and so, in this language, we have to restrict the curvature to /T'f\o- The
same comment applies to 1 which has to be regarded as a differential 1-form on f/t\p.

We infer that the quadratic integral I;ﬁ’"“‘ which has to be performed in the normal directions

is
mermal — fg o, | DaDyDxexpt | Tr —llDAal2 —iDay A X], (6.4)
Mp ' X 2
where
Isr. = [DSDTDoexp [% [ [-1PASP = 2i(Pyo + el (0)S,T) + (T, (ad ¢ + im)T)
b'e

+% /x' * [~(0,i0) — m||S||* - ((ad ¢)S,iS)]] )

As explained before, in the above integrals A, S, and ¢ are fixed. Notice that if Is ., were
not present, the integral IJ"‘ﬁ"“" would coincide with the quadratic normal integral obtained in
Donaldson-Witten theory when localizing the correlation functions to the space of instantons. In
fact it is well known (or it can be easily seen from (6.4)) that the integral over a, 1, and x equals

%1, and the sign is determined by the orientation of Donaldson moduli space. Therefore

Iemel = glg oy,
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Let us now analyze a simplified version I§ y , of Is,r,;. Notice that with the exception of the
term —it(cl (¥)S, T) in the integrand of It the bosonic and fermionic parts are decoupled from

each other so if we consider
Iiy, = /‘DS’DT’Da exp [% /;‘ * [~|P4SI? - 2i(P,0,T) + (T, (ad ¢ + im)T)]
+5 [ # [lovio) ~ mISIE - (@d9)S,i8))|

then Is".,'r,a can be calculated by doing the bosonic and fermionic integrals separately.
We begin with the bosonic integral
(2 /¢) bimT(W* @al(E))
det(P} +m — iadd)ir(w+en(E))

/DS exp%/x s [~8.(P2 +m - iadg)s)] =
We next compute the fermionic integral
/ DoDTexp / ' [-1(a,ua) —it(P,0, T) + (T, (ad ¢ + im)T)]
x 2 2

- (_t)“‘(W'*@ll(E)) /‘DT exp/x * [é({DAT,i{DAT) + %(T, (ad ¢ + im)T)]

— ¢ HIm (W @sl(E)) pjdim (W™ @8WE)) 4ot ( 2 —iad .
+ t e (;DA +m—i ¢))|r(w_@'lw»

In the previous paragraphs, dim denotes the real dimension; as for the determinants, there are
no square roots involved since we are dealing with Gaussian integrals over complez vector spaces.

Recall that the definition (3.23) of the partition function Zysw (¢, 7, m) includes the infinite constant

(2”) —dim ﬂo(au(E))/z (21l’t)— } (dim 01 (su(E))+dim (W~ @sl(E))) .

It is natural to think of this constant as the product of the constant appearing in Donaldson-Witten

theory (see (3.3)) and
(2rt)~ HdimdimT(W~@s)(E))

which we can incorporate in the normal integral,

After including this constant into the normal integral, we get

_ Ind (P@sI(E)) det(} +m — iad 8)ir(w- esi(E))
= (2m) 2 - : (6.5)
det(Py +m —iad d);r(w+eu(E)

'
IS,T,o

where ¢(0) is the value at 0 of the {-function of the elliptic operator ID: +m—1iad ¢ on minus spinors,
Notice that there are no zero-modes to worry about in the above formula, due to the presence of
the scalar term m-a nice non-degeneracy property of the functional integral.

Due to the cross-term —it(cl (1)S, T) the computation of Is 1, is harder. The Berezin integral
over o can be carried out as before, but the coupling of fermions and bosons will give rise to a

superdeterminant when integrating (S, T) € T*(W+ ®sl(E)) ® IV (W~ ® sl(E)). (The superscripts
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b and f denote the even/odd parts of the above super vector space.) Denoting by Q the operator

{0: +m —iad ¢ on positive/negative spinors we have

Iz, = (@mindPesiEnge-t | @F i)
icl (¥) Q-

(amra ponn S = CONQT)A @) .

The above quotient of determinants depends on ¢ and 1 (basically it can be thought of as a
differential form on .4/G). The ‘physical’ situation corresponds to ¢ = r in which case we can factor
t out both in the denominator and the numerator. Except for the overall factors ¢¢(0) the resulting
quotient of determinants doesn’t contain ¢ (so we don’t have to compute a limit anymore). The

result is

= (2)Ind (P@HI(E)) det(P3 +m —iadg — cl ($)(Q) " cl (¥))ir(w-aei(E)) '

IS.T.a ]
det(P} +m — i ad o) r(w+esi(2))

(6.7)

6.2 Contributions from abelian Seiberg-Witten solutions: zero-

dimensional case

In this section we discuss the contributions from (abelian) Seiberg-Witten solutions to the partition
function of MTNSW. Let us denote generically the space of such solutions by Mgw (we omit the

class of the Spin®-structure in the notation).

We will concentrate on a special situation, namely the case when the (virtual) dimension of Msw
is zero. This case suffices for the computation of the correlation functions of massive topological

non-abelian Seiberg-Witten theory defined on four-manifolds of Seiberg-Witten simple type.

The assumption that the moduli spaces have zero virtual dimension considerably simplifies the
quadratic integral in the normal directions. Recall from Section 6.1 that in the case of instantons,
the integral Is T, on page 101 was complicated by the ‘coupling’ of bosons and fermions (in fact
Is T, is a differential form on moduli space). On a zero-dimensional moduli space there are no
positive-degree differential forms to take into account, so in the expression of Is . we can eliminate
all terms which involve the differential forms 1 and ¢. The result simplifies considerably-in fact we
will show in this section that the integral in the normal directions to Mgy reduces to a constant

times a power of m/2m.

Let us repeat the notation introduced in Section 4.4. Inside the configuration space P := Ag x

[(W* ®sl(E)) we consider the set R of configurations (A4, S) with A reducible and S as in Section
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4.2. We have

R = |J Axrwtei®)
{E=ll-1}
= U Rz, whereR: = | ] A xT(W+ ®1%?).
z € H*(X,Z) o)==
32 —3 —k ]

The union on the first line is over all line subbundles ! of E such that E = !&!™!; on the second
line we have partitioned the set of such line subbundles into topological types. As in Section 4.4, in
the actual computation we ignore the pairs consisting of reducible connections and the zero spinor
in order to be able to pretend that the action of G; is free,

Let us denote by Mg, the normal bundle of R, in the configuration space Ag x I'(W* ®sl(E)).
At a point (4, S) € A; x T(W+ ® I%2), the fibre of N, can be identified with

{a€Q}(i®%) | Dia =0} (W ® (Cl™?)).

To see this, use the fact that the normal space of 4; in Ag is isomorphic to Q! (1%2) (as a consequence
of the isomorphism su(E) ~ R®I1®?). Since any two subbundles I; and I, of E with the same ¢; can
be mapped into one another by a gauge transformation, the normal space of the set of all reducible
connections in Ag is the subspace of 02! (I®2) orthogonal to the gauge orbits, as claimed above.

The quadratic approximation will involve an integral over Ng, and one over R, for each z. The
submanifolds R, are Gg-invariant; if we choose one line bundle I, for each = we see that R, contains
as a submanifold the space

Ri, = A, x (W ®1%8?),

which is endowed with an action of the subgroup G; of Gg. Note that there is a diffeomorphism
R:/Ge = Ri,/Gi. We claim that the relevant integral over R, can be rewritten as an integral
over R;,. Indeed, the integrands of interest to us are products of vertical volume elements times
equivariant differential forms 8o, at least formally, if we ignore the problems caused by fixed points,
we have

/ volge AT*a = / a= / a= / volg, A 7" a. (6.8)
Rs R-/gﬂ 'Rl. /g’ R

la

This is a ‘partial gauge fixing’-except that no determinants will appear since our integrands are top
differential forms and not functions (usually, physicists use a similar procedure for funttions, so they
need a measure to integrate them against; the determinants arise when comparing the measures
on the two integration spaces). Alternatively, we can say that since we gauge-fix bosons as well as
fermions, the resulting determinants cancel out. '

We will denote points of A; x D(W ® I®2) by (A, S;). The coordinates on the normal space of
the set of reducible configurations are (a, S,;) € 2! (1%?) @ [(W+ ® (C ®1~2%)). The tangent vectors

.
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to Ay x (W ®[®?) are of the form (y,0;), whereas the tangent vectors in the normal directions
are written as (yn,0n) € 2'(1%%) DT (W* ® (C®1~2)). The Berezin integration variables y and T
appearing in (3.17) and (3.18) will be decomposed as x; + x,, and T; +T,, respectively, with x; € Q% ,
Xn € 05.(1%?), Ty € (W~ ®(®2), and T,, € [(W~ ® (C @ I-2)). Furthermore, we will denote the
components of Sp,04q, Ty € I'(W*) ® T(W* ® I~2) by the superscripts 0 and —2, respectively (so
S, =89+ S;2 and so on).

We will need some results about the behavior of the localizing form dg,mw in the neighborhood
of the R;,. We have proved in Lemma 4.2 that the pullback of CWdg mw to R,, is equal to zero.
There is an obvious difference between the pullback and the restriction of a 2-form to a submanifold:
the two differ by the normal components of the restriction-and in the semiclassical approximation
it is actually the restriction and not the pullback which has to be used in the normal quadratic
integral. We therefore adapt the proof of Lemma 4.2 to calculate the restriction of the 2-form part

of dg,mw to Ry, ; we only have to use the restriction of Q4,, to R, instead of its pullback. Since
(©Cor, N = [T (,910) - 400, Do),

we conclude that

Lemma 6.1. The restriction of the 2-form part of CW dg,mw to R;, equals

/ ~24 (0n, imon) + Tt (['p,,,fp,.lo["m 0 ]) (6.9)
X4 0 -—-im

In the above expression, (¥n,0,) € Q! (1%?) @ '(W* ® (C®1~2)) denotes a normal vector to R;.

The last term can be simplified if we express 1, in matrix form:

w5 0]) ([ T L)
o (sl | )

- 2im¢n¢—n
=2(t)n, imyy),

where the ‘fermionic’ notation on the last line stands for a differential two-form whose arguments
are denoted by ¥,. The symbol Tr stands (as always throughout the argument) for minus one half
the trace in the fundamental representation.

In order to complete the calculation of Quadr CW dg mw we also need to calculate the Hessian
of the O-form part of CW dg nw -this is probably the trickiest part of the computation. There are
two terms in this O-form: one is —imxw = —m?||S||2, whose Hessian is clearly —m2||S,(|?; the other

one is (CJ, mX). We claim that (with the notations introduced before)
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Lemma 6.2.
Quadr (CJ, X) = —3m?||Sp||* — 4m?||a]l®. (6.10)
Proof. Start from the definition of 7, which implies, for any A € Lie(G), that
(C*CJ, A) = (mX,C*)) = (imS, AS) (6.11)

at a point (A,S) in configuration space. Let us differentiate (6.11) in the direction (0,0) with
o € (Wt ® (C & 1~2)); we get (after switching to global inner products so that we don’t have to

write the integrals over the manifold X4 anymore)
(C°CTL, N) +(Ta, AS) + (TS, Ag) = (ima, AS) + (imS, \o). (6.12)
On the other hand we have
(0T, mX) = (CJ}, mX) + (Jo, mX) + (CF  ima). (6.13)

The key point is the fact that mX is a vertical vector at the points of R;,, namely the image of
1 0

A= m , and so the right-hand side of (6.13) can be computed from (6.12) by using
0 -im

this particular A. One finds that (d/do)(CJ, mX) = 0 on Ry, as expected. The second derivative

is computed by differentiating (6.12) and (6.13) once more with respect to o and using the same

argument. The conclusion is that
d 2y 112
g (CT, mX) = —6m?||o||°.

The next step is to compute (d/da)(CT, mX) for a € Q'(I1%2). The reasoning is similar, but
there is one important point that we would like to emphasize. If we start from (6.11) and we

differentiate in the direction a we obtain:

(C°CJay M) + ({8, DaT }o, A) + (DZ[a, J], A) = 0. (6.14)
im 0

We know that J = on Ry, and so DuJ = 0 and [a,J] = 2ima; the last formula
0 -im

follows for instance if we write a in matrix form as

!

The normal directions correspond to those a satisfying D ja = 0, hence (d/da)(CJ, mX) = 0 in
these directions.

Continuing along the same lines we conclude that on R;, we have

(d*/dada){(CT, mX) =0 (6.15)
(& /da®)(CT, mX) = —8m?||a||. (6.16)
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Thia completes the proof of the Lemma (if we remember that the quadratic part of a Taylor expansion

is preceded by a 1/2 factor). Hence

Proposition 6.2. The quadratic expansion of dg mw in the normal directions to Ry is given by
Quadr dg nw = —4m?||S,|)? - 4m?||a||? — 2{on, iman) — 2(n, iMmy). (6.17)

The next task is to find which terms in the universal Euler forms (3.17) and (3.28) are relevant

in the quadratic integral normal to Mgw. It is easy to see that

Lemma 6.3. The quadratic parts of the universal Euler forms in the directions normal to the set
of reducible configurations, evaluated at a solution (A;,Si) of the perturbed abelian Seiberg-Witten

equations, are given by

t . & o & , , & g &
Quadr Wg(E;,8) = -EIIDI,G + i[Sn, Stlo + i[S1, Snlol|? — (D} ¥ + i[on, Silo + ilor, S, Xn)
t ,
~5(Xn, imxn) (6.18)
t , t ,
Quadr Wg i (E2,82) = —§||{DAS,. +cl(a)Si||? — it(P4on + €l (¥)Sn, Th) + E(T?" imTY)
+t(T;2, imT;?). (6.19)

We can now work out the quadratic integral in the directions normal to the set of reducible
configurations; let us denote this integral by (1)%°"™%!(m, r,t) (note that observables don’t contribute
to this because they don't include the coupling constants; therefore, in the semiclassical limit,

observables only enter through their restriction to the moduli space), We have
(1™ (m, 7, t) = / DaDya DS, Do, DxDT exp
t , & o & , . & &
—§||Dj'a + i[Sn, SiJo + i[St, Sn)oll® - it(Df ¥ + i[on, Si)o +ifor, Salo, Xn)
i ,
=5 {Xn, imxn)
t . t , 2 . -
—§||¢AS,. +cl(a)Si|)® - it{P o, + cl (¥)Sp, Tp) + -2-(T?., imT?) + ¢(T;2, imT;?).
=2tm||Su||* - 2tm|al|? - t(on, ion) — t{tn, V). (6.20)
Despite appearance to the contrary, the integral (6.20) can be evaluated very easily. The key point
lies in its particular ‘supersymmetry’-the bosonic integrals involved exactly match the fermionic ones,
and they are not coupled to each other. In down-to-earth terms, let us assume that the Berezin
integrations over x, and T have already been carried out (this part is easy, since the operators

defining the quadratic parts are just multiplication by multiples of im) and if we denote by b the

bosonic variables (a,S,) and by f the fermionic ones (¥,,d,), our integral has the form
[ PoDrexs [-306,@0) + 505, 22) (6.21)
p 2 L 2 1 im 1 .
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where Q is a positive self-adjoint operator (to see that Q is indeed nondegenerate, it is enough
to look at the last line of (6.20) which shows that Q is the sum of a non-negative operator and
a positive multiple of the identity). The precise form of Q is not important, since the integral is
supersymmetric: the determinants produced by the bosonic and fermionic integrations cancel out
Therefore the integral (6.21) simply reduces to constant times a power of m/2w. Explicitly, for
the physical case (t = r) and after including the overall power of t given by the Mathai-Quillen

construction,

Proposition 6.3.

(l)!’lzormnl(m’r,t) — (__1);(dlm01(10’)-d|mn'(l°’)+d|mn°(z°’))2-lndpet-’
m \ —~Ind (PB(CaI~?))+ 4 (dim Q7 (19?) —dim Q' (18?) +-dim Q° (197))
() 62

The alternating sum of infinite dimensions appearing in the exponent of (6.22) can be regularized
as the index of the half DeRham complex, and so the exponent equals —Ind () ® (C!~2)) +4z* +
(1/2)(x+o). It is easy to see that (6.22) coincides with the coefficient of the Seiberg-Witten invariant
appearing in (4.24), as expected.

Let us analyze the restriction of the integral (3.24) with O = 1 to the set of reducible configu-
rations Ry, ; as explained before, we can rewrite this integral as an integral over R;, after having
chosen a particular line bundle I; with ¢; = z. We claim that (modulo some infinite power of ¢
which we ignore)

(1)r,, (m,r,t) = SW(c + 4z).

This follows by looking at the restriction of the integrand of (3.24) to the submanifold R;,; the
crucial fact is the vanishing of the localization form CWdg mw when pulled back to R,,, proved in
lemma (4.2). Due to this vanishing, the path-integral along R;, only involves the pull-back of the
universal Euler forms (3.17) and (3.28) to Ry, -therefore it reduces precisely to the path-integral
defining abelian Seiberg-Witten theory (cf. Section 3.2).

We conclude that

Proposition 6.4. The contribution Z} gy, (m,r,t) to the partition function of the massive topolog-
ical non-abelian Seiberg- Witten theory obtained from abelian Seiberg- Witten pairs compatible with a
decomposition E = I®l~! such that ¢, () = z and (c+4z)-(c+4z) = 2x+30 (s0 that v.dim Mgy =0
is

m ) —3(c-c~2x-30)/8

Esw(m,r,t) = (<1)=(xte)2 gikrizo—ea/t (22

SW(c+ 4z),
(6.23)

in agreement with Statement 4.6.

107



108



Chapter 7

Determinants and the Topology of
the Index Bundle

In this chapter we study a conjecture generated by the comparison between the formal geometric
argument of Section 4.3 and the semiclassical approach from Section 6.1. In Section 4.3 we expressed
the contribution from Donaldson-Witten configurations to the correlation functions of MTNSW as
integrals of ratios of equivariant Euler classes. We identified such ratios with the generating series for
the total Segre class of an index bundle. In Section 6.1 we expressed the quadratic integral IE{"""‘
a8 the quotient of determinants Is t, appearing in (6.7). Notice that both Is 1, and the Segre
class of the index bundle are rigorously defined objects. They arose as two different expressions for
the contributions from Donaldson-Witten configurations to the partition function of MTNSW. It is
therefore natural to conjecture that the total Segre class of the index bundle from (4.2) is represented

by the differential form Is ..

We will begin by stating a more ;ieneral form of the above conjecture; the generalization of
the statement is obvious, but its main interest lies in potential application to a wide variety of
semiclassical computations in supersymmetric quantum field theories. Despite the fact that at this
stage we don't have a complete proof of the conjecture, we can control a number of particular cases,
in particular we have a relatively good understanding of the case of vector bundles over a Riemann
surface, described in Sections 7.4 and 7.5. We build the necessary technical tools in Sections 7.2 and
7.3.
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7.1 A conjecture on determinants and characteristic classes
of the index bundle

A comparison between the results of Sections 4.3 and 6.1 leads to the following conjecture about the
total Segre class of the index bundle of a family of coupled Dirac operators over a four-dimensional
compact oriented Riemannian manifold. Choose a Spin®-structure on the base manifold X* with
corresponding spinor bundles W* and an SU (2)-bundle E. Let 4/G be the spuce of (irreducible)
unitary connections on E modulo gauge transformations, and denote by Ind ([)) the index of the
family of Dirac operators [ : ['(W* ®sl(E)) — I'(W - ®sl(E)), regarded as an element of K(A/G).

The conjecture can then be stated as follows.

Conjecture 3. The cohomology class of the total Segre class

—In k
o )= ()7 5 () wwap) € Ho(49)

k>0
admits the De Rham representative

(2)1nd (P) det(P} + m —iadg — cl (¥)(P] +m — iad )~ cl (¥))rw- ~en(E)

(7.1)
det(P} + m — iad 8);rv+ on(E))

where ¢ denotes the (0,2)-part of the curvature of the universal bundle over A/G introduced in
Section 5.1. In fact, in order to interpret (7.1) as a differential form on A/G, one has to consider

its horizontal part as a form on A with respect to the action of G.

We can now give an obvious generalization of the conjecture. If X is a compact even-dimensional
oriented Riemannian manifold, W* and E are complex vector bundles over X endowed with her-
mitian metrics, and Q : [(W*) - [(W~) is an elliptic first order operator then we can consider
the family of elliptic operators Q.;I'(W* ® E) - (W~ ® E) for A a unitary connection on E
with trivial stabilizer in the group of gauge transformations. The index of the family is an element
in K(Ag/GE) (we restrict ourselves to the subspace of connections on which the group of gauge

transformations acts freely), and we have then

Conjecture 4. The total Segre class of the index bundle is represented in DeRham cohomolegy by
the differential form
|ndeet(QQ. +m-ip—-q(¥)(Q°Q+m- i9)” ‘I('/’))II‘(W ®E)
D :=(2n)
det(Q°Q + m — id)r(w+aE)
where ¢ is the universal curvature in the Ag/Gg-directions, » denotes the hermitian adjoint, and q
is the symbol of Q.

(7.2)

In the above, g(v)) is the operator-valued 1-form on A defined as follows: if 1 denotes a tangent
vector to A, i.e. Y € [(T*X @ End(E)), then g(1) is the algebraic operator in I'(Hom (W+* @
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E,W~ ® E)) obtained by applying ¢ to ¥ (recall that, by definition, ¢ is pointwise a linear function
on T* X with values in Hom (W+,w-)).

representative on the Segre class:

Conjecture 5. The total Segre form of the index bundle computed via the families indez theorem
using the universal curvature F coincides with the differential form on A/G given by (7.2).

7.2 Determinants and their derivatives

We use the Ray-Singer definition of determinants [27] det(A) := exp(—(4 (0)), where A s a self-
adjoint positive-definite Riemannian manifold.

The functiou ¢, is defined by (a(s) := Tr(A~*) for Re (8) > 0 and the properties of the Mellin
transform

oo
Ca(s) = I—‘Zl'ﬁ t'7ITr (e7t4) 4y,
0
show that, if dim X is even, this function is meromorphic in the s-plane, holomorphic for Re 5 >0,
and 8 =0is not a pole. The function ¢a has at most simple poles at 1, 2,... ,dimx /2. The residues
at these poles as well as the value (pelta(0) are locally computable from the coefficients of the
asymptotic expansion of the heat kernel of A,
Remark. The above discussion can be extended to self-adjoint differential operators which are

merely non-negative or even bounded from below-in which case one has to be careful about the

terms’ introduced in Section 3.5 in connection with topological non-abelian Seiberg-Witten theory
kill the zero eigenvalue of the operators appearing in (6.7), so we can ignove this subtlety for our
present purposes,
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We now turn to the study of the variation of the determinants in families; we will again restrict

to a special case, namely we will consider affine families of the form
A, :=A+uR,

with R self-adjoint and either algebraic (i.e. a multiplication operator) or a pseudodifferential
operator of negative order (for instance the inverse of A composed with some algebraic operators, as
needed in (6.7)). The real number u is assumed to be small enough so that A, be positive-definite,
in order to avoid any delicate problems related to its kernel.

Our main goal in this section is to compute the derivatives
Eu—,,Cf_«.,. (0).
The Mellin transform tells us that, for Re(s) > 0,

(a.(s) = % 0] PITE (e780) dt (7.3)

and so, by taking derivatives with respect to s,

Ga(0) = ~Tora () + T / = log Tr (¢™44) dt. (.4)

By differentiating with respect to u, and still for Re (s) 3> 0, we obtain
I's) 1 [ 1 7
— = _8_ 8 —tA, — [} -tA,
0 0
If we now denote by £a(s) the function defined for Re (s) 3> 0 by

Ea(s) = %3) /t"' logt Tr (e~*A+) dt (7.6)
0

then (7.5) becomes
T Ca(6) = LMo n(s + 1)~ sEans + 1) &

where (a,7(s) and £a,7(8) are defined by

1 7. )
(a,r(s) = m‘o/t 'Tr (TP tA) dt
1 [, }
EA‘T(B) = Ts)b/t llogt'I\' (Te ‘A) dt (7'8)

for Re(s) » 0.
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By differentiating (7.5) once more with respect to u we get

& M's) 1 [

o0
1
‘ - _ a1 2,—~tA, o+l 2,~tA,
dugcA"(s) T(s) T(s) t*H'Tr (R%e™*%v) dt + T(a) /t logtTr (R*e™*4) dt,
0 0

(7.9)

where we have used the fact that the family A, is affine, i.e. d* /du"’A.. = 0 (otherwise there would

have been extra terms). With the new notations, (7.9) can be rewritten as

500 = =T alo 4 (o +2)+ o0 + o +2). (7.10)

By iterating the above reasoning we can derive an expression for d*/du*(}, (s):

Proposition 7.1. For any s with Re(8) 3> 0 and any integer k > 1,
d* I'(s)

WC'A, (8)=(-1)*'ts(s+1)---(s+k—-1) WCA...R"(S + k) — Ea, e (s + k).

(7.11)

We would now want to analytically extend the right-hand side of (7.11) to s = 0 in order to
get a formula for the variation of (3 _(0). It is clear from (7.11) that this requires knowledge about
the behavior of the functions {a,7 and £a,r at positive integers. The necessary information can
be obtained in analogy with the properties of the usual {-function We will assume that T is a
pseudodifferential operator of order —2a (so a = 0 for an algebraic operator). For the function {a,r

we have

Proposition 7.2. The function (o T defined a priori for Re(s) 3> 0 can be analytically continued
to a meromorphic function on C with at most simple poles at 1 — a,2 — a,...,dim X/2 — a and

holomorphic everywhere else.

A proof of the proposition can be derived similarly to that of Theorem 1.12.2 in [11]. We can
easily deal with £a r if we remark that the definition (7.8) implies that, for Re (s) > 0,

D(e)ear(s) = 3¢ D)a2(6)]
This proves that

Proposition 7.3. The function £a, 1(8) extends meromorphically to C with poles at most at integers
less or equal to dim X /2 — a. The poles at positive integers k are double poles with no residues and
the coefficient of the singular part 1/(s — k)? in the Laurent ezpansion of £a v around s = k equals
—Res (a7

The final part of the proposition follows immediately from the fact that the gamma functions has
neither zeroes nor poles at positive integers, Actuaily the function {4 7 has simple poles at negative
integers because of the poles of the gamma function at those points, but our interest lies only in the

behavior of 4,7 at positive integers so we won't elaborate on this point.
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We are now in a position to simplify (7.11). Recall the Laurent expansion about s = 0 for the

logarithmic derivative of the gamma function

P’(S) 1 7|'2 2
T(s) ~ s -7+ 6 s+ O(s8%),

where 7 is Euler’s constant. Applying this and the previous two propositions to (7.11) yields
d* 1 Res
@ ~ (~DF(k-1)ls [(-; —y+ 0(3)) (# FCanrn(k) + O(s))
—Res(a, v
_ (—sf ™ 0(1))] :

Notice that the singular part (i.e. O(1/s)) drops out so we are left with

Theorem 7.1. Under the assumptions stated before,the k-th derivative of 5, (0) is

k
2o 6a,(0) = (=1(k ~ 1)! (vRes G o + Ca. e (B) (712)

where Ca, 4 (k) is either the value of the (-function at k if k is not a pole or its finite part at k

otherwise.
The theorem can be reformulated as a statement about a Taylor expansion:

Theorem 7.2. For small enough |u|,
o (=D*
Ca+ur(0) = CA(0) + ) % (YReskCa,rx + Ca,re(K)) (7.13)
k=1

at least if we assume that the series on the right-hand side has a positive radius of convergence.

This theorem already sheds some light on Conjecture 5. The two ingredients of the conjecture,
namely the representative for the Segre class obtained from the families index theorem and the
quotient of determinants are quite different in nature: the Segre form computed from the universal
curvature on A/G is a local expression, i.e. all its components can be expressed as integrals over X
of local quantities (this is easily seen from the discussion in Section 5.1). On the other hand, if we
apply Theorem 7.2 to the quotient of determinants, for A = QQ* + m? and A = Q*Q + m? and
appropriate R, we see that the quotient of determinants involves the values of the ¢-function at all
positive integers, which are definitely non-local quantities.

This suggests that Conjecture 5 is not true, although it doesn’t rule out Conjecture 4. Despite
this, we don’t want to dismiss Conjecture 5 completely, and actually in the next section we will
show that it admits an improved version in which all non-local quantities are eliminated. Needless
to say, an equality between two differential forms would be much more powerful, especially in this
infinite-dimensional context,than an equality between cohomology classes. This is why we shift our
viewpoint in the next section in order to formulate a more plausible variant of Conjecture 4 that

would still predict an equality at the level of differential form representatives.
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7.3 Zeta functions and adiabatic limits

We have so far, in our analysis of topological quantum field theories, worked on a fired Riemannian
base, i.e. we have tacitly assumed that a fixed Riemannian metric had been chosen on the four-
manifold X (or on the even-dimensional manifold X in the previous section). However, the partition
function and correlation functions of these theories are in general diffeomorphism invariants (this
is strictly speaking true only under some topological restrictions-in the case of four-manifolds, we
should restrict to those with b7 > 1) and so we could try to vary the metric in order to simplify the
evaluation of expressions such as (6.7) which appear in the semiclassical analysis.

The simplest possible procedure is to rescale the metric by a constant factor, i.e. g = ug, and
analyze the 4 — 0 or u — oo limits. It turns out that the latter, so-called adiabatic limit,
leads to significant simplifications in the study of the quotients of determinants from our quadratic
approximations.

We illustrate now this phenomenon by a simple case which captures the key properties of zeta-
functions in the adiabatic limit. Our main interest lies in the determinants of operators of the
form Laplacian +m +perturbation (where we assume that m is positive and big enough to that the
operator be positive definite); if we ignore the perturbation for the time being and we only take into
account the scaling properties of the Laplacian, we see that, after rescaling the metric of the base,
the operator under consideration has the form (power of u)-Laplacian +m (for instance, the power

of u for the Laplacian of functions is —dim X/2). Our result is

Theorem 7.3. Let A : I'(F) — I'(F) be a non-negative self-adjoint second-order differential opera-
tor, so that the (-function (s is meromorphic in C, with poles at most at 1,2,... ,dim X/2. If we
denote by (,, the (-function of the operator (A/u) + m then

dim X /2 ¢
LS [“‘(3) - # (CA(O) * ; (3(1—1-1‘1‘; Rﬂ?.: C_Ac))] =0 (7.14)

uniformly on compact subsets of C\ {1,2,... ,dim X/2}.

Proof. The Mellin transform shows that

Cp(s) = t-—le—lmTr (e—lﬁ)dt

"Jl —
o-\s

(s)

N oo

I =1 _—tmp —-tA

P(s)/t e Tr (e™'2) dt,
0

after the change of variables t — ut. For large u, the integral from 0 to oo localizes to the neighbor-
hood of t = 0 because of the term e~*™*. Therefore we can use the short-time asymptotics of the

heat kernel of A along the diagonal,
e 2 (z,z) ~ Z t°a.(z).

e>-dim X/2
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Recall that the integrals of the coefficients a. over X have a very specific meaning, namely
/x Tra_.(z)dvol(z) = Res.(a for c¢=1,2,...,dim X/2
and
/x Tr ao(z)dvol (z) = (a(0)
and that

[ <]
- _ I'(s+¢)
8~14c_ —~tmp =
/ t e dt —(mp)' Te
0

if 8 + ¢ # 0. We conclude that
dim X/2
1 (mp)°Res (a 1
Cﬂ(s) ~ "T (CA(O)"' ; (8—1)'-'(8—0)) +0 (;;)

for s € C\{1,2,... ,dim X/2}. The expansion is easily seen to be uniform for s varying in a compact

set, which completes the proof of the theorem.

Remark. The proof shows that the theorem also holds for a generalized (-function of the form
$(a/p)+m,r if T is an algebraic operator. We will discuss further generalizations of the theorem in
the next section.

The theorem illustrates the dramatic simplification of the ¢-function which occurs in the adiabatic
limit. Let’s assume, for instance, that s is an integer bigger than dim X/2, so that the (-function is
regular at s. Although ¢a+m(8) is not locally expressible, the value((a /4)+m(8) has an asymptotic
expansion in powers of u whose coefficients are local quantities.

This immediately suggests that Conjecture 5 might be saved at least in part if we used some
scaling limit of the quotient of determinants (although it is not obvious at this point whether the
relevant limit is the adiabatic one, because of the terms in the asymptotic expansion which contain
positive powers of u and so blow up as 4 — 00). Hence the next logical step is to experiment
with some particular cases in order to find the right candidate for a scaling limit of the quotient of
determinants.

Remark. The previous theorem relies essentially on the mass gap, i.e. the mass term present in the
operator-an illustration of a quite general fact in quantum field theory, namely that theories with
a mass gap simplify at large scales. On the other hand, the mass term has in this case a geometric
meaning related to equivariant cohomology, which makes it plausible that this kind of result might

be useful in other geometric applications as well.

7.4 Topology of the index bundle I: line bundles

In this section we study the adiabatic limit of the quotient of determinants (7.2) in the simplest

possible case. Assume now that X is a Riemann surface, W+ is the trivial bundle, W~ = A%!(X),
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and, in addition, assume that E = L is a complex line bundle. Let the operator Q be the 8-operator
(to be specific, the d-operator on X coupled to a connection on L, which can be thought of as a
b-operator on L). Fix a metric g on X, let u be positive, and denote by D, the quotient (7.2) in the
metric ug. We don’t rescale the metric on L, and we consider the natural rescaling of the metrics
on W#: the metric on A%!(X) is conformally invariant, hence it doesn’t scale, whereas the metric
on C*°(X) is rescaled by u.

Lemma 7.1, The universal curvature ¢ € Q%(AL/GL) vanishes if L is a line bundle.

Proof. The proof of the lemma already appears in Section 3.1 on abelian Seiberg-Witten theory.
Recall from (2.12) that, with the notations of Section 2.4, ¢ = Qg,, = (C*C)~! dC"; but on page 49
we showed that C*(y) = —2d*¢ is a constant differential form on the affine space A, and so dC* = 0.

Therefore D,, reduces in this case to

_ d(ﬂ:(a"-i +m - ‘%ﬂbo'l‘? + m)"‘ * 1/)l'o)|p(,\o,|@l,)
det(¥ + m)"'(L) '

W (7.15)

In (7.15) the dependence on u has been factored out explicitly, i.e. all the operations which involve
the metric have been written with respect to the original metric g (for instance the adjoint §* and
the Riemannian duality operator * : Q!'! = Q°). Before going any further, we should explain what
the action of the operator

Ao -1
wo.l (8“_5 +m) * wl.o

really is. The 1-forms 1':? and %! are to be thought of as tangent vectors to the space of connections
on L, so that the above expression is an operator-values 2-form on the space of connections. The
operator acts on a section of A%! ® L by first multiplying it with ¥'?; the result (which is a
section of A!"! ® L) is then transformed into a section of L by the Riemannian star operator. After
applying the inverse of the differential operator (8°8/u) + m, the result is taken back into A®! ® L
by multiplication with ¢9!,

We can use Theorem 7.2 to analyze the denominator of D,. Let us define

At = 8—Q+m
H
A; = — +m and
u
1
R, := -;'.bo'l(A,T)—'*'/’"o-

Equation (7.13) yields

=
logdet(A] + Ry) = logdet Ay — 3 - *—
k=1

(7Res"CAI-R: +Ca; RY (k)) .
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We are being a little bit formal, since we should actually make sure that we dealing with positive
definite operators and that the appropriate convergence properties of the right-hand side hold. Notice
that the operator R,'j is pseudodifferential of order —2k, so Proposition 7.2 implies that for k > 1 the
(-function (’A; g+ has only one pole (at 0), hence it is regular at k (recall that we are now working
i)
over a Riemann surface, dim X = 2). It follows that
logdet(A; + R,) =logdet A, — 2 (=1 CA A (k).
k—
The first term on the right-hand side combines nicely with the logarithm of the denominator of

D,: we have

det A~
B _ o —Ind(8)
det A} m

because, for any operator @, the operators QQ” and Q*Q have the same spectrum except for the

zero eigenvalue. We infer that
log D, = —Ind (8) logm — Z (-1 CA R (k). (7.16)
k_

At this point it is clear that a generalization of Theorem 7.3 that would apply to the function
Ca- pr (k > 1) would express the 4 — oo limit of (7.16) as a function of local quantities. By
ity

definition,
Caz R (8) =Tr (Rﬁ(A;)—') . (7.17)

The right-hand side would be much simpler if we could permute the operators involved in order to
separate all the powers of A;. If we denote by ¥ the algebraic operator %%! o x o 4! acting on
sections of. A%! ® L then, modulo a number of commutations, the operator on the right hand side

of (7.17) has the form

( )k 'I’k(A )—a—k

whose trace equals

(”)k CA ik (3 + k)

This is very promising since the remark after Theorem 7.3 shows that the large u limit of this

generalized {-function satisfies the analogue of (7.14). Asymptotically in z, we have

1 m“ReleA;'l[l" 1
Cazan(8+K) ~ —— (CA;.W*(O)J’ st k-1 +0(5)'

It is resonable to assume that the commutation needed above doesn't affect the highest order term

in the asymptotic expansion in . Assuming this to be true, we would get

1 Re ~ gk 1
Cag.p(8) ~ (AEmGh (CA—,W*(O) + ﬂ‘ﬁ%ﬂ—) +0 (;) , (7.18)
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as p — 00. Recall that in (7.16) we actually need the values of the {-function at s = k > 1, and (7.18)
shows that the only contribution which survives as 4 — oo is the second term m~'Res (a- ¢
obtained for £ = 1. We conclude that

m~'Res|(p-y¢ fork=1
poroo RMTR 0 for k=2,3,...
and finally, by using the asymptotics of the heat kernel, we get
1
Resch-_q, = —4—'/ lﬁ/\lﬁ. (7.20)
T Jx

Remark. Notice how the (1/u) factor present in R compensates for the positive powers of x that
can a priori appear in the asymptotic expansion (7.14). This phenomenon will occur again later and is
the key to the existence of the adiabatic limit of D, determinants; (7.14) allows for terms that blow up
for large i and in fact in dimension 4, a power-counting analysis of the quotient of determinants (6.7)
relevant to topological non-abelian Seiberg-Witten theory shows that its asymptotic expansion does
contain positive powers of u. Therefore the large scaling limit in the four-dimensional case should
be interpreted further.
Returning to (7.16) and exponentiating we find that D, has a limit as u — oo and

lim D, =m0 exp (—# /x YA ¢) . (7.21)

B—00

It remains to compare this limit to the expression for the total Segre form of the index bundle
provided by the families index theorem.
Let us recapitulate the discussion in Section 5.1 for the present situation. The curvature F of

the universal bundle £ over X x AL /G, is given by

Proposition 7.4. With the notations of [2], and if A denotes a connection on L,

Fao = Fy (7.22)
Fia = ¥ (7.23)
Fo2 = 0. (7.24)

Proof. Statement (7.24) is the same as Lemma 7.1. The other two statements follow as in [2].
The only part worth explaining is the notation in (7.23)-given a tangent vector at a point of X and
a tangent vector to A, i.e. a 1-form, 9 is just supposed to evaluate the 1-form on the vector in X.

Since L is a line bundle, its Chern character is given by ch(C) = expc;(£) = exp(F/2mi). The
characteristic form associated with the d-operator being 1 + ¢;(X)/2 we get

3 e (F20 + Fra)"
ch(Ind 8) "/x(l +cn(X)/2)'§T@m-)1n‘—’
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which yields chi(Ind8) = 0 for k > 2 and

= 1
chi(Ind9) = ) /); PYAY, (7.25)
We can now use Theorem 5.1 to derive the generating series for the total Segre class from the Chern
character:
~ 1
8ot (Ind 8)(T') = exp(—ch,T) = exp (—T &l /x YA 1,b) ) (7.26)
which gives
- (27 1
810t(Ind 9) (;) = exp (-m /x YA 1{:) . (7.27)

Comparing (7.21) and (7.26), we see the result of our naive computation for of the quotient of
determinants D,, does indeed agree with the total Segre class of the index bundle. It remains, of

course, to find a proof of (7.18) (if true).

7.5 Topology of the index bundle II: vector bundles

In the previous section we studied the quotient of determinants D introduced in (7.2) over a two-
dimensional base for a family of 8 operators coupled to a line bundle. The major simplification was
the vanishing of ¢ (i.e. the universal curvature), so we will now try to understand what happens
when ¢ is non-zero. This is always the case if the structure group of E is non-abelian, so we will
consider here the case of an arbitrary vector bundle E over a Riemann surface. The bundles W*
will be as is the previous section, i.e. W is trivial and W~ := A%!(X).

As before, we rescale the metric on X by a constant factor u. In order to study the ‘rescaled’
quotient of determinants D, we now have to know the scaling properties of the universal curvature

¢ (this was unnecessary in last section, since ¢ vanished then). The result is very easy.

Proposition 7.5, The curvature ¢ of the bundle Ag — G is invariant under rescaling the metric

on the base manifold by a constant factor.

Proof. We know from formula (2.12) that ¢ = (C*C)~'dC", where C : Q%(su(E)) = Q! (su(E))
maps ) into —D4). The operator C doesn’t depend on the metric on X, but its adjoint C* does:
under a rescaling of the metric by p, the operator C* gets scaled by 1/u (because of the different
scaling properties of 0-forms and 1-forms). Nevertheless, (2.12) is independent of p because the
factors of u cancel each other, which proves the proposition.

Remark. This proof shows that the proposition is true over a base X of arbitrary dimension,
although we should point out that in general C* scales by a factor y~dim /2,

In order to study D, more easily, we split it as D, = D,‘,'Dz, where

1 det(55: -I:m - i¢)lp(/\o.|@E)
o det(3*0 + m — id)r(k)
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and

D? = det(88 +m —ig — Lo(y)" (&2 + m - ig) ' q(¥))ir (0. 1eE)
# det(=- 68 +m - t¢)r(/\o 1QE)

We now apply (7.13) to the logarithm of D}, for A = A% and R = —i¢:
n

(=1*
gD, = —Ca-(0) Z : ('YReskCA (—ioye T Caz (..,,u(k))
k=1
o (=1)*
+Hazo t 2R ("R‘”"CZI.(—M"'CA:.(—M)*("))- (7.28)
k=1
As explained in the previous section,
det A7

CA ot (A+(o) log — det A"' = -Ind ( ® E)logm.

Proposition 7.2 tells us that the above (-functions are regular at any k& > 2, so the only residue to

be taken into account is at k = 1. However, we claim that

Proposition 7.6.

Res 1Ca; (-ig) = RE81(a% (—ig): (7.29)

Proof. The above residues are locally computable from the heat kernel asymptotics. In two
dimensions, the residue at 1 equals the integral of the trace of the first coefficient in the asymptotic
expansion (see the proof of Theorem 7.3). To be specific, if the integral kernels of the operators
pexp(—tAi) satisfy

petau (z,2) ~ Y tea(z) for t—0
c2-1

then the residues at 1 are

R.eSch‘f'(_w) = —i/;(ﬁafl(z)dvol(x).

But ¢ is an algebraic operator so the integral kernel of ¢exp(—tA,=‘j) is just ¢ times the integral
kernel of exp(-tAf). Since the first coefficients in the asymptotic expansions of Aff are (the same)
multiple of the identity, we conclude that a~,(z) = at,(z) for any z € X, which completes the
proof of the proposition.

Therefore (7.28) takes the simpler form

—1)k
log D} = Z (- (<A+ cion (B) = Caz cion (K)) - (7.30)
k=1
As remarked earlier, this is non-local and very hard to compute for fixed u, but Theorem 7.3 and

the discussion following it show that one can compute its asymptotics as 4 — 0o, and the coefficients
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of the expansion are local. The easiest way to study the asymptotics of (7.30) is to use the analogues

of (7.14) for CA’?.(_W.. The proof of Theorem 7.3 implies that

lim [CA;_(_.'¢)"(’) - CA;,(—M)" (8) - 51'; _/; Tr (—ig)*(af - ao_)] =0

B#—00

for any s € C, where now aF denote the second coefficient in the short-time asymptotics of the heat
kernels for 8°9 and 8°, respectively. Notice that the heat-kernel proof of the index theorem tells
us that in fact af — ag is the characteristic form appearing in the index formula for O :T(E) -
[(A% @ E), i.e. ®Ec)(X) + ¢;(E). Hence

Jim [Cag cion ) = oz o) = [ T [("'%)k (a0 +am) ) ]

and so (7.30) becomes

lim log D)}, = g% /X Tr [(a%)k ("‘TEc.(X) +c,(E))] . (7.31)

As for D,’,, we also begin by applying Theorem 7.2 to its logarithm; for the determinant in the

numerator we regard

";0 +m—i¢)~ q(y)

Ro = ~i6 = ~a(u)"(

as the perturbation to A7, whereas the denominator will be treated as we did for 'D",, ie. R=~i¢.
We introduce the following notation which will be very useful in the sequel: let A, B be two

operators and k,! two non-negative integers. Then

{4, B'}:= )" aAB'A*TB-,

0<r<k
0<s<!
If we denote by
: 1 50 :
Ry:=Y" {(""'45)"—‘, (—;‘I(’P)'(T +m— i¢)_l¢1(¢)) } (7.32)
I=1
then (7.13) implies that
o 1)k
og2% = -3 S, o). (7.33)
k=1

The residues appearing in the right-hand side of (7.13) vanish in the case of (7.33) because for any
k > 1 the operator Ry has negative order, which means that the (-function Ca; R, i8 regular at any

positive integer (cf. Proposition 7.2).
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We now want to study the asymptotics of (7.33) as 4 — oo-although we should first reassert
that at this stage we will content ourselves with a naive argument. There are two main points to

emphasize: first, we will expand the inverse operator

(5;5 +m—ig)™
in a power series
. DN BENRY
R rme-ig)t =2 em Y (e m)) (7.34)

n20
Secondly, as we have already done in the previous section, we assume that the leading term in the
asymptotic expansion doesn’t change if we permute the algebraic operator ¢ as needed.
It is easy to deduce from the Mellin transtorm that because of the various factors of 1/u only
the term corresponding to [ = 1 from (7.32) leads to a contribution to (7.33) which is O(1) in g,
whereas the terms for [ > 1 vary as negative powers of u. We can therefore use R instead of R in

the large 4 limit, where
B = {(-iopt, (2o E2
Combining (7.33), (7.34), and (7.35), we obtain

0 vk had
log D} ~ - 3 L {(—m)*-', A (A5 Y (98)™)" atw) } @0 (3):
= = (7.36)

0 oy q(w)) } (7.35)

Assuming that we can permute all the algebraic operators in (7.36) to the left of the inverse Lapla-

cians without affecting the leading order term in the asymptotic expansion as u — oo, we get

o (_1)k
log D} ~ -3 %’k {(=ig)*1, q(w)"(i®)"a(¥)} (A7) * "' + 0 (i) :
k=1 (737)

Theorem 7.3 (see the Remark after the proof) shows that

—(n+k+1)
gD ~ -y [T {w)*. o) gowqw)} o (3)

m-i-1

CER Y M {“"“*' ;q"/’)‘(f'#)"*q(-ﬁ)} +o(})

Z
o<k
ogilm / { w( )' *¢}+o( ) (7.38)

recall that we are now studying the case dim X = 2 so there is only one term (c = 1) in the sum
in (7.14) and that in fact we are evaluating a (-functionat n+k+1=10+1,

We have now completed the computation of the adiabatic limit of the ratio of determinants. It
remains to compare the result to the total Segre form of the index bundle by using the families index

theorem, as we did at the end of the previous section for line bundles,
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Theorem 5.1 implies that

10g 8401 (Ind 8)(T) = ) (k — 1)!chy (Ind 8)T*. (7.39)

k>t

Applying the families index theorem we find

_ > (.7'-2,0-1-.7, +-7"o,2)"
ch(Ind §) = /x (+ei(x)/2) 3 SRR,

where F := F30 + F1,1 + Fo,2 is the curvature of the universal bundle £ (see Section 5.1). Recall
that 7, = ¢ and Fo2 = ¢, whereas F, ¢ is the curvature of E. Hence the n-th Chern character

form of the index bundle for n > 1 is given by
('I(X) '1\.¢n Tr {}-2.01 ¢n} Tr {'j,Q' ¢"_l}

‘h"‘l“d5’=/,, 2w T T e T () (7.40)
and so
logam(lndé)(%r) - Z%/x“ (cl(x) ‘5 )(;%)
n=1
(_l)n ¢2 ¢ n~1
Fam+D x“{? (=) } @4y

The first two terms in the right-hand side of (7.41) exactly match the adiabatic expression for
log D,, given in (7.31). We claim that the third coincides with the adiabatic formula (7.38) for log D2,

To see this, we use the following combinatorial exercise:

Lemma 7.2.
k {—k 2 n
2o, TFDTTD T ™ (¢ 94 = Y ariEr e oo

Proof. The trace is invariant under cyclic permutations of the factors, so we can arrange that
the first factor in each term of the expansions of {¢*, ¥¢'~*y} and {y?, ¢"} be v After this

rearrangement, we see that both sides of (7.42) equal

|H

= ko ol—k
N s 2 Trugtystt,

o f
o<k<! 0<k<!

L

This completes the check of our conjecture in the case of a family of 3 operators on a Riemann surface,
modulo the assumptions about the possiblity to commute certain operators without affecting the

highest-order term in some asymptotic expansions.
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Appendix A

Some Comments on Two Problems

Related to TNSW

In the Introduction to this thesis we mentioned two problems (the relationship between Donaldson
and Seiberg-Witten invariants and the topological S-duality conjecture) whose formulation involves
TNSW. In fact, part of the original motivation for this project was the hope that one can use
TNSW to provide path-integral solutions to these problems. Unfortunately, we have found that the
localization ideas used in this thesis are not sufficient to resolve either problem. The purpose of
this Appendix is to explain the limitations of our approach and suggest a few directions for future

research.

A.1 The relationship between TNSW and MTNSW

In this section we analyze the relationship between the correlation functions and partition function
of TNSW and of its massive version. This relationship is needed if we want to use the computations
from Chapters 4 and 5 to verify particular cases of the S-duality conjecture. To explain this, recall
that our formulae in Chapters 4 and 5 refer to MTNSW, the massive version of the theory, whereas,
as will be summarized below, the S-duality conjecture makes certain predictions about the partition
function of TNSW.

We will denote by Zysw the partition function of TNSW (see (3.21)) and by Zysw(m) the
partition function of the massive version of the theory (see (3.4) for the definition). Similarly,
the vacuum expectation values in TNSW and MTNSW of the observable O will be denoted by
< O >nsw and < O >nsw (m), respectively. Recall that in Section 3.5 we suppressed the
parameters ¢ and r from the discussion since we proved that all the above quantitics are independent

of them.
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Statement A.1. < O >ysw=0ifdegO # v.dim Mysw, where v.dim Mysw denotes the virtual

dimension of the moduli space Mysw.

The virtual dimension equals, by definition, the index of the Fredholm sectio:. s used in the
infinite-dimensional Mathai-Quillen construction. Recall that the operators @ under consideration
are products of differential forms (actually, products of the p-classes defined in Section 3.1) and
8o, at least formally, the statement follows from the Mathai-Quillen formalism. In this context,
‘formally’ means that we ignore the potential problems created by the non-compactness of the
moduli space Mysw. In other words, we pretend that Mysw is a smooth, oriented, compact
manifold. Although the moduli space is orientable and smoothness can be achieved by choosing a
generic metric of the base, compactness fails, and so a rigorous proof of the statement would require
the Uhlenbeck compactification to be taken into account.

In the physics literature on BRST cohomology, the statement that the integral of a differential
form of the wrong degree (i.e. not equal to the dimension of the integration space) is equal to zero
is called the ‘cancellation of the ghost number anomaly’. To the best of the author’s knowledge,
there are currently no further arguments to support such a cancellation except the above dimension
count (sometimes this statement is given as a claim about the presence of a supersymmetry, which
is mathematically equivalent to our formulation),

Statement A.l1 does not extend to the correlation functions of massive TNSW. In the massive
theory, the operators O are S!-equivariant differential forms (in particular, O has a different meaning
in TNSW and in MTNSW). The operators O arise from the equivariant cohomology of the space
of connections (with respect to the the group of gauge transformations). To obtain the integrand
over the moduli space, one applies the Chern-Weil homomorphism in the case of TNSW and its S!-
equivariant generalization in the case of MTNSW. If degg: O > v.dim My gsw, the (inhomogeneous)
differential form O (in MTNSW) can still include components whose differential form degree equals
the dimension of the integration space, leading to a non-zero contribution to the correlation function.

However, if the degree of O is smaller than the dimension of the moduli space we have
Statement A.2. If degsi O < v.dim Mysw then < O >nsw (m) = 0.

The formal justification is obvious: since the differential-form degree of all the components of O
is less than the dimension of the integration space, none of them contributes to the integral.

Finally, the case when the degree of O equals the dimension of the moduli space is described by
Statement A.3. Ifdegg O = v.dimMysw then < O >nsw=< O >ysw (m) for any real m.

Formally this follows from the fact that the top component of CWg: (O) equals CW (0) and the
lower-degree components of CWg:i(O) don’t matter in the integral over moduli space.
We should emphasize again that the previous statements are rigorous only in the cases when

Mnsw is compact. Otherwise, one should analyze the integrals over M ygsw further.
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Let us also formulate the particular form of Statements A.2 and A.3 for the partition functions
of TNSW and MTNSW, i.e. when O = 1:

Statement A.4. i) If v.dim Mysw > 0 then Znsw = Znsw(m) = 0.
#) If v.dim Mysw = 0 then Znysw = Zxsw(m).
i) If v.dim Mygw < 0 then Zysw = O but Znsw(m) could be non-zero.

By applying the index theorem to the coupled Dirac operator and using Proposition 3.1 we get
Proposition A.1, The virtual dimension of Mysw is given by
vdimMpysw = %(c-c— 2x — 30), (A.1)

where ¢ denotes the class of the Spin®-structure, X the Euler characteristic, and o the signature of

the four-manifold,
Proof.

vdimMysw = 8k—3(1+bF)+ 2Indc(D ®@sl(E))
= 8k—3(1+b§")+2(g(c-c-a)—4k)

- %(c ‘¢ - 2% — 30), (A.2)

where k = ¢;(E) and c is the class of the Spin°-structure,
Remark. The remarkable feature of the above formula is that dim Mnsw is independent of the
instanton number k.

We will restrict now to the particular case when v.dim M ~sw = 0. Thisimplies that < O >pysw=
0 for any operator O of positive degree, so the only quantity of interest is the partition function

Znsw- The previous index computation yields

Statement A.5. Ifc-c = 2x + 30, so that dim Mnsw =0, then
Znsw = Znsw(m) (A.3)

for any real m.

As with the statements on Section 3.5, we present the analogous statement in finite dimensions
and quote the physical argument for the infinite-dimensional case. As we have already explained
for Statement A.3, in finite dimensions, if £ is an oriented S'-equivariant vector bundle over the
compact manifold M (on which S! acts) and rk (E) = dim (M) then

JECE [ es®)

because the difference eg: (E) — e(E) has no top degree component. The analogy with the infinite-

dimensional statement is now clear since Znsw is a formal Euler number and Znsw(m) is the
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corresponding S'-equivariant object. The appropriate physical argument is given (in a different
context) at the beginning of Section 5 in [32]: although the addition of the mass term breaks part
of the supersymmetry, there is enough supersymmetry left to preserve the topological character of
the theory, in particular the partition function is unchanged.

Remark. One has to be careful about this supersymmetry argument. A rigorous mathematical
definition of the partition function might very well lead to a ‘spontaneous supersymmetry breaking’,
especially because of the non-compactness of Mysw (i.e. the operations needed to compactify the
moduli space could destroy the supersymmetry).

The condition c-c = 2x + 30 is easily fulfilled with a suitable choice of ¢, but instead of discussing
it in general we will focus on an important special case, namely the case of spin four-manifolds and
the ‘spin’ Spin‘-structure, i.e. ¢ = 0. The above condition reduces to 2x + 3¢ = 0, which, in the
case of a Kahler surface gives K2 = 2x + 3¢ = 0. This can happen either if the Kodaira dimension
is zero or one and the surface is minimal, or for a suitable blow-up of a surface of general type. A
rich class of examples consists of simply connected (spin) elliptic surfaces (i.e. with at most two
singular fibres). The simplest such four-manifold is the K3 surface, for which x = 24 and o = —16.
In general, if the geometric genus of the elliptic surface is p, (which has to be odd for the surface to
be spin) then b2 = 12p, + 10, b = 2p, + 1, b; = 10p, +9, and so x = 12p, + 12 and ¢ = —8p, — 8,

and so dim Mysw = 0 i these cases.

A.2 S-duality and the partition function of topological non-

abelian Seiberg-Witten theory on a K3 surface

We now discuss the possibility of applying Chapters 4 and 5 to the S-duality conjecture. Our
present results are not sufficient to obtain further tests of S-duality along the lines of [32]. In
order to illustrate the limits of our existing computations, we specialize even more and restrict
to the case of K3 surfaces. This case already illustrates the main points of the argument and the
relationship with the physical results mentioned in Section 3.4. The goal is to compare our results to
the S-duality predictions of Vafa and Witten [32]. Although topological non-abelian Seiberg-Witten
theory is in general a different topological twisting of N = 4 Yang-Mills than the Vafa-Witten twist,
it does coincide with the latter on a hyperKahler manifold, in particular on a K'3 surface (see [16)).
Therefore the partition function Zygw should coincide in this case with the partition function of

the Vafa-Witten twist, which is explicitly computed in [32].

The relevant result from [32] is formula (4.17) for the Vafa-Witten partition function:
1 1 1
2l -wien(a) = ¢ (O + 106 + J6 (=), (A4)
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where
1

G(q) :=
@)= -
is the —24-th power of the Dedekind eta function. In the above formula, Z£3, _wi..c.(9) is obtained

after summing over instanton numbers, as in Conjecture 1 from Section 3.4, i.e.

00
z\l";?'n—wmen(q) = quzkr
k=0

where Z, is the partition function corresponding to connections on a fixed bundle E with ¢;(E) = k.

There is one important subtlety about Zy: although the virtual dimension of My is negative,
(which would naively suggest that Zo = 0), the Vafa-Witten formula (A.4) predicts ‘somewhat mys-
teriously’ that Zo = 1/4 (see formula (4.16) of [32])-the non-vanishing of Zy = 0 being interpreted
as a contribution from the trivial connection.

We therefore have to compute

Zfdw = quzﬁgw.ks
kez

where Zysw, denotes the partition function of topological non-abelian Seiberg-Witten theory com-
puted from configurations with instanton number k. Note that, according to Statement A.5, z,{,fgwl,‘
equals the corresponding partition function in massive TNSW (note that dim Mysw = 0 for all
integers k). As elaborated in Sections 4.3, 4.4, and 5.3, the latter partition function is a combination
of Donaldson and Seiberg-Witten invariants-which are completely known for a K'3 surface.

In fact, for a K3 surface, the only Seiberg-Witten basic class is A = 0 with SW()\) = 1 and
Theorem 5.2 reads, in this particular case,

< exp(pll + ¢X) >= {exp (Zp + lq"’(!) . 2)) } . (A.5)
2 2 mod 4

The only contribution of abelian Seiberg-Witten pairs to Z§3,,(m) is therefore the one obtained
from k = 0 and z = 0, where z is as in Statement 4.6. Actually (4.24) shows that

1/4 ifk=0

contribution of reducible configurations to Zﬁgw',,(m) =
0 ifkeZ\o.

(A.6)

To check the last statement, recall that x = 24, 0 = —16, z = 0 (i.e. { is the trivial line bundle),
and
Ind(P ®17%) =Ind () = (—0/8) = 2.

Remark. The result of (A.6) is consistent with Statement A.5, which implies that Zysw(m) is
independent of m under the assumption that dim Mysw = 0 (for a four-manifold of simple type).

Therefore the contribution from reducible configurations to Z§3,,,(m) does agree with the
prediction of Vafa and Witten for instanton number 0 and provides a geometric explanation for the

‘somewhat mysterious’ 1,/4.
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The harder task is to compute the contributions to Zysw,x(m) from ‘pure gauge’ configurations,

i.e. configurations with vanishing spinor. With the notations of Section 4.3, and according to (4.13),
ZNBE 5 m) = [ s a(1nd D @ s(EL). (A7)
My

Notice that there is no power of m appearing as a prefactor on the right-hand side of (A7), in
agreement with the prediction that Z,’,,‘gw(m) is independent of m.

We can therefore state the following

Statement A.6.

ZNEwe s (m) = S gb / sik—6(Ind P @ sl(Ey)). (A.8)
k=2

1

The lower limit of the summation is worth explaining: since dim My = 8k — 12, M, is gener-
ically empty for k < 1, so there are no contributions from k in this range. In addition, we have
already included the contribution from the trivial connection in the contribution from reducible
configurations.

We conclude this section by analyzing the implications of the Statement. The ingredients needed
in (A.8) are the expression of the Segre class of the index bundle in terms of u-classes from Section
5.2 and the computations of topological invariants from Section 5.3.

The Segre class of the index bundle was computed in (5.20); the K3 surface being spin, Z = 0;

moreover a = —o/4 =4 and b = —8k. Hence

stotInd (I ® Ex) = (1 — X)*2exp (TIS-XT)) exp (2(’1'_‘—;()’2’) , (A.9)
where E); denotes the SU (2)-bundle of instanton number k. Recall that X and Y are degree-four
cohomology classes so s4x_g is the part of degree 2k — 3 in X, Y.

As for Theorem 5.4 which gives < X™Y"™ > for any m and n, we need to work out the function
K(T) in (5.46), where K(T') was defined in (5.43). There is only one basic class for a K'3 surface,

namely A = 0. Therefore in this case
K(T) = det(Id — 262T)" %, (A.10)

where £ is the intersection matrix, which is well-known to be

(+2)
£E=3 62(_38)1
10

with Ejg the suitable Cartan matrix.
We haven’t been able so far to use (A.9) and (A.10) to find a closed form expression for the right-
hand side of Statement A.6. A comparison with the Vafa-Witten formula (A.4) can nevertheless be

made for a few coefficients by computing chem individually. The author has used Maple to check
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the first ten coefficients, but unfortunately they don’t agree with the corresponding coefficients in
the Vafa-Witten expression.

The main reason for the disagreement seems to be the non-compactness of the moduli space
Mpysw. We have tried to circumvent this problem by using the abelian localization theorem first,
in order to reduce to Donaldson moduli spaces, for which the Uhlenbeck compactification is well-
understood and leads to Donaldson invariants. We have tacitly assumed the the ansatz of Donaldson-
Witten theory, i.e. that the integrals over Donaldson moduli spaces can to be interpreted as integrals
over the Uhlenbeck compactification, can be applied to massive non-abelian Seiberg-Witten theory
as well.

A more careful analysis is probably needed. The manifold M ysw does admit a compactification,
but the locus at infinity could contribute as well in the localization procedure of Section 4.2-therefore

extra terms would have to be added to the partition function.

A.3 Donaldson versus Seiberg-Witten invariants

Similar problems arise when attempting to relate the Donaldson and Seiberg-Witten invariants by
using MTNSW. As explained in the first section of the Appendix, in the case when v.dim Mysw >
0, one can still try to evaluate the expectation value for an operator whose degree is less than
v.dim Mysw by using the abelian localization theorem. Formally, the expectation value should be
zero because of the dimension mismatch (see Statement A.2), which would imply that the fixed point
contributions add up to zero. This would lead to an equality between the ‘pure gauge’ contributions
and the contributions from reducible configurations, i.e. a relationship between some Donaldson
and Seiberg-Witten invariants. This reasoning however leads to formulae which are mathematically
incorrect. This can be checked by comparison with cases in which the Donaldson and Seiberg-Witten
invariants are known, and we will illustrate this in the case of a K3 surface.

Consider an SU (2)-bundle E with cy(E) = k over the K3 surface and the topological non-abelian
Seiberg-Witten theory whose fields are connections on this bundle and sections of the positive Spin
bundle. Seiberg-Witten contributions arise from decompositions E = 17!, with ¢, (/)2 = —k. It is
known that the only non-zero Seiberg-Witten invariant of K3 corresponds to the trivial line bundle,
so we would conclude that all Donaldson invariants corresponding to a positive instanton number
vanish, in contradiction with known results (see, for instance, the Kronheimer-Mrowka structure
theorem in Section 5.3). Even summing over instanton numbers doesn't fix the problem, which
leads us to the same conclusion as the comments in the previous section: we need a more careful
definition of the integral over Mysw that would take into account its non-compactness before
applying the localization theorem.

A worthwhile topic for further research is to produce a rigorous definition of the integrals over
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moduli spaces of topological gauge theories that would be consistent with various operations such
as the localization procedure analyzed in this thesis. In other words, the definition of the integrals
for various gauge groups and representations giving the ‘matter part’ should satisfy compatibility

requirements that we will pursue in the future,
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